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Recordings of speech exhibit nested clustering of peak amplitude events that reflects the hierarchical
temporal structure of language. Previous studies have found variations in nested clustering to correspond
with variations in prosody and social interaction. In the present study, we tested two specific dimensions
of variation in speech hypothesized to have differing effects on hierarchical temporal structure: Speak-
ing rate and naturalness. Rate was manipulated both algorithmically and experimentally, and naturalness

Keywords: was manipulated using synthesized speech, with sine wave speech as a comparison. Allan Factor analysis
Complexity matching was used to quantify nested clustering of peak amplitude events in speech recordings as a function of
Allan Factor

timescale. For fast speech, nested clustering was found to shift into shorter timescales, whereas for syn-
thesized speech, nested clustering was found to decrease in the longer timescales. Results are discussed
in terms of complexity matching and its implications for how neural and perceptual processes might
respond to changes in the hierarchical temporal structure of speech signals.
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Measurements of speech and language commonly follow power
laws [13]. These power laws suggest that underlying neural, be-
havioral, and social processes may be usefully theorized in terms
of complex networks [2], because power laws are a natural conse-
quence of their non-stationary, non-ergodic statistics [22]. A fun-
damental question about complex networks, as well as cognitive
and social systems, is how they respond to inputs from their envi-
ronments. For example, the dynamics of complex perceptual net-
works are responsive to their sensory inputs, and language net-
works are responsive to inputs from verbal interactions. The former
is an example of unidirectional influence, because sensory systems
do not directly affect the sensory world, only indirectly via the
perception-action loop [9]. The latter is an example of bidirectional
influence because participants in language interactions directly af-
fect each other.

This view of cognitive and social systems as complex networks
leads to predictions based on theories of how complex networks
respond to external inputs. Specifically, West et al. [21] formulated
the principle of complexity matching, which generally states that
complex networks are most responsive to perturbations that match
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their own temporal complexity. Complexity is measured in terms
of exponents that define power laws in network activity and input
activity, and matching corresponds to similarity in the exponents
characterizing the networks in question, and their environmental
inputs. The original work defined network activity in terms of 1/f
noise and fractal time series of events, the latter being analyzed in
terms of waiting times (inter-event-intervals) t, where P(t) ~ 1/
tH,and 1<p <2 [21].

Recently, behavioral scientists have tested for complexity
matching in human coordination and speech, based on the premise
that human complex networks are highly adaptive [2]. Human
complex networks may adapt by “bending” the statistics of their
dynamics towards those of their inputs, to better match the en-
vironment and other complex networks. Matching is hypothesized
to increase the response sensitivity of complex brain and behav-
ioral networks. When inputs are power law distributed, matching
manifests as a convergence in power law exponents of brain and
behavioral networks towards the exponents of their inputs. Such
flexibility in power law exponents would not be expected for less
adaptive complex systems.

The first experiments to test for complexity matching in human
behavior examined the dynamics of finger tapping [19], and pen-
dula being swung together [15]. The tapping experiment used a
fractal metronome that participants tried to follow as closely as
possible. Fluctuations in inter-tap intervals exhibited 1/f noise, and
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power law exponents matched those of their fractal metronomes,
i.e. unidirectional influence of the metronome on tapping. By con-
trast, the pendula experiment showed that power law 1/f expo-
nents of angular fluctuations converged with each other, instead of
a fixed stimulus like a metronome. The swinging of one pendulum
by one participant was affected by the swinging of the other pen-
dulum by the other participant, and vice versa, via perceptual and
physical coupling, i.e. bidirectional influence. Together, these two
studies provide evidence that human complexity matching can oc-
cur in response to stimuli in the environment, and also in response
to human interactions.

One of the most natural kinds of human interaction is speech,
which has also been found to exhibit complexity matching [1].
The authors recorded pairs of individuals having conversations
about friendly topics with common ground, versus polarizing top-
ics with conversational partners on opposite ends. They converted
the speech waveform for each speaker into a series of acoustic
onset events, and found inter-onset-intervals (IOIs) to be power
law distributed like critical events of complex networks. Complex-
ity matching was found not in IOl exponents, but in the power
law clustering of events that reflects the hierarchical temporal
structure of language. Specifically, Allan Factor (AF) functions for
event series were closer together for conversational partners com-
pared with baseline, but only for friendly topics for which speakers
shared common ground. Polarizing conversations showed no de-
tectable complexity matching, suggesting that the coupling of hu-
man complex networks depends on psychological and social fac-
tors, and possibly other factors as well.

Abney et al. [1] used the AF function to measure hierarchical
temporal structure in speech waveforms recorded from conversa-
tions, over timescales of 30 ms-30s. Variations in this range of
timescales are perceptible to the human auditory system, and com-
plexity matching suggests that auditory brain networks adapt the
statistics of their dynamics to those of their acoustic inputs [5].
Given the relationship between complexity matching and psycho-
logical processes reported by Abney and colleagues, we hypothe-
size that hierarchical temporal structure in speech, as measured by
AF functions, should be reflected in auditory experience by way
of complexity matching in auditory networks. In support of this
hypothesis, Kello and colleagues [14] found that the shapes of AF
functions reflect at least three perceivable variations in complex
acoustic signals: social interaction, prosodic variation, and musical
composition. Greater nested clustering in peak amplitude events
(as opposed to acoustic onset events) can be perceived as acoustic
interactions among people, prosodic emphasis in speech, or metri-
cal structure in music. These results are consistent with our work-
ing hypothesis, but they are quite general and do not inform how
specific variations in AF functions relate to specific variations in
perceivable features of speech, music, and other complex acoustic
signals.

In the present study, we test two types of perceptual varia-
tions in speech that we predict to have differing effects on hi-
erarchical temporal structure: Speech rate and naturalness. Previ-
ous studies have demonstrated consistent effects of speech rate
on prosodic variation, the latter being shown to affect hierarchical
temporal structure. For instance, Jun [12] found that more syllables
are packed into fewer accentual phrases at faster versus slower
speaking rates, thereby reducing variability by reducing the num-
ber of accentual phrases. Dellwo and Wagner [4]| varied speech
rates in English, French, and German, and found reduced variabil-
ity in consonant durations for faster versus slower speaking rates.
A modeling study in Mandarin indicated that the effect of speaking
rate affects variability across several hierarchical levels of prosodic
organization [3], consistent with a study of speaking rate in Man-
darin [20]. In summary, previous studies indicate that faster speech
should reduce prosodic variability across hierarchical levels, and

thereby reduce hierarchical temporal structure across a wide range
of timescales.

Speech naturalness is also predicted to affect hierarchical tem-
poral structure, but in a different way compared with speak-
ing rate. In particular, human-generated speech is predicted to
have more hierarchical temporal structure compared with text-to-
speech synthesis, particularly in the longer timescales. Variabil-
ity in prosodic intonation and timing is difficult for text-to-speech
synthesizers because they do not model the meanings of sentences
or discourse contexts [23]. As a result, synthesized speech is often
perceived as having flat affect compared with human-generated
speech. Relatively flat affect should correspond with reduced hi-
erarchical temporal structure in timescales on the order of a sec-
ond and longer, as previously shown by Falk and Kello [8]. They
measured AF functions in recordings of German-speaking mothers
reading a story or singing a song, either to their infants or to other
adults. The exaggerated prosody of infant-directed speech resulted
in generally steeper AF functions, but the authors did not report a
more fine-grained analysis. With respect to naturalness, Kello et al.
[14] showed that AF functions for synthesized speech were flatter
than those for natural speech, but again, the authors did not quan-
tify the effect, nor did they compare it with speaking rate.

1. Allan factor analyses of speaking rate and naturalness

Here we report AF analyses of fast versus slow speech, as well
as natural versus synthesized speech. The analyses are designed
to measure more stringent hypotheses about perceivably different
effects of these manipulations on hierarchical temporal structure.
Specifically, faster speech is predicted to result in less variability
across all perceptible timescales, which should correspond with
shallower, flatter AF functions. By contrast, synthesized speech is
predicted to result in less variability in the longer timescales only,
which should lead to shallower but more curved AF functions due
to selective effects on longer timescales. The effect of speech rate
is tested using both algorithmic and experimental manipulations,
whereas the effect of naturalness is tested using two different algo-
rithmic manipulations. For the latter, we compare results with syn-
thesized versus sine wave speech [18]. Sine wave speech is a syn-
thetic control that retains most of the hierarchical temporal struc-
ture in the original signal.

2. Methods

Analyses of speaking rate were based on Barack Obama’s ad-
dress at George Mason University on the 21st Century Economy
(1/08/09, 17:08 mins). The élastique algorithm (https://products.
zplane.de/) was used to manipulate speaking rate without affecting
the vocal pitch. The “fast” condition was 2x faster than the origi-
nal recording, and the “slow” condition was 2x slower. In addition
to these algorithmic manipulations, an experiment was conducted
in which ten University of California students read two excerpts
from the speech off a teleprompter. Half of the participants read
the first excerpt at a slow pace and the second at a fast pace, and
vice versa for the other half. On average, the fast-paced and slow-
paced excerpts took 4.5 and 10.1 min to complete, respectively. Par-
ticipants were instructed to read the speech from the teleprompter
as smoothly as possible, and their readings were recorded for sub-
sequent acoustic analyses.

Analyses of naturalness were based on ten recordings of TED
talks (mean length=6.41 min, SD=1.14 min) reported by Kello
et al. [14]. The TED intro and outro theme was trimmed from
the recordings, along with any applause at the beginnings or ends
of the talks. A synthesized version of each talk was created by
submitting the transcript to Google speech synthesis, and record-
ing the output. The synthesized versions (mean length =6.62 min,
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Fig. 1. Left: AF functions of the original Obama speech, and fast and slow versions. Right: AF functions of the fast and slow teleprompter conditions.

SD=1.16 min) were recorded using GarageBand version 10.1.0.
GarageBand was also used to set the lengths of the synthesized
recordings roughly equal to the original recordings (within +/—
30 s). Lastly, sine wave speech recordings (mean length = 6.46 min,
SD 1.16 min) were created from the ten trimmed TED talks by us-
ing the Matlab sine wave speech code provided by Ellis [7], with
default parameters provided by Haskins Laboratories. The software
tracks speech formants and assigns a single sine wave to each one.
The sine wave amplitudes and frequencies are modulated to track
the formants over time. The result is a combination of whistling
sounds that preserve most of temporal structure in speech. Sine
wave speech is typically perceived as speech-like, but the words
spoken are difficult to discern unless the listener is given informa-
tion about what is being said.

3. Results

Audio recordings were analyzed using the same method as re-
ported in Kello et al. [14]. Details can be found there, but briefly:
Each recording was divided into four-minute segments, and anal-
yses were averaged across segments to yield a single AF function
per recording. The Hilbert envelope was calculated for each seg-
ment and peaks above threshold were analyzed as time series of
acoustic events. An AF function was computed for each segment:

((Ni(T) = Niy1 (T))?)
2(N:(T)) ’

where T is the timescale, N;(T) is the event count in each win-
dow i, and A(T) is AF variance. AF variance captures the de-
gree of event clustering at a given timescale, and for time series
with nested clustering, A(T) increases with T. Self-similar clustering
across timescales yields a power law, A(T) ~ T%, where 0 <o < 2.
The AF function was computed for 11 values of T in between 15 ms
and 15s, logarithmically spaced to compute the orthonormal basis.

AF functions for speaking rate analyses are shown in Fig. 1.
The left panel shows the effect of algorithmic speaking rate ma-
nipulations on the original Obama recording, and the right panel
shows mean AF functions for the slow and fast teleprompter con-
ditions, with the original Obama recording as a reference. AF vari-
ance for the Obama recording steadily increased as a function of
timescale, consistent with analyses of TED talk recordings reported
by Kello et al. [14]. Falk and Kello [8] found evidence to suggest
that this AF shape is common to speech because it reflects the
nesting of linguistic units like syllables in words, words in phrases,
and phrases in sentences. Fig. 1 shows that an algorithmic increase
in speaking rate causes clustering to generally shift left into the
shorter timescales, whereas an algorithmic decrease causes a right-
ward shift into the longer timescales. Fig. 1 also shows that the
teleprompter had a similar effect, except that there was a drop in
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Fig. 2. Mean AF functions for TED talks and their two different synthesized ver-
sions, Google text-to-speech and sine wave speech. The AF function for Obama’s
speech is shown for comparison.

AF variance at the longest timescales for slow speaking rates. We
hypothesize that this drop comes from the artificially even pace of
speaking caused by the slow, even pace of the teleprompter. This
evenness creates isochrony and isochrony reduces clustering and
hence AF variance. We leave it for future research to test this hy-
pothesis explicitly.

AF functions for naturalness analyses are shown in Fig. 2. The
mean AF function for the original TED talk recordings has the same
basic shape as that for the original Obama recording. This simi-
larity is consistent with Kello et al. [14] who found that mono-
logues have common, distinctive AF functions compared with di-
alogues and singing—TED talks and the Obama speech are both
types of monologues. AF functions for synthesized versions of TED
talks were very similar to the original recordings in the shorter
timescales, but they diverged in the longer timescales. Specifically,
synthesized AF functions were flat compared with original record-
ings, which indicates a lack of nested clustering in timescales cor-
responding with prosody and intonation. By contrast, AF functions
for sine wave speech had the same overall shape as the TED talk
recordings from which they were created, with a slight leftward
shift of clustering as if the sine wave speech rate was faster than
the original recording.

The perceptual distinction between natural and synthesized
speech is very clear, as is the distinction between slow versus fast
speaking rates. Moreover, these two dimensions of variation are
perceptually distinct from each other. The effects of speaking rate
and naturalness were also different from each other, as verbally
described above, but it is necessary to quantify this difference to
better understand it and relate it to complexity matching. To do
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Fig. 3. Linear and quadratic coefficients for fast versus slow speech, and natural versus synthesized speech. The two different manipulations had the same effect on linear

coefficients, but opposite effects on quadratic coefficients.

so, we fitted a second-order polynomial to each individual AF func-
tion, which allowed us to capture their convex shapes in terms of
linear and quadratic coefficients.

Coefficients are plotted in Fig. 3 for fast and slow speaking
rates, as well as natural and synthesized speech. The graph shows
that speaking rate had the same effect on linear coefficients but
opposite effects on quadratic coefficients. Fast speech was compa-
rable to synthesized speech in that linear coefficients were closer
to zero compared with slow speech and natural speech, respec-
tively. This similar result was due to the overall flattening effect of
these conditions. However, fast speech was less convex than slow
speech, whereas synthesized speech was more convex than natu-
ral speech. This difference was due to the selective effect of syn-
thesis on longer timescales, versus the overall effect of speaking
rate across all measured timescales. Finally, sine wave synthesis
had a small effect on coefficients akin to the effect of fast speech.
It would be interesting to test whether sine wave is perceived as
being faster than normal speech, even though the same signal vari-
ations unfold over the same time periods.

4. Discussion

In the present study, we investigated the effect of manipulat-
ing speaking rate and naturalness on hierarchical temporal struc-
ture in speech. Using AF analysis, we showed that nested clus-
tering in peak amplitude events is affected differently by these
two manipulations—changes in speaking rate shifts the entire mea-
sured hierarchy into shorter or longer timescales, whereas changes
in naturalness flatten or steepen the longer timescales of the hier-
archy, i.e. on the order of seconds and longer. Other studies have
shown that acoustic events in speech appear to be crucial events
[1], including a recent study by Pease et al. [17] in the present
special issue edited by Grigolini [10]. Taken together, these stud-
ies suggest that neural and perceptual processes may be highly
responsive to speech inputs by means of complexity matching.
Specifically, power laws in neural and perceptual dynamics may
take the general shape of power laws in speech dynamics by
means of complexity matching, while having distinct trajectories
because of myriad differences in neural versus acoustic “substrate”,
so to speak. The present results are consistent with this applica-
tion of complexity matching, in that the different perceptual expe-
riences associated with speaking rate and naturalness have corre-
sponding differences in hierarchical temporal structure. These per-
ceptual differences may have their roots in complexity matching of
auditory networks with incoming speech signals.

The application of complexity matching to speech perception
leads to questions about how power laws in auditory networks are
affected when temporal structures in speech signals do not fol-
low a single power law. Kello et al. [14] showed that many cate-

gories of speech and music deviate from power law AF functions.
In fact, the only categories that closely followed a power law in
nested event clustering were classical music and thunderstorms.
Monologues like those analyzed herein were consistently found to
have a distinct flattening in the longer timescales, and the shape of
this deviation varies as a function of speaking rate and naturalness.
What do such deviations imply for complexity matching?

One possibility is that neural and perceptual dynamics become
less responsive to speech dynamics when they deviate from a
power law, because brains are attuned to power laws in sensory
inputs. Another possibility is that neural dynamics bend along with
the dynamics of speech being listened to. The latter would corre-
spond to a neural correlate of perceiving and following the sounds
of speech. The same question can also be asked of music, with
the same possible hypotheses [6]. Indeed, the effect of prosody on
temporal hierarchies in speech has been argued to have an ana-
log in music [11,16]. This analog leads to the idea that music per-
ception, as hypothesized for speech perception, may be partly sup-
ported by a form of complexity matching that enables temporal
hierarchies in neural dynamics to conform to those of speech and
music.
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