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Environmental meta-omics is rapidly expanding as
sequencing capabilities improve, computing tech-
nologies become more accessible, and associated
costs are reduced. The in situ snapshots of marine
microbial life afforded by these data provide a
growing knowledge of the functional roles of com-
munities in ecosystem processes. Metaproteomics
allows for the characterization of the dynamic
proteome of a complex microbial community. It has
the potential to reveal impacts of microbial metabo-
lism on biogeochemical transport, storage and
cycling (for example, Hawley et al., 2014), while
additionally clarifying which taxonomic groups per-
form these roles. Previous work illuminated many of
the important functions and interactions within
marine microbial communities (for example, Morris
et al., 2010), but a review of ocean metaproteomics
literature revealed little standardization in bioinfor-
matics pipelines for detecting peptides and inferring
and annotating proteins. As prevalence of these data
sets grows, there is a critical need to develop
standardized approaches for mass spectrometry
(MS) proteomic spectrum identification and annota-
tion to maximize the scientific value of the data
obtained. Here, we demonstrate that bioinformatics
decisions made throughout the peptide identifica-
tion process are as important for data interpretation
as choices of sampling protocol and bacterial com-
munity manipulation experimental design. Our
analysis offers a best practices guide for environ-
mental metaproteomics.

MS-based metaproteomics is now practical due to
advances in duty cycle and increased mass accuracy
for both precursor and fragment masses. These
improvements allow for the detection of over 10*
tandem mass spectra from a single data-dependent
acquisition MS analysis of a mixed microbial
sample. These spectra must then be associated with
peptides from thousands of proteins from diverse
taxonomic groups. The most common approach is
database searching: scoring observed tandem mass
spectra against theoretical peptide spectra generated
in silico from a protein or peptide database (Eng
et al., 1994). However, the approach to database

selection, or construction, can vary dramatically.
In an ocean metaproteomics experiment, the two
main approaches for creating a protein identification
database are to (1) leverage vast quantities of public
sequence data or (2) sequence and assemble a
metagenome. Further, when exploring and assem-
bling possible public databases, a wide range of
databases and sequence selection methods are used.
As the field of environmental proteomics grows, the
integrity of metaproteomics data sets and our ability
to directly compare them across time and space
depends on the adoption of a standardized proce-
dure for peptide identification and annotation. Here,
we reveal how highly influential the protein data-
base selection is to the biological interpretations of a
metaproteomics experiment.

We applied four database selection techniques in
order to perform peptide detection, protein infer-
ence, and taxonomic and functional assignments
from MS-based, oceanic, microbial community
metaproteomics (Figure 1). The metaproteome in
question represents a diverse and relatively under-
sequenced area of the ocean, the Pacific Arctic. Our
results from this study offer a path forward as well as
a caution for investigators that the biological con-
clusions drawn from metaproteomics data are highly
database specific.

Our study followed traditional procedures cur-
rently employed in ocean metaproteomics (details in
Supplementary Information 1 ). Water samples were
collected and selectively filtered from the Bering
Strait as described in May et al. (2016) and incubated
shipboard over 10 days (TO=day 0, T10=day 10).
Bacterial community proteomes from the incuba-
tions were analyzed on a Q-Exactive-HF (Thermo
Fisher Scientific, Waltham, MA, USA) and resulting
data were searched against four different peptide
identification databases (Supplementary Information 2):
(1) site/time-specific metagenome collected concur-
rently with the incubated water; (2) NCBI's env_NR
database; (3) Arctic-bacterial database of NCBI
protein sequences from known polar taxonomic
groups (Supplementary Information 3) North Pacific
database derived from a subset of the Ocean
Microbiome sequencing project (Sunagawa et al.,
2015; Supplementary Information 4). Peptides were
identified and proteins were inferred using Comet v.
2015.01 rev. 2 (Eng et al., 2012, 2015), followed by
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Figure 1 Schematic of the workflow for the database searches of
the metaproteomics samples. The width of the cylinders depicting
each database are scaled to the number of unique tryptic peptides
in each database (Supplementary Information 4).

peptide and protein match scoring (Pedrioli, 2010;
Deutsch et al., 2015) at a false discovery rate
threshold of 0.01 (Supplementary Information 5).
Proteins from all databases were annotated using
BLASTYp (Altschul et al., 1990; Camacho et al., 2009)
against the UniProtKB TrEMBL database (down-
loaded April 28, 2015) with an e-value cutoff of
1E-10 (Supplementary Information 6). Shifts in
community biological functions over the 10-day
incubation were quantified using a Gene Ontology
(GO) analysis where peptide spectrum matches were
associated with GO terms. Additionally, database-
driven peptide score sensitivity as a function of
database size was investigated by searching the site/
time-specific metagenome database with increasing
numbers of decoy peptides.

The number of peptide experimental spectra that
yielded spectrum matches was very different among
databases. The highest number of confidently scored
unique peptide matches and protein inferences
resulted from the search against the site/time-
specific metagenome database. This number of
peptide matches was augmented 1.5 times by
searching the same data against unassembled reads.
This ‘metapeptide’ approach (May et al., 2016)
avoids sequence loss and potential noise introduced
by read assembly (for example Cantarel et al., 2011).
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The peptides identified by the four assembled
databases overlapped relatively little, suggesting that
the different databases cover different parts of the
acquired metaproteome (May et al., 2016). In a direct
comparison of the unassembled metagenome pep-
tides and env_NR, the metagenome contained more
peptides from the metaproteome (May et al., 2016).
Additionally, database size, especially in the cases of
env_NR and North Pacific, had a substantial impact
on search sensitivity, making statistically confident
detection of peptides difficult (Supplementary
Information 7; May et al., 2016). In agreement with
others, we found large database searches suffer from
a loss of statistical power from multiple hypothesis
testing against the vast number of sequences
unrepresented in the expressed metaproteome
(Nesvizhiskii, 2010; Jagtap et al., 2013; Tanca et al.,
2013). This paradox of too many sequences resulting
in too few identifications will become increasingly
problematic with the availability of more sequence
data. Our results point to the success obtained by
searching a metaproteome-specific database that
excludes non-specific sequences, while balancing
the need to retain a sufficient amount of sequence
variation.

Taxonomic and functional interpretations result-
ing from the different searches of the same metapro-
teome against different databases were divergent,
suggesting that each database would yield a different
biological conclusion. The four resulting community
taxonomy profiles diverged even at the phylum
level, and these differences were amplified at finer
taxonomic levels (Figure 2). The metagenome also
yielded a greater variety of taxa at ranks more
specific than class compared to env_NR (May et al.,
2016). In addition to taxonomic discrepancies,
functional response to the 10-day incubation differed
depending on database used, differences that have
been noted by others (Rooijers et al., 2011; Tanca
et al.,, 2013). In our arctic microbiome, there was
little agreement among database searches in the ten
GO terms that changed the most between the
beginning and end of the incubation experiment
(Table 1, Supplementary Information 8). These GO
terms would be considered the most significant
contributors to changes in community function in
the particular experiment, and would lead to
substantially different interpretations depending on
the database selected. The importance of these
differences in functional assignments among search
results can direct downstream analyses and inter-
pretations. For example, they are of critical impor-
tance when inferring and reporting community
function. Our results and others (for example,
Rooijers et al., 2011) stress the importance of
database choice for metaproteomics functional
assignments and community biological process,
especially in the case of a previously uncharacter-
ized, complex community.

In addition to differences in peptide search results,
the true complexity in annotating detected proteins
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Figure 2 A heat map depicting the amount of agreement of taxonomic assignments at the phylum level derived from inferred proteins
across searched databases. For each phylum, a colored box represents the number of proteins (log(x+1)-transformed) associated with that
phylum for each set of search results (red = highly abundant phylum; blue = low/non-existent phylum). The results are ordered by phylum

abundance in the site/time-specific metagenome search results.

was obscured by the standard approach that uses
only the top BLAST hit as the defined protein
annotation. The BLAST algorithm returns a list of
possible hits with associated Expect values (e-values)
when a sequence is searched; to better understand
the downstream effects of this approach, we
included up to 500 BLAST results per protein. On
average, 403 protein matches per metagenome
sequence were returned that passed the e-value
cutoff of 1E-10. Disagreements in functional and
taxonomic assignment among the BLAST hits for a
single protein are very common, even when the
results all have very low e-values (Supplementary
Information 9). This casts doubt on the ‘top’ BLAST
hit as the correct annotation for the protein of
interest, even though this is common practice in

‘omics’ literature. Inaccuracy or lack of precision of
protein annotation via BLAST methodology would
further obscure an accurate interpretation of meta-
proteomics data when combined with an unin-
formed database choice.

The selection of a protein database for peptide
identifications is one of the most critical bioinfor-
matics decisions for accurate biological and ecologi-
cal interpretation of in situ community functions.
Although more time and money are required to
complete a site/time-specific metagenome, we have
demonstrated that these investments lay the ground-
work for more complete metaproteome interpreta-
tion (Tanca et al., 2013; May et al., 2016). Whether or
not a metagenome is assembled, data interpretation
must proceed with care. Based on current and
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previous work, we propose a general best practices
guide (Figure 3) to identifying peptides and infer-
ring biological function and taxonomic distributions
of natural microbial assemblages: (1) For previously
uncharacterized communities, construct as accurate
and efficient a database as possible by (a) using
the metapeptide approach (May et al., 2016),
(b) sequencing the metagenome and utilizing gene
prediction software (for example, Hyatt et al., 2012)
or (c) constructing the most accurate database

Acetyl-CoA biosynthetic process (3.1)

Taurine metabolic process (2.9)

Acyl-CoA biosynthetic process (3.3)
Thioester biosynthetic process (3.3)

Taurine catabolic process (2.9)

& possible to avoid loss of sensitivity due to large
B search space when metagenome sequencing is not
z possible; (2) when annotating proteins, go beyond
5 the top BLAST hit to base the annotation for
= taxonomy and function on an agreement among
= = . BLAST hits above a specific e-value threshold
s 2 8 (Supplementary Information 9); (3) to increase
g 2 2 peptide identifications, leverage publicly available
= 7 g ;* sequences via the more statistically robust multi-
8% & & 2 step or iterative searches (for example, Jagtap et al.,
£2 S 8 £ 2013; Kertesz-Farkas et al., 2015). As researchers
ag £ £ < begin to explore these different search methods with
82 s E T a variety of metaproteomics data sets, this approach
ES_E & ¢ will provide the most robust search methods and
5_5;?% : E most reliable taxonomic and functional inference
= E%» 2z S F for environmental metaproteomics.
N gb SE = Sm Supplementary Information is available at ISME
g EEE < <= Journal’s website.
1: Detailed methods for metagenome sequence,
% metaproteomics MS, database searching and biolo-
< gical interpretation of data.
E 2: Minimum, maximum and mean protein lengths
£ 8 for each protein identification database used in
3 ‘g : this study.
& ¢ ) 3: Taxonomic groups used to create the Arctic-
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8 £3E 23 sequences that were downloaded from NCBI, fol-
£ g:‘a‘ i lowed by the complete taxonomic tree. For each
2 2 §§ g 8 taxonomic group, citations are given from peer-
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group’s presence near our study site. The second tab
in the workbook has the full citations listed.
4: Summary of total unique protein and peptide
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Table 1 Ten GO terms with the biological aspect ‘biological process’ with the greatest log fold change from each database search; five that changed the most to have higher abundance at
Regulation of nitrogen utilization (3.8) Sodium ion transport (3.6)

Bold terms are matches with the top 10 terms from the metagenome. Fold changes for each term are in parentheses next to the term name.
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Figure 3 Depiction of the recommended ‘best practices in
metaproteomics’ workflow. The ocean circles represent data
derived from the same sample. (1) Selection of an accurate and
efficient database is followed by (2) finding the consensus BLAST
hit among the group of best hits, and (3) re-searching the data
against more sequences to achieve greater metaproteome coverage
using a robust multi-step or iterative algorithm.

with increasing numbers of random decoy peptides).
The vertical axis is the number of metagenome
peptides detected at a false discovery rate of 0.01 as
determined by forward-reverse database search for
five different sample files. False discovery rate was
calculated from Trans Proteomic Pipeline
probabilities.

8: Direction of log, fold change for GO terms
detected at total PSM count> 50 in TO vs T10, TO’ vs
T10°, TO vs TO’, and T10 vs T10’ (* * ‘denotes a
technical replicate). A log, fold change >1 is
‘positive’,<-1 is ‘negative’, between -1 and 1 is
‘none’ and if a GO term was not detected at above 50
PSM in a database there is an ‘X’. Results for each
database (site/time-specific metagenome, env_NR,
Arctic-bacterial and North Pacific) are listed in
separate columns for each comparison.

9: A heatmap representing the granularity of taxa
returned from a BLAST search (e-value < 1E-10) as
a function of percent identity threshold. Each
colored bin represents the number of protein hits
at a given least common taxonomic unit level for up
to 500 protein hits. Horizontal axis: minimum
percent sequence identity between query protein
and BLAST hits. Vertical axis: rank of the lowest
common taxonomic unit representing all BLAST
hits above the threshold. Color indicates the natural
log of the number of query proteins that fall into
each bin, according to the scale at right. ‘None’
indicates hits that were assigned to multiple
superkingdoms.
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