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1 INTRODUCTION

In future smart cities, many decision processes in critical infrastructure and emergency manage-
ment will be based on machine learning techniques. One particular application will be the process-
ing of large datasets of visual images for defect assessment where the data is collected by a swarm
of mobile sensing agents (e.g., unmanned aerial vehicles). In this context, examples of defective
regions are corrosion and cracks in buildings and facilities [1], and potholes on roads. A critical
requirement for the success of such assessment processes is the reliable detection, quanti�cation,
and localization of defective regions. Furthermore, in such applications, the real-time assessment
is often critical so that the swarm can decide regarding the optimum strategy and corresponding
actions for e�ective data collection in unknown environments (e.g., robots that will be used for
earthquake reconnaissance and rescue where they enter buildings whose plan is unknown to the
robot). On the other hand, the reliability of the assessments requires data of good quality, since
poor data may negatively a�ect the accuracy of classi�cation and predictions, and consequently,
may introduce additional costs and time overhead.
In general, acquiring such data and making sure that the data is of high quality, especially for

real-time decisions, is expensive due to di�culty of reaching the regions where the objects of
interest are located and the need for human-intensive assessment. However, today we have many
technologies that can be leveraged to devise e�ective and inexpensive solutions, including: deep
neural networks for image analysis; image processing techniques; mobile image data acquisition
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Fig. 1. A spatially incomplete object.

agents (mobile phones, small drones, robots, sensors); 5G networks and edge computing processing
[2]; crowdsourcing.
In this article, we �rst brie�y discuss relevant data quality requirements related to applications

in the area of critical infrastructure and emergency management, although this framework can
be extended to other applications. We then present a comprehensive framework for a real-time,
adaptive, and cost-e�ective collection of high-quality data for such applications that leveragemany
of the above technologies, and elaborate on a few research challenges.

2 DATA QUALITY REQUIREMENTS

Data quality is usually characterized by many di�erent dimensions [3]. In our context, e.g., objects
extracted from image data, key requirements include:

—Spatial Completeness: The objects of interest should be “fully covered” by the image data.
For example, an image reporting only half of a building crack would not have satisfactory
spatial completeness (see Figure 1 for an example of a spatially incomplete object).

—Temporal Completeness: The temporal evolution of the objects of interest should be covered
as it is critical for accurate prediction.

—Precision: The object images should be sharp and have high resolution.
—Traceability: Information about the entire process, according to which data of interest was
collected, processed, and transmitted, should be recorded; this is critical for identifying er-
rors that lead to poor quality data about the objects of interest.

—Minimality: The presence of non-relevant objects should be minimized.

It is, however, important to remark that other quality requirements, such as currentness and con-
sistency, are also relevant in our context.

3 DATA COLLECTION FRAMEWORK

Our framework (see Figure 2) is based on two conceptual parties: data collection coordinator (re-
ferred to as base station (BS)); and data collectors (e.g., agents in charge of data gathering). The
data collection coordinator is the interface system that coordinates the data acquisition tasks and
data quality assessment. It interfaces on one side with the data users (e.g., end-users and appli-
cations) and on the other with data collectors. Given a data acquisition task and geographical
area of interest, it allocates a number of data collectors, based on the capabilities of collectors, for
the execution of the task, by also trying to optimize the cost of data acquisition and minimize
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Fig. 2. Data collection framework.

the response time. Such allocation decisions can be basically supported by optimization tech-
niques developed in the area of operation research. The main challenge is to determine the most
suitable optimization techniques for dynamic contexts. The data collection coordinator must also
assess the quality of data with respect to speci�c quality requirements provided as input by the
data users. Since a data collection task may often be split among data collectors, the coordina-
tor may have to integrate the various collected data to see whether, overall, the data meets the
speci�ed quality requirements or not. The coordinator may also support data enrichment, for
example, by using GIS data [5] and data linkage with other sources. The data collectors carry
out the basic tasks of collecting data, assessing the quality of the collected data, and, based on
this assessment, collecting more data. Notice that data collectors may have di�erent capabilities.
For example, some collectors may have equipment for very high-resolution imagery with pow-
erful computing capabilities and can run machine learning tools that require large storage size
and GPU. These collectors may thus be able to perform a high accurate data quality analysis.
On the other hand, other collectors are very small and thus can easily move very close to the
objects and take images from very short distances; however, their capability for data quality as-
sessment may be very limited. Finally, other collectors may be equipped with mechanical devices
to take samples from the environment, such as a sample of soil or water, or perform active test-
ing through injecting dynamic disturbances by the collector actuators at selected locations (e.g.,
exciting the structure by a hammer and collecting the propagated wave characteristics for dam-
age detection). The decision about the right combinations of data collectors for a data acquisition
task is taken by the data collection coordinator based on the knowledge of the capabilities of each
data collection device. However, as research in the area of distributed decision making for au-
tonomous systems progresses, such decisions could be even taken autonomously by swarms of data
collectors.
Our framework is based on the notion of data collection cycle, which is organized according to

a continuous loop consisting of two main phases: (a) data collection; (b) data quality assessment.
Once data is collected, it is assessed for quality. If quality is insu�cient, further data is collected.
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Further data collection is typically tailored to improve the quality. For example, a data collector
may be required to collect data of higher resolution for a speci�c object.
Data quality assessment is executed at three levels: (1) locally at the data collector; (2) collabo-

ratively within the data collector swarms; (3) globally at the data collection coordinator. Assess-
ments (1) and (2) may not always be possible. Assessment (1) may not be possible as the data
collector may not have the capabilities to assess data. Assessment (2) may not be possible if the
swarm does not have capabilities to assess the data or if a data collector is isolated from the rest
of the swarm. However, Assessment (2) may be highly desirable when connections with the BS
are fragmented/unreliable. Adaptation capabilities are thus crucial to deal with those situations.
It is important to notice that a critical challenge is to develop approaches for automatically assessing

the quality of collected data and automatically determining which additional data needs to be further

collected to re�ne/complete/enhance the quality of the initial data. In particular, when data collection
is performed by a swarm of data collectors, the swarm should automatically assess the data and
decide further data collection.
The development of such framework requires addressing several challenges:

—Optimized data-quality driven allocation of data collection tasks to agents: Data collectors
are typically heterogeneous with respect to hardware and software capabilities and with
respect to special equipment for data acquisition—for example, a drone may have equip-
ment for acquiring images at very high resolution. Also, data collectors may be located in
di�erent geographical regions. Data collection also depends on the quality requirements; for
example, when performing an initial assessment, data of low quality may be �ne. There-
fore, it is important to design approaches that are able to support the optimal allocation
of data acquisition tasks based on di�erent constraints, requirements, and data collectors’
capabilities and status. Furthermore, it is important that each data collector has the capa-
bility of autonomously deciding which data to collect based on its own local assessment
of data that have already been collected. Thus, the allocation of data collection tasks is a
combination of centralized decisions with decisions local to the data collectors and/or data
collector swarms.

—Automatic (collaborative) data quality assessment: Techniques are needed to automatically
assess the quality of the collected data with respect to the speci�c quality requirements.
Techniques based on machine learning are relevant here. The main issue is that such as-
sessment may be carried out at three di�erent levels (see previous section) and thus tradeo�
may be needed between accuracy and resource usage. For example, at the level of the data
collectors, resource usage should be minimized. However, resource use minimization may
lead to less accurate decisions. It is also critical to devise approaches by which such assess-
ments can be carried out by data collector swarms. Finally, for assessments to be carried out
at the BS level, it is important to assess the “optimal data transmission strategy,” namely
whether the bulk data should be sent from the data collectors to the BS, or whether the
data collectors should perform some local data reduction and then send the reduced data
based on the desired tradeo� between accuracy, communication costs, and data collectors’
resource usage. We use here the term data reduction with a broad meaning to indicate tech-
niques to reduce the amount of data to be transmitted. Examples of such techniques include
extracting features from images and sending only these features, discarding images that do
not include objects of interest, discarding images of poor quality, and selecting relevant
frames from videos. Data reduction is important when the computation, memory, power,
and transmission bandwidth constraints of the data collectors are considered, particularly
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for large infrastructure systems, such as dams, where archiving of the whole raw data is
not a viable and e�cient solution.

—Automatic (collaborative) speci�cation of data to be further acquired: Techniques are needed
to support an automatic generation of the speci�cation of data to be further acquired; exam-
ples include acquisition of data at �ner resolution and at di�erent angles and acquisition of
missing portions of objects of interest. A language must be devised according to which such
speci�cations are encoded and also algorithms must be designed to automatically generate
such speci�cations based on the analysis of previously acquired data as well as the speci�c
data quality requirements.

4 RELATEDWORK

There is a large body of work focusing on the use of big data technologies and machine learning al-
gorithms for critical infrastructure and emergency management [1, 4–7]. However, most previous
approaches do not address the problem of data quality in its many data dimensions. They typically
focus on other issues such as modeling very complex domains and assessing the performance of
di�erent machine learning algorithms for speci�c application domains. Perhaps, the work that is
more closely related to our goal of enhancing data quality is by Cervone et al. [8]. They recognize
that data provided by remote sensing techniques, such as Landsat data, may have geo-temporal
gaps and, thus, suggest the use of unmanned aerial vehicles (UAVs) and volunteered data collected
by users to �ll in these gaps. Such suggestions align with our framework in that we also suggest
the use of mobile devices, such as UAVs, and crowdsourcing approaches for data collection. How-
ever, such previous work does not include frameworks or techniques that would make it possible
for devices to autonomously decide which additional data to collect to enhance the data quality.
They mention, however, that there is a need to triage and optimize inspections by humans or tasks
for additional data collection. Our goal is exactly to automatically decide about inspections and
additional data collection tasks, and possibly have these inspections and tasks being autonomously
executed by devices.

5 CONCLUDING REMARKS

We have outlined a framework for dynamic and adaptive data acquisition aimed at applications in
the area of critical infrastructure and emergencymanagement. Our proposed framework is particu-
larly suited for such applications because many decisions in these applications will be increasingly
based on the use of big data and machine learning algorithms. However, the availability of detailed
data of good quality is critical. At the same time, the acquisition of good quality data should not
be expensive and, in particular, it should not require high human operator costs. Our framework
addresses exactly such requirements and presents a vision and its related challenges concerning
how to push the state-of-the-art techniques so that devices can autonomously decide further data
acquisition in order to enhance data quality. In emergency management situations, the availabil-
ity of a system based on our proposed framework would be very critical as in these situations
human resources may be scarce and emergency management decisions often need to be taken in
a very short time—for example, in the case of a rapidly spreading forest �re with high variability
due to changing winds. In addition, from a technical point of view, our framework would be in-
expensive to deploy and could easily use an aerial mobile ad-hoc network to rapidly transmit the
collected data by devices autonomously. It could use devices specialized for exploring hazardous
areas for humans (e.g., Fukushima Daiichi nuclear disaster in 2011). In many emergency situations,
our framework could also be easily extended to recognize humans in danger and rapidly assess
the gravity of the danger, especially if devices are equipped with sophisticated techniques, such as
transfer learning approaches, for rapid training of neural networks to recognize new objects.
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We are currently investigating the tradeo� concerning analytics on the edge compared with
centralized approaches. This is an important �rst step toward addressing the challenges outlined
in the article.

REFERENCES

[1] F. C. Chen and M. R. Jahanshahi. 2017. NB-CNN: Deep learning-based crack detection using convolutional neural

network and naïve Bayes data fusion. IEEE Transactions on Industrial Electronics 6, 5, 4392–4400.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. 2016. Edge computing: Vision and challenges. IEEE Internet of Things Journal

3, 5, 637–646.

[3] C. Batini and M. Scannapieco. 2016. Data and Information Quality: Dimensions, Principles and Techniques. Springer.

[4] A. Giretti, A. Carbonari, and B. Naticchia. 2012. A spatio-temporal Bayesian network for adaptive risk management

in territorial emergency response operations. In Bayesian Networks, Wichian Premchaiswadi (Ed). Retrieved from

https://www.intechopen.com/books/bayesian-networks/a-spatio-temporal-bayesian-network-for-adaptive-risk-

management-in-territorial-emergency-response-op.

[5] M. Khouj, C. López, S. Sarkaria, and J. Marti. 2011. Disaster management in real time simulation using machine learn-

ing. In Proceedings of the 24th Canadian Conference on Electrical and Computer Engineering (CCECE’11). 001507–001510.

DOI:10.1109/CCECE.2011.6030716

[6] C. Yang, G. Su, and J. Chen. 2017. Using big data to enhance crisis response and disaster resilience for a smart city. In

Proceedings of the IEEE 2nd International Conference on Big Data Analysis (ICBDA’17). 504–507. DOI:10.1109/ICBDA.

2017.8078684

[7] S. Lee, L. Chen, S. Duan, S. Chinthavali, M. Shankar, and B. A. Prakash. 2016. URBAN-NET: A network-based infras-

tructure monitoring and analysis system for emergency management and public safety. In Proceedings of the IEEE

International Conference on Big Data (Big Data’16). 2600–2609. DOI:10.1109/BigData.2016.7840902

[8] G. Cervone, E. Schnebele, N. Waters, M. Moccaldi, and R. Sicignano. 2017. Using social media and satellite data for

damage assessment in urban areas during emergencies. In Seeing Cities through Big Data, P. Thakuriah et al. (Ed.).

Springer Geography.

Received December 2017; revised February 2018; accepted February 2018

ACM Journal of Data and Information Quality, Vol. 10, No. 1, Article 1. Publication date: May 2018.


