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Abstract. Let G be an affine algebraic group scheme over an algebraically closed field k

of characteristic p > 0, and let Gr denote the r-th Frobenius kernel of G. Motivated by
recent work of Friedlander, the authors investigate the class of mock injective G-modules,
which are defined to be those rational G-modules that are injective on restriction to Gr

for all r ≥ 1. In this paper the authors provide necessary and sufficient conditions for the
existence of non-injective mock injective G-modules, thereby answering a question raised
by Friedlander. Furthermore, the authors investigate the existence of non-injective mock
injectives with simple socles. Interesting cases are discovered that show that this can occur
for reductive groups, but will not occur for their Borel subgroups.

1. Introduction

1.1. Let k be an algebraically closed field and G be an affine algebraic group scheme over
k, defined over the prime subfield Fp. The Fp-structure on G admits a Frobenius morphism
F : G → G. Let Gr denote the kernel of the rth iteration of the Frobenius map, F r,
and let G(Fq) denote the F r-fixed point subgroup of G(k), where q = pr. A fundamental
problem in the representation theory of G is to determine the extent to which the finite
subgroup schemes Gr and G(Fq) detect the cohomology of G. For semi-simple groups,
the relationship between G, Gr, and G(Fq) cohomology has been studied extensively (see
[And1, And2], [BNP1, BNP2, BNP3, BNP4, BNP5], [CPS], [CPSvdK], and [N] for a survey).

Recently this problem has arisen in a new context. In [F1], Friedlander defined a support
theory for rational G-modules when G has a particular “exponential” structure, a condition
met by many important classes of groups. The aforementioned work is a generalization
of the support variety theory that has been developed over the last several decades for
finite group schemes and related algebraic objects, of which Gr and G(Fq) are particular
examples. Among the many important features of support varieties in the finite group
scheme setting is their ability to detect the injectivity of a module (which is equivalent
to detecting projectivity in this case). A natural question in [F1, F2] that is investigated
is whether or not the newly introduced rational supports detect injectivity for rational
G-modules.

In [F2], it is shown that a G-module M has trivial rational support precisely when
M is injective over every Frobenius kernel of G. Such modules are dubbed to be “mock
injective.” Friedlander then proved that mock injectivity is in general a weaker condition
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than injectivity. In particular, he established the existence of non-injective mock injective
modules for G in cases when G is not a reductive group using the following argument.
Embed G into GLn for some n. The coordinate algebra k[GLn] is injective over every finite
subgroup scheme of GLn, hence over Gr for every r. On the other hand, k[GLn] is injective
over the reduced subgroup scheme G if and only if G is reductive. Consequently, there
exists non-injective mock injective G-modules. Such modules are referred to as “proper
mock injective modules.” The example above leads to a clear question: for arbitrary G,
do there exist proper mock injective modules? In this paper we provide a definitive answer
to this question via the construction of new families of examples of proper mock injective
modules.

1.2. A key tool in our study of injective G-modules is the induction functor [J, §I.3]. If
H ≤ G, then any injective H-module induces up to an injective G-module. A particularly
useful converse to this, which we will exploit in this paper, is if H is a finite subgroup scheme
of G, then inducing the trivial H-module k up to G produces an injective G-module if and
only if k is injective over H. Induced modules of this form, when G is semi-simple and H
is a finite Chevalley subgroup, have featured prominently in the work of Bendel, Nakano,
and Pillen (see, for example, [BNP3, §2.1]).

The paper is organized as follows. In the following section (Section 2), for arbitrary
affine group schemes G we generalize the BNP-induced modules by inducing from finite
subgroup schemes to construct mock injective modules. With these constructions, it is
shown when proper mock injective modules arise. This leads us to give a necessary and
sufficient condition on G (cf. Theorem 2.2.1) for the existence of proper mock injective
modules. Our investigation leads to several natural questions which are presented in this
section. Finally, we demonstrate that our constructions (for mock injectives) in this section
can be used to show that a formation of the known Parshall Conjecture (cf. [LN, D]) for
infinitely generated modules is false.

In Section 3, we explore the situation when a given mock injective module has finitely
many composition factors in its socle. In the case when G is reductive, we construct a proper
mock injective with the socle isomorphic to the trivial module. On the other hand, using
general results about mock injectives for parabolics, we prove that for a Borel subgroup of a
reductive group, any mock injective with finite-dimensional socle must be injective. Finally
we prove that for G reductive, a mock injective G-module with a simple G-socle is injective
over G if and only if it has a good filtration.

1.3. Acknowledgements. The authors would like to thank Eric Friedlander for initiating
the interesting study of mock injectivity which inspired many of our results, and for pro-
viding helpful feedback on this paper. We also thank Chris Bendel for carefully reading a
previous draft of this article, and for the many good suggestions he offered.

2. Conditions on G for the Existence of Proper Mock Injective Modules

2.1. Let G be an arbitrary affine group scheme and k be an algebraically closed field. The
coordinate algebra k[G], which can be realized as indG1 k, is an important example of an
induced module for G. More generally, we find that induction from finite subgroup schemes
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of G can produce G-modules with interesting properties. Such subgroup schemes are always
exact in G [J, I.5.13(b)].

Proposition 2.1.1. Let H be a finite subgroup scheme of G.

(a) indGH k is an injective G-module if and only if k is an injective H-module.
(b) If the Frobenius morphism F : G → G restricts to an automorphism of H, then

indGH k is injective over Gr for every r > 0.

Proof. Since H is exact in G, we may apply generalized Frobenius reciprocity [J, Corollary
I.4.6] to obtain isomorphisms

ExtiG(k, ind
G
H k) ∼= ExtiH(k, k)

for every i ≥ 0. If indGH k is injective over G, then the groups on the left side of the
isomorphism are 0 for every i > 0. This implies that the cohomological variety of the finite
group scheme H is trivial, hence that k is an injective H-module. Conversely, if k is injective
over H, then indGH k is injective over G, since induction always takes injective modules to
injective modules [J, Proposition I.3.9]. This proves the first statement.

Let r > 0, and let I be an injective G-module. Then I is injective over H. Furthermore,
if F restricts to an automorphism of H, then I(r) is also injective over H. By the tensor
identity, we have

I(r) ⊗ indGH k ∼= indGH I(r).

The module indGH I(r) is, by earlier remarks, injective over G, hence is injective over Gr. On
the other hand, over Gr, ind

G
H k is a summand of indGH I(r), as is evident from the left hand

side of the isomorphism above. This shows that indGH k is injective over Gr. !

If H has the property that every simple H-module comes from a G-module, then we can
also completely determine which G-modules will tensor with indGH k to produce injective
G-modules. This condition is satisfied whenever H is unipotent, and also when H is a
Frobenius kernel or finite Chevalley subgroup of a semi-simple and simply connected group.

Proposition 2.1.2. Let H be a finite subgroup scheme of G for which every simple H-
module comes from a G-module. Then for any G-module M , the module M ⊗ indGH k is
injective over G if and only if M is injective over H.

Proof. By the tensor identity,

M ⊗ indGH k ∼= indGH M.

If M is injective over H, then indGH M is injective over G. Conversely, if indGH M is injective
over G, then for every G-module N , we find that

0 = ExtiG(N, indGH M) ∼= ExtiH(N,M).

Since every simple H-module comes from some G-module, this immediately implies that M
is injective over the finite group scheme H. !
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2.2. By using these induced modules from the previous subsection, we are now in position
to give a complete picture of which affine algebraic groups over k have proper mock injective
modules. Recall that G0 denotes the connected component of G.

Theorem 2.2.1. Let G be an algebraic group over k which is defined and split over a finite
subfield Fp of k. Then G has proper mock injective modules if and only if either G0 is not
a torus or G/G0 has order divisible by p.

Proof. If p does not divide the order of G(Fq), then it must be the case that G0 is a torus
and that G/G0 is a finite group of order not divisible by p. To see this, we note that the
second statement is clear, while the first follows from the fact that every element in G(Fq)
would have to be semi-simple, since unipotent elements have order which is a power of p.
In this case, G is linearly reductive [Na], hence there are no non-injective G-modules of any
kind, and therefore there cannot be any proper mock injective G-modules.

If p divides the order of G(Fq), then k is a non-injective G(Fq)-module. By Proposition
2.1.1, the G-module indGG(Fq)

k is both non-injective over G, while also being injective over
Gr for all r. Therefore, it is a proper mock injective G-module. !

Remark 2.2.2. If G is connected reductive and not a torus then the mock injective modules
described above do not have a good filtration. One can see this because

ExtiG(k, ind
G
G(Fq) k)

∼= ExtiG(Fq)(k, k) ̸= 0

for some i > 0. Here, the trivial module should be viewed as the Weyl module of highest
weight 0.

2.3. We will now show that it is even easier to exhibit non-injective G-modules which
are mock injective with respect to the fixed-point subgroups of powers of the Frobenius
morphism.

Proposition 2.3.1. Let G be an affine algebraic group defined over Fp, I an injective G-

module, and r > 0. Then I(r) is injective over G(Fq), for q = ps for all s ≥ 0, but is not
injective over G.

Proof. Since G(Fq) is exact in G, I is injective on restriction to G(Fq). The Frobenius map
defines an automorphism of G(Fq), hence I(r) is also injective over it. Finally, this module
is trivial for Gr, thus cannot be injective over G. !

2.4. A natural question at this point is whether or not a non-injective G-module can be
injective over all Frobenius kernels and finite Chevalley subgroups. We at least observe
that taking a tensor product of modules from our two classes of examples above cannot
produce such an example. That is, if H is a finite subgroup scheme such that the Frobenius
morphism restricts to an automorphism of H, then I(r) is injective over H, and so we have

I(r) ⊗ indGHk ∼= indGH I(r),

which is then injective over G. In fact, one can go a step further and ask the following
question.

Question 2.4.1. Let G be a reductive group. If M is a G-module which is injective over
every finite subgroup scheme of G, is M then injective over G?
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For non-reductive groups, Friedlander’s argument can be immediately used to show that
the answer to this question is “no.” That is, embed such a group G into some GLn. The
coordinate algebra of GLn is then non-injective for G, but is injective over every finite
subgroup scheme since they are all exact in GLn.

2.5. Parshall Conjecture and infinite-dimensional modules. In this subsection we
assume that G is a reductive algebraic group scheme over a field k of any positive char-
acteristic. In 1986, Parshall [P] conjectured that a finite-dimensional rational G-module
which is projective over G1 is then projective over G(Fp). This conjecture was proven by
Lin and Nakano (cf. [LN]). Drupieski [D] later generalized this result by proving that, for
any r ≥ 1, a finite-dimensional rational G-module that is projective over Gr is projective
over G(Fq).

Now one could also ask what happens to the statement of Parshall’s Conjecture when the
finite-dimensionality assumption is removed. As in the case with mock injectives, infinite-
dimensional rational G-modules can exhibit new and interesting structures. We will show
the natural analogues to the above conjectures are false by using the infinite-dimensional
rational G-module M which is projective over Gr (as defined in Section 2) and by demon-
strating that this module is not projective over G(Fq).

Proposition 2.5.1. Let r ≥ 1, and q = ps where s ≥ 1. Then the G-module indGG(Fp)
k is

projective over Gr, but is not projective over G(Fq).

Proof. Let M = indGG(Fp)
k. Proposition 2.1.1 estabilishes the mock injectivity of M , so it

remains only to show that M is not projective over G(Fq). Since kG(Fq) is a free kG(Fp)-
module, every injective G(Fq)-module is injective over G(Fp), thus it suffices to show that
M is not projective over G(Fp).

The subgroup G(Fp) acts on G via the right regular action. Then M ∼= k[G]G(Fp), where

k[G]G(Fp) = {f ∈ k[G] | f(gh) = f(g) for all g ∈ G(k), h ∈ G(Fp)}.

This allows us to define a G(Fp)-module homomorphism ev : M → k given by ev(f) = f(1)
for any f ∈ M . Moreover, we also have a G-module homomorphism ψ : k → M given
by ψ(a) = a (the constant function) for any a ∈ k. The composition ev ◦ ψ = 1k, and
hence there exists a G(Fp) decomposition M = k⊕N for some G(Fp)-module N . It follows
immediately that M is not projective over G(Fp).

!

3. Mock Injective Modules With Finite Socles

3.1. Throughout this section, let G be a connected reductive algebraic scheme group over
k. We investigate the relationship between mock injective modules and injective modules
when we impose additional finiteness conditions on our modules. Specifically, we are con-
cerned in this section with modules that have finite socles. This inquiry was motivated
by Friedlander’s observation that for a unipotent group U , there are proper mock injective
U -modules that embed in k[U ], hence have a trivial socle. Thus we ask whether there exist
proper mock injective modules with a simple socle, or at least a finite socle, over other types
of algebraic groups.
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We find that there do exist proper mock injective modules for reductive groups which have
a simple socle by producing an example of one for SL2. However, for the Borel subgroups
of a reductive group, there do not even exist proper mock injective modules with a finite
socle. This is established by proving a more general result for mock injective modules of a
parabolic subgroup PJ of G which are injective over the Levi factors of PJ .

3.2. Unipotent Groups. Let U denote a connected unipotent group over k which is de-
fined over Fp. We give an alternate proof here to Friedlander’s result showing that unipotent
groups can have lots of proper mock injective modules with finite socle.

Proposition 3.2.1. Let r ≥ 1, and q = pr. Then the proper mock injective U -module
Mr = indUU(Fq)

k satisfies socU (Mr) = k.

Proof. The only simple U -module is the trivial module k. Now by Frobenius reciprocity,
HomU (k,Mr) ∼= HomU(Fq)(k, k). It follows that socUMr

∼= k. !

3.3. Actions of the center. We begin by recalling the following fact about actions in-
volving the center of a connected reductive algebraic group. Note that the center in this
case consists of semi-simple elements in G (cf. [S, Corollary 7.6.4(iii)]).

Lemma 3.3.1. Let Z = Z(G) be the center of a reductive algebraic group G, X(Z) the
character group of Z, and M be any rational G-module. There is a G-module decomposition

M =
⊕

χ∈X(Z)

Mχ

where Mχ = {m ∈ M | z ·m = χ(z)m for all z ∈ Z}.
Moreover, if χ,χ′ ∈ X(Z) satisfies χ ̸= χ′ and M , N are G-modules satisfying M = Mχ

and N = Nχ′, then HomG(M,N) = 0.

Fix a maximal torus T ≤ G, and a Borel subgroup B containing T . We choose a set set
of simple roots ∆ so that the root subgroups contained in B correspond to the negative
roots. The choice of ∆ also determines the set of dominant weights X(T )+.

For J ⊆ ∆, let PJ be the corresponding standard parabolic subgroup of G containing B,
with unipotent radical UJ and Levi factor LJ . With ZJ = Z(LJ) denoting the center of
LJ , it can be verified that

X(ZJ) = X(T )/ZJ.

Thus, every central character is of the form χ = λ + ZJ . If we let π : X(T ) → X(ZJ)
denote the quotient map, then π(ZΦ) = ZΦ/ZJ ∼= ZI where I = ∆\J . It follows that any
LJ -module M whose weights all lie in ZΦ, has a central character decomposition of the
form

M =
⊕

χ∈ZI

Mχ.

This statement particularly applies to k[UJ ].

Lemma 3.3.2. The LJ -module k[UJ ] has a central character decomposition of the form

k[UJ ] =
⊕

χ∈NI

k[UJ ]χ

where dim(k[UJ ]χ) < ∞ for all χ.
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Proof. First, recall that k[UJ ] is a polynomial ring given by

k[UJ ] = k[xγ |γ ∈ Φ+\Φ+
J ]

where each xγ has weight γ. For any weight λ ∈ X(T ), the weight space k[UJ ]λ is spanned by
monomials of the form

∏

γ∈Φ+\Φ+
J
x
nγ
γ where λ =

∑

γ nγγ with nγ ≥ 0 is any expression for λ.

Since there are only finitely many ways to express λ as a non-negative integral combination
of elements in Φ+\Φ+

J , we can conclude that the weight spaces are finite-dimensional.
Fix a central character χ ∈ X(ZJ) which acts non-trivially on k[UJ ]. By the remark

preceding this lemma and the above description of the weight spaces of k[UJ ], it follows
that there exists a unique weight λ ∈ NI satisfying

χ = λ+ ZJ.

Hence,

k[UJ ]χ =
⊕

µ∈ZJ

k[UJ ]λ+µ.

So it will be sufficient to show that for any λ ∈ ZI, there are only finitely many µ ∈ ZJ such
that k[UJ ]λ+µ ̸= 0. In fact, it can be immediately deduced that any such µ must satisfy
µ ∈ NJ (i.e. it must be a non-negative linear combination of elements in Φ+

J ).
Observe now that we can write

Φ+\Φ+
J = Φ+

I ∪ ((Φ+
I + Φ+

J ) ∩ Φ+).

So k[UJ ]λ+µ ̸= 0 if and only if we can write

λ+ µ =
∑

α∈Φ+
I

rαα+
∑

α+β∈(Φ+
I +Φ+

J )∩Φ+

tα+β(α+ β)

=
∑

α∈Φ+
I

⎛

⎜

⎝
rα +

∑

{β∈Φ+
J |α+β∈Φ+}

tα+β

⎞

⎟

⎠
α+

∑

β∈Φ+
J

⎛

⎜

⎝

∑

{α∈Φ+
I |α+β∈Φ+}

tα+β

⎞

⎟

⎠
β.

where for all α ∈ Φ+
I and β ∈ Φ+

J ,

nα = rα +
∑

{β∈Φ+
J |α+β∈Φ+}

tα+β ≥ 0

mβ =
∑

{α∈Φ+
I |α+β∈Φ+}

tα+β ≥ 0

and λ =
∑

nαα and µ =
∑

mββ. Since the rα and tα+β are also required to be non-negative
integers, it follows that there are only finitely many µ ∈ NJ+ for which this is possible.
Therefore, k[UJ ]χ is finite-dimensional. !

3.4. We begin this section with a standard fact about composition factor multiplicities.
For λ ∈ X(T )+, L(λ) is the simple G-module with highest weight λ, H0(λ) = indGB λ, and
I(λ) is the G-injective hull of L(λ).
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Lemma 3.4.1. Let M be a finite-dimensional G-module, M∗ its linear dual, and λ, µ ∈
X(T )+. Then

dimHomG(L(µ), I(λ)⊗M) = [L(µ)⊗M∗ : L(λ)] < ∞.

Consequently, every indecomposable summand of I(λ)⊗M occurs with finite multiplicity.

Proof. By adjointness,

HomG(L(µ), I(λ)⊗M) = HomG(L(µ)⊗M∗, I(λ)).

The injectivity of I(λ) implies that the functor HomG(−, I(λ)) is exact on short exact
sequences. Thus, dimHomG(L(µ)⊗M∗, I(λ)) counts the number of times the composition
factor L(λ) appears in L(µ)⊗M∗ (i.e., [L(µ)⊗M∗ : L(λ)]). !

Remark 3.4.2. Although not necessary for our main result, one might wonder if the socle
of I(λ)⊗M is always finite-dimensional for a finite-dimensional module M . This would be
equivalent to showing that [L(µ)⊗M∗ : L(λ)] = 0 for all but finitely many µ ∈ X(T )+. It
turns out this is false in general, as one can see by taking G = SL2(F2), and setting λ = 0
and M = L(1). Then it can verified that there are infinitely many µ ∈ X(T )+ = N such
that [L(µ)⊗ L(1) : L(0)] ̸= 0, and thus socG(I(0)⊗ L(1)) is infinite-dimensional.

For any weight λ ∈ X(T ) which is dominant for LJ , the injective hull for LPJ
(λ) (i.e.,

the inflation of LJ(λ) to PJ) is given by

IPJ
(λ) = indPJ

LJ
ILJ

(λ) ∼= ILJ
(λ)⊗ k[UJ ]

where LJ acts by conjugation on k[UJ ]. This can be verified by using the fact that induction
take injectives to injectives and Frobenius reciprocity to show that the socle of IPJ

(λ) is
LPJ

(λ).
We would like to show that all of the indecomposable summands of IPJ

(λ)|LJ
occur with

finite multiplicity. Unfortunately, the module k[UJ ] is not a finite-dimensional LJ -module,
so we cannot immediately apply Lemma 3.4.1. We can remedy this situation with the use
of the central characters for LJ .

Proposition 3.4.3. If I is any injective PJ -module with a finite-dimensional socle, then

I|LJ
=

⊕

ν∈X(T )

ILJ
(ν)nν

where nν < ∞ for all ν ∈ X(T ).

Proof. Without loss of generality, one can assume that I = IPJ
(λ) for some λ ∈ X(T )

and hence I = ILJ
(λ) ⊗ k[UJ ]. It will be sufficient to show that for any weight µ ∈ X(T )

dominant for LJ ,
dimHomLJ

(LJ(µ), ILJ
(λ)⊗ k[UJ ]) < ∞.

Since ILJ
(λ) and LJ(µ) are indecomposable LJ -modules, then ZJ acts on the former by

the character [λ] = λ+ ZJ and on the latter by [µ] = µ+ ZJ . Therefore,

HomLJ
(LJ(µ), ILJ

(λ)⊗ k[UJ ]) = HomLJ
(LJ(µ), ILJ

(λ)⊗ k[UJ ]µ−λ)

because any LJ -homomorphism must preserve the X(ZJ) weight spaces. The proposition
immediately follows from Lemmas 3.3.2 and 3.4.1. !
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3.5. Parabolic subgroups. Let F : PJ → PJ be the Frobenius morphism and (PJ)rLJ =
(F r)−1(LJ). The following result investigates PJ -modules which are injective over (PJ)rLJ =
(F r)−1(LJ) and have finite socles.

Theorem 3.5.1. If M is a PJ -module with a finite-dimensional socle which is injective
over (PJ)rLJ for all r ≥ 1, then M is injective over PJ .

Proof. It can be deduced from the finite-dimensionality of socPJ
(M) that the PJ -injective

hull of M is of the form I⊗k[UJ ] where I is an injective LJ -module with a finite-dimensional
socle, and we get an embedding

ι : M ↪→ I ⊗ k[UJ ].

By Proposition 3.4.3,

(I ⊗ k[UJ ])|LJ
=

⊕

ν∈X(T )

ILJ
(ν)nν

with nν < ∞ for all ν.
By assumption, M |(PJ )rLJ

is injective for all r, and thus there exist embeddings over LJ

(or (PJ)rLJ) of the form φr : I ⊗ k[(UJ)r] ↪→ M . For each r, let Mr = im(φr) ⊆ M ⊆
I ⊗ k[UJ ]. It will be sufficient to show that I ⊗ k[UJ ] =

⋃

r Mr.
The explicit descriptions of the coordinate algebras for U and Ur can be used to show

that k[UJ ] =
⋃

r k[(UJ)r] where each k[(UJ)r] can be canonically embedded inside k[UJ ]
as a (PJ)rLJ -module. We can deduce that I ⊗ k[UJ ] =

⋃

r I ⊗ k[(UJ)r]. Thus, for any ν
satisfying nν > 0, there must exist some r ≥ 1 such that ILJ

(ν)nν | Mr ⊆ M . This forces
M = I ⊗ k[UJ ] and therefore M is injective as a PJ -module. !

3.6. Borel subgroups. The aforementioned theorem in the previous section has a partic-
ularly nice formulation in the case when PJ = B.

Corollary 3.6.1. Let M be any mock injective B-module which has a finite-dimensional
socle, then M is an injective B-module.

Proof. In this situation, B = P∅ and T = L∅. The proof then follows by applying Theo-
rem 3.5.1 and observing that a module M is injective over BrT if and only if it is injective
over Br. !

3.7. Reductive groups. In this section we show that the analogue of Corollary 3.6.1
does not hold for reductive groups. Specifically, we will give an example of a module for
G = SL2(k), with k = F2, which is proper mock injective and has a simple socle. Let

W =

{(

1 0
0 1

)

,

(

0 1
1 0

)}

⊆ SL2(F2)

denote the Weyl group. Since 2 | |W |, then there exist non-trivial extensions of the trivial
representation for W . This implies that the module indGW k = k[G]W is proper mock
injective by the same argument as in Theorem 2.2.1. Furthermore, the normalizer of the
torus, NG(T ) = WT , is given by

WT =

{(

a 0
0 a−1

)

,

(

0 a
a−1 0

)

| a ∈ k∗
}

.
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The following theorem demonstrates that M = indGWTk is proper mock injective and has
a simple socle.

Proposition 3.7.1. Assume that the characteristic of k is 2. Let G = SL2, and let M =
indGWT k. Then

(a) socGM = k,
(b) M is proper mock injective for G.

Proof. (a) In this situation, one can identify X(T ) = Z and Z[X(T )] = Z[q, q−1]. We will
first show by induction that the simple module L(λ) does not contain a vector of weight 0
for any λ > 0. For the base case, observe that

ch L(1) = q + q−1

and thus doesn’t contain a 0-weight vector. Now suppose that λ ≥ 2 and that the result
holds for all µ < λ. If λ is odd, then all the weights appearing in L(λ) must also be odd, thus
0 cannot appear as a weight. Conversely, if λ is even, then by Steinberg’s tensor product
theorem L(λ) = L(λ/2)(1) and we can apply the inductive hypothesis to λ/2 < λ.

Therefore, (a) follows because for any λ > 0,

HomG(L(λ),M) ∼= HomWT (L(λ), k) ⊆ HomT (L(λ), k) = 0

and
HomG(k,M) ∼= HomWT (k, k) ∼= k.

(b) Next we show that M is proper mock injective. Since WT/T ∼= W , it follows from a
Lyndon-Hochschild-Serre spectral sequence argument that for some i > 0,

ExtiG(k,M) ∼= ExtiWT (k, k) ∼= Hi(W,kT ) = ExtiW (k, k) ̸= 0.

Therefore, M is not injective, and in fact it doesn’t even have a good filtration.
It remains to prove that M is mock injective, this will follow by showing that M is a

summand of the mock injective module indGW k. To see why this is true, first observe that

indGW k = indGWT indWT
W k.

Let N = indWT
W k. It can be verified that N = k[T ] where T acts as the left regular

representation and W ∼= WT/T acts by conjugation. Now k[T ] is an injective T -module
and the zero weight space under this action appears exactly once. Furthermore, the zero
weight space is a summand of k[T ] under W . Thus we have N ∼= k⊕S for some WT -module
S. It follows that indGW k = M ⊕ indGWT S, and therefore that M is mock injective. !

3.8. Mock injectives with good filtrations. As exhibited above, for G reductive, a
proper mock injective G-module may have a simple socle. We will now show that this
cannot occur if we also assume that M has a good filtration.

Let M be a mock injective G-module with simple G-socle L(λ), and choose r0 such that
λ ∈ Xr0(T ). For any r ≥ r0 it follows that the simple Gr-module Lr(λ) is the only iso-class
appearing in socGr(M), and the only iso-class appearing in socGr I(λ). Let Qr(λ) denote
the Gr-injective hull of Lr(λ). As a consequence of the previous remarks, the only Gr-
summands appearing in each of these modules is Qr(λ). Since M is injective over Gr, there
is a splitting I(λ) → M . This shows that I(λ)/M is isomorphic over Gr to a direct sum
of the modules Qr(λ), hence that Lr(λ) is the only iso-class appearing in socGr(I(λ)/M).
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Now this holds for all r ≥ r0, so if L(µ) appears in socG(I(λ)/M) for some µ, we can pick r
large enough that µ ∈ Xr(T ), in which case Lr(µ) appears in the Gr-socle of I(λ)/M . Thus
Lr(µ) ∼= Lr(λ), and since µ,λ ∈ Xr(T ), it follows that µ = λ. We have therefore proved:

Lemma 3.8.1. If M is a mock injective G-module having simple socle L(λ), then L(λ) is
the only iso-class of simple G-module appearing in socG(I(λ)/M).

We recall that for any G-module N , the injectivity of I(λ) and the short exact sequence

0 → M → I(λ) → I(λ)/M → 0

gives rise to the exact sequence

0 → HomG(N,M) → HomG(N, I(λ)) → HomG(N, I(λ)/M) → Ext1G(N,M) → 0.

From this we can deduce the following result. We recall that V (λ) is the Weyl module with
highest weight λ.

Theorem 3.8.2. If M is a mock injective G-module with a simple socle, then M is injective
if and only if it has a good filtration, in which case M ∼= I(λ) for some λ ∈ X(T )+.

Proof. The “only if” direction is clear since injective modules always have a good filtration.
On the other hand, assume that M has a good filtration, and embed M into its injective
hull. Since M has a simple socle, its injective hull is of the form I(λ) for some λ. By [J,
II.4.18], any good filtration of I(λ) has H0(λ) appearing with multiplicty one.

For each V (µ) we have that Ext1G(V (µ),M) = 0, giving a short exact sequence

0 → HomG(V (µ),M) → HomG(V (µ), I(λ)) → HomG(V (µ), I(λ)/M) → 0

showing that dimk(HomG(V (µ), I(λ)/M)) < ∞. By [J, II.4.17], I(λ)/M has a good fil-
tration. If I(λ)/M ̸= 0, then by Lemma 3.8.1, L(λ) ⊆ I(λ)/M . Consequently, H0(λ) ⊆
I(λ)/M and H0(λ) ⊆ M , so it occurs with multiplicity 2 in a good filtration of I(λ), a
contradiction. Thus, I(λ)/M = 0. !

Finally, although M in general cannot be shown to have a good filtration (for this would
contradict the example for SL2 given earlier), we can at least say that M starts out with
the beginnings of a good filtration.

Theorem 3.8.3. Let M be a mock injective G-module whose socle is isomorphic to L(λ).
Then H0(λ) is isomorphic to a submodule of M .

Proof. By [J, Lemma II.4.15], it suffices to show that

Ext1G(V (µ),M) = 0

for all µ < λ. The sequence

0 → HomG(V (µ),M) → HomG(V (µ), I(λ)) → HomG(V (µ), I(λ)/M) → Ext1G(V (µ),M) → 0

shows that HomG(V (µ), I(λ)/M) surjects onto Ext1G(V (µ),M). However, L(λ) is not a com-
position factor of V (µ) since λ > µ. By Lemma 3.8.1, any simple G-submodule of I(λ)/M
is isomorphic to L(λ). Therefore, HomG(V (µ), I(λ)/M) = 0, and so Ext1G(V (µ),M) must
also be 0. !
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