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ABSTRACT

Inspired by recent efforts to model cancer evolution with phyloge-
netic trees, we consider the problem of finding a consensus tumor
evolution tree from a set of conflicting input trees. In contrast to
traditional phylogenetic trees, the tumor trees we consider contain
features such as mutation labels on internal vertices (in addition to
the leaves) and allow multiple mutations to label a single vertex.

We describe several distance measures between these tumor trees
and present an algorithm to solve the consensus problem called
GraPhyC. Our approach uses a weighted directed graph where
vertices are sets of mutations and edges are weighted using a func-
tion that depends on the number of times a parental relationship is
observed between their constituent mutations in the set of input
trees. We find a minimum weight spanning arborescence in this
graph and prove that the resulting tree minimizes the total distance
to all input trees for one of our presented distance measures.

We evaluate our GraPhyC method using both simulated and real
data. On simulated data we show that our method outperforms a
baseline method at finding an appropriate representative tree. Using
a set of tumor trees derived from both whole-genome and deep
sequencing data from a Chronic Lymphocytic Leukemia patient
we find that our approach identifies a tree not included in the set
of input trees, but that contains characteristics supported by other
reported evolutionary reconstructions of this tumor.
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1 INTRODUCTION

A tumor is the result of an evolutionary process where somatic
mutations - those that occur during the lifetime of the individual -
accumulate and lead to the growth of a tumor [19]. The evolutionary
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history of a tumor describes the order in which these mutations ap-
peared and includes information such as the ancestral relationships
between mutations. Thus, the evolutionary history of a tumor is
often described using a rooted tree [26] where vertices represent
different populations of cells, each with a unique complement of
somatic mutations, that have existed during the tumor’s evolution
and the root represents the founding cell population.

A better understanding of the evolutionary history underlying
tumor growth may provide important insights into how and why
tumors develop [29]. Thus, in recent years there has been tremen-
dous advances in methods that aim to infer such a tree describing
a tumor’s evolutionary history from DNA sequencing data. For in-
stance, one of the earlier methods, TRaP [28], uses bulk sequencing
data from a single tumor sample to infer this history. A number of
other methods that utilize multi-sample bulk sequencing data such
as [5, 7, 8, 12, 13, 15, 20, 24, 33] and many others have been devel-
oped. As single-cell sequencing methods have matured, a number of
methods that utilize this type of data have also appeared [11, 22, 32].
There are also recent hybrid methods that utilize both bulk sequenc-
ing data and single cell data [14].

While the recent algorithmic progress has led to improved in-
ference of tumor evolutionary histories, there are a number of
situations where more than one evolutionary history for a single
tumor may be inferred. The first such situation is when a single
method returns multiple possible trees. This may occur for stochas-
tic methods, such as PhyloSub [13] or PhyloWGS [5] that use a
Bayesian approach and report a collection of the most likely trees
sampled. Multiple plausible trees are also possible for methods that
use a discrete optimization criterion, such as AncesTree [7] which
returns the largest tree that adheres to a specific criterion, and mul-
tiple such trees satisfy the optimization criteria. Some algorithms,
such as SPRUCE [8] also explicitly enumerate a set of possible tree
reconstructions. The second situation where different reconstruc-
tions of a single tumor exist is when different algorithms are applied
to the same dataset. It’s not uncommon for different methods to
produce similar, but not identical results. These disparities may re-
sult from different underlying assumptions made by each approach,
or the application of alternative algorithmic approaches. The last
situation is when different types of data exists for a single tumor
sample [10, 25], such as bulk sequencing, targeted deep sequencing
and single cell data. Computational approaches applied to such
different datasets may yield a set of distinct possible evolutionary
histories. While some hybrid methods are being developed that
incorporate several data types [14, 23], there are only a few such
methods and they are designed for specific data types.

Given a set of disparate tumor evolutionary histories, a natural
question is whether information across these histories can be com-
bined to infer a better evolutionary history? This type of consensus
approach has been useful when applied to traditional phylogenetic
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trees that are used to show the evolutionary relationships between
different species. The leaves of a phylogenetic tree represent the
extant species and the internal vertices represent the most recent
common ancestor of all its descendants. The topologies of such
trees are typically inferred by starting with the set of extant species
and inferring the set of internal nodes in the tree.

A number of consensus methods exist for finding a consensus, or
representative, phylogenetic tree from a set of conflicting trees. One
of the simplest such methods is strict consensus [21] which creates
a tree that contains all the same groupings of species that occur
in all the input trees. The majority-rule consensus tree constructs a
tree that contains groupings that exist in a majority of the input
trees [16]. The Adams consensus looks at which species are often
clustered together across the set of input trees [1]. Many other such
consensus algorithms exist. For a review see [4]. These methods
typically rely on the input trees being traditional phylogenetic trees
where a set of species label just the leaves of the tree. This is not
the case for tumors where ancestral populations (internal nodes)
still exist at the present time. Furthermore, in tumor evolutionary
histories the set of leaves (species) can be different between differ-
ent input trees. Thus, novel algorithmic techniques are needed to
perform consensus on a set of tumor evolutionary histories.

We formalize the problem of finding a consensus tumor evo-
lutionary history from a set of possible tumor histories as the
m-Tumor Tree Consensus Problem (m-TTCP). The input to the
problem is a set of potential tumor evolutionary histories, rep-
resented as a specific type of rooted tree, along with a distance
measure between tumor trees. The problem aims to find a rooted
tree that minimizes the total distance from the consensus tree to
the set of input trees. We also present and analyze variations of
this problem for four different distance measures which allow us
to capture different aspects of tumor histories.

We propose a graph-based algorithm, GraPhyC. We prove that
our approach optimally solves one variant of the m-TTCP when
given a specific distance measure. On simulated data we show that
our GraPhyC method outperforms a baseline method for all four
distance measures, and at recovering the true underlying tree used
to create the simulated data, even when that tree is not part of the
set of input trees. This indicates that our approach may be able to
identify a more accurate tumor evolutionary history from a set of
noisy input trees. We apply GraPhyC to real DNA sequencing data
and show that it is able to recover a consensus tree not included in
the input data, but is supported by other existing reconstructions
of this tumor’s history.

2 METHODS

2.1 Phylogenetic Trees and Tumor Trees

The following definition may be used to describe traditional phylo-
genetic trees where the leaves of the tree represent n extant species.

Definition 2.1. An n-phylogenetic tree is a rooted tree T with n
leaves. Each leaf has exactly one unique label from the set {1, ..., n}.

We note that any two n-phylogenetic trees T; and T, will have
the same set of leaves. Each leaf may be further described as a set
of mutations, and those sets of mutations remain the same between
any two such trees.
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A tumor is the result of an evolutionary process, and therefore
its history may also be represented using a similar tree structure
where vertices represent different tumor populations that existed
during the history of the tumor and edges indicate direct ancestral
relationships. Each tumor population is distinguished by a unique
complement of somatic mutations that exist in the population. Un-
like a phylogenetic tree, the set of extant species is not known a
priori. Instead, this tree is constructed using information about the
set of mutations that arose during the history of the tumor. We
will make two assumptions about how a tumor evolves. The first
assumption is the infinite sites assumption, which states that no mu-
tation occurs more than once during the history of a tumor. While
some recent methods allow limited violations to this rule [3, 8] this
has been a common assumption for many methods that infer tumor
evolution such as [5, 7, 12, 15, 24, 28]. Therefore, we maintain this
assumption for this work. The second assumption we make is that
the tumor is the result of monoclonal evolution, that the tumor can
be traced back to a single founder population. Thus, the history of
a tumor can be described using the following definition.

Definition 2.2. An m-tumor tree is a rooted tree T where: (i)
each vertex in the tree is labeled by one or more mutations from
the mutation set [m] = {1, ..., m}; (ii) every mutation labels some
vertex; and (iii) no mutation appears more than once.

The mutations labeling each vertex in an m-tumor tree indi-
cate the mutations that first appeared in the corresponding tumor
population. We note that one could make an alternative, but ulti-
mately equivalent, interpretation where the mutations label the
edge incoming to the vertex instead. Figure 1 shows an example of
a 4-phylogenetic tree and a 4-tumor tree.

Each vertex v in an m-tumor tree T represents a population of
tumor cells that existed at some point during the tumor’s evolution.
The particular set of mutations that existed in the population rep-
resented by vertex v are the mutations that label all vertices on the
unique path from the root to v. For any vertex v, we denote this
set of mutations as clone(v). We can also define the set of clones
inT = (V,E) as clone(T) = {clone(v)|v € V} (see Figure 1 for an
example). Thus, unlike n-phylogenetic trees, any two m-tumor trees
T; and T, may have a different set of clones (species) labeling their
leaves, in addition to different sets of clones across the entire tree
(i.e. clone(Ty) # clone(Ty)).

We also note that a more general model that includes polyclonal
evolution could be achieved by adding a default root vertex to the
m-tumor tree that is unlabeled and represents the germline. For
simplicity, we will restrict our attention to the monoclonal case for
the remainder of this work.

Finally, let 77, be the set of all m-tumor trees. We note that any
T € T, defines a partition (clustering) of the mutation set [m]
by considering the labels assigned to the vertices of the tree. Let
P(m) represent an arbitrary partition of the mutation set [m]. We
define 7p(;) © Tm to be the subset of m-tumor trees that induce
the partition P(m). A relevant special case is when we consider the
partition 1(m) = 1|2|3] ... |m where each mutation is partitioned
into its own cluster. Therefore, 73,y € Trm is the set of m-tumor
trees where each node in the tree is labeled by exactly one mutation.
We will refer to 73 (,,) as the set of single-label m-tumor trees.
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Figure 1: (left) A 4-phylogenetic tree on with species labeled
1,2,3 and 4. (middle) A 4-tumor tree with mutations labeled

A, B,C and D. (right) A tree of the clones in the 4-tumor tree
in the middle of the figure.
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2.2 Consensus Trees

Given a set of discordant m-tumor trees representing possible tumor
evolutionary histories, our goal is to find a consensus tree that is
better able to describe the evolutionary history of the underlying
tumor. Specifically, we define the following problem.

The m-Tumor Tree Consensus Problem (m-TTCP): Given a
set S = {T1,Ts,..., Ty} € Tm of m-tumor trees, and a distance
measure dist(-, -) between m-tumor trees, find a consensus tree T*
such that .
T" = argminz dist(T, T;).
TeTm i=1

Similar consensus problems have been studied in the realm of n-
phylogenetic trees [2]. We will explicitly consider several variations
on this problem in later sections.

2.3 Distance Between Trees

The m-TTCP relies upon having a distance measure between m-
tumor trees. A number of different distance measures between
n-phylogenetic trees have been defined including nearest-neighbor
interchange (NNI) [30], quartets distance [9], path distance [27, 31],
and others. We also note that [17] defines a distance between tumor
evolutionary trees, but they do so in the context of comparing the
structure of clonal evolution across patients, rather than comparing
a set of trees on a fixed set of mutations. Here we present several
different distance measures between m-tumor trees (Figure 2).

2.3.1 Path Distance. For any m-tumor tree T and pair of muta-
tions i, j € [m], let path(T, i, j) be the length of the unique path in
T from the vertex with label i to the vertex with label j. Note, this
path ignores any directionality associated with edges in the graph.
This type of distance measure has been previously to describe dis-
tances between n-phylogenetic trees. We define the path distance
PD(Ty, T) between two m-tumor trees, T; and T; as the sum of the
absolute value of the difference between the path lengths in T; and
T, for all pairs of mutations (Figure 2(a)). Formally,

PD(T1,T;) = ) Ipath(Ty, i, ) = path(Ty, i, ). (1)
i<j

As presented here, path distance is a version of the distance with
the same name defined on n-phylogenetic trees (where all labels
occur on the leaves of the tree). We include this measure to show
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Figure 2: Examples of different distance measures for two m-
clonal trees. (a) Path distance. (b) Parent-child distance. (c)
Ancestor-descendant distance. (d) Clonal distance.

that measures defined on n-phylogenetic trees can be used in this
situation. However, this distance has a number of limitations when
applied to m-tumor trees. For example, since path distance only
takes into account distances between mutations in the m-tumor
tree, it loses information about the ancestral relationships between
these mutations. For example, suppose A is parental to mutation B
in one tree, but mutation B is parental to mutation A in another tree.
The path distance between these mutations is both 1 in each tree,
and therefore these mutations do not contribute to the total path
distance between the trees. Because of this and other limitations,
we define three additional distance measures on m-clonal trees that
allow us to more directly consider the structure of these trees.

2.3.2  Parent-Child Distance. Given an m-Tumor Tree T and two
mutations i and j, we say that mutation i is parental to mutation j in
T if: (i) there is an edge connecting the vertex labeled with mutation
i to the vertex labeled with mutation j in T, and (ii) the vertex labeled
with mutation i lies on the path from the root to the vertex labeled
with j in T. If mutation i is parental to mutation j, then we say that
mutation j is a child of mutation i. Given an m-Tumor Tree T we
define ¢pc(T) = {(i,j)li is parental to j in T}, that is ¢pc(T) is the
set of all ordered pairs of mutations (i, j) such that i is parental to
Jjin T. Finally, we can use these definitions to define the parent-
child distance PCD(T1, Tz) between two m-Tumor Trees T; and
T, to be the number of parent-child relationships that exist in one
tree but not the other (Figure 2(b)). Formally:

PCD(T1,T2) = |ppc(T1) ® dpc(T2)- (2)

OBSERVATION 2.1. PCD(-, ) is a distance metric when we restrict
the domain to 1(m) X 71 (m).

ProoF. By definition, parent-child distance always returns non-
negative values. Therefore, we need to show the following three
things in order to prove that it is a valid distance metric.

Identity of indiscernibles: Suppose that T1, Tz € 77 () such that
PCD(T1, Tz) = 0. This implies that T; and T, have the exact same
set of parent-child relationships. Since parent-child relationships
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can be used to uniquely reconstruct a tree, this means that T; = T».
Similarly, if T; = T, then by definition PCD(T1, T2) = 0.
Symmetry: Suppose T1, Tz € 71 (- Then, PCD(T3, T2) = |$ppc(T1)®
$pc(T2)| = |ppc(T2) ® ppc(T1)| = PCD(T2, Ty).

ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

Triangle Inequality: Suppose T1, Tz, T3 € Ty (m)- Let (i, j) € ¢pc(T1)®

¢pc(T3). Without loss of generality we may assume that (i, j) €
¢pc(T1) and (i, j) ¢ dpc(T3). We now consider the two possible
scenarios for (i, j).

Case 1: Assume (i,j) € ¢pc(T2). In this case, then (i,j) €
¢pc(T2) ® ¢ppc(T3), and hence contributes one to PC(T, T3).

Case 2: Assume (i,j) ¢ dpc(Tz). In this case, then (i,j) €
¢pc(T1) ® ¢ppc(T2), and hence contributes one to PC(T1, T2).

Thus, for every (i,j) € ¢pc(T1) ® ¢pc(T3) then either (i,j) €
$pc(T2) ® ppc(T3) or (i, j) € ppc(Ti) @ ¢pc(T2). Hence,

PCD(T1,T3) = |ppc(T1) ® ppc(T3)|
< gpc(T1) ® ppc(T2)| + 1ppc(T2) ® dpc(T3)]
= PCD(Tl,Tz) + PCD(TZ,T3)

and therefore the triangle inequality holds.
m]

A distance function d that fulfills the same properties as a dis-
tance metric except that it relaxes the definition to allow d(x, y) = 0
when x # y is a distance psuedometric.

OBSERVATION 2.2. PCD(-, ") is a distance pseudometric.

Proor. This proof is nearly identical to the proof of Observa-
tion 2.1 with the following modification.
Relaxed identity of indiscernibles: Suppose T € 7, then by
definition PCD(T,T) = 0. Note, the reverse is not true. Suppose
Ty is a tree with a root vertex labeled with mutation mg and three
children labeled each labeled with one mutations, my, ms and ms
respectively, and T is a tree with a root label with mutation my
and one child, labeled with three mutations m1, my and ms. In this
instance T # T2, but certainly PCD(T3, Tz) = 0.
]

2.3.3  Ancestor-Descendant Distance. In the previous section we
defined a distance between m-tumor trees that looks at direct re-
lationships between vertices in the tree. Here we look at a more
generalized version that considers longer range relationships be-
tween vertices.

Given an m-Tumor Tree T and two mutations i and j, we say that
mutation i is ancestral to mutation j in T if the vertex labeled with
mutation i lies on the path from the root of T to the vertex labeled
with j. Note that under this definition i is considered ancestral to j
(and vice versa) if both mutations label the same vertex in T. We
make this choice since it is unclear which mutation is ancestral
to another in this instance (we could also have chosen to label
neither mutation as ancestral), and this provides flexibility if these
mutations label different vertices in a different tree. If mutation i is
ancestral to mutation j, then we say that mutation j is a descendant
of mutation i. Given an m-Tumor Tree T we define pop(T) =
{(i,j)i is ancestral to j in T}, thatis ¢ 4 p(T') is the set of all ordered
pairs of mutations (i, j) such that i is ancestral to j. Finally, we can
use these definitions to define the ancestor-descendant distance
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AD(Ty, T2) between two m-Tumor Trees T; and T; to be the number
of ancestor-descendant relationships that exist in one tree but not
the other (Figure 2(c)). Formally,

AD(T1,T2) = |pap(T1) ® pap(T2)I. 3

OBSERVATION 2.3. AD(:,") is a distance metric when we restrict
the domain to 71 (m) X 71 (m).

OBSERVATION 2.4. AD(:,-) is a distance pseudometric.

The proofs of Observation 2.3 and Observation 2.4 are nearly
identical the corresponding statements about the parent-child dis-
tance and are therefore omitted for space.

2.3.4 Clonal Distance. Underlying each vertex v in an m-tumor
tree is a set of mutations clone(v) representing all the mutations
labeling all vertices from the root to v. This set of mutations, repre-
sent a collection of mutations that are predicted to exist (or have
existed) in a collection of cells in the tumor. We define a clonal
distance measure CD(T3, Tz) that allows us to compare the sets of
clones underlying two m-tumor trees, by counting the number of
clones that are unique to either Ty or T (Figure 2(d)). Formally,

CD(T1, Tz) = |clone(Ty) @ clone(T3)]. 4)

Clonal distance more strongly penalizes inconsistencies closer to
the root of the tree than at the leaves. For instance, consider a linear
tree where the child of the root has two mutations and a nearly
identical tree except that the child of the root has been split into
two children. These trees will have near maximal clonal distance,
despite being similar appearing trees. However, the clonal distance
will decrease if the branch occurs farther down the tree.

2.4 Consensus with Labels on Internal Vertices

There are two main difference between n-phylogenetic trees and m-
tumor trees: (1) An m-tumor tree has labels on all vertices, including
internal vertices; and (2) A vertex in an m-tumor tree may have
multiple labels. In this section we consider a version of the m-TCCP
where we restrict both our input and output and only consider
single-label m-tumors trees from the set 77 ;). This allows us to
address just the first difference where mutations label internal
vertices, without yet considering multiple labels on a vertex (a
problem we will consider later). Specifically, we define the following
problem.

The Single Label m-Tumor Tree Consensus Problem (SL-
m-TTCP): Given a set S = {T1,T3,...,Tn} € Tq(m) of m-tumor
trees, and a distance measure dist(-, -) between m-tumor trees, find
a consensus tree T* such that

n
T* = argmin Z
TeTa(m i=1

2.4.1  Parent Child Graph. To solve the SL-m-TTCP we will first
need to see how to build a particular graph. Given a set S =
{1, T,..., Ty} C ‘7}1(,”) of single-label m-tumor trees, we can
build a graph that represents all parent-child relationships that
exist in S. Specifically, the parent-child-graph G = (V,E) is
the weighted directed graph with vertices {1,2,...,m} and di-
rected edges E = {(u,v)|(u,v) € U dpc(Ti)}. Each edge (u,v)

dist(T, T;).
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is weighted with |S| — 2 - count (u, v) where count(u, v) is number
of trees T € S where vertex u is a parent of vertex v. Note, for
mutations a and b the value |S|—-2-count(S, a, b)) is negative if a is
parental to b in at least half of the trees in S and positive otherwise.
We also note that the relative order of weighted edges would be
the same if we had weighted edges with —count(u, v) instead.

A spanning arborescence of the parent-child graph G is a sub-
graph G’ = (V,E’) with E’ C E such that there exists a unique path
from some root vertex v, to every vertex v € V. In particular, we
note that every T € S defines some spanning arborescence in G,
but that other novel spanning arborescences, not corresponding to
some T € S may exist within G.

THEOREM 2.3. GivenasetS = {T1,Ts,..., Ty} C T1(m) of single-
label m tumor trees, the minimum weight spanning arborescence of
the corresponding parent-child graph G defines a tree T* that is a
solution to the SL-m-TTCP when the distance measure is parent-child
distance.

We omit a proof of 2.3 here as it follows directly from a more
general theorem we will state in the following section.

24.2 The SL-GraPhyC Algorithm. Algorithm 1 shows an ap-
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proach we call the Single-Label Graph-based Phylogenetic Consensus

(SL-GraPhyC) which allows us to solve the SL-m-TTCP in one in-
stance.

Algorithm 1: SL-GraPhyC Algorithm
Input: S = (T, Tz, . . .. Tn} € Ta(m)
Output: A consensus tree T* € T1(m)
Build the parent-child graph G = (V, E) for the set S.
2 T* «— 0, best «— 0
foreach v € V do
Find T, a minimum spanning arborescence of G rooted at v.

[

oW

5 w «— total weight of T.
6 if w < best then

7 ‘ T* « T, best «— w
8 end

9 end

10 return T*

We first note that efficient algorithms, such as Edmonds/Chu-
Liu [6], exist for finding the minimum spanning arborescence of a
directed graph G = (V, E) given a a root vertex r € V. Second, we
note that Theorem 2.3 tells us that the consensus tree output by
SL-GraPhyC yields a solution to the SL-m-TCCP when we consider
a distance measure of parent-child distance. In section 3 we show
that even when a different distance measure is used, the output of
our approach outperforms a baseline consensus approach.

2.5 Consensus with Clustered Mutations

In this section we build on our approach from the previous section
to also incorporate the second main difference between m-tumor
trees and n-phylogenetic trees - a vertex may have multiple labels.
One challenge with trying to solve the m-TTCP in this instance is
that different m-tumor trees T;, T € 75, may have different clus-
tering of mutations over the vertices in the tree, and may therefore
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even have a different number of vertices. Thus, we consider the
following variation on the m-TTCP, where we restrict our output
m-tumor tree to induce a specific partition on the set of mutations
{1,2,...,m}.

The Clustered Mutation m-Tumor Tree Consensus Prob-
lem (CM-m-TTCP): Given a set S = {T1,T»,...,Tn} C T(m) of
m-tumor trees, a partition over mutations P(m), and a distance
measure dist (-, -) between m-tumor trees, find a consensus tree T*

such that
n
T* = argmin Z dist(T, T;).
T€Tp(m) i=1
2.5.1 ldentifying a Partition. Every tree T € Ty, defines a parti-

tion (alternatively, a clustering) of the mutation set [m] by consider-
ing the labels assigned to the vertices in T. Therefore a set of input
trees S = {T1, Tz, ..., Ty} € T defines a collection of n partitions
of the mutation set [m], one for each input tree. Our goal is to use
these partitions to identify a representative partition of [m] that we
will use to restrict our attention to while constructing a consensus
tree. We use the approach of consensus clustering, an established
problem with a number of proposed solutions [18]. Given a muta-
tion set [m] and an arbitrary partition over those mutations P(m)
we define the a function cluster(a, b, P(m)) whichis 1if a,b € [m]
are clustered together in P(m) and —1 if they are not clustered to-
gether. We note that given a set of partitions = {P1,Pa, ..., Py}
over [m], the value 37, cluster(a, b, P;) will be positive if a and
b and clustered together in at least half of the partitions in # and
will be negative otherwise.

Algorithm 2 below is a greedy approach to consensus clustering
which is a variation on hierarchical clustering that uses the previous
observation to decide when to stop merging clusters.

Algorithm 2: Greedy Consensus Clustering

Input: Partitions $ = {P1, Pa, .
{1,2,...,m}.

Output: A consensus partition P over the mutation set.

1 P={{1},{2},...,{m}}

2 while |P| > 1 do

3 foreach A, B € P where A # B do

4 | daB = Yaca Xpen L1, cluster(a,b, P;)

5 end

.., Py} over a set of mutations

6 | A',B* =argmax, gcpdas
7 if dg-g+ > 0 then

8 | P=P-A"-B"+(A*UB")
9 else

10 ‘ return P

11 end

12 end

13 return P

2.5.2  Parent Child Graph. Givenaset S = {T1, T, ..., Ty} C
Tm of m-phylogenetic trees we can build a modified version of our
parent-child graph that represents parent-child relationships in
S. Since we now allows multiple mutations to label any vertex in
any of our input trees, we need to make a few modifications to
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the approach presented in section 2.4.1 where we restricted our
consideration to single-label m tumor trees. Previously the set of
vertices in the graph were just the set of mutations. But since we
are allowing multiple mutations to be clustered together, we also
need as input a partition P over the mutation set [m]. We construct
a directed graph G = (V,E) where |V| = |P| and each vertex is
labeled with a set mutations from P. Directed edges are added for
every parent-child relationship existing in some tree in S.

Previously we weighted each directed edge (u,v) with |S| —
2 - count(u, v) where count(u,v) is number of trees T € S where
vertex u is a parent of vertex v. Since multiple mutations may
label each vertex, we need to consider a weighting scheme that
allows us to account for vertices with multiple mutations, without
unnecessarily giving these edges more weight. Let A,B € P be
distinct sets of mutations in P with corresponding vertices in G
of v4 and vp. We weight the edge between v4 and vp as follows:
w(vA,VB) = Yaea LpeB(IS| — 2 - count(S, a,b)). See Figure 3 for
an example of a parent-child graph.

THEOREM 2.4. GivenasetS ={T1,Ta,...,Tp} C T of m tumor
trees, and a partition of the mutations set P(m), the minimum weight
spanning arborescence of the corresponding parent-child graph G
defines a tree T* that is a solution to the CM-m-TTCP when the
distance measure used is parent-child distance.

PRroOF SKETCH. Due to space constraints, we provide here only
a sketch of the main ideas underlying the proof.

We start by creating a completely disconnected graph G = (V, E)
where V is the set of partitions in P(m) and E = 0. We then can
compute the total distance from this graph to all input trees as

%, PCD(G, T;). We then show that adding any edge between
cluster A and B in G will result in a change of total distance equal
to APCD(G,T;) = Yaea 2pep(S| — 2 - count (S, a, b)). Since this
change does not depend on the structure of G at the time, each
edge can be added greedily as long as it does not create a cycle in
G. This process stops once we get a tree T*, a minimum spanning
arborescence of the parent-child graph. This tree must also be a
tree that minimizes the total distance }.1 ; PCD(T*, T;).

2.5.3 The GraPhyC Algorithm. Algorithm 3 is our general Graph-
based Phylogenetic Consensus (GraPhyC) approach that allows us
to find a consensus tree given a set of input m-phylogenetic trees
S ={N1,Ty,...,T,}. Figure 3 shows an overview of the method,
including both clustering of mutations and construction of the
parent-child graph.

Theorem 2.4 tells us that the consensus tree output by Algo-
rithm 3 yields a solution to the CM-m-TCCP when we use a distance
measure of parent-child distance. We also note that any algorithm
for partitioning mutations can be used in place of our greedy con-
sensus clustering algorithm. If all input trees share the same root
or a priori information is known about the root, the approach can
be modified to only find potential trees with that root.

2.5.4 Multiple Solutions. We note that multiple distinct max-
imum spanning arborescences may exist in a parent-child graph
G = (V,E). Our approach presented in Algorithm 3 will only return
one such solution. We modified the Edmonds/Chu-Liu algorithm
to return the set of minimum spanning arborescences, although

ACM-BCB’18, August 29-September 1, 2018, Washington, DC, USA

Algorithm 3: GraPhyC Algorithm
Input: S = {T1,T2,..., T} € Tm
Output: A consensus tree T* € Tr,
1P —{}
2 foreach T; € S do
3 ‘ P = PU partition over [m] induced by T;

4 end
5 P «— Greedy Consensus Clustering(?)
Build the parent-child graph G = (V, E) for the set S and
partition P.
7 T" «— 0, best «— 0
foreach v € V do
Find T, a minimum spanning arborescence of G rooted at v.

=N

©  »

10 w «— total weight of T.
1 if w < best then

12 ‘ T* < T, best «— w
13 end

14 end

15 return T*

this has a significant impact on the running time of the approach.
Furthermore, a distance measure dist : Ty X T — RZ0 may be
supplied as an optional parameter which can be used to rank the
set of minimum spanning arborescences returned by the algorithm.

3 RESULTS

We implemented GraPhyC in Java using our own modified imple-
mentation of Edmond’s/Chu-Liu algorithm to search for all min-
imum spanning trees in the parent-child graph. We analyze our
GraPhyC method on both simulated data and real sequencing data.

3.1 Results on Simulated Data

Using simulated data we first evaluate how well our approach
actually solves the variations of the m-TTCP for our four distance
measures. We then analyze how well our inferred consensus tree
reflects the true underlying tree used to create the set of input trees.

3.1.1 Simulated Data Creation. We created each set of input
trees by first creating a random m-tumor tree by iteratively adding
mutations with random parents from the existing tree. This tree
represents the “true history” of the tumor. We then randomly sample
a frequency for each mutation that adheres to the sum rule [5, 7]
which states that the frequency of any mutation must be greater
than or equal to the sum of frequencies of its children. This rule
follows from the infinite sites assumption. To create each input tree,
we then iterate through all nodes x in the tree and with a fixed
probability of 0.3 do one of the two following edits: (1) Randomly
choose a new parent y (that is not a descendant of x and so that the
sum rule is not violated) and move the subtree rooted at x to be a
child of y. (2) For the current parent y of x, if y and x have the same
frequency, swap these nodes so that x is now the parent of y and y
is the parent of x’s former children. Move 1 occurs with probability
0.8 and move 2 occurs when move 1 does not happen. We force these
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Figure 3: Overview of the GraPhyC method (described in Algorithm 3). First Algorithm 2 is used to identify clusters of muta-
tions. Then, the parent-child graph G is built for these clusters of mutations. Finally, potential consensus trees are found as

minimum spanning arborescences of graph G.

moves to maintain the sum rule since most algorithms that compute
tumor evolutionary histories aim to adhere to this constraint.

3.1.2  Distance Measures and the SL-m-TCCP. We first evaluated
the efficacy of our GraPhyC algorithm at solving the SL-m-TTCP
compared to a baseline approach for all of our distance measures.
This allows us to consider our consensus paradigm separately from
our approach to mutation clustering. For this experiment we created
80 different sets of 5 input trees, each with 11 mutations. We kept
the number of mutations low so that we could use a brute force
search to determine the true optimal solution to the SL-m-TCCP for
each set of input trees. This is also a similar number of mutations
to the real dataset we analyze.

We compare our results on these simulated datasets to a baseline
comparison we call “Best Input” which returns the input tree that
minimizes the total distance to all other trees in the input set. For an
inferred consensus tree T from a set of input trees {T1, Tz, ..., Tn}
having a true optimal consensus tree T* (found using brute force
search) we compute the following normalized measure of error for
a given distance measure dist(, ).

o dist(T, T;) = X1 dist(T*, T;)

T) =
err(T) ndist(T*, T;)

®)

We use this measure of error rather than directly computing
dist(T, T*) since multiple distinct optimal trees may exist or be
returned by one of the tested methods. We compute this error for
our four different distance measures (Path, Parent-Child, Ancestor-
Descendant and Clonal) for the results output by both GraPhyC
and Best Input. Figure 4 shows violin plots of these results. For each
distance measure we see that the GraPhyC algorithm outperforms
the the Best Input method. Specifically we see empirical verification
of Theorem 2.3 that GraPhyC always returns the optimal solution
(err(T) = 0.0) when the distance measure is Parent-Child distance,
in contrast to Best Input which has a mean err(T) = 0.075. We also
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Figure 4: Violin plots comparing GraPhyC to a baseline Best
Input method for four different distance measures in terms
of error from the true optimal consensus tree (Equation (5)).

note that for all distance measures GraPhyC returns a tree with
err(T) = 0 in over half of the trials (Best Input only achieves this
for Parent-Child distance).

3.1.3  GraPhyC Performs Well at Uncovering the Original Tree.
In the previous section we showed that GraPhyC does a good job at
solving the SL-m-TTCP, but we have not yet shown that problem
is a good way to uncover the original tree the data was derived
from. We created simulated datasets that contain a range of muta-
tions from the set {10, 15, 20, 25, 30, 35, 40}, while keeping track of
the original tree T* that was used to create the dataset. For each
number of mutations we created 100 simulated datasets of 5 input
trees and found the consensus trees identified by GraPhyC and the
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Figure 5: Mean distances between original underlying tree
and either a consensus tree inferred by GraPhyC or Best In-
put for each of our distance measures.

Best Input method. We compare these trees to the original tree T*
using our four distance measures and find that GraPhyC outper-
forms the Best Input method (Figure 5). Furthermore, we also see
that GraPhyC shows improved inference as the number of muta-
tions increases. Thus, we can conclude that GraPhyC has better
potential for uncovering the real underlying tree. Furthermore, in
a number of these trials GraPhyC is able to uncover the true orig-
inal tree even when that tree is not included in the set of input trees.

3.2 Results on Real data

We also analyze the results of our GraPhyC algorithm using chronic
lymphocytic leukemia (CLL) sequencing data from Schuh et. al [25].
Sample CLL077 from this study has been extensively analyzed in
terms of subclonal evolution. In particular, a number of methods
for inferring tumor evolutionary histories have used this sample in
their analysis[5, 7, 13, 20]. Data for this sample includes both ~40x
average coverage whole-genome sequencing from 5 time points
(plus a matched normal sample) and ~100,000X average coverage
targeted deep amplicon sequencing of 16 mutations from those same
5 time points. So, while ground truth cannot be verified in real data
such as this, the variety of data types available for this sample,
and its extensive previous analysis, make it an ideal candidate for
analysis with our consensus approach.

PhyloWGS [5] is a method for inferring tumor evolutionary his-
tories that utilizes a Markov Chain Monte Carlo (MCMC) approach
to sample possible histories from a posterior distribution. Since it
is a stochastic approach PhyloWGS may sample different phyloge-
netic histories on different runs of the algorithm. Thus, a consensus
approach applied to the different outputs produced by the method,
may yield a better estimate of the underlying evolutionary history.
We ran the PhyloWGS algorithm using default parameters multiple
times on sample CLL077 using both the ultra deep sequencing data
of the 16 selected mutations and the whole genome sequencing data
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for those same 16 mutations. PhyloWGS produced 4 distinct phylo-
genetic trees for the deep sequencing data (d1, d2, d3 and d4) and 4
distinct phylogenetic trees for the whole sequencing data (w1, w2,
w3 and w4). Figure 6(a) and Figure 6(b) show these sets of inferred
trees. We note that there is variation among the set of trees produces
both in terms of topology and mutations placement. We quantify
this variation by using our four distance measures to do pairwise
comparisons across all created trees (Figure 6(c)). In particular we
note that the set of trees inferred from the whole-genome data
are much more similar as a group than the trees inferred from the
deep sequencing data. For example, with the parent-child distance
measure the average pairwise distance between the whole-genome
trees is 62.13 compared to 83.63 for the deep sequencing trees.

We applied GraPhyC to the complete set of input trees obtained
from PhyloWGS and identified a new tree (which we call d3*), not
contained in our input set, as the optimal consensus tree and shown
in Figure 6(d). This tree is very similar to input tree d3 with one
change - the mutation to gene SLC12A1 moved from its cluster in
d3 to one of the child nodes of that cluster. This new child cluster
is in fact the cluster that SLC12A1 is in for all of the whole-genome
sequencing input trees. The PhyloWGS paper also reports this same
location for SLC12A1 and explicitly notes that this placement differs
from that reported by an expert generated tree constructed using
deep sequencing data. Furthermore, our inferred consensus tree
(d3¥) is very similar to the tree reported in the PhyloWGS paper
which reports tree wl. The one difference between these trees is
that in our reconstruction mutation NOD1 has been pulled out
of a cluster and forms a new child node. This alteration matches
that reported by a different method [7] which also pulled mutation
NOD1 out of this cluster and inferred it to occur in a leaf node of
the tree. Thus, even though the ground truth is not known for this
tumor, there is support for our reconstructed tree outside of the
input trees used by the method.

We also wanted to test how sensitive the output of GraPhyC was
to the particular set of trees selected as input trees. We therefore
ran GraPhyC using different subsets of the whole-genome and deep
sequencing trees for this same CLL077 sample. We tested with 12
different subsets of the 8 input trees (each subset tested had at
least 3 input trees and included at least one whole-genome and one
deep sequencing tree) and found that tree d3* was returned in 9 of
these trials (and in every trial with at least 5 input trees) and the
very similar tree d3 was returned in 2 trials (see Table 1). All trials
where a different tree was returned contained fewer input trees (4
or less). Finally, we note that for all tested subsets, the tree returned
by GraPhyC has a lower total distance from the set of input trees
than the consensus tree returned by Best Input method for path,
parent-child, and ancestor-descendant distances, except for path
distance and the subset consisting of trees w2, w3, w4, d1, d2, d4.

4 CONCLUSIONS AND DISCUSSION

In this work we formalize the problem of finding a consensus tumor
evolutionary history from a set of possible tumor histories as the m-
TTCP. Novel consensus methods are needed to solve to this problem
as existing methods are designed for traditional phylogenetic trees
where extant species only label the leaves of the input trees. We
define four distance measures between tumor trees, and develop
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Figure 6: (a) Potential tumor histories of sample CLL077 found by PhyloWGS using whole-genome data. GL stands for germline.
(b) Same as part (a) but using deep-sequencing data. (c) Pair-wise distances between all trees in parts (a) and (b) using four
distance measures. (d) Consensus tree found by GraPhyC using all whole-genome and deep sequencing trees as input.

the GraPhyC algorithm which optimally solves a version of the m-
TTCP for one of our distance measures. We demonstrate the efficacy
of our GraPhyC approach compared to a baseline approach on both
simulated trees and trees derived from real DNA sequencing data.

There are a number of important avenues for continuing this
work. For example, we note that our proposed GraPhyC approach
clusters mutations first, and then infers a consensus tree over these
clustered mutations. The effect of clustering was a not a focus in
this work and can certainly be further expanded on. Additionally, in
a more ideal situation we would be able to perform clustering and
consensus jointly rather than sequentially. We will explore different
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methods for combining these steps together. We could also expand
our method to allow for more flexibility in terms of weighting
confidence in the set of input trees or even ancestral relationships
within those trees. We presented four possible distance measures
between tumor evolutionary histories that capture different aspects
of tumor evolution. We also plan to analyze these distance measures
further, and perhaps to define new distance measures for computing
the distance between tumor evolutionary histories.

Finally, there are a number of different applications where in-
ferring a consensus tumor history from a set of plausible histories
maybe useful. We have only partially explored these applications.
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Table 1: Subsets of input trees for sample CLL077 and con-
sensus tree inferred by GraPhyC.

Input Trees Consensus Tree

wi[w2|[w3|wd[dl[d2][d3]d4

X X X X | x| x| x| x d3*

X X X X X | x| x d3*

X X X X X | x| x d3*

b'e X X x | x| x d3*

X X X X | x| x d3*

X X X X | x X d3*

b'e X x | x | x X d3*

X X | x d3*

X X X d3*

b'e X X | x d3

X | x| x d3

X X X wl

Additional analysis including consensus across histories inferred by
different methods, applied to both simulated and real sequencing

dat

a, would be useful at demonstrating the applicability of our Gra-

PhyC method. Verification of the accuracy of such methods on real
data remains challenging, but may be improved as more datasets
with both bulk and single cell sequencing data of the same samples
becomes available. We also note that our approach may also be
useful in problems outside of tumor phylogenetics. In particular,
our approach may be useful when considering the movement of
transposable elements in a genome, a process which also may be
described using a node-labeled tree.
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