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a b s t r a c t 

Recordings of speech exhibit nested clustering of peak amplitude events that reflects the hierarchical 

temporal structure of language. Previous studies have found variations in nested clustering to correspond 

with variations in prosody and social interaction. In the present study, we tested two specific dimensions 

of variation in speech hypothesized to have differing effects on hierarchical temporal structure: Speak- 

ing rate and naturalness. Rate was manipulated both algorithmically and experimentally, and naturalness 

was manipulated using synthesized speech, with sine wave speech as a comparison. Allan Factor analysis 

was used to quantify nested clustering of peak amplitude events in speech recordings as a function of 

timescale. For fast speech, nested clustering was found to shift into shorter timescales, whereas for syn- 

thesized speech, nested clustering was found to decrease in the longer timescales. Results are discussed 

in terms of complexity matching and its implications for how neural and perceptual processes might 

respond to changes in the hierarchical temporal structure of speech signals. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 
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Measurements of speech and language commonly follow power 

laws [13] . These power laws suggest that underlying neural, be- 

havioral, and social processes may be usefully theorized in terms 

of complex networks [2] , because power laws are a natural conse- 

quence of their non-stationary, non-ergodic statistics [22] . A fun- 

damental question about complex networks, as well as cognitive 

and social systems, is how they respond to inputs from their envi- 

ronments. For example, the dynamics of complex perceptual net- 

works are responsive to their sensory inputs, and language net- 

works are responsive to inputs from verbal interactions. The former 

is an example of unidirectional influence, because sensory systems 

do not directly affect the sensory world, only indirectly via the 

perception-action loop [9] . The latter is an example of bidirectional 

influence because participants in language interactions directly af- 

fect each other. 

This view of cognitive and social systems as complex networks 

leads to predictions based on theories of how complex networks 

respond to external inputs. Specifically, West et al. [21] formulated 

the principle of complexity matching , which generally states that 

complex networks are most responsive to perturbations that match 
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their own temporal complexity. Complexity is measured in terms 

of exponents that define power laws in network activity and input 

activity, and matching corresponds to similarity in the exponents 

characterizing the networks in question, and their environmental 

inputs. The original work defined network activity in terms of 1/f 

noise and fractal time series of events, the latter being analyzed in 

terms of waiting times (inter-event-intervals) τ , where P( τ ) ∼ 1/ 

τ
µ, and 1 < µ< 2 [21] . 

Recently, behavioral scientists have tested for complexity 

matching in human coordination and speech, based on the premise 

that human complex networks are highly adaptive [2] . Human 

complex networks may adapt by “bending” the statistics of their 

dynamics towards those of their inputs, to better match the en- 

vironment and other complex networks. Matching is hypothesized 

to increase the response sensitivity of complex brain and behav- 

ioral networks. When inputs are power law distributed, matching 

manifests as a convergence in power law exponents of brain and 

behavioral networks towards the exponents of their inputs. Such 

flexibility in power law exponents would not be expected for less 

adaptive complex systems. 

The first experiments to test for complexity matching in human 

behavior examined the dynamics of finger tapping [19] , and pen- 

dula being swung together [15] . The tapping experiment used a 

fractal metronome that participants tried to follow as closely as 

possible. Fluctuations in inter-tap intervals exhibited 1/f noise, and 
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power law exponents matched those of their fractal metronomes, 

i.e. unidirectional influence of the metronome on tapping. By con- 

trast, the pendula experiment showed that power law 1/f expo- 

nents of angular fluctuations converged with each other, instead of 

a fixed stimulus like a metronome. The swinging of one pendulum 

by one participant was affected by the swinging of the other pen- 

dulum by the other participant, and vice versa, via perceptual and 

physical coupling, i.e. bidirectional influence. Together, these two 

studies provide evidence that human complexity matching can oc- 

cur in response to stimuli in the environment, and also in response 

to human interactions. 

One of the most natural kinds of human interaction is speech, 

which has also been found to exhibit complexity matching [1] . 

The authors recorded pairs of individuals having conversations 

about friendly topics with common ground, versus polarizing top- 

ics with conversational partners on opposite ends. They converted 

the speech waveform for each speaker into a series of acoustic 

onset events, and found inter-onset-intervals (IOIs) to be power 

law distributed like critical events of complex networks. Complex- 

ity matching was found not in IOI exponents, but in the power 

law clustering of events that reflects the hierarchical temporal 

structure of language. Specifically, Allan Factor (AF) functions for 

event series were closer together for conversational partners com- 

pared with baseline, but only for friendly topics for which speakers 

shared common ground. Polarizing conversations showed no de- 

tectable complexity matching, suggesting that the coupling of hu- 

man complex networks depends on psychological and social fac- 

tors, and possibly other factors as well. 

Abney et al. [1] used the AF function to measure hierarchical 

temporal structure in speech waveforms recorded from conversa- 

tions, over timescales of 30 ms–30 s. Variations in this range of 

timescales are perceptible to the human auditory system, and com- 

plexity matching suggests that auditory brain networks adapt the 

statistics of their dynamics to those of their acoustic inputs [5] . 

Given the relationship between complexity matching and psycho- 

logical processes reported by Abney and colleagues, we hypothe- 

size that hierarchical temporal structure in speech, as measured by 

AF functions, should be reflected in auditory experience by way 

of complexity matching in auditory networks. In support of this 

hypothesis, Kello and colleagues [14] found that the shapes of AF 

functions reflect at least three perceivable variations in complex 

acoustic signals: social interaction, prosodic variation, and musical 

composition. Greater nested clustering in peak amplitude events 

(as opposed to acoustic onset events) can be perceived as acoustic 

interactions among people, prosodic emphasis in speech, or metri- 

cal structure in music. These results are consistent with our work- 

ing hypothesis, but they are quite general and do not inform how 

specific variations in AF functions relate to specific variations in 

perceivable features of speech, music, and other complex acoustic 

signals. 

In the present study, we test two types of perceptual varia- 

tions in speech that we predict to have differing effects on hi- 

erarchical temporal structure: Speech rate and naturalness. Previ- 

ous studies have demonstrated consistent effects of speech rate 

on prosodic variation, the latter being shown to affect hierarchical 

temporal structure. For instance, Jun [12] found that more syllables 

are packed into fewer accentual phrases at faster versus slower 

speaking rates, thereby reducing variability by reducing the num- 

ber of accentual phrases. Dellwo and Wagner [4] varied speech 

rates in English, French, and German, and found reduced variabil- 

ity in consonant durations for faster versus slower speaking rates. 

A modeling study in Mandarin indicated that the effect of speaking 

rate affects variability across several hierarchical levels of prosodic 

organization [3] , consistent with a study of speaking rate in Man- 

darin [20] . In summary, previous studies indicate that faster speech 

should reduce prosodic variability across hierarchical levels, and 

thereby reduce hierarchical temporal structure across a wide range 

of timescales. 

Speech naturalness is also predicted to affect hierarchical tem- 

poral structure, but in a different way compared with speak- 

ing rate. In particular, human-generated speech is predicted to 

have more hierarchical temporal structure compared with text-to- 

speech synthesis, particularly in the longer timescales. Variabil- 

ity in prosodic intonation and timing is difficult for text-to-speech 

synthesizers because they do not model the meanings of sentences 

or discourse contexts [23] . As a result, synthesized speech is often 

perceived as having flat affect compared with human-generated 

speech. Relatively flat affect should correspond with reduced hi- 

erarchical temporal structure in timescales on the order of a sec- 

ond and longer, as previously shown by Falk and Kello [8] . They 

measured AF functions in recordings of German-speaking mothers 

reading a story or singing a song, either to their infants or to other 

adults. The exaggerated prosody of infant-directed speech resulted 

in generally steeper AF functions, but the authors did not report a 

more fine-grained analysis. With respect to naturalness, Kello et al. 

[14] showed that AF functions for synthesized speech were flatter 

than those for natural speech, but again, the authors did not quan- 

tify the effect, nor did they compare it with speaking rate. 

1. Allan factor analyses of speaking rate and naturalness 

Here we report AF analyses of fast versus slow speech, as well 

as natural versus synthesized speech. The analyses are designed 

to measure more stringent hypotheses about perceivably different 

effects of these manipulations on hierarchical temporal structure. 

Specifically, faster speech is predicted to result in less variability 

across all perceptible timescales, which should correspond with 

shallower, flatter AF functions. By contrast, synthesized speech is 

predicted to result in less variability in the longer timescales only, 

which should lead to shallower but more curved AF functions due 

to selective effects on longer timescales. The effect of speech rate 

is tested using both algorithmic and experimental manipulations, 

whereas the effect of naturalness is tested using two different algo- 

rithmic manipulations. For the latter, we compare results with syn- 

thesized versus sine wave speech [18] . Sine wave speech is a syn- 

thetic control that retains most of the hierarchical temporal struc- 

ture in the original signal. 

2. Methods 

Analyses of speaking rate were based on Barack Obama’s ad- 

dress at George Mason University on the 21st Century Economy 

(1/08/09, 17:08 mins). The élastique algorithm ( https://products. 

zplane.de/ ) was used to manipulate speaking rate without affecting 

the vocal pitch. The “fast” condition was 2x faster than the origi- 

nal recording, and the “slow” condition was 2x slower. In addition 

to these algorithmic manipulations, an experiment was conducted 

in which ten University of California students read two excerpts 

from the speech off a teleprompter. Half of the participants read 

the first excerpt at a slow pace and the second at a fast pace, and 

vice versa for the other half. On average, the fast-paced and slow- 

paced excerpts took 4.5 and 10.1 min to complete, respectively. Par- 

ticipants were instructed to read the speech from the teleprompter 

as smoothly as possible, and their readings were recorded for sub- 

sequent acoustic analyses. 

Analyses of naturalness were based on ten recordings of TED 

talks (mean length = 6.41 min, SD = 1.14 min) reported by Kello 

et al. [14] . The TED intro and outro theme was trimmed from 

the recordings, along with any applause at the beginnings or ends 

of the talks. A synthesized version of each talk was created by 

submitting the transcript to Google speech synthesis, and record- 

ing the output. The synthesized versions (mean length = 6.62 min, 
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Fig. 1. Left: AF functions of the original Obama speech, and fast and slow versions. Right: AF functions of the fast and slow teleprompter conditions. 

SD = 1.16 min) were recorded using GarageBand version 10.1.0. 

GarageBand was also used to set the lengths of the synthesized 

recordings roughly equal to the original recordings (within + / −

30 s). Lastly, sine wave speech recordings (mean length = 6.46 min, 

SD 1.16 min) were created from the ten trimmed TED talks by us- 

ing the Matlab sine wave speech code provided by Ellis [7] , with 

default parameters provided by Haskins Laboratories. The software 

tracks speech formants and assigns a single sine wave to each one. 

The sine wave amplitudes and frequencies are modulated to track 

the formants over time. The result is a combination of whistling 

sounds that preserve most of temporal structure in speech. Sine 

wave speech is typically perceived as speech-like, but the words 

spoken are difficult to discern unless the listener is given informa- 

tion about what is being said. 

3. Results 

Audio recordings were analyzed using the same method as re- 

ported in Kello et al. [14] . Details can be found there, but briefly: 

Each recording was divided into four-minute segments, and anal- 

yses were averaged across segments to yield a single AF function 

per recording. The Hilbert envelope was calculated for each seg- 

ment and peaks above threshold were analyzed as time series of 

acoustic events. An AF function was computed for each segment: 

A ( T ) = 

〈

( N i ( T ) − N i +1 ( T ) ) 
2 
〉

2 ⟨ N i ( T ) ⟩ 
, 

where T is the timescale, N i ( T ) is the event count in each win- 

dow i , and A ( T ) is AF variance. AF variance captures the de- 

gree of event clustering at a given timescale, and for time series 

with nested clustering, A ( T ) increases with T . Self-similar clustering 

across timescales yields a power law, A ( T ) ∼ T α , where 0 < α < 2. 

The AF function was computed for 11 values of T in between 15 ms 

and 15 s, logarithmically spaced to compute the orthonormal basis. 

AF functions for speaking rate analyses are shown in Fig. 1 . 

The left panel shows the effect of algorithmic speaking rate ma- 

nipulations on the original Obama recording, and the right panel 

shows mean AF functions for the slow and fast teleprompter con- 

ditions, with the original Obama recording as a reference. AF vari- 

ance for the Obama recording steadily increased as a function of 

timescale, consistent with analyses of TED talk recordings reported 

by Kello et al. [14] . Falk and Kello [8] found evidence to suggest 

that this AF shape is common to speech because it reflects the 

nesting of linguistic units like syllables in words, words in phrases, 

and phrases in sentences. Fig. 1 shows that an algorithmic increase 

in speaking rate causes clustering to generally shift left into the 

shorter timescales, whereas an algorithmic decrease causes a right- 

ward shift into the longer timescales. Fig. 1 also shows that the 

teleprompter had a similar effect, except that there was a drop in 

Fig. 2. Mean AF functions for TED talks and their two different synthesized ver- 

sions, Google text-to-speech and sine wave speech. The AF function for Obama’s 

speech is shown for comparison. 

AF variance at the longest timescales for slow speaking rates. We 

hypothesize that this drop comes from the artificially even pace of 

speaking caused by the slow, even pace of the teleprompter. This 

evenness creates isochrony and isochrony reduces clustering and 

hence AF variance. We leave it for future research to test this hy- 

pothesis explicitly. 

AF functions for naturalness analyses are shown in Fig. 2 . The 

mean AF function for the original TED talk recordings has the same 

basic shape as that for the original Obama recording. This simi- 

larity is consistent with Kello et al. [14] who found that mono- 

logues have common, distinctive AF functions compared with di- 

alogues and singing—TED talks and the Obama speech are both 

types of monologues. AF functions for synthesized versions of TED 

talks were very similar to the original recordings in the shorter 

timescales, but they diverged in the longer timescales. Specifically, 

synthesized AF functions were flat compared with original record- 

ings, which indicates a lack of nested clustering in timescales cor- 

responding with prosody and intonation. By contrast, AF functions 

for sine wave speech had the same overall shape as the TED talk 

recordings from which they were created, with a slight leftward 

shift of clustering as if the sine wave speech rate was faster than 

the original recording. 

The perceptual distinction between natural and synthesized 

speech is very clear, as is the distinction between slow versus fast 

speaking rates. Moreover, these two dimensions of variation are 

perceptually distinct from each other. The effects of speaking rate 

and naturalness were also different from each other, as verbally 

described above, but it is necessary to quantify this difference to 

better understand it and relate it to complexity matching. To do 
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Fig. 3. Linear and quadratic coefficients for fast versus slow speech, and natural versus synthesized speech. The two different manipulations had the same effect on linear 

coefficients, but opposite effects on quadratic coefficients. 

so, we fitted a second-order polynomial to each individual AF func- 

tion, which allowed us to capture their convex shapes in terms of 

linear and quadratic coefficients. 

Coefficients are plotted in Fig. 3 for fast and slow speaking 

rates, as well as natural and synthesized speech. The graph shows 

that speaking rate had the same effect on linear coefficients but 

opposite effects on quadratic coefficients. Fast speech was compa- 

rable to synthesized speech in that linear coefficients were closer 

to zero compared with slow speech and natural speech, respec- 

tively. This similar result was due to the overall flattening effect of 

these conditions. However, fast speech was less convex than slow 

speech, whereas synthesized speech was more convex than natu- 

ral speech. This difference was due to the selective effect of syn- 

thesis on longer timescales, versus the overall effect of speaking 

rate across all measured timescales. Finally, sine wave synthesis 

had a small effect on coefficients akin to the effect of fast speech. 

It would be interesting to test whether sine wave is perceived as 

being faster than normal speech, even though the same signal vari- 

ations unfold over the same time periods. 

4. Discussion 

In the present study, we investigated the effect of manipulat- 

ing speaking rate and naturalness on hierarchical temporal struc- 

ture in speech. Using AF analysis, we showed that nested clus- 

tering in peak amplitude events is affected differently by these 

two manipulations—changes in speaking rate shifts the entire mea- 

sured hierarchy into shorter or longer timescales, whereas changes 

in naturalness flatten or steepen the longer timescales of the hier- 

archy, i.e. on the order of seconds and longer. Other studies have 

shown that acoustic events in speech appear to be crucial events 

[1] , including a recent study by Pease et al. [17] in the present 

special issue edited by Grigolini [10] . Taken together, these stud- 

ies suggest that neural and perceptual processes may be highly 

responsive to speech inputs by means of complexity matching. 

Specifically, power laws in neural and perceptual dynamics may 

take the general shape of power laws in speech dynamics by 

means of complexity matching, while having distinct trajectories 

because of myriad differences in neural versus acoustic “substrate”, 

so to speak. The present results are consistent with this applica- 

tion of complexity matching, in that the different perceptual expe- 

riences associated with speaking rate and naturalness have corre- 

sponding differences in hierarchical temporal structure. These per- 

ceptual differences may have their roots in complexity matching of 

auditory networks with incoming speech signals. 

The application of complexity matching to speech perception 

leads to questions about how power laws in auditory networks are 

affected when temporal structures in speech signals do not fol- 

low a single power law. Kello et al. [14] showed that many cate- 

gories of speech and music deviate from power law AF functions. 

In fact, the only categories that closely followed a power law in 

nested event clustering were classical music and thunderstorms. 

Monologues like those analyzed herein were consistently found to 

have a distinct flattening in the longer timescales, and the shape of 

this deviation varies as a function of speaking rate and naturalness. 

What do such deviations imply for complexity matching? 

One possibility is that neural and perceptual dynamics become 

less responsive to speech dynamics when they deviate from a 

power law, because brains are attuned to power laws in sensory 

inputs. Another possibility is that neural dynamics bend along with 

the dynamics of speech being listened to. The latter would corre- 

spond to a neural correlate of perceiving and following the sounds 

of speech. The same question can also be asked of music, with 

the same possible hypotheses [6] . Indeed, the effect of prosody on 

temporal hierarchies in speech has been argued to have an ana- 

log in music [11,16] . This analog leads to the idea that music per- 

ception, as hypothesized for speech perception, may be partly sup- 

ported by a form of complexity matching that enables temporal 

hierarchies in neural dynamics to conform to those of speech and 

music. 
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