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Abstract

We consider partially-specified optimization

problems where the goal is to actively, but

efficiently, acquire missing information about

the problem in order to solve it. An algo-

rithm designer wishes to solve a linear pro-

gram (LP), max cTx s.t. Ax  b,x � 0,

but does not initially know some of the pa-

rameters. The algorithm can iteratively choose

an unknown parameter and gather information

in the form of a noisy sample centered at the

parameter’s (unknown) value. The goal is to

find an approximately feasible and optimal so-

lution to the underlying LP with high proba-

bility while drawing a small number of sam-

ples. We focus on two cases. (1) When the

parameters b of the constraints are initially un-

known, we propose an efficient algorithm com-

bining techniques from the ellipsoid method

for LP and confidence-bound approaches from

bandit algorithms. The algorithm adaptively

gathers information about constraints only as

needed in order to make progress. We give

sample complexity bounds for the algorithm

and demonstrate its improvement over a naive

approach via simulation. (2) When the param-

eters c of the objective are initially unknown,

we take an information-theoretic approach and

give roughly matching upper and lower sam-

ple complexity bounds, with an (inefficient)

successive-elimination algorithm.

1 INTRODUCTION

Many real-world settings are modeled as optimization

problems. For example, a delivery company plans driver

routes to minimize the driver’s total travel time; an airline

assigns vehicles to different origin-destination pairs to

maximize profit. However, in practice, some parameters

of the optimization problems may be initially unknown.

The delivery company may not know the average con-

gestion or travel time of various links of the network, but

has ways to poll Waze1 drivers to get samples of travel

times on links of the network. The delivery company

may not know the demand and the revenues for each

origin-destination pair, but can get estimates of them by

selling tickets on chosen origin-destination pairs.

To capture such settings, this paper proposes a model

of optimization wherein the algorithm can iteratively

choose a parameter and draw a “sample” that gives in-

formation about that parameter; specifically, the sample

is an independent draw from a subgaussian random vari-

able centered at the true value of the parameter. This

models, for instance, observing the congestion on a par-

ticular segment of road on a particular day. Drawing each

sample is presumed to be costly, so the goal of the algo-

rithm is to draw the fewest samples necessary in order to

find a solution that is approximately feasible and approx-

imately optimal.

Thus, the challenge falls under an umbrella we term

active information acquisition for optimization (AIAO).

The key feature of the AIAO setting is the structure of

the optimization problem itself, i.e. the objective and

constraints. The challenge is to understand how the diffi-

culty of information acquisition relates to this underlying

structure. For example, are there information-theoretic

quantities relating the structure to the sample complex-

ity? Meanwhile, the opportunity of AIAO is to exploit

algorithms for the underlying optimization problem. For

example, can one interface with the algorithm to reduce

sample complexity by only acquiring the information

needed, as it is needed?

These are the questions investigated in this paper, which

focuses on active information acquisition for linear opti-

1https://www.waze.com



mization problems. Specifically, we consider linear pro-

grams in the form

max
x

cTx, s.t. Ax  b,x � 0 (1)

with A 2 R
m×n, c 2 R

n, and b 2 R
m. We will con-

sider either the case that the b in the constraints is un-

known or else the case that the c in the objective is un-

known, with all other parameters initially known to the

algorithm. The algorithm can iteratively choose an un-

known parameter, e.g. bi, and draw a “sample” from it,

e.g. observing bi+⌘ for an independent, zero-mean, sub-

gaussian ⌘. The algorithm must eventually output a so-

lution x such that, with probability 1� �, Ax  b+ "11

and cTx � cTx∗ � "2, where x∗ is the optimal solution.

The goal is for the algorithm to achieve this while using

as few total samples as possible.

There is a natural “naive” or “static” approach: draw

samples for all unknown parameters until they are known

to high accuracy with high probability, then solve the

“empirical” linear program. However, we can hope to

improve by leveraging known algorithms and properties

of linear programs. For example, in the case that b is

unknown, if a linear program has an optimal solution, it

has an optimal solution that is an extreme point (a corner

point of the feasible region); and at this extremal optimal

solution, several constraints are binding. These suggest

that it is more important to focus on binding constraints

and to gather information on the differing objective val-

ues of extreme points. Algorithms developed in this pa-

per leverage these properties of linear programs to decide

how much information to acquire for each unknown pa-

rameter.

1.1 APPROACHES AND RESULTS

Two settings and our approaches. The paper inves-

tigates two settings: unknown b but known c, and un-

known c but known b. We always suppose A is known

and assume that the linear program has an optimal solu-

tion.

It might initially appear that these cases are “equiva-

lent” via duality theory, but we argue that the two cases

are quite different when we do not know the parame-

ters of LP exactly. Given a primal linear program of

the form (1), the dual program is given by miny b
Ty

s.t. ATy � c,y � 0, which is easily transformed into

the maximization format of (1). In particular, the pa-

rameters c in the objective function of a primal LP be-

comes the parameters in the constraints of the dual LP.

By duality theory, the (exact) optimal solutions to the

primal and dual are connected by complementary slack-

ness conditions. However, this approach breaks down in

the approximate setting for two reasons. First, approx-

imately optimal solutions do not satisfy complementary

slackness; and second, even knowing which constraints

bind does not suffice to determine the optimal solution

x∗ when some of the constraint or objective parameters

are unknown.2 We hence take two different approaches

toward our two settings.

Unknown-b case. In the unknown b setting, the un-

certainty is over the constraints. Our algorithm combines

two main ideas: the ellipsoid method for solving linear

programs, and multi-armed bandit techniques for gath-

ering data. The ellipsoid algorithm only requires the in-

formation of one violated constraint at each iteration, if

there exists a violated one. We then leverage the multi-

armed bandits method to find the most violated constraint

(if there exists one) using as few samples as possible.

We theoretically bound the number of samples drawn by

our algorithm as a function of the parameters of the prob-

lem. In simulations on generated linear programs, UCB-

Ellipsoid far outperforms the naive approach of sampling

all parameters to high accuracy, and approaches the per-

formance of an oracle that knows the binding constraints

in advance and needs only to sample these. In other

words, the algorithm spends very few resources on unim-

portant parameters.

Unknown-c case. In the unknown-objective setting,

we know the feasible region exactly. Our algorithm fo-

cuses only on the set of extreme points of the feasible

region. For each of the extreme point, there are a set of

possible values for c such that if c takes any value in the

set, this extreme point is the optimal solution to the LP.

The algorithm hence draws just enough samples to deter-

mine with high probability which is actually the case for

the true c.

We define an information-theoretic measure, Low(I) for

an instance I. We show that this quantity essentially

characterizes the sample complexity of a problem in-

stance and we give an algorithm, not necessarily effi-

cient, for achieving it up to low-order factors.

2 RELATED WORK

The setting considered in this paper, active information

acquisition for optimization, is related at a conceptual

2Nor does knowing which constraints bind even necessarily
help, as approximately satisfying them may still lead to large
violations of other constraints. Thus, while we do not rule out
some future approach that connects approximate solutions of
the primal and dual, the evidence suggests to us that the two
settings are quite different and we approach each differently in
this paper.



level to a large number of lines of work that deal with

optimization and uncertainty. But it differs from them

mostly in either the active aspect or the optimization as-

pect. We’ll discuss some of these related lines of work

and the differences below.

Optimization under uncertainty Our problem con-

siders optimization with uncertain model parameters,

which is also a theme in stochastic programming [Hey-

man and Sobel, 2003, Neely, 2010], chance-constrained

programming [Ben-Tal et al., 2009], and robust opti-

mization [Ben-Tal et al., 2009, Bertsimas et al., 2004].

In both stochastic optimization and chance-constrained

programming, there are no underlying true, fixed values

of the parameters; instead, a probabilistic, distributional

model of the parameters is used to capture the uncer-

tainty and such model of uncertainty becomes part of the

optimization formulation. Hence, optimality in expecta-

tion or approximate optimality is sought after under the

probabilistic model. But in our problem underlying fixed

parameters exist, and the problem is only how much in-

formation to gather about them. Meanwhile, robust opti-

mization models deterministic uncertainty (e.g. parame-

ters come from a known set) and often seeks for a worst-

case solution, i.e. a solution that is feasible in the worst

case over a set of possible constraints. A key distinc-

tion of our model is that there are underlying true values

of the parameters and we do not incorporate any proba-

bilistic or deterministic model of the uncertainty into the

optimization problem itself. Instead, we take an ”active

querying” approach to approximately solve the true opti-

mization problem with high probability.

Artificial intelligence. Several existing lines of work

in the artificial intelligence literature, deal with actively

acquiring information about parameters of an optimiza-

tion problem in order to solve it. Preference elicita-

tion [Braziunas, 2006, Blum et al., 2004] typically fo-

cuses on acquiring information about parameters of the

objective by querying a user about his preferences, this

is similar to our goal for the unknown-c setting. Rel-

evant to our unknown-b case, for more combinatorial

problems, the constraint acquisition literature [OConnell

et al., 2002, Bessiere et al., 2015] is closer to our prob-

lem in some respects, as it posits an optimization prob-

lem with unknown constraints that must be learned via

interactive querying. We emphasize that a central fea-

ture of the model in this paper is noisy observations: the

observations of the algorithm are only noisy samples of

a true underlying parameter. The key challenge is to

choose how many repeated samples of each parameter

to draw. This aspect of the problem is not to our knowl-

edge present in preference elicitation or model/constraint

acquisition.

Machine learning and theoretical computer science.

Much work in active learning considers acquiring data

points iteratively with a goal of low sample complexity

[Balcan et al., 2006, 2007, Castro and Nowak, 2008].The

key difference to AIAO is between data and parameters.

In learning, the goal is to minimize the average or expec-

tation of some loss function over a distribution of data

points. Other than its likelihood, each data point plays

the same role in the problem. Here, the focus is on how

much information about each of various parameters is

necessary to solve a structured optimization problem to

a desired level of accuracy. In other words, the key ques-

tion here, which is how much an optimization algorithm

needs to know about the parameters of the problem it is

solving, does not apply in active learning.

A line of work on sample complexity of reinforce-

ment learning (or approximate reinforcement learn-

ing) [Kakade et al., 2003, Lattimore and Hutter, 2012,

Azar et al., 2012, Wang, 2017, Chen and Wang, 2016]

also bears some resemblance to our problem. A typical

setting considered is solving a model-free Markov De-

cision Processes (MDP), where the transition probabili-

ties and the reward functions are initially unknown but

the algorithm can query an oracle to get samples. This

problem is a special case of our AIALO problem with

unknown A and b because an MDP can be formulated

as an linear program. The solutions provided focuses on

the particular structure of MDP, while we consider gen-

eral linear programs.

Broadly related is recent work on optimization from sam-

ples Balkanski et al. [2016], which considers the sample

complexity of a two-stage process: (1) draw some num-

ber of i.i.d. data points; (2) optimize some loss function

or submodular function on the data. In that setting, the al-

gorithm sees a number of input-output pairs of the func-

tion, randomly distributed, and must eventually choose a

particular input to optimize the function. Therefore, it is

quite different from our setting in both important ways:

(1) the information collected are data points (and evalu-

ations), as in ML above, rather than parameters as in our

problem; (2) (so far) it is not active, but acquires infor-

mation in a batch.

A line of work that is closely related to our unknown-c

problem is the study of combinatorial pure exploration

(CPE) problem, where a learner collects samples of un-

known parameters of an objective function to identify

the optimal member in a solution set. The problem was

first proposed in Chen et al. [2014], and subsequently

studied by Gabillon et al. [2016], Chen et al. [2016a,b,

2017]. CPE only considers combinatorial optimization

problems whose solution set contains only binary vec-

tors of length n. A recent work by Chen et al. [2017]



extended CPE to a General-Sampling problem by allow-

ing general solution sets. Our unknown-c problem can

be fitted into the setting of General-Sampling. Our algo-

rithm for unknown-c was inspired by the work of Chen

et al. [2017], but leverages the structure of LP and hence

has better sample complexity performance than directly

treating it as a General-Sampling problem. The General-

Sampling problem does not encompass all AIAO set-

tings, e.g., our unknown-b case.

3 MODEL AND PRELIMINARIES

3.1 THE AIALO PROBLEM

We now formally define an instance I of the active in-

formation acquisition for linear optimization (AIALO)

problem. We then describe the format of algorithms for

solving this problem. Note that one can easily extend

this into a more general formal definition of AIAO, for

more general optimization problems, but we leave this

for future work.

An instance I consists of three components. The first

component consists of the parameters of the underlying

linear program on n variables and m constraints: a vector

c 2 R
n, a vector b 2 R

m, and a matrix A 2 R
n×m.

Naturally, these specify the program3

max
x

cTx s.t. Ax  b,x � 0. (2)

We assume for simplicity in this paper that all linear

programs are feasible and are known a priori to have

a solution of norm at most R. The second component

specifies which parameters are initially known and which

are initially unknown. The third and final component

specifies, for each unknown parameter (say ci), of a �2-

subgaussian distribution with mean equal to the value of

the parameter.4

Given I, we define the following sets of approximately-

feasible, approximately-optimal solutions.

Definition 3.1. Given an instance I, let x∗ be an optimal

solution to the LP. Define OPT (I; "1, "2) to be the set of

solutions x satisfying cTx � cTx∗ � "1 and Ax  b+
"21. We use OPT (I) as shorthand for OPT (I; 0, 0).

3Note that any linear program can be transformed into the
given format with at most a factor 2 increase in n and m.

4Distribution D with mean µ is σ2-subgaussian if, for X ⇠
D, we have E[et(X�µ)]  eσ

2t2/2 for all t. The family of sub-
Gaussian distributions with parameter σ encompasses all distri-
butions that are supported on [0,σ] as well as many unbounded
distributions such as Gaussian distributions with variance σ

2.

3.2 ALGORITHM SPECIFICATION

An algorithm for the AIALO problem, run on an instance

I, functions as follows. The algorithm is given as in-

put n (number of variables), m (number of constraints),

and �2 (subgaussian parameter). It is also given the sec-

ond component of the instance I, i.e. a specification of

which parameters are known and which are unknown.

For each parameter that is specified as “known”, the al-

gorithm is given the value of that parameter, e.g. it is

given “A11 = 42.” Finally, the algorithm is given an op-

timality parameter "1, a feasibility parameter "2, and a

failure probability parameter �.

The algorithm may iteratively choose an unknown pa-

rameter and sample that parameter: observe an indepen-

dent and identically-distributed draw from the distribu-

tion corresponding to that parameter (as specified in the

third component of the instance I). At some point, the

algorithm stops and outputs a solution x 2 R
n.

Definition 3.2 ((�, "1, "2)-correct algorithm). An algo-

rithm A is (�, "1, "2)-correct if for any instance I and in-

puts (�, "1, "2), with probability at least 1� �, A outputs

a solution x 2 OPT (I; "1, "2). In the case "1 = "2 = 0,

we say A is �-correct.

Our goal is to find algorithms with low sample complex-

ity, i.e., the number of samples drawn by the algorithm.

4 UNKNOWN CONSTRAINTS

We will first consider the unknown-b case where every

parameter of the constraint vector b is initially unknown,

and all other parameters are initially known. Geomet-

rically, the algorithm is given an objective “direction”

(c) and a set of constraint “orientations” (A), but does

not initially know the “offset” or displacement bi of each

constraint i.

In this setting, we do not expect to attain either exact

feasibility or exact optimality, as the exact constraints

can never be known, and in general an arbitrarily small

change in constraints of an LP leads to a nonzero change

in the value of the optimal solution.

The section begins with a lower bound of the sample

complexity (across all LP instances) of any correct al-

gorithm.

Theorem 4.1 (Lower bound for unknown b). Suppose

we have a (�, "1, "2)-correct algorithm A where � 2
(0, 0.1), "1 > 0, "2 > 0. Then for any n > 0, there

exists infinitely many instances of the AIALO problem

with unknown-b with n variables with objective function

kck∞ = 1 such that A must draw at least

Ω
�
n ln(1/�) ·max{"1, "2}

−2
�



samples in expectation on each of them.

The idea of the lower bound (proof in Appendix C.1) is

that in the worst case, an algorithm must accurately es-

timate at least all n binding constraints (in general with

n variables, up to n constraints bind at the optimal so-

lution). It remains open whether we can get a tighter

lower bound which also captures the difficulty of ruling

out non-binding constraints.

4.1 ELLIPSOID-UCB ALGORITHM

Background. The standard ellipsoid algorithm for lin-

ear programming begins with an ellipsoid E(0) known to

contain the optimal solution, Then, it checks two cases:

(1) The center of this ellipsoid x(0) is feasible, or (2)

it is not feasible. If (2), say it violates constraint i, then

the algorithm considers the halfspace defined by the con-

straint Aix
(0)  bi. If (1), the algorithm considers the

halfspace defined by the “constraint” cTx � cTx(0), as

the optimal solution must satisfy this constraint. In ei-

ther case, it updates to a new ellipsoid E(1) defined as

the minimal ellipsoid containing the intersection of E(0)

with the halfspace under consideration.

The obstacle is that, now, b is initially unknown. A first

observation is that we only need to find a single violated

constraint, so there may be no need to sample most pa-

rameters at a given round. A second observation is that

it suffices to find the most violated constraint. This can

be beneficial as it may require only a few samples to find

the most violated constraint; and in the event that no con-

straint is violated, we still need to find an upper bound on

“closest to violated” constraint in order to certify that no

constraint is violated.

To do so, we draw inspiration from algorithms for ban-

dits problems (whose details are not important to this

paper). Suppose we have m distributions with means

µ1, . . . , µm and variances �2
1 , . . . ,�

2
m, and we wish to

find the largest µi. After drawing a few samples from

each distribution, we obtain estimates bµi along with con-

fidence intervals given by tail bounds. Roughly, an

“upper confidence bound” (UCB) algorithm (see e.g.

Jamieson and Nowak [2014]) for finding maxi µi pro-

ceeds by always sampling the i whose upper confidence

bound is the highest.

We therefore will propose a UCB-style approach to do-

ing so, but with the advantage that we can re-use any

samples from earlier stages of the ellipsoid algorithm.

Algorithm and results. Ellipsoid-UCB is given in Al-

gorithm 1. At each round k = 1, 2, . . . , we choose the

center point x(k) of the current ellipsoid E(k) and call the

subroutine Algorithm 2 to draw samples and check for

violated constraints. We use the result of the oracle to

cut the current space exactly as in the standard ellipsoid

method, and continue.

Some notation: t is used to track the total number of

samples drawn (from all parameters) and Ti(t) denotes

the number of samples of bi drawn up to “time” t. The

average of these samples is:

Definition 4.1. Let Xi,s denote the s-th sample of bi and

let Ti(t) denote the number of times bi is sampled in the

first t samples. Define bbi,Ti(t) =
PTi(t)

s=1 Xi,s/Ti(t) to be

the empirical mean of bi up to “time” t.

Algorithm 1 Modified ellipsoid algorithm

Let E(0) be the initial ellipsoid containing the feasible region.
Draw one sample for each bi, i 2 [m].
Let k = 0 and t = m.
Let Ti(t) = 1 for all i.
while stopping criterion is not met5 do

Let x(k) be the center of E(k)

Call UCB method to get constraint i or “feasible”

if x(k) is feasible then
x x(k) if x not initialized or cTx(k) > cTx.
y �c

else
y AT

i

end if
Let E(k+1) be the minimal ellipsoid that contains E(k) \
{p : yTp  yTx(k)}
Let k  k + 1

end while
Output x or “failure” if it was never set.

The performance of the algorithm is measured by how

many samples (observations) it needs to draw. To state

our theoretical results, define Vi(k) = Aix
(k) � bi

to be the amount by which the i-th constraint is vi-

olated by x(k), and V ∗(k) = maxi Vi(k). Define

gapi,ε(k) = max{|Vi(k)|, V
∗(k) � Vi(k), "} and ∆i,ε

= mink gapi,ε(k).

Theorem 4.2 (Ellipsoid-UCB algorithm). The Ellipsoid-
UCB algorithm is (�, ✏1, ✏2)-correct and with probability
1� �, draws at most the following number of samples:

O

 
mX

i=1

σ
2
i

∆2
i,ε2/2

log
m

δ
+

mX

i=1

σ
2
i

∆2
i,ε2/2

log log

 
σ
2
i

∆2
i,ε2/2

!!

.

Specifically, the number of samples used for bi is at most
σ
2
i

∆2
i,ε2/2

⇣
log(m/�) + log log(�2

i /∆
2
i,ε2/2

)
⌘

.

5Our stopping criterion is exactly the same as in the stan-
dard ellipsoid algorithm, for which there are a variety of pos-

sible criteria that work. In particular, one is
p
cTP�1c 

min{ε1, ε2}, where P is the matrix corresponding to ellipsoid

E(k) as discussed above.



Algorithm 2 UCB-method

Input x(k)

Output either index j of a violated constraint, or “feasible”.

Set δ0 =
�

δ

20m

�2/3

loop
1. Let j be the constraint with the largest index,

j = argmax
i

Aix
(k) �bbi,Ti(t) + Ui(Ti(t)),

where Ui(s) = 3
p

2σ2
i log (log(3s/2)/δ

0) /s and
bbi,Ti(t) as in Definition 4.1.

2. If Ajx
(k) �bbj,Tj(t) � Uj(Tj(t)) > 0 return j.

3. If Ajx
(k)�bbj,Tj(t)+Uj(Tj(t)) < 0 return “feasible”.

4. If Uj(Tj(t)) < ε2/2 return “feasible”.
5. Let t t+ 1
6. Draw a sample of bj .
7. Let Tj(t) = Tj(t� 1) + 1.
8. Let Ti(t) = Ti(t� 1) for all i 6= j.

end loop

Proof Sketch: Define event A to be the event that���bbi,s � bi

���  Ui(s) for all s and i 2 [m]. According to

Lemma 3 in Jamieson et al. [2014], A holds with proba-

bility at least 1� �.

Correctness: Conditioning on event A holds, our UCB

method will only return a constraint that is violated (line

2) and when it returns “feasible”, no constraint is violated

more than "2 (line 3 and 4).

Number of samples: We bound the number of samples

used on each constraint separately. Consider a fixed el-

lipsoid iteration k in which UCB method is given input

x(k), the key idea is to prove that if bi is sampled in

this iteration at “time” t, Ui(Ti(t)) should be larger than

gapi,ε2/2(k). This gives an upper bound of Ti(t). Taking

the maximum of them, we get the final result.

Discussion. To understand the bound, suppose for sim-

plicity that each �i = 1. We observe that the first term

will dominate in all reasonable parameter settings, so we

can ignore the second summation in this discussion.

Next, note that each term in the sum reflects a bound

on how many times constraint i must be sampled over

the course of the algorithm. This depends inversely on

∆i,ε2/2, which is a minimum over all stages k of the

“precision” we need of constraint i at stage k. We only

need a very precise estimate if both of the following con-

ditions are satisfied: (1) |Vi(k)| is small, meaning that the

ellipsoid center x(k) is very close to binding constraint i;
(2) There is no other constraint that is significantly vio-

lated, meaning that i is very close to the most-violated

constraint for x(k) if any. Because this is unlikely to

happen for most constraints, we expect ∆i,ε2/2 to gener-

ally be large (leading to a good bound), although we do

not have more precise theoretical bounds. The only con-

straints where we might expect ∆i,ε2/2 to be small are

the binding constraints, which we expect to come close

to satisfying the above two conditions at some point. In-

deed, this seems inevitable for any algorithm, as we ex-

plore in our experiments.

Comparison to static approach. Again suppose each

�i = 1 for simplicity. Note that each ∆i,ε2/2 �
"2/2. This implies that our bound is always better than

O
⇣

m log(m/δ)
ε22

⌘
, ignoring the dominated second term.

The static approach is to measure each bi with enough

samples to obtain a good precision so that relaxed fea-

sibility can be satisfied with high probability, then solve

the linear program using the estimated constraints. This

uses
4m log(m/δ)

ε22
samples. (This number comes from us-

ing tail bounds to ensure good precision is achieved on

every bi.)

Therefore, the UCB-Ellipsoid algorithm dominates the

static approach up to some constant factors and can show

dramatic instance-wise improvements. Indeed, in some

simple cases, such as the number of variables equal to the

number of constraints, we do not expect any algorithm to

be able to improve over the static approach. However, a

nice direction for future work is to show that, if m is

very large compared to n, then the UCB-Ellipsoid algo-

rithm (or some other algorithm) is guaranteed to asymp-

totically improve on the static approach.

5 UNKNOWN OBJECTIVE FUNCTION

In this section, we consider the unknown-c case. Here,

every parameter of the objective c is initially unknown,

and all other parameters are initially known. Geometri-

cally, the algorithm is initially given an exact description

of the feasible polytope, in the form of Ax  b and

x � 0, but no information about the “direction” of the

objective.

Because the constraints are known exactly, we focus on

exact feasibility in this setting, i.e. "2 = 0. We also

focus on an information-theoretic understanding of the

problem, and produce an essentially optimal but compu-

tationally inefficient algorithm. We assume that there is a

unique optimal solution x∗,6 and consider the problem of

6If we only aim for a ε1-suboptimal solution, we can termi-

nate our algorithm when ε
(r) (defined in Line 5 of Algorithm 3)

becomes smaller than ε1/2, such that the algorithm no longer
requires the best point to be unique.



finding an exact optimal solution with confidence � (i.e.,

a �-correct algorithm). We also make the simplifying as-

sumption that each parameter’s distribution is a Gaussian

of variance 1 (in particular is 1-subgaussian). Our results

can be easily extend to the general case.

Our approaches are based on the techniques used in Chen

et al. [2017], but address a different class of optimization

problems. We thus use the same notations as in Chen

et al. [2017]. We first introduce a function Low(I) that

characterizes the sample complexity required for an LP

instance I. The function Low(I) is defined by the so-

lution of a convex program. We then give an instance-

wise lower bound in terms of the Low(I) function and

the failure probability parameter �. We also formulate a

worst-case lower bound of the problem, which is poly-

nomially related to the instance-wise lower bound. Fi-

nally, we give an algorithm based on successive elimi-

nation that matches the worst-case lower bound within a

factor of ln(1/∆), where ∆ is the gap between the ob-

jective function value of the optimal extreme point (x∗)

and the second-best.

5.1 LOWER BOUNDS

The function Low(I) is defined as follows.

Definition 5.1 (Low(I)). For any instance I of AIALO

(or more generally, for any linear program), we define

Low(I) 2 R to be the optimal solution to the following

convex program.

min
τ

nX

i=1

⌧i (3)

s.t.
nX

i=1

(s
(k)
i � x∗

i )
2

⌧i


⇣
cT (x∗ � s(k))

⌘2

, 8k

⌧i � 0, 8i

Here x∗ is the optimal solution to the LP in I and

s(1), . . . , s(k) are the extreme points of the feasible re-

gion {x : Ax  b,x � 0}.

For intuition about Low(I), consider a thought experi-

ment where we are given an extreme point x∗, and we

want to check whether or not x∗ is the optimal solution

using as few samples as possible. Given our empirical

estimate bc we would like to have enough samples so that

with high probability, for each s(k) 6= x∗, we have

bcT(x∗ � s(k)) > 0 () cT(x∗ � s(k)) > 0.

This will hold by a standard concentration bound

(Lemma D.2) if enough samples of each parameter are

drawn; in particular, “enough” is given by the k-th con-

straint in (3).

Theorem 5.1 (Instance lower bound). Let I be an in-

stance of AIALO in the unknown-c case. For 0 < � <
0.1, any �-correct algorithm A must draw

Ω(Low(I) ln �−1)

samples in expectation on I.

We believe that it is unlikely for an algorithm to match

the instance-wise lower bound without knowing the

value of c and x∗ in the definition of Low(I). To for-

mally prove this claim, for any �-correct algorithm A,

we construct a group of LP instances that share the same

feasible region Ax  b, x � 0 but have different objec-

tive functions and different optimal solutions. We prove

that A will have unmatched performance on at least one

of these LP instances.

Our worst-case lower bound can be stated as follows.

Theorem 5.2 (Worst-case lower bound for unknown c).

Let n be a positive integer and � 2 (0, 0.1). For any �-

correct algorithm A, there exists an infinite sequence of

LP instances with n variables, I1, I2, . . . , such that A
takes

Ω

⇣
Low(Ik)(ln |S

(1)
k |+ ln �−1)

⌘

samples in expectation on Ik, where S
(1)
k is the set of all

extreme points of the feasible region of Ik, and Low(Ik)
goes to infinity.

5.2 SUCCESSIVE ELIMINATION ALGORITHM

Before the description of the algorithm, we first define

a function LowAll(S, ", �) that indicates the number of

samples we should take for each ci, such that the dif-

ference in objective value between any two points in S
can be estimated to an accuracy " with probability 1� �.

Define LowAll(S, ", �) to be the optimal solution of the

following convex program,

min
τ

nX

i=1

⌧i (4)

s.t.

nX

i=1

(xi � yi)
2

⌧i


"2

2 ln(2/�)
, 8x,y 2 S

⌧i � 0, 8i.

Our algorithm starts with a set S(1) that contains all ex-

treme points of the feasible region {x : Ax  b,x �
0}, which is the set of all possible optimal solutions.

We first draw samples so that the difference between

each pairs in S(1) is estimated to accuracy "(1). Then

we delete all points that are not optimal with high prob-

ability. In the next iteration, we halve the accuracy



"(2) = "(1)/2 and repeat the process. The algorithm ter-

minates when the set contains only one point.

Algorithm 3 A successive elimination algorithm

1: S(1)  set of all extreme points of feasible region {x :
Ax  b,x � 0}

2: r  1
3: λ 10
4: while |S(r)| > 1 do

5: ε
(r)  2�r , δ(r)  δ/(10r2|S(1)|2)

6: (t
(r)
1 , . . . , t

(r)
n ) LowAll(S(r), ε(r)/λ, δ(r))

7: Sample ci for t
(r)
i times. Let bc(r)i be its empirical mean

8: Let x(r) be the optimal solution in S(r) with respect to

bc(r)
9: Eliminate the points in S(r) that are ε

(r)/2 + 2ε(r)/λ

worse than x(r) when the objective function is bc(r),

S(r+1)  {x 2 S(r) : hx,bc(r)i
� hx(r),bc(r)i � ε

(r)/2� 2ε(r)/λ} (5)

10: r  r + 1
11: end while
12: Output x 2 S(r)

The algorithm has the following sample complexity

bound.

Theorem 5.3 (Sample complexity of Algorithm 3). For

the AIALO with unknown-c problem, Algorithm 3 is �-

correct and, on instance I, with probability 1� � draws

at most the following number of samples:

O
⇣
Low(I) ln∆−1(ln |S(1)|+ ln �−1 + ln ln∆−1)

⌘
,

where S(1) is the set of all extreme points of the feasible

region and ∆ is the gap in objective value between the

optimal extreme point and the second-best,

∆ = max
x∈S(1)

cTx� max
x∈S(1)\x∗

cTx.

Proof Sketch: We prove that conditioning on a good

event E that holds with probability at least 1 � �, the

algorithm will not delete the optimal solution and will

terminate before blog(∆−1)c + 1 iterations. Then we

bound the number of samples used in iteration r by show-

ing that the optimal solution of Low(I) times ↵(r) =
32�2 ln(2/�(r)) is a feasible solution of the convex pro-

gram that defines LowAll(S(r), "(r)/�, �(r)). Therefore

the number of samples used in iteration r is no more than

↵(r)Low(I).

This matches the worst-case lower bound within a

problem-dependent factor ln(1/∆). Notice, however,

that the size of |S(1)| can be exponentially large, and so

is the size of the convex program (4). So Algorithm 3

is computationally inefficient if implemented straightfor-

wardly, and it remains open whether the algorithm can be

implemented in polynomial time or an alternative algo-

rithm with similar sample complexity and better perfor-

mance can be found.

6 EXPERIMENTS

In this section, we investigate the empirical number

of samples used by Ellipsoid-UCB algorithm for the

unknown-b case of AIALO. We fix � = 0.1 and focus

on the impact of the other parameters7, which are more

interesting.

We compare three algorithms on randomly generated LP

problems. The first is Ellipsoid-UCB. The second is the

naive “static approach”, namely, draw 4�2 log(m/�)/"22
samples of each constraint, then solve the LP using esti-

mated means of the parameters. (This is the same ap-

proach mentioned in the previous section, except that

previously we discussed the case � = 1 for simplic-

ity.) The third is designed to intuitively match the lower

bound of Theorem 4.1: Draw 4�2 log(d/�)/"22 samples

of each of only the binding constraints, where there are

d of them, then solve the LP using estimated means of

the bi. (For a more fair comparison, we use the same tail

bound to derive the number of samples needed for high

confidence, so that the constants match more appropri-

ately.)

We generate instances as follows. c is sampled from

[�10, 10]n uniformly at random. b is uniformly drawn

from [0, 10]n. Each Ai is sampled from unit ball uni-

formly at random. Notice that the choice of bi � 0 guar-

antees feasibility because the origin is always a feasible

solution. We also add additional constraints xi  500 to

make sure that the LP generated is bounded. When the

algorithm makes an observation, a sample is drawn from

Gaussian distribution with variance �2.

In Figure 1, each algorithm’s number of samples (aver-

age of 50 instances) is plotted as function of different

parameters. The number of samples used by Ellipsoid-

UCB is proportional to n, �2 and "−2. However, it does

not change much as m increases.8 This will not be sur-

prising if ellipsoid uses most of its samples on binding

constraints, just as the lower bound does. This is shown

in Table 1, where it can be seen that Ellipsoid-UCB re-

799.5 percent of the outputs turn out to satisfy relaxed fea-
sibility and relaxed optimality.

8Indeed, the standard ellipsoid algorithm for linear pro-
gramming requires a number of iterations that is bounded in
terms of the number of variables regardless of the number of
constraints.



quires much fewer samples of non-binding constraints

than binding constraints.
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Figure 1: Number of samples as we vary m, n, σ and 1/ε.
Every data point is the mean of 50 randomly drawn problem
instances. The baseline parameters are m = 80, n = 6, σ = 1,
ε1 = ε2 = 0.1. In figure (d), ε1 = ε2 = ε.

Binding Non-binding

Static approach 2674 2674

Ellipsoid-UCB 3325 11.7

Lower bound 1476 0

Table 1: Average number of samples used per binding con-
straint and per non-binding constraint. Numbers are average
from 100 trials. Here, m = 80, n = 4, σ = 1 ε1 = ε2 = 0.1.

Figure 2 addresses the variance in the number of samples

drawn by Ellipsoid-UCB by plotting its empirical CDF

over 500 random trials. The horizontal axis is the ra-

tio of samples required by Ellipsoid-UCB to those of the

lower bound. For comparison, we also mention R, the ra-

tio between the performances of the static approach and

the lower bound. These results suggest that the variance

is quite moderate, particularly when the total number of

samples needed grows.

7 DISCUSSION AND FUTURE WORK

One question is whether we can extend our results to situ-

ations when the constraint matrix A is unknown as well

as b. The goal is again to solve the problem with few
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Figure 2: Empirical cumulative distribution function of
Ellipsoid-UCB’s number of samples, in units of the “lower
bound”, over 500 trials. Note that the lower bound varies when

parameters change. R = m log(m)
d log(d)

is the ratio between the

number of samples used by static approach and lower bound.

total observations. This extended model will allow us

to study a wider range of problems. For example, the

sample complexity problem in Reinforcement Learning

studied by Kakade et al. [2003], Wang [2017], Chen and

Wang [2016] is a special case of our AIALO problem

with unknown A and b.

A second extension to the model would allow algorithms

access to varying qualities of samples for varying costs.

For instance, perhaps some crowd workers can give very

low-variance estimates for high costs, while some work-

ers can give cheaper estimates, but have larger variance.

In this case, some preliminary theoretical investigations

suggest picking the worker that minimizes the product

(price)(variance). A direction for future work is for the

algorithm to select samples dynamically depending on

the payment-variance tradeoffs currently available. A fi-

nal interested direction is a more mechanism-design ap-

proach where the designer collects bids from the agents

and selects a winner whose data is used to update the

algorithm.
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and Sébastien Bubeck. lil’ucb: An optimal explo-

ration algorithm for multi-armed bandits. In COLT,

volume 35, pages 423–439, 2014.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier.
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