

Recent Advances of LTE/Wi-Fi Coexistence in Unlicensed Spectrum

Yan Huang Yongce Chen Y. Thomas Hou Wenjing Lou Jeffrey H. Reed

Virginia Polytechnic Institute and State University, USA

Abstract

Unlicensed LTE (U-LTE) is a new wireless technology that is currently being developed by industry and academia to offer LTE service in unlicensed spectrum. U-LTE addresses spectrum shortage from 4G LTE cellular networks by allowing them to operate in unlicensed bands. To ensure a fair spectrum sharing among different wireless technologies (LTE and Wi-Fi in particular), a number of coexistence mechanisms have been proposed. These mechanisms operate either in time, frequency, or power domain to minimize potential adverse effect from LTE. Based on these mechanisms, a number of U-LTE standards are being developed by industry. In this article, we present recent advances in this exciting area by reviewing the state-of-the-art LTE/Wi-Fi coexistence mechanisms and show how they are incorporated into industry standards. We also point out several key challenges and open problems for future research.

I. INTRODUCTION

The demand for mobile data traffic has been growing exponentially over the last decade and the trend will continue in foreseeable future [1]. While the development of 5G cellular

Corresponding author: Y.T. Hou (thou@vt.edu), 453 Whittemore Hall, MC 0111, the Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA.

communications is underway, current wireless traffic will continue to be supported by LTE or LTE-Advanced (LTE-A) systems. Consequently, it remains an important task to address the spectrum scarcity problem for licensed LTE. Given that unlicensed spectrum is being made available for commercial use, how to extend LTE to unlicensed spectrum has become a popular research topic in both academia and industry.

Supporting LTE over unlicensed bands is not trivial. The key challenge is how to achieve harmonious coexistence between LTE and other systems that are already operating in these bands. Conventional LTE cannot operate in unlicensed spectrum as it has no concern of cross-technology coexistence. For example, transmissions in an LTE radio access network (RAN) are continuous in time, and subject to centralized scheduling at the eNodeB (eNB). Even in the absence of data traffic, control and reference signals are transmitted over the air (at the OFDM symbol level) and are ubiquitous over time and its channel bandwidth. In contrast, Wi-Fi was designed for opportunistic access among its users and is ideally suited for the unlicensed spectrum. Its distributed coordination function (DCF) uses contention-based CSMA/CA protocol for channel access. A Wi-Fi node can only transmit when there is no other user occupying the channel. This fundamental difference between centralized LTE operation and distributed Wi-Fi access could result in significant performance degradation of Wi-Fi networks if LTE operates directly in the same band [8]. Simply put, LTE can easily shut out Wi-Fi entirely and monopolize the use of unlicensed spectrum. This phenomenon has raised serious concern for the Wi-Fi community. To address this issue, a number of mechanisms have been proposed to modify LTE to make it more amenable for coexistence with other wireless technologies (so-called unlicensed LTE (U-LTE)). These modifications span either in time, frequency or power domain.

Within industry standardization bodies, a number of U-LTE standards have been developed in recent years. These includes LTE-U, licensed assisted access (LAA), enhanced LAA (eLAA) and

MulteFire. LTE-U was first introduced by Qualcomm [6], and later standardized by the LTE-U Forum [7]. LTE-U operates with the so-called supplemental downlink (SDL) mode, which uses the unlicensed spectrum only for downlink data transmission. LAA, which was standardized in 3GPP Release 13, is similar to LTE-U except that it employs listen-before-talk (LBT) as the primary coexistence mechanism [3]. eLAA is an evolution of LAA under development in 3GPP Release 14. It can support both downlink (DL) and uplink (UL) transmissions in unlicensed spectrum [4]. In contrast to the above standards, MulteFire is designed to operate solely in the unlicensed bands without the use of anchor licensed band [9], [10]. It is being discussed in the newly formed standardization body “MulteFire Alliance”. Its Wi-Fi like deployment and LTE-like performance make it very attractive to operators who may no longer need to own or rely on any licensed spectrum. We also note that there is an approach called LTE-WLAN aggregation (LWA) [5], that has been standardized in 3GPP Release 13. In LWA, transmissions in licensed and unlicensed spectrums are supported *separately* by LTE and Wi-Fi interfaces, respectively. LWA is implemented at the transport layer, where user data is separated into two traffic streams. Traffic sent by LTE interface uses licensed spectrum, while traffic sent by Wi-Fi interface uses unlicensed spectrum. That is, under LWA, LTE interface does not access unlicensed spectrum.

In this article, we focus on recent advances in the development of U-LTE. In Section II, we discuss government regulations on unlicensed bands that are made available to U-LTE. In Section III, we discuss different mechanisms proposed for U-LTE to coexist with other wireless technologies. In Section IV, we review recent standardization efforts on U-LTE in industry. Finally, in Section V, we discuss a few technical challenges and open problems. Section VI concludes this article.

II. UNLICENSED BANDS OPEN TO LTE

Unlicensed (or licensed-exempt) frequency spectrum is marked by regional regulatory authorities for unlicensed wireless technologies. For example, the Federal Communications Commission (FCC) in the US has released several bands in the 2.4 GHz (industrial, scientific, and medical (ISM)), 5 GHz (unlicensed national information infrastructure (U-NII)) and 60 GHz millimeter-wave (mmWave) spectrums for unlicensed commercial use. Currently, wireless technologies operating in these bands include ZigBee, Bluetooth, and Wi-Fi. Commercial cellular operators now have a strong motivation to offer LTE service in unlicensed spectrum due to pressure of traffic growth in their licensed spectrum.

Currently, the 2.4 GHz spectrum is already heavily utilized by ZigBee, Bluetooth, and Wi-Fi. In contrast, bands in 5 GHz are used by 802.11a and 802.11n with limited utilization. Compared with 2.4 GHz spectrum, the 5 GHz spectrum has wider bandwidth but shorter communication range (due to higher path loss). For small cell deployment, this does not pose a serious issue as the effective coverage for a small cell is typically no more than several tens of meters. U-LTE is likely to be deployed only in small cells, due to regulatory restrictions on transmit power in unlicensed spectrum. It is possible that U-LTE systems deployed in the US may be able to utilize all of these bands in 5 GHz. The large amount of available bandwidth in the 5 GHz spectrum offers considerable design space and flexibility for U-LTE.

In the US, the use of 5 GHz unlicensed spectrum is subject to FCC part 15 regulations [2]. An illustration of unlicensed 5.15-5.925 GHz spectrum in the US is shown in Fig. 1. Currently, unlicensed wireless systems are allowed to access bands 5.15-5.25 GHz (UNII-1), 5.25-5.35 GHz (UNII-2A), 5.47-5.725 GHz (UNII-2C), and 5.725-5.85 GHz (UNII-3). In addition, bands 5.35-5.47 GHz (UNII-2B) and 5.85-5.925 GHz (UNII-4) are also being considered for unlicensed use. FCC has some regulations regarding transmission bandwidth, maximum transmit power, out of

band emission, power spectrum density, transmit power control (TPC), and dynamic frequency selection (DFS) for each unlicensed band. For example, the maximum transmit power is 24 dBm in UNII-1 and UNII-2A bands, and 30dBm in UNII-2C and UNII-3 bands. In addition to maximum transmit power, TPC may further limit the output power of a transmitter to minimize interference to users of other wireless technologies. In fact, TPC is required for both UNII-2A and UNII-2C bands. DFS is used for unlicensed devices to detect radar signals and change their operating channels whenever the radar systems become active. DFS should be adopted in UNII-2A and UNII-2C bands to protect radar signals.

III. COEXISTENCE MECHANISMS

Coexistence mechanisms for U-LTE can be classified based on frequency, time, and power domains. In frequency and time domains, the goal is to separate transmissions of LTE and Wi-Fi (in frequency and time, respectively), while in power domain, the goal is to adjust the output power of LTE nodes for a desired trade-off between LTE throughput and opportunistic Wi-Fi transmission. In the rest of this section, we discuss some key mechanisms in each domain.

A. Frequency Domain

Referring to Fig. 1, there is a few blocks of bandwidth in the 5 GHz regime and each block can be further sliced into more channels. Under current carrier aggregation technique, LTE can aggregate multiple (no more than five) channels in unlicensed bands. Since a Wi-Fi access point (AP) operates only on one channel, it is likely that there exist some clean channels available to U-LTE systems. If U-LTE can identify these clean channels, then it can choose them for transmission. In the case that a clean channel is not available, LTE will measure the interference level on each channel, and identify those channel(s) with the lowest interference for unlicensed data transmission [6]. Interference can be measured by energy detection, technology-specific

interference detection, and user-assisted technologies. The aggregate received interference power on a channel is first detected without considering types and the number of interfering sources. Then technology-specific detection is employed to determine Wi-Fi preambles or other U-LTE systems' control and reference signals. Useful information such as the number of Wi-Fi APs and stations (a measure of potential traffic load in Wi-Fi networks) can be estimated from the received Wi-Fi preambles. In addition, user-assisted measurements could be used to sense hidden nodes on a channel.

B. Time Domain

1) *Deterministic Sharing*: The basic idea of deterministic sharing is to rely on LTE's centralized scheduling to periodically turn off its transmission so that Wi-Fi users can have adequate access time. In this article, we discuss two representative mechanisms: carrier-sensing adaptive transmission (CSAT) [12], and blank-subframe allocation [16], [17].

CSAT Under CSAT, time is broken up into TDM cycles, with each cycle consisting of U-LTE "on" and "off" periods, as shown in Fig. 2. Denote T_{CSAT} , T_{ON} and T_{OFF} as the durations of a gating cycle, the "on" period, and the "off" period, respectively. The ratio $T_{\text{ON}}/T_{\text{OFF}}$ should be dynamically adjusted based on measurement of Wi-Fi's utilization during each "off" period. Through such adaptation of "on" and "off" periods, a fair sharing of air time between LTE and Wi-Fi may be achieved. Measurement time for Wi-Fi's utilization should be set sufficiently long (e.g., from $\sim 10^1$ ms to 200 ms) to ensure reasonable accuracy [6]. Such measurement is mainly done through detection of Wi-Fi preambles.

To better support delay-sensitive data and control packets in Wi-Fi, subframe¹ puncturing can be employed during U-LTE "on" periods. Referring to Fig. 2, small but frequent gaps are

¹An LTE subframe has a duration of 1 ms.

introduced (“punctured”) during “on” periods so that some subframes are completely muted and not used for transmission. During these punctured subframes, Wi-Fi nodes can access the channel to transmit delay-sensitive or critical control packets. As a result, Wi-Fi’s delay performance and reliability may be improved. In general, only one punctured subframe for every 10s of milliseconds is needed.

Alternatively, setting a shorter CSAT cycle may be an effective way to improve Wi-Fi’s delay performance. However, since transmission collision between LTE and Wi-Fi might occur at the beginning of each “on” period, an overly short CSAT cycle and thus frequent U-LTE “off/on” switching may result in more collisions and decrease spectral efficiency. At present, T_{ON} may be set as short as 20 ms [12].

Blank-subframe Blank-subframe is a subframe on a channel during which a U-LTE node is completely muted so that Wi-Fi users can access the channel [17]. Similar to CSAT, blank-subframe allows TDM-like air time sharing between U-LTE and Wi-Fi. In each radio frame (defined as a consecutive ten subframes), the U-LTE eNB can set certain number of subframes blank based on measurement of Wi-Fi’s traffic load. Fairness could be achieved by adjusting the number of blank-subframes in each radio frame. Blank-subframe offers more flexibility than CSAT as the ratio between the non-blank and blank subframes can be dynamically adjusted at frame-level, which is shorter than a CSAT cycle. Also, the positions of these blank-subframes in each frame do not need to be consecutive. An example of blank-subframe allocation for a radio frame is given in Fig. 3.

Blank-subframe is similar to the almost-blank-subframe (ABS) used for enhanced inter-cell interference coordination (eICIC) in LTE-A heterogenous networks. An ABS is a subframe during which only control and reference signals are transmitted with reduced transmit power. In contrast to ABS, blank-subframe does not include transmission of control and reference signals

and thus is an absolutely silent subframe.

2) *Random Sharing*: Random sharing is a contention-based medium access technique similar to CSMA/CA used by Wi-Fi. It is also known as *listen-before-talk* (LBT) in the LTE community. Before transmission, an LTE node remains muted and performs carrier sensing until conditions for transmission are met. A major strength of LBT is that it meets regulatory requirements in all regions of the world. It is accepted by both the LTE and Wi-Fi communities due to its similarity to CSMA/CA. Two versions of LBT are available, namely, *frame-based* LBT and *load-based* LBT.

Frame-based LBT is based on a fixed frame structure. Similar to CSAT, it decomposes air time of a channel into continuous frames with fixed duration. Each frame is further divided into an idle period and a channel occupancy period. The LTE node must keep muted during an idle period. At the end of an idle period, a carrier sensing interval, called *clear channel assessment* (CCA), is performed to check channel status. CCA is typically of tens of μs . If the channel is sensed idle, then the LTE node can transmit in the following channel occupancy period; otherwise, it cannot transmit. Channel occupancy period is of 1 to 10 ms and an LTE node is only allowed to transmit during this period. Frame-based LBT is defined as Frame-based Equipment in [15].

Load-based LBT does not have any fixed frame structure. When an LTE node is awakened from idle and attempts to transmit a data burst, an initial CCA is triggered. If the channel is sensed idle during CCA, the node starts to transmit immediately; otherwise, it proceeds to perform an extended CCA (eCCA). During an eCCA, the node follows the following process:

- 1) it first generates a counter N (randomly) no larger than a contention window;
- 2) once the carrier becomes idle, the node waits until the carrier remains idle for an additional eCCA defer period (e.g., 34 μs);
- 3) after the eCCA defer period, counter N is decremented by one each time the channel stays

- idle for an eCCA slot (e.g., 9 μ s);
- 4) any time when the node senses the channel busy, the process goes back to step 2);
- 5) when counter N reaches zero, the node starts to transmit.

To avoid channel capture (one node monopolies the channel usage), an LTE node must perform an eCCA process between consecutive transmissions. Load-based LBT is employed in the design of channel access procedure in the 3GPP standard [4].

C. Power Domain

Transmit power control (TPC) aims to improve coexistence between LTE and Wi-Fi networks by adjusting the output power of LTE nodes. Wi-Fi nodes typically employ energy detection to determine activities of other users. Specifically, if the aggregate received energy is beyond a threshold, a Wi-Fi node would consider the channel busy and postpone its transmission. For LTE/Wi-Fi coexistence, we may increase the transmission opportunity of Wi-Fi nodes by reducing the output power of LTE nodes. The idea of TPC is illustrated in Fig. 4. When we lower LTE transmit power, the transmission window for a Wi-Fi node becomes larger and the Wi-Fi node can do more opportunistic transmissions. On the other hand, the reduction of LTE transmit power will also result in lower LTE throughput, as its signal-to-interference-and-noise ratio (SINR) decreases due to increased Wi-Fi transmissions.

There are some existing works in the literature that have considered TPC for LTE/Wi-Fi coexistence [13], [14]. In [13], Sagari et al. considered joint optimization of TPC and TDM channel access in multiple Wi-Fi and U-LTE networks. In [14], Chaves et al. investigated uplink TPC of U-LTE to achieve a balance of performance between LTE and Wi-Fi networks.

To conclude this section, we present a summary of the coexistence mechanisms that we have discussed in this section in Table I.

IV. STANDARDIZATION EFFORTS

In this section, we discuss industry standardization efforts for U-LTE. Our discussion will focus on major standards such as LTE-U, LAA, eLAA and MulteFire. Recall that LWA does not involve LTE interface operating in unlicensed bands and therefore does not have coexistence issue. So its discussion is beyond the scope of this article.

A. *LTE-U*

LTE-U is the first proposed LTE standard for operating in unlicensed spectrum [6]. It is fully compatible with 3GPP Release 10/11 and does not require any change of LTE specifications. It leverages the carrier aggregation technology introduced in 3GPP Release 10 and allows DL transmission in unlicensed UNII bands (i.e., SDL mode). Since anchor carrier is in licensed spectrum, service reliability can be guaranteed.

The coexistence mechanisms used in LTE-U are DCS and CSAT, which are defined by the LTE-U Forum. First, DCS ensures that the LTE-U network identifies and selects a subset of cleanest channels for communication. When LTE-U has to share the same channel with other users, CSAT would be used to set the “on” and “off” periods in a gating cycle. The duration of “on” period is adjusted based on results from channel sensing. Detailed procedure of the algorithm is as follows. SDL transmission is triggered opportunistically, depending on whether traffic load in the network is high or not. If the licensed spectrum has enough resource to meet LTE-U network’s traffic demand, then the unlicensed bands will not be used. During SDL transmission, the DCS module monitors the interference energy level on the operating channel, and will switch channel if the detected interference energy is above a predefined threshold. In the case that no clean channel is available, CSAT will be used. When all backlogged data is cleared, the SDL transmission is de-activated.

B. Licensed Assisted Access

LAA is a standard formalized by 3GPP in Release 13. Different from LTE-U, LAA employs LBT as the carrier sharing strategy to meet the regulations in different regions of the world (e.g., Europe and Japan) [3]. While LTE-U is designed for early deployment of 3GPP Release 10/11 based U-LTE in regions without LBT requirement, LAA's goal is to provide a single solution framework that can meet any regional regulatory requirements. Some key LAA functions include [3]:

- *Listen-before-talk*: The goal is to preserve opportunistic medium access and prevent any player from monopolizing the spectrum.
- *Maximum duration for transmission*: In regions such as Europe and Japan, continuous transmission in unlicensed spectrum is prohibited. The maximum duration of every transmission burst is upper bounded by a predefined limit.
- *Downlink-only transmission*: LAA supports LBT-based DL-only transmission in unlicensed spectrum.
- *Dynamic channel selection*: LAA continuously measures the interference status across available bands in the 5 GHz spectrum and switches to the least-loaded channel(s).
- *Dynamic frequency selection*: In certain bands at 5 GHz spectrum, regulation requires that all secondary unlicensed users must be able to detect the presence of radar signals and switch operating frequencies once radar signals are present. This requirement is termed dynamic frequency selection (DFS).
- *Transmit power control*: TPC is mandated on certain frequency bands (e.g., UNII-2A and UNII-2C bands in the US) to keep the transmit power down within the regulation limit.

Other functionalities such as synchronization, channel state information (CSI) reporting, radio resource management, and mobility management are also required under LAA, but will not be

discussed in this article. Readers who are interested in these LAA functionalities are referred to [3], [4].

C. Enhanced Licensed Assisted Access

eLAA is the evolution of LAA under development by 3GPP Release 14. eLAA adopts the same basic coexistence mechanisms in LAA, namely, DCS and LBT. An important improvement in eLAA is the support for LBT-based UL transmission in unlicensed bands. Key features of eLAA's UL design include:

- *Listen-before-talk:* eLAA has two types of LBT-based channel access procedures for UL transmission: Type 1 and Type 2 [4]. Type 1 procedure employs dynamic variable backoff based on contention window, while Type 2 procedure does not.
- *eNB's UL signaling:* The implementation of eNB's UL signalling can be done on a different (either licensed or unlicensed) channel from the user's (so-called "cross-scheduling"), or it can be done on the same channel as the user's (so-called "self-scheduling").

D. MulteFire

MulteFire is the latest U-LTE technology that is being developed outside of 3GPP [9]. It is based on 3GPP Release 13/14 and supports both UL and DL transmissions in unlicensed spectrum. What is unique about MulteFire is that it solely relies on unlicensed spectrum for its operations without any anchor band in licensed spectrum. The stand-alone operation of MultiFire in unlicensed spectrum can help cellular operators or private network owners offer LTE services in areas where licensed spectrum is not available. Key features of MulteFire are:

- Two access modes — the public land mobile network (PLMN) access mode and the neutral host network (NHN) access mode. PLMN allows interworking between MulteFire and 3GPP

PLMNs, which enables MulteFire cells to serve as additional RANs for PLMNs to extend their coverage. While NHN makes it possible to deploy a self-contained Wi-Fi-like network in unlicensed bands using MulteFire.

- Reusing LBT channel access procedures as defined in 3GPP Release 13/14 (for LAA and eLAA).
- Enhanced discover reference signals (DRS), which is designed to incorporate a robust anchor carrier in unlicensed bands. DRS is introduced in 3GPP Release 12 and contains important synchronization and reference signals [11]. However, since LBT-based transmissions are opportunistic, it is possible that MulteFire cannot access the channel to transmit DRS for a long period of time. To address this issue, the MulteFire Alliance introduced an enhanced DRS method that incorporates some MulteFire-specific signaling mechanisms, including DRS measurement timing configuration (DMTC) and opportunistic DRS transmission (see Fig. 5). DMTC is a transmission window (with a maximum duration of 10 ms) during which the serving MulteFire cell would transmit DRS to its users on certain subframes. DMTC occurs periodically every 40, 80 or 160 ms. Opportunistic DRS transmissions are done on specific subframes (subframe 0 in each radio frame of 10 ms) with LBT operation.

Table II summarizes key U-LTE standards that we discussed in this section.

V. CHALLENGES AND OPEN PROBLEMS

Before coming to the market, U-LTE still faces many technical challenges across different layers of protocol stack. In what follows, we present some open problems at physical, MAC and upper layers for future research.

Support for Frequency Reuse In licensed spectrum, LTE typically employs the same frequency band across multiple cells over an area (so-called “frequency reuse of one”) to

maximize spectral efficiency. This is made possible by LTE's advanced inter-cell interference management. In unlicensed bands, there is no such interference management between LTE and Wi-Fi. As a result, concurrent transmissions of LTE and Wi-Fi are not possible. Coexistence mechanisms such as LBT can effectively achieve this purpose. But the downside is that LBT also prohibits potential frequency reuse among U-LTE nodes. Under current LBT design, neighboring LTE nodes are not allowed to transmit on a channel simultaneously due to contention-based channel access. This is rather limiting as it does not utilize the full potential of LTE. An interesting research problem is how to enhance LBT so that an LTE user can distinguish whether an active transmission is from an LTE system or a Wi-Fi user.

Support for Multiple-User MIMO (MU-MIMO) MIMO is one of the key enablers for the success of LTE and LTE-A systems. LTE systems can operate in two MIMO modes: 1) single-user MIMO (SU-MIMO) (involving transmission between the base station and only one user at a time), and 2) MU-MIMO (involving simultaneous transmissions between the base station and multiple users). In 3GPP [3], it is recommended that UL MU-MIMO should be continuously supported in future eLAA. In licensed spectrum, LTE can benefit from MU-MIMO in both DL and UL directions since all transmissions are subject to centralized scheduling. But in unlicensed bands, UL MU-MIMO is not quite applicable to LBT-based U-LTE systems. For each UL/DL transmission, a subset of users are selected by MU-MIMO based on some user-grouping criterion. A successful UL MU-MIMO transmission requires that all selected users are able to transmit simultaneously on the same operating channel. But this may not be possible as some users that are selected cannot access the channel at the time (due to neighboring Wi-Fi transmissions or being in the back-off process). Thus, a more sophisticated user-grouping scheme (with consideration of user's channel access constraint) is needed.

Radio Resource Management (RRM) In the licensed spectrum, LTE's transmissions are

continuous in time and subject to centralized scheduling. Radio resources are organized as a grid of resource blocks (RBs), spanning both time and frequency domains. An RB has a duration of 0.5 ms (termed time slot) in time and 180 KHz in bandwidth. During every transmission time interval (TTI) (consisting of two contiguous time slots), the LTE eNB allocates the RBs to its users. Thanks to this fine-grained resource scheduling, LTE is able to achieve a more robust QoS guarantee and a higher spectral efficiency than other wireless technologies such as Wi-Fi. But in the unlicensed spectrum, it appears to be difficult to retain these advantages.

First, transmissions in unlicensed bands are discontinuous and opportunistic (for systems using LBT). This significantly reduces the efficiency and flexibility of LTE's RRM. Second, interference environment in unlicensed bands is much less predictable and controllable. The received interference level at a U-LTE node may increase suddenly due to opportunistic channel access from Wi-Fi (see Fig. 4) or transmissions from other U-LTE systems (e.g., LTE-U “on” periods). For U-LTE systems with licensed anchor carrier (LTE-U, LAA and eLAA), how to optimally schedule radio resources across both licensed and unlicensed bands at the RB-level is a major challenge. For a pure U-LTE systems (i.e., MulteFire), it is even more challenging to perform RRM.

Ensuring Fairness in Coexistence A key design consideration for U-LTE is to ensure some “fairness” is achieved when it coexists with other systems. For LTE/Wi-Fi coexistence, one fairness criterion that has recently gained attention is that a U-LTE system should not impact Wi-Fi services more than an additional Wi-Fi network supporting the same level of traffic load [3]. Prior research efforts (including [16]) mainly focus on throughput-based fairness. As demand on delay-sensitive mobile services grows, it is important to develop a more comprehensive fairness criterion with considerations of both throughput and delay. In particular, some of the coexistence mechanisms in Table I may deteriorate Wi-Fi's delay performance. For example, if the duration

of U-LTE's "on" period (under CSAT) or transmission burst (under LBT) were too long, Wi-Fi would likely experience large packet delay and jitter. Therefore, better coexistence mechanisms (than those in Table I) are needed when delay performance of Wi-Fi is part of a fairness criterion.

Network Selection and Traffic Balancing With the advent of U-LTE systems, it is plausible to envision U-LTE and Wi-Fi cells to be densely deployed in the same area. In an LTE cell, we may see multiple versions of U-LTE standards from different providers operating at the same time. Likewise, the Wi-Fi networks may be installed with various 802.11 protocols and deployed by different operators. For users with the option of accessing multiple unlicensed networks (U-LTE or Wi-Fi), the following problems arise: 1) network selection: from a user's perspective, how to choose the best network(s) to access based on its need? 2) traffic balancing: for network operators, how to assign users' traffic to different networks for the best network-user experience? Many practical issues need to be considered to address these questions, including pricing models, users' QoS requirements, users' and networks' interface capabilities.

VI. CONCLUSIONS

This article offers a concise review of recent advances on coexistence between LTE and Wi-Fi in unlicensed spectrum. We showed that the fundamental challenge in such coexistence is centralized characteristics of LTE. We reviewed a number of mechanisms that have been proposed to achieve fair coexistence and discussed their strengths and limitations. We also showed how industry incorporates these mechanisms into new standards. Many significant challenges still remain, both in theory and practice. We discussed a few open problems that we have encountered in our research and hope they can stimulate further study in this new and exciting area.

VII. ACKNOWLEDGMENTS

This work was supported in part by NSF under Grant 1642873, 1617634, 1443889, and 1343222, and in part by ONR under Grant N00014-15-1-2926.

REFERENCES

- [1] Cisco White Paper, “Cisco Visual Networking Index: Global mobile data traffic forecast update, 2016–2021.” Available: <http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.pdf>
- [2] FCC Part 15 ruling, “Radio frequency devices.” Available: <http://www.ecfr.gov/cgi-bin/text-idx?SID=3c5e2d1533490603e0131fc041030d\&node=pt47.1.15\&rgn=div5>
- [3] 3GPP TR 36.889 version 13.0.0, “Study on licensed-assisted access to unlicensed spectrum.” Available: <http://www.3gpp.org/DynaReport/36-series.htm>
- [4] 3GPP TS 36.213 version 14.3.0, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures.” Available: <https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2427>
- [5] 3GPP TS 36.300 version 14.3.0, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2.” Available: <https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2430>
- [6] Qualcomm White Paper, “LTE in unlicensed spectrum: Harmonious coexistence with Wi-Fi.” Available: <https://www.qualcomm.com/media/documents/files/lte-unlicensed-coexistence-whitepaper.pdf>
- [7] LTE-U Forum, “LTE-U SDL coexistence specifications version 1.3.” Available: <http://lteforum.org/documents.html>
- [8] LTE-U Forum, “LTE-U Technical Report: Coexistence study for LTE-U SDL version 1.0.” Available: <http://lteforum.org/documents.html>
- [9] MulteFire Alliance, “MulteFire Release 1.0 technical paper.” Available: http://www.multefire.org/wp-content/uploads/MulteFire_Release-1.0_WhitePaper_FINAL_4.24.17.pdf.
- [10] Qualcomm, “MulteFire technology progress and benefits, and how it enables a new breed of neutral hosts.” Available: <https://www.qualcomm.com/documents/multefire-technology>, May 2016.
- [11] H. J. Kwon, J. Jeon, A. Bhorkar, Q. Ye, H. Harada, Y. Jiang, L. Liu, S. Nagata, B. L. Ng, T. Novlan, J. Oh, and W. Yi, “Licensed-assisted access to unlicensed spectrum in LTE Release 13,” *IEEE Commun. Magazine*, vol. 55, no. 2, pp. 201-207, Dec. 2016.

- [12] Qualcomm, “LTE-U technology and coexistence.” Available: http://www.lteforum.org/uploads/3/5/6/8/3568127/lte-u_coexistence_mechanism_qualcomm_may_28_2015.pdf.
- [13] S. Sagari, S. Baysting, D. Saha, I. Seskar, W. Trappe, and D. Raychaudhuri, “Coordinated dynamic spectrum management of LTE-U and Wi-Fi networks,” in *Proc. IEEE DySPAN*, pp. 209–220, Stockholm, Sweden, Sep. 2015.
- [14] F. S. Chaves, E. P. L. Almeida, R. D. Vieira, A. M. Cavalcante, F. M. Abinader Jr., S. Choudhury, and K. Doppler, “LTE UL power control for the improvement of LTE/Wi-Fi coexistence,” in *Proc. IEEE VTC 2013-Fall*, pp. 1-6, Las Vegas, NV, USA, Sep. 2013.
- [15] ETSI EN 301 893 version 1.8.5, “5 GHz RLAN; Harmonised standard covering the essential requirements of article 3.2 of Directive 2014/53/EU.” Available: http://www.etsi.org/deliver/etsi_en/301800_301899/301893/01.08.05_20/en_301893v010805a.pdf
- [16] Z. Guan and T. Melodia, “CU-LTE: Spectrally-efficient and fair coexistence between LTE and Wi-Fi in unlicensed bands,” in *Proc. IEEE INFOCOM*, pp. 1-9 San Francisco, CA, USA, Apr. 2016.
- [17] E. Almeida, A. M. Cavalcante, R. C. D. Paiva, F. S. Chaves, F. M. Abinader Jr., R. D. Vieira, “Enabling LTE/WiFi coexistence by LTE blank subframe allocation,” in *Proc. IEEE ICC*, pp. 5083-5088, Budapest, Hungary, June 2013.

BIOGRAPHIES

Yan Huang [S] (huangyan@vt.edu) is a Ph.D. student at Virginia Tech, Blacksburg, VA, USA. He received his B.S. and M.S. degrees from Beijing University of Posts and Telecommunications (BUPT), China, in 2012 and 2015, respectively. His current research focuses on efficient real-time optimization and algorithm design for wireless networks.

Yongce Chen [S] (yc.chen@vt.edu) a Ph.D. student at Virginia Tech, Blacksburg, VA, USA. He received his B.S. and M.S. degrees from Beijing University of Posts and Telecommunications (BUPT), China, in 2013 and 2016, respectively. His current research interests are MIMO network modeling and optimization.

Y. Thomas Hou [F] (thou@vt.edu) is Bradley Distinguished Professor of Electrical and Computer Engineering at Virginia Tech, Blacksburg, VA, USA. He received his Ph.D. degree in Electrical Engineering from New York University (NYU) Tandon School of Engineering in 1998. Prof. Hou’s research focuses on developing innovative solutions to complex problems

that arise in wireless networks. He is an IEEE Fellow and an ACM Distinguished Scientist. He is Chair of IEEE INFOCOM Steering Committee and a Distinguished Lecturer of the IEEE Communications Society.

Wenjing Lou [F] (wjlou@vt.edu) is a Professor in the Department of Computer Science at Virginia Tech, Falls Church, VA, USA. She received her Ph.D. degree in Electrical and Computer Engineering from the University of Florida in 2003. She recently completed her Program Director IPA assignment at the US National Science Foundation. Her research interests include cyber security and wireless networks. She is on the editorial boards of a number of IEEE transactions. Prof. Lou is an IEEE Fellow and Steering Committee Chair of IEEE Conference on Communications and Network Security (CNS).

Jeffrey H. Reed [F] (reedjh@vt.edu) is Willis G. Worcester Professor in the Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA. He is founder of Wireless@Virginia Tech and served as its director until 2014. He is the founding faculty member of the Ted and Karyn Hume Center for National Security and Technology in 2010 and served as its interim director. He was named an IEEE Fellow for contributions to software radio and communications signal processing and for leadership in engineering education. He served on the President's Council of Advisors of Science and Technology Working Group, which made recommendations on how to transition federal spectrum for commercial use.

Table I: A summary of coexistence mechanisms.

Mechanism	Domain	Key Features	Operational Time Scale	Strengths	Limitations
DCS	Frequency	Based on energy detection, technology-specific detection and user-assisted measurement	$\sim 10^2$ ms to $\sim 10^1$ s	Zero interference to Wi-Fi when clear channels are available; low complexity	Contingent upon availability of clear channels
CSAT	Time	TDM based; centralized scheduling by LTE; based on carrier sensing	$\sim 10^1$ ms to $\sim 10^2$ ms	Retain LTE's centralized scheduling; no impact on LTE air interface protocol	Cannot meet certain regional regulations; channel access dictated by LTE; potentially high probability of packet collision at the beginning of LTE "on" period
BS	Time	TDM based; similar to ABS; centralized scheduling by LTE; based on carrier sensing	$\sim 10^1$ ms to $\sim 10^2$ ms	Retain LTE's centralized scheduling; no impact on LTE air interface protocol; more flexible than CSAT	Cannot meet certain regional regulations; channel access dictated by LTE; potentially higher probability of packet collision than CSAT
Frame-based LBT	Time	Contention based; fixed frame structure; adaptation based on carrier sensing	$\sim 10^0$ ms to $\sim 10^1$ ms	Meet global regulations; retain LTE's centralized scheduling; fewer packet collision; more friendly to Wi-Fi than CSAT	Potentially lower spectral efficiency (than deterministic channel access and load-based LBT); need to modify LTE air interface protocol
Load-based LBT	Time	Contention based; similar to CSMA/CA; adaptation based on carrier sensing	$\sim 10^0$ ms to $\sim 10^1$ ms	Meet global regulations; fewer packet collision; more friendly to Wi-Fi than CSAT	Potentially lower spectral efficiency (than deterministic channel access); need to modify LTE air interface protocol
TPC	Power	Centralized scheduling by LTE; based on interference measurement	$\sim 10^1$ ms to $\sim 10^2$ ms	Meet global regulations; no impact on LTE air interface protocol	Typically used together with other coexistence mechanisms

Table II: A summary of U-LTE standards.

Standard	Coexistence Mechanism	Key Features	Strengths	Limitations	Key Reference
LTE-U	DCS, CSAT	SDL transmission in unlicensed spectrum; operating in both licensed and unlicensed spectrum	No change to LTE air interface protocol	Cannot meet certain regional regulations; only supporting DL in unlicensed spectrum; may be less friendly to Wi-Fi if not properly designed	[6]–[8], [12]
LAA	DCS, LBT	SDL transmission in unlicensed spectrum; operating in both licensed and unlicensed spectrum	Meet global regulations; friendly to Wi-Fi	Need to modify LTE air interface protocol; only supporting DL in unlicensed spectrum	[3], [11]
eLAA	DCS, LBT	DL/UL transmissions in unlicensed spectrum; operating in both licensed and unlicensed spectrum	Supporting both DL and UL in unlicensed spectrum; meet global regulations; friendly to Wi-Fi	Need to modify LTE air interface protocol	[4]
MulteFire	DCS, LBT	Largely using eLAA's channel access as baseline; solely operating in unlicensed spectrum	No need of licensed spectrum; support both DL and UL in unlicensed spectrum; meet global regulations; friendly to Wi-Fi	Need to modify LTE air interface protocol; may be less reliable due to lack of licensed anchor band	[9], [10]

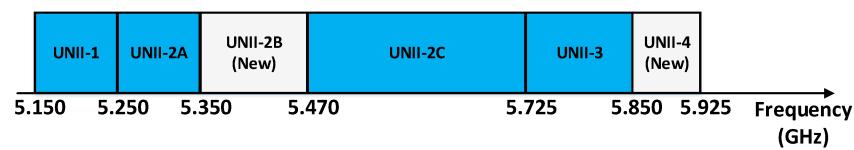


Figure 1: Bands in the 5 GHz unlicensed spectrum in the US.

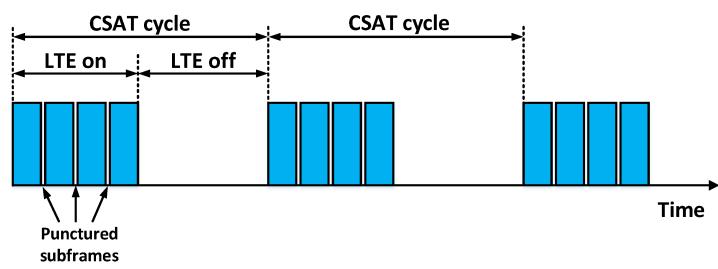


Figure 2: Gating cycles in CSAT and punctured subframes.

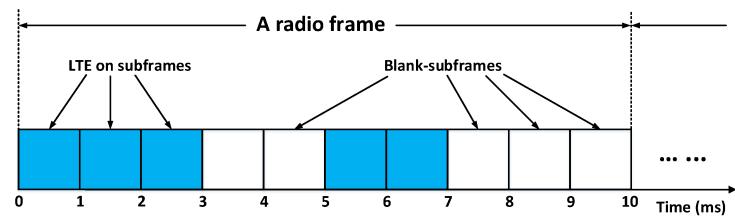


Figure 3: An example of blank-subframe allocation in a radio frame.

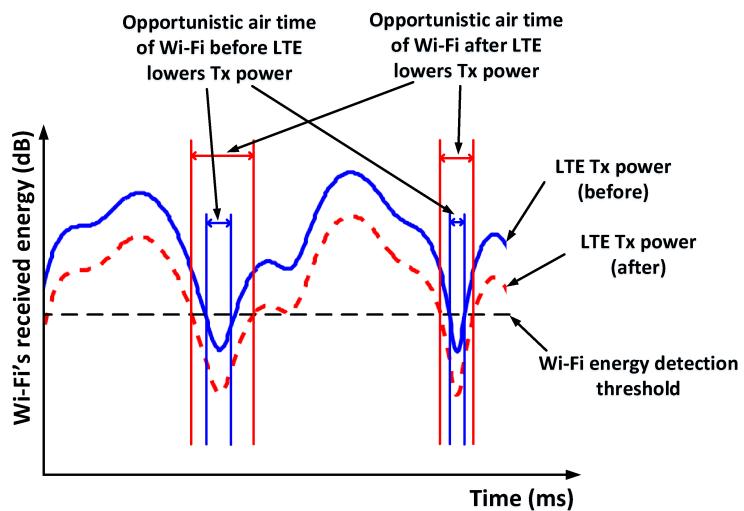


Figure 4: An illustration of Wi-Fi's opportunistic air time before and after LTE lowers its transmit power level.

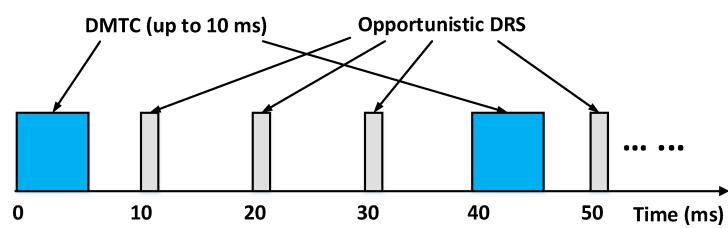


Figure 5: Serving cell DMTC and opportunistic DRS transmission.