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ABSTRACT

Inspired by recent efforts to model cancer evolution with phyloge-

netic trees, we consider the problem of finding a consensus tumor

evolution tree from a set of conflicting input trees. In contrast to

traditional phylogenetic trees, the tumor trees we consider contain

features such as mutation labels on internal vertices (in addition to

the leaves) and allow multiple mutations to label a single vertex.

We describe several distancemeasures between these tumor trees

and present an algorithm to solve the consensus problem called

GraPhyC. Our approach uses a weighted directed graph where

vertices are sets of mutations and edges are weighted using a func-

tion that depends on the number of times a parental relationship is

observed between their constituent mutations in the set of input

trees. We find a minimum weight spanning arborescence in this

graph and prove that the resulting tree minimizes the total distance

to all input trees for one of our presented distance measures.

We evaluate our GraPhyC method using both simulated and real

data. On simulated data we show that our method outperforms a

baseline method at finding an appropriate representative tree. Using

a set of tumor trees derived from both whole-genome and deep

sequencing data from a Chronic Lymphocytic Leukemia patient

we find that our approach identifies a tree not included in the set

of input trees, but that contains characteristics supported by other

reported evolutionary reconstructions of this tumor.
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1 INTRODUCTION

A tumor is the result of an evolutionary process where somatic

mutations ś those that occur during the lifetime of the individual ś

accumulate and lead to the growth of a tumor [19]. The evolutionary

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5794-4/18/08.
https://doi.org/10.1145/3233547.3233584

history of a tumor describes the order in which these mutations ap-

peared and includes information such as the ancestral relationships

between mutations. Thus, the evolutionary history of a tumor is

often described using a rooted tree [26] where vertices represent

different populations of cells, each with a unique complement of

somatic mutations, that have existed during the tumor’s evolution

and the root represents the founding cell population.

A better understanding of the evolutionary history underlying

tumor growth may provide important insights into how and why

tumors develop [29]. Thus, in recent years there has been tremen-

dous advances in methods that aim to infer such a tree describing

a tumor’s evolutionary history from DNA sequencing data. For in-

stance, one of the earlier methods, TRaP [28], uses bulk sequencing

data from a single tumor sample to infer this history. A number of

other methods that utilize multi-sample bulk sequencing data such

as [5, 7, 8, 12, 13, 15, 20, 24, 33] and many others have been devel-

oped. As single-cell sequencing methods have matured, a number of

methods that utilize this type of data have also appeared [11, 22, 32].

There are also recent hybrid methods that utilize both bulk sequenc-

ing data and single cell data [14].

While the recent algorithmic progress has led to improved in-

ference of tumor evolutionary histories, there are a number of

situations where more than one evolutionary history for a single

tumor may be inferred. The first such situation is when a single

method returns multiple possible trees. This may occur for stochas-

tic methods, such as PhyloSub [13] or PhyloWGS [5] that use a

Bayesian approach and report a collection of the most likely trees

sampled. Multiple plausible trees are also possible for methods that

use a discrete optimization criterion, such as AncesTree [7] which

returns the largest tree that adheres to a specific criterion, and mul-

tiple such trees satisfy the optimization criteria. Some algorithms,

such as SPRUCE [8] also explicitly enumerate a set of possible tree

reconstructions. The second situation where different reconstruc-

tions of a single tumor exist is when different algorithms are applied

to the same dataset. It’s not uncommon for different methods to

produce similar, but not identical results. These disparities may re-

sult from different underlying assumptions made by each approach,

or the application of alternative algorithmic approaches. The last

situation is when different types of data exists for a single tumor

sample [10, 25], such as bulk sequencing, targeted deep sequencing

and single cell data. Computational approaches applied to such

different datasets may yield a set of distinct possible evolutionary

histories. While some hybrid methods are being developed that

incorporate several data types [14, 23], there are only a few such

methods and they are designed for specific data types.

Given a set of disparate tumor evolutionary histories, a natural

question is whether information across these histories can be com-

bined to infer a better evolutionary history? This type of consensus

approach has been useful when applied to traditional phylogenetic
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trees that are used to show the evolutionary relationships between

different species. The leaves of a phylogenetic tree represent the

extant species and the internal vertices represent the most recent

common ancestor of all its descendants. The topologies of such

trees are typically inferred by starting with the set of extant species

and inferring the set of internal nodes in the tree.

A number of consensus methods exist for finding a consensus, or

representative, phylogenetic tree from a set of conflicting trees. One

of the simplest such methods is strict consensus [21] which creates

a tree that contains all the same groupings of species that occur

in all the input trees. The majority-rule consensus tree constructs a

tree that contains groupings that exist in a majority of the input

trees [16]. The Adams consensus looks at which species are often

clustered together across the set of input trees [1]. Many other such

consensus algorithms exist. For a review see [4]. These methods

typically rely on the input trees being traditional phylogenetic trees

where a set of species label just the leaves of the tree. This is not

the case for tumors where ancestral populations (internal nodes)

still exist at the present time. Furthermore, in tumor evolutionary

histories the set of leaves (species) can be different between differ-

ent input trees. Thus, novel algorithmic techniques are needed to

perform consensus on a set of tumor evolutionary histories.

We formalize the problem of finding a consensus tumor evo-

lutionary history from a set of possible tumor histories as the

m-Tumor Tree Consensus Problem (m-TTCP). The input to the

problem is a set of potential tumor evolutionary histories, rep-

resented as a specific type of rooted tree, along with a distance

measure between tumor trees. The problem aims to find a rooted

tree that minimizes the total distance from the consensus tree to

the set of input trees. We also present and analyze variations of

this problem for four different distance measures which allow us

to capture different aspects of tumor histories.

We propose a graph-based algorithm, GraPhyC. We prove that

our approach optimally solves one variant of them-TTCP when

given a specific distance measure. On simulated data we show that

our GraPhyC method outperforms a baseline method for all four

distance measures, and at recovering the true underlying tree used

to create the simulated data, even when that tree is not part of the

set of input trees. This indicates that our approach may be able to

identify a more accurate tumor evolutionary history from a set of

noisy input trees. We apply GraPhyC to real DNA sequencing data

and show that it is able to recover a consensus tree not included in

the input data, but is supported by other existing reconstructions

of this tumor’s history.

2 METHODS

2.1 Phylogenetic Trees and Tumor Trees

The following definition may be used to describe traditional phylo-

genetic trees where the leaves of the tree represent n extant species.

Definition 2.1. An n-phylogenetic tree is a rooted treeT with n

leaves. Each leaf has exactly one unique label from the set {1, . . . ,n}.

We note that any two n-phylogenetic trees T1 and T2 will have

the same set of leaves. Each leaf may be further described as a set

of mutations, and those sets of mutations remain the same between

any two such trees.

A tumor is the result of an evolutionary process, and therefore

its history may also be represented using a similar tree structure

where vertices represent different tumor populations that existed

during the history of the tumor and edges indicate direct ancestral

relationships. Each tumor population is distinguished by a unique

complement of somatic mutations that exist in the population. Un-

like a phylogenetic tree, the set of extant species is not known a

priori. Instead, this tree is constructed using information about the

set of mutations that arose during the history of the tumor. We

will make two assumptions about how a tumor evolves. The first

assumption is the infinite sites assumption, which states that no mu-

tation occurs more than once during the history of a tumor. While

some recent methods allow limited violations to this rule [3, 8] this

has been a common assumption for many methods that infer tumor

evolution such as [5, 7, 12, 15, 24, 28]. Therefore, we maintain this

assumption for this work. The second assumption we make is that

the tumor is the result of monoclonal evolution, that the tumor can

be traced back to a single founder population. Thus, the history of

a tumor can be described using the following definition.

Definition 2.2. An m-tumor tree is a rooted tree T where: (i)

each vertex in the tree is labeled by one or more mutations from

the mutation set [m] = {1, . . . ,m}; (ii) every mutation labels some

vertex; and (iii) no mutation appears more than once.

The mutations labeling each vertex in an m-tumor tree indi-

cate the mutations that first appeared in the corresponding tumor

population. We note that one could make an alternative, but ulti-

mately equivalent, interpretation where the mutations label the

edge incoming to the vertex instead. Figure 1 shows an example of

a 4-phylogenetic tree and a 4-tumor tree.

Each vertex v in anm-tumor tree T represents a population of

tumor cells that existed at some point during the tumor’s evolution.

The particular set of mutations that existed in the population rep-

resented by vertex v are the mutations that label all vertices on the

unique path from the root to v . For any vertex v , we denote this

set of mutations as clone (v ). We can also define the set of clones

in T = (V ,E) as clone (T ) = {clone (v ) |v ∈ V } (see Figure 1 for an

example). Thus, unliken-phylogenetic trees, any twom-tumor trees

T1 and T2 may have a different set of clones (species) labeling their

leaves, in addition to different sets of clones across the entire tree

(i.e. clone (T1) , clone (T2)).

We also note that a more general model that includes polyclonal

evolution could be achieved by adding a default root vertex to the

m-tumor tree that is unlabeled and represents the germline. For

simplicity, we will restrict our attention to the monoclonal case for

the remainder of this work.

Finally, let Tm be the set of allm-tumor trees. We note that any

T ∈ Tm defines a partition (clustering) of the mutation set [m]

by considering the labels assigned to the vertices of the tree. Let

P (m) represent an arbitrary partition of the mutation set [m]. We

define TP (m) ⊆ Tm to be the subset ofm-tumor trees that induce

the partition P (m). A relevant special case is when we consider the

partition 1(m) = 1|2|3| . . . |m where each mutation is partitioned

into its own cluster. Therefore, T1(m) ⊆ Tm is the set ofm-tumor

trees where each node in the tree is labeled by exactly one mutation.

We will refer to T1(m) as the set of single-labelm-tumor trees.
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Figure 1: (left) A 4-phylogenetic tree on with species labeled

1, 2, 3 and 4. (middle) A 4-tumor tree with mutations labeled

A,B,C and D. (right) A tree of the clones in the 4-tumor tree

in the middle of the figure.

2.2 Consensus Trees

Given a set of discordantm-tumor trees representing possible tumor

evolutionary histories, our goal is to find a consensus tree that is

better able to describe the evolutionary history of the underlying

tumor. Specifically, we define the following problem.

The m-Tumor Tree Consensus Problem (m-TTCP): Given a

set S = {T1,T2, . . . ,Tn } ⊆ Tm of m-tumor trees, and a distance

measure dist (·, ·) betweenm-tumor trees, find a consensus tree T ∗

such that

T ∗ = argmin
T ∈Tm

n∑

i=1

dist (T ,Ti ).

Similar consensus problems have been studied in the realm of n-

phylogenetic trees [2]. We will explicitly consider several variations

on this problem in later sections.

2.3 Distance Between Trees

Them-TTCP relies upon having a distance measure betweenm-

tumor trees. A number of different distance measures between

n-phylogenetic trees have been defined including nearest-neighbor

interchange (NNI) [30], quartets distance [9], path distance [27, 31],

and others. We also note that [17] defines a distance between tumor

evolutionary trees, but they do so in the context of comparing the

structure of clonal evolution across patients, rather than comparing

a set of trees on a fixed set of mutations. Here we present several

different distance measures betweenm-tumor trees (Figure 2).

2.3.1 Path Distance. For anym-tumor tree T and pair of muta-

tions i, j ∈ [m], let path(T , i, j ) be the length of the unique path in

T from the vertex with label i to the vertex with label j. Note, this

path ignores any directionality associated with edges in the graph.

This type of distance measure has been previously to describe dis-

tances between n-phylogenetic trees. We define the path distance

PD (T1,T2) between twom-tumor trees,T1 andT2 as the sum of the

absolute value of the difference between the path lengths in T1 and

T2 for all pairs of mutations (Figure 2(a)). Formally,

PD (T1,T2) =
∑

i<j

|path(T1, i, j ) − path(T2, i, j ) |. (1)

As presented here, path distance is a version of the distance with

the same name defined on n-phylogenetic trees (where all labels

occur on the leaves of the tree). We include this measure to show

Path%distance%

PD(T1,%T2)%=%A→B%+%A→C%+%A→D%%

%%%%%%%%%%%%%%%%%+%B→C%+%B→D%+%C→D%%=%%3%!

B→D%=%|path(T1,%B,%D)%;%path(T2,%B,%D)|%

%%%%%%%%%%=%|%1%;%2|%=%1%

A%

D

C%

B%

A%

C% D%

B%

T1% T2%

(a)% Parent;child%distance%
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C% D
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D
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A%

C% D

B%
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A%

D
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B
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clone(%%%%%)%=%{A,D}%D%

clone(%%%%%)%=%{A,B,D}%D%

CD(T1,%T2)%=%
{%{A},{A,B},%

{A,B,C},%{A,B,D}}%%

{%{A},{A,B},%

{A,B,C},%{A,D}}%%
=%2%

Figure 2: Examples of different distancemeasures for twom-

clonal trees. (a) Path distance. (b) Parent-child distance. (c)

Ancestor-descendant distance. (d) Clonal distance.

that measures defined on n-phylogenetic trees can be used in this

situation. However, this distance has a number of limitations when

applied to m-tumor trees. For example, since path distance only

takes into account distances between mutations in them-tumor

tree, it loses information about the ancestral relationships between

these mutations. For example, suppose A is parental to mutation B

in one tree, but mutation B is parental to mutationA in another tree.

The path distance between these mutations is both 1 in each tree,

and therefore these mutations do not contribute to the total path

distance between the trees. Because of this and other limitations,

we define three additional distance measures onm-clonal trees that

allow us to more directly consider the structure of these trees.

2.3.2 Parent-Child Distance. Given anm-Tumor TreeT and two

mutations i and j , we say thatmutation i isparental tomutation j in

T if: (i) there is an edge connecting the vertex labeled with mutation

i to the vertex labeled withmutation j in T, and (ii) the vertex labeled

with mutation i lies on the path from the root to the vertex labeled

with j inT . If mutation i is parental to mutation j , then we say that

mutation j is a child of mutation i . Given anm-Tumor Tree T we

define ϕPC (T ) = {(i, j ) |i is parental to j in T }, that is ϕPC (T ) is the

set of all ordered pairs of mutations (i, j ) such that i is parental to

j in T . Finally, we can use these definitions to define the parent-

child distance PCD (T1,T2) between twom-Tumor Trees T1 and

T2 to be the number of parent-child relationships that exist in one

tree but not the other (Figure 2(b)). Formally:

PCD (T1,T2) = |ϕPC (T1) ⊕ ϕPC (T2) |. (2)

Observation 2.1. PCD (·, ·) is a distance metric when we restrict

the domain to T1 (m) × T1 (m).

Proof. By definition, parent-child distance always returns non-

negative values. Therefore, we need to show the following three

things in order to prove that it is a valid distance metric.

Identity of indiscernibles: Suppose thatT1,T2 ∈ T1(m) such that

PCD (T1,T2) = 0. This implies that T1 and T2 have the exact same

set of parent-child relationships. Since parent-child relationships
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can be used to uniquely reconstruct a tree, this means that T1 = T2.

Similarly, if T1 = T2, then by definition PCD (T1,T2) = 0.

Symmetry: SupposeT1,T2 ∈ T1(m) . Then, PCD (T1,T2) = |ϕPC (T1)⊕

ϕPC (T2) | = |ϕPC (T2) ⊕ ϕPC (T1) | = PCD (T2,T1).

Triangle Inequality: SupposeT1,T2,T3 ∈ T1(m) . Let (i, j ) ∈ ϕPC (T1)⊕

ϕPC (T3). Without loss of generality we may assume that (i, j ) ∈

ϕPC (T1) and (i, j ) < ϕPC (T3). We now consider the two possible

scenarios for (i, j ).

Case 1: Assume (i, j ) ∈ ϕPC (T2). In this case, then (i, j ) ∈

ϕPC (T2) ⊕ ϕPC (T3), and hence contributes one to PC (T2,T3).

Case 2: Assume (i, j ) < ϕPC (T2). In this case, then (i, j ) ∈

ϕPC (T1) ⊕ ϕPC (T2), and hence contributes one to PC (T1,T2).

Thus, for every (i, j ) ∈ ϕPC (T1) ⊕ ϕPC (T3) then either (i, j ) ∈

ϕPC (T2) ⊕ ϕPC (T3) or (i, j ) ∈ ϕPC (T1) ⊕ ϕPC (T2). Hence,

PCD (T1,T3) = |ϕPC (T1) ⊕ ϕPC (T3) |

≤ |ϕPC (T1) ⊕ ϕPC (T2) | + |ϕPC (T2) ⊕ ϕPC (T3) |

= PCD (T1,T2) + PCD (T2,T3)

and therefore the triangle inequality holds.

□

A distance function d that fulfills the same properties as a dis-

tance metric except that it relaxes the definition to allow d (x ,y) = 0

when x , y is a distance psuedometric.

Observation 2.2. PCD (·, ·) is a distance pseudometric.

Proof. This proof is nearly identical to the proof of Observa-

tion 2.1 with the following modification.

Relaxed identity of indiscernibles: Suppose T ∈ Tm , then by

definition PCD (T ,T ) = 0. Note, the reverse is not true. Suppose

T1 is a tree with a root vertex labeled with mutationm0 and three

children labeled each labeled with one mutations,m1,m2 andm3

respectively, and T2 is a tree with a root label with mutationm0

and one child, labeled with three mutationsm1,m2 andm3. In this

instance T1 , T2, but certainly PCD (T1,T2) = 0.

□

2.3.3 Ancestor-Descendant Distance. In the previous section we

defined a distance betweenm-tumor trees that looks at direct re-

lationships between vertices in the tree. Here we look at a more

generalized version that considers longer range relationships be-

tween vertices.

Given anm-Tumor TreeT and two mutations i and j , we say that

mutation i is ancestral to mutation j inT if the vertex labeled with

mutation i lies on the path from the root of T to the vertex labeled

with j. Note that under this definition i is considered ancestral to j

(and vice versa) if both mutations label the same vertex in T . We

make this choice since it is unclear which mutation is ancestral

to another in this instance (we could also have chosen to label

neither mutation as ancestral), and this provides flexibility if these

mutations label different vertices in a different tree. If mutation i is

ancestral to mutation j , thenwe say that mutation j is a descendant

of mutation i . Given an m-Tumor Tree T we define ϕAD (T ) =

{(i, j ) |i is ancestral to j in T }, that isϕAD (T ) is the set of all ordered

pairs of mutations (i, j ) such that i is ancestral to j. Finally, we can

use these definitions to define the ancestor-descendant distance

AD (T1,T2) between twom-Tumor TreesT1 andT2 to be the number

of ancestor-descendant relationships that exist in one tree but not

the other (Figure 2(c)). Formally,

AD (T1,T2) = |ϕAD (T1) ⊕ ϕAD (T2) |. (3)

Observation 2.3. AD (·, ·) is a distance metric when we restrict

the domain to T1 (m) × T1 (m).

Observation 2.4. AD (·, ·) is a distance pseudometric.

The proofs of Observation 2.3 and Observation 2.4 are nearly

identical the corresponding statements about the parent-child dis-

tance and are therefore omitted for space.

2.3.4 Clonal Distance. Underlying each vertex v in anm-tumor

tree is a set of mutations clone (v ) representing all the mutations

labeling all vertices from the root to v . This set of mutations, repre-

sent a collection of mutations that are predicted to exist (or have

existed) in a collection of cells in the tumor. We define a clonal

distance measure CD (T1,T2) that allows us to compare the sets of

clones underlying twom-tumor trees, by counting the number of

clones that are unique to either T1 or T2 (Figure 2(d)). Formally,

CD (T1,T2) = |clone (T1) ⊕ clone (T2) |. (4)

Clonal distance more strongly penalizes inconsistencies closer to

the root of the tree than at the leaves. For instance, consider a linear

tree where the child of the root has two mutations and a nearly

identical tree except that the child of the root has been split into

two children. These trees will have near maximal clonal distance,

despite being similar appearing trees. However, the clonal distance

will decrease if the branch occurs farther down the tree.

2.4 Consensus with Labels on Internal Vertices

There are two main difference between n-phylogenetic trees andm-

tumor trees: (1) Anm-tumor tree has labels on all vertices, including

internal vertices; and (2) A vertex in anm-tumor tree may have

multiple labels. In this section we consider a version of them-TCCP

where we restrict both our input and output and only consider

single-labelm-tumors trees from the set T1(m) . This allows us to

address just the first difference where mutations label internal

vertices, without yet considering multiple labels on a vertex (a

problemwewill consider later). Specifically, we define the following

problem.

The Single Label m-Tumor Tree Consensus Problem (SL-

m-TTCP): Given a set S = {T1,T2, . . . ,Tn } ⊆ T1(m) of m-tumor

trees, and a distance measure dist (·, ·) betweenm-tumor trees, find

a consensus tree T ∗ such that

T ∗ = argmin
T ∈T1(m )

n∑

i=1

dist (T ,Ti ).

2.4.1 Parent Child Graph. To solve the SL-m-TTCP we will first

need to see how to build a particular graph. Given a set S =

{T1,T2, . . . ,Tn } ⊆ T1(m) of single-label m-tumor trees, we can

build a graph that represents all parent-child relationships that

exist in S. Specifically, the parent-child-graph G = (V ,E) is

the weighted directed graph with vertices {1, 2, . . . ,m} and di-

rected edges E = {(u,v ) |(u,v ) ∈ ∪n
i=1ϕPC (Ti )}. Each edge (u,v )
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is weighted with |S| − 2 · count (u,v ) where count (u,v ) is number

of trees T ∈ S where vertex u is a parent of vertex v . Note, for

mutations a and b the value |S|−2 ·count (S,a,b)) is negative if a is

parental to b in at least half of the trees in S and positive otherwise.

We also note that the relative order of weighted edges would be

the same if we had weighted edges with −count (u,v ) instead.

A spanning arborescence of the parent-child graphG is a sub-

graphG ′ = (V ,E ′) with E ′ ⊆ E such that there exists a unique path

from some root vertex vr to every vertex v ∈ V . In particular, we

note that every T ∈ S defines some spanning arborescence in G,

but that other novel spanning arborescences, not corresponding to

some T ∈ S may exist within G.

Theorem 2.3. Given a set S = {T1,T2, . . . ,Tn } ⊆ T1(m) of single-

labelm tumor trees, the minimum weight spanning arborescence of

the corresponding parent-child graph G defines a tree T ∗ that is a

solution to the SL-m-TTCP when the distance measure is parent-child

distance.

We omit a proof of 2.3 here as it follows directly from a more

general theorem we will state in the following section.

2.4.2 The SL-GraPhyC Algorithm. Algorithm 1 shows an ap-

proachwe call the Single-LabelGraph-basedPhylogeneticConsensus

(SL-GraPhyC) which allows us to solve the SL-m-TTCP in one in-

stance.

Algorithm 1: SL-GraPhyC Algorithm

Input: S = {T1,T2, . . . ,Tn } ⊆ T1(m)

Output: A consensus tree T ∗ ∈ T1(m)

1 Build the parent-child graph G = (V ,E) for the set S.

2 T ∗ ←− ∅, best ←− 0

3 foreach v ∈ V do

4 FindT , a minimum spanning arborescence ofG rooted atv .

5 w ←− total weight of T .

6 if w < best then

7 T ∗ ←− T ,best ←− w

8 end

9 end

10 return T ∗

We first note that efficient algorithms, such as Edmonds/Chu-

Liu [6], exist for finding the minimum spanning arborescence of a

directed graph G = (V ,E) given a a root vertex r ∈ V . Second, we

note that Theorem 2.3 tells us that the consensus tree output by

SL-GraPhyC yields a solution to the SL-m-TCCP when we consider

a distance measure of parent-child distance. In section 3 we show

that even when a different distance measure is used, the output of

our approach outperforms a baseline consensus approach.

2.5 Consensus with Clustered Mutations

In this section we build on our approach from the previous section

to also incorporate the second main difference betweenm-tumor

trees and n-phylogenetic trees - a vertex may have multiple labels.

One challenge with trying to solve them-TTCP in this instance is

that differentm-tumor trees T1,T2 ∈ Tm may have different clus-

tering of mutations over the vertices in the tree, and may therefore

even have a different number of vertices. Thus, we consider the

following variation on them-TTCP, where we restrict our output

m-tumor tree to induce a specific partition on the set of mutations

{1, 2, . . . ,m}.

The Clustered Mutation m-Tumor Tree Consensus Prob-

lem (CM-m-TTCP): Given a set S = {T1,T2, . . . ,Tn } ⊆ T(m) of

m-tumor trees, a partition over mutations P (m), and a distance

measure dist (·, ·) betweenm-tumor trees, find a consensus tree T ∗

such that

T ∗ = argmin
T ∈TP (m )

n∑

i=1

dist (T ,Ti ).

2.5.1 Identifying a Partition. Every tree T ∈ Tm defines a parti-

tion (alternatively, a clustering) of the mutation set [m] by consider-

ing the labels assigned to the vertices in T . Therefore a set of input

trees S = {T1,T2, . . . ,Tn } ⊆ Tm defines a collection of n partitions

of the mutation set [m], one for each input tree. Our goal is to use

these partitions to identify a representative partition of [m] that we

will use to restrict our attention to while constructing a consensus

tree. We use the approach of consensus clustering, an established

problem with a number of proposed solutions [18]. Given a muta-

tion set [m] and an arbitrary partition over those mutations P (m)

we define the a function cluster (a,b, P (m)) which is 1 if a,b ∈ [m]

are clustered together in P (m) and −1 if they are not clustered to-

gether. We note that given a set of partitions P = {P1, P2, . . . , Pn }

over [m], the value
∑n
i=1 cluster (a,b, Pi ) will be positive if a and

b and clustered together in at least half of the partitions in P and

will be negative otherwise.

Algorithm 2 below is a greedy approach to consensus clustering

which is a variation on hierarchical clustering that uses the previous

observation to decide when to stop merging clusters.

Algorithm 2: Greedy Consensus Clustering

Input: Partitions P = {P1, P2, . . . , Pn } over a set of mutations

{1, 2, . . . ,m}.

Output: A consensus partition P over the mutation set.

1 P = {{1}, {2}, . . . , {m}}

2 while |P | > 1 do

3 foreach A,B ∈ P where A , B do

4 dAB =
∑
a∈A
∑
b ∈B
∑n
i=1 cluster (a,b, Pi )

5 end

6 A∗,B∗ = argmaxA,B∈P dAB
7 if dA∗B∗ > 0 then

8 P = P −A∗ − B∗ + (A∗ ∪ B∗)

9 else

10 return P

11 end

12 end

13 return P

2.5.2 Parent Child Graph. Given a set S = {T1,T2, . . . ,Tn } ⊆

Tm ofm-phylogenetic trees we can build a modified version of our

parent-child graph that represents parent-child relationships in

S. Since we now allows multiple mutations to label any vertex in

any of our input trees, we need to make a few modifications to
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the approach presented in section 2.4.1 where we restricted our

consideration to single-labelm tumor trees. Previously the set of

vertices in the graph were just the set of mutations. But since we

are allowing multiple mutations to be clustered together, we also

need as input a partition P over the mutation set [m]. We construct

a directed graph G = (V ,E) where |V | = |P | and each vertex is

labeled with a set mutations from P . Directed edges are added for

every parent-child relationship existing in some tree in S.

Previously we weighted each directed edge (u,v ) with |S| −

2 · count (u,v ) where count (u,v ) is number of trees T ∈ S where

vertex u is a parent of vertex v . Since multiple mutations may

label each vertex, we need to consider a weighting scheme that

allows us to account for vertices with multiple mutations, without

unnecessarily giving these edges more weight. Let A,B ∈ P be

distinct sets of mutations in P with corresponding vertices in G

of vA and vB . We weight the edge between vA and vB as follows:

w (vA,vB ) =
∑
a∈A
∑
b ∈B ( |S| − 2 · count (S,a,b)). See Figure 3 for

an example of a parent-child graph.

Theorem 2.4. Given a set S = {T1,T2, . . . ,Tn } ⊆ Tm ofm tumor

trees, and a partition of the mutations set P (m), the minimum weight

spanning arborescence of the corresponding parent-child graph G

defines a tree T ∗ that is a solution to the CM-m-TTCP when the

distance measure used is parent-child distance.

Proof Sketch. Due to space constraints, we provide here only

a sketch of the main ideas underlying the proof.

We start by creating a completely disconnected graphG = (V ,E)

where V is the set of partitions in P (m) and E = ∅. We then can

compute the total distance from this graph to all input trees as∑n
i=1

PCD (G,Ti ). We then show that adding any edge between

cluster A and B in G will result in a change of total distance equal

to ∆PCD (G,Ti ) =
∑
a∈A
∑
b ∈B ( |S | − 2 · count (S,a,b)). Since this

change does not depend on the structure of G at the time, each

edge can be added greedily as long as it does not create a cycle in

G. This process stops once we get a tree T ∗, a minimum spanning

arborescence of the parent-child graph. This tree must also be a

tree that minimizes the total distance
∑n
i=1

PCD (T ∗,Ti ).

2.5.3 TheGraPhyCAlgorithm. Algorithm 3 is our general Graph-

based Phylogenetic Consensus (GraPhyC) approach that allows us

to find a consensus tree given a set of inputm-phylogenetic trees

S = {T1,T2, . . . ,Tn }. Figure 3 shows an overview of the method,

including both clustering of mutations and construction of the

parent-child graph.

Theorem 2.4 tells us that the consensus tree output by Algo-

rithm 3 yields a solution to the CM-m-TCCPwhen we use a distance

measure of parent-child distance. We also note that any algorithm

for partitioning mutations can be used in place of our greedy con-

sensus clustering algorithm. If all input trees share the same root

or a priori information is known about the root, the approach can

be modified to only find potential trees with that root.

2.5.4 Multiple Solutions. We note that multiple distinct max-

imum spanning arborescences may exist in a parent-child graph

G = (V ,E). Our approach presented in Algorithm 3 will only return

one such solution. We modified the Edmonds/Chu-Liu algorithm

to return the set of minimum spanning arborescences, although

Algorithm 3: GraPhyC Algorithm

Input: S = {T1,T2, . . . ,Tn } ⊆ Tm
Output: A consensus tree T ∗ ∈ Tm

1 P ←− {}

2 foreach Ti ∈ S do

3 P = P∪ partition over [m] induced by Ti
4 end

5 P ←− Greedy Consensus Clustering(P)

6 Build the parent-child graph G = (V ,E) for the set S and

partition P .

7 T ∗ ←− ∅, best ←− 0

8 foreach v ∈ V do

9 FindT , a minimum spanning arborescence ofG rooted atv .

10 w ←− total weight of T .

11 if w < best then

12 T ∗ ←− T ,best ←− w

13 end

14 end

15 return T ∗

this has a significant impact on the running time of the approach.

Furthermore, a distance measure dist : Tm × Tm −→ R
≥0 may be

supplied as an optional parameter which can be used to rank the

set of minimum spanning arborescences returned by the algorithm.

3 RESULTS

We implemented GraPhyC in Java using our own modified imple-

mentation of Edmond’s/Chu-Liu algorithm to search for all min-

imum spanning trees in the parent-child graph. We analyze our

GraPhyC method on both simulated data and real sequencing data.

3.1 Results on Simulated Data

Using simulated data we first evaluate how well our approach

actually solves the variations of them-TTCP for our four distance

measures. We then analyze how well our inferred consensus tree

reflects the true underlying tree used to create the set of input trees.

3.1.1 Simulated Data Creation. We created each set of input

trees by first creating a randomm-tumor tree by iteratively adding

mutations with random parents from the existing tree. This tree

represents the łtrue historyž of the tumor.We then randomly sample

a frequency for each mutation that adheres to the sum rule [5, 7]

which states that the frequency of any mutation must be greater

than or equal to the sum of frequencies of its children. This rule

follows from the infinite sites assumption. To create each input tree,

we then iterate through all nodes x in the tree and with a fixed

probability of 0.3 do one of the two following edits: (1) Randomly

choose a new parent y (that is not a descendant of x and so that the

sum rule is not violated) and move the subtree rooted at x to be a

child of y. (2) For the current parent y of x , if y and x have the same

frequency, swap these nodes so that x is now the parent of y and y

is the parent of x ′s former children. Move 1 occurs with probability

0.8 andmove 2 occurs whenmove 1 does not happen.We force these
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Table 1: Subsets of input trees for sample CLL077 and con-

sensus tree inferred by GraPhyC.

Input Trees Consensus Tree

w1 w2 w3 w4 d1 d2 d3 d4

x x x x x x x x d3∗

x x x x x x x d3∗

x x x x x x x d3∗

x x x x x x d3∗

x x x x x x d3∗

x x x x x x d3∗

x x x x x x d3∗

x x x x x d3∗

x x x x d3∗

x x x x d3

x x x d3

x x x w1

Additional analysis including consensus across histories inferred by

different methods, applied to both simulated and real sequencing

data, would be useful at demonstrating the applicability of our Gra-

PhyC method. Verification of the accuracy of such methods on real

data remains challenging, but may be improved as more datasets

with both bulk and single cell sequencing data of the same samples

becomes available. We also note that our approach may also be

useful in problems outside of tumor phylogenetics. In particular,

our approach may be useful when considering the movement of

transposable elements in a genome, a process which also may be

described using a node-labeled tree.
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