
rsif.royalsocietypublishing.org

Research

Cite this article: Kello CT, Bella SD, Médé B,
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Humans talk, sing and play music. Some species of birds and whales sing

long and complex songs. All these behaviours and sounds exhibit hierarch-

ical structure—syllables and notes are positioned within words and musical

phrases, words and motives in sentences and musical phrases, and so on.

We developed a new method to measure and compare hierarchical temporal

structures in speech, song and music. The method identifies temporal events

as peaks in the sound amplitude envelope, and quantifies event clustering

across a range of timescales using Allan factor (AF) variance. AF variances

were analysed and compared for over 200 different recordings from more

than 16 different categories of signals, including recordings of speech in

different contexts and languages, musical compositions and performances

from different genres. Non-human vocalizations from two bird species

and two types of marine mammals were also analysed for comparison.

The resulting patterns of AF variance across timescales were distinct to

each of four natural categories of complex sound: speech, popular music,

classical music and complex animal vocalizations. Comparisons within

and across categories indicated that nested clustering in longer timescales

was more prominent when prosodic variation was greater, and when

sounds came from interactions among individuals, including interactions

between speakers, musicians, and even killer whales. Nested clustering

also was more prominent for music compared with speech, and reflected

beat structure for popular music and self-similarity across timescales for clas-

sical music. In summary, hierarchical temporal structures reflect the

behavioural and social processes underlying complex vocalizations and

musical performances.

1. Introduction
Humans and other animals produce complex acoustic signals for various

purposes. Speech, song and music serve a variety of functions including com-

munication and entertainment. Long and varied vocalizations in certain whale

and bird species are used for courtship, territorial establishment and social

affiliation [1]. Intuitively, these vocalizations sound complex because they

resemble human speech, song and music. Human signals are complex also in

terms of their underlying syntax and meaning, which may be partly true of

some whale songs and bird songs as well [2,3]. But syntax and meaning
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aside, the present study is focused on complexities in the

sounds themselves, and how they are expressed in terms of

hierarchical temporal structure.

Currently there is no formalized method for quantifying

and relating the complex sounds of speech, music, whale

song and bird song. Most research has focused instead on

analyses specific to each given type of signal. For instance,

cues to timbre and rhythm are relevant to music [4], cues to

prosody are relevant to speech [5], and sinusoidal pulses

are relevant to bird calls [6]. However, one property that is

common to all complex vocal and musical signals is their

hierarchical temporal structure [7,8]. Speech production has

articulatory features like plosivity that unfold over milli-

second timescales, syllabic features that unfold over longer

timescales, lexical and phrasal features over even longer time-

scales, and so on [9]. Likewise, musical performances have

notes played over milliseconds, motives played over hun-

dreds of milliseconds, phrases played over seconds, and so

on [8]. Hierarchies of production units spanning embedded

timescales also have been hypothesized for whale song and

bird song [10,11], albeit we do not have the same firsthand

insight into these units compared with speech and music.

Metrical theories of temporal hierarchies are well known

in both speech [12] and music [13] research. We also posit

temporal hierarchies as a useful basis for quantifying and

comparing the complex structures of speech and music, and

bird song and whale song as well. However, rather than

posit abstract units and levels of a temporal hierarchy, we

hypothesize that hierarchical temporal structure in complex

vocalizations and musical performances is measurably

reflected in the hierarchical temporal structure of their

sound signals. We formulate a measure of temporal sound

structure aimed at categorizing and comparing the coarse-

grained shapes of temporal hierarchies across domains. We

investigate how these shapes inform the behavioural and

social processes that generate them.

Our measure of sound structure is based on instantaneous

events in acoustic waveforms defined only by their moments

in time. Each event is an acoustic feature of the sound

signal, but clusters and other aggregations of events may

relate to perceptual, motoric, behavioural and social processes

involved in producing music and complex vocalizations.

Transforming the waveform into a series of events has three

main benefits. First and foremost, the transformation distils

temporal information while leaving behind variability that is

irrelevant to hierarchical temporal structure. Second, it nor-

malizes temporal information in series of binary events that

are directly comparable across different sound signals. Third,

it results in a point process that is amenable to well-developed

methods for quantifying hierarchical temporal structure.

There are numerous possible events that may be extracted

from complex acoustic signals, but we chose peaks in the

amplitude envelope because they are universal and simple

to identify in the signal. Clusters of peaks, which are our

basic units of analysis, reflect periods of relatively greater

activity in acoustic energy for a given segment of time. The

smallest clusters can group together to form larger clusters

of clusters over longer periods of time, and so on, to form

hierarchical temporal structures [14]. Note that our method

does not require a one-to-one relationship between event

clusters and units of perception or production, such as sylla-

bles or chords, although there will be correspondences with

such units in many cases. Instead, we compute the overall

degree of clustering, based on variance in the overall group-

ing of events, that is related to hierarchically nested units of

vocalization and music. In support of this aim, a recent

study [15] showed that variance in the clusters of peak

events in speech is highly correlated with variance in phone-

tically transcribed durations of linguistic units across

hierarchical levels like syllables, words, phrases and sen-

tences. This result supports a link between event clustering

and linguistic units at the aggregate level of variability

across timescales. It does not speak to relationships at the

level of individual clusters and units. Here, we take a similar

approach by testing whether the clustering of events relates to

domain-general dimensions of vocalization and music that

shed light on their hierarchical temporal structures and

relations between them.

Once the peak events and their times of occurrence are

identified, we can use Allan factor (AF) analysis [16] to quan-

tify the clustering of events in terms of their variances in

timing at different timescales (see figure 1 for equation and

illustration). Details are provided below, but in brief: win-

dows of a given size are tiled across a time series of events,

and events are counted within each window. The mean

difference in event counts between adjacent windows is the

basis for measuring clustering—differences increase as

events cluster more within some windows and less within

adjacent windows. The mean difference is normalized and

computed for each of several different window sizes to

yield a measure of clustering as a function of timescale. Clus-

tering is hierarchical when smaller clusters in smaller

windows combine to form larger clusters in larger windows,

and larger clusters combine to form still larger clusters, and

so on. The pattern of hierarchical clustering is captured by

changes in AF variance as a function of timescale.

AF analysis and similar methods have been used in prior

studies of speech event series [15,17–19]. Together, these

studies showed that hierarchical temporal structure is present

in speech at multiple timescales. Abney et al. [17] reported

evidence that speakers in a conversation adapt the hierarchi-

cal temporal structure of their voices to each other, and

argumentative conversations have more structure compared

with affiliative conversations. Luque et al. [18] showed that

hierarchical temporal structure follows a power law in fast

timescales, and can be attributed to physiological processes

of speech that are common to several different languages.

Falk & Kello [15] showed that hierarchical temporal structure

is greater in infant-directed speech compared with adult-

directed speech, in conjunction with its relation to linguistic

units as noted above.

In the present study, we find that all complex acoustic sig-

nals analysed are well-characterized by nested event

clustering. Specific categories of signals are found to be

associated with specific patterns of clustering across time-

scales. The overall result is a natural taxonomy of complex

sounds in terms of the behavioural and social processes

that generated them. The taxonomy illuminates some of the

similarities, differences, and relationships underlying bird

song, whale song, human speech and music.

2. Material and methods
We analysed four main categories of complex vocalizations and
musical performances, each with four subcategories: (i) bird
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song and whale song, including nightingale, hermit thrush,
humpback and killer whales (orca); (ii) human vocalizations,
including original and synthesized TED talks, naturalistic inter-
views, and singing; (iii) popular music, including rock,
instrumental pop/R&B, acappella, rap and electronic dance
music; and (iv) classical music, including piano solos, violin con-
certos, guitar solos and symphonies. We compared these vocal
and musical signals with jazz instrumentals as an additional
category, and thunderstorm recordings as a complex but
non-biological reference signal.

Ten recordings were chosen for each of 23 subcategories (see
figure 3 and electronic supplementary material), except for thun-
derstorms for which there were only three recordings. Musical
recordings were chosen to be prototypical of their genre, and
TED talks were chosen based on popularity and the absence of
sounds other than talking by the speaker. Conversational inter-
views were sampled randomly from 10 different speakers in
the Buckeye speech corpus [20]. Recordings were downsampled
from 44.1 KHz to 11 KHz to reduce the amount of data to be ana-
lysed (preliminary results showed no differences using the
original sample rate). For stereo recordings, each channel was
analysed separately and the resulting AF variances were aver-
aged together. Recordings were chosen to be at least 4 min
long, and window sizes were varied from approximately 15 ms
to 15 s. Preliminary results showed that there was no need for
windows shorter than 15 ms because events stopped being clus-
tered, and 15 s is the largest window possible given a 4 min long
recording—we required 16 windows to ensure a stable estimate
of clustering at the largest timescale. We chose 4 min as the mini-
mal recording length to acquire the longest timescale possible
while ensuring the availability of recordings (e.g. many popular
song recordings are less than 5min long).

The first step of AF analysis was to divide the downsampled
signal into K segments, each one 4 min long, where K is number
of adjacent segments needed to cover a given recording, includ-
ing one aligned with the end of the recording and overlapping
with the previous segment. For each segment, the envelope
was computed using the Hilbert method (figure 1), although

results were virtually identical (see electronic supplementary
material) using half-wave rectification [21]. The latter is simpler
to compute, and the two methods may not always yield the
same results when signal bandwidths vary [22], but they yielded
equivalent AF functions for peak events. Envelope peaks were
identified in two steps. The first was to filter only peaks in the
envelope that were maximal within +5 ms, and set all remain-
ing points in the envelope to zero. We then zeroed out any
retained peaks less than H in amplitude, and all remaining
peaks were set to one. The threshold H was set such that one
peak event was identified for every 200 samples in each recording,
on average.

The+5 ms peak threshold served as a low pass filter because
it set the maximal peak rate at 200 peaks per second. It served to
bypass spurious peaks due to noise, while providing enough
events to estimate clustering at the shortest timescale of 30 ms
(two adjacent 15 ms windows). AF analysis requires a maximum
event rate that is substantially higher than the shortest timescale
to allow for sufficient variability in event counts per window.
Preliminary tests indicated that a maximal rate of 200 Hz sup-
ported reliable AF variance estimates across all timescales
measured—additional low-pass filtering would result in less
accurate and reliable estimates of clustering due to low event
counts. Events near the maximal rate of 200 Hz cannot be indivi-
dually distinguished and related to perception or production, but
they need not be, because clusters of events are the relevant units
of analysis. We posit that sensory and motor systems may inte-
grate over peak events to compute quantities like amounts of
signal activity that are related to event clusters. But perception
and production aside, our primary aim is to measure hierarchical
temporal structure in the signals themselves.

The amplitude threshold H served to filter out noise by
removing minor peaks from the analysis. It was set to create
event series as sparse as possible, but with sufficient numbers
of events to yield robust statistics. Finally, H also served to nor-
malize recording levels in effect, by setting the amplitude
threshold to yield roughly the same number of events per unit
time across all recordings. If we set H to a specific decibel level
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Figure 1. Illustration of Allan factor analysis using an example waveform segment from Michael Steger’s TED talk entitled ‘What makes life meaningful’. The

waveform is at top (blue), followed by the Hilbert envelope (cyan) and the peak event series (red). Event counts N are shown inside brackets representing

tiled windows for three different sizes T (where timescale ¼ 2T ). The AF variance equation is also shown, along with the entire A(T ) function for this talk.
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across all recordings, then the number of peaks identified
would be influenced by arbitrary recording conditions among
other factors. Nevertheless, analyses reported in the electronic
supplementary material show that the results are robust to
moderate changes in threshold settings [18,19].

Peak event series were submitted to AF analysis (figure 1),
which originally was developed to quantify clustering in event
times beyond chance, and has been used to measure clustering
in neuronal spike trains [23]. AF analysis computes the Haar
wavelet variance at a given timescale T by tiling an event series
with windows of size T, and counting the number of events N

within each window (figure 1). Differences in counts between
adjacent windows are squared and averaged, and divided by
twice the mean count, yielding an estimate of AF variance
A(T ). Dividing variance by the mean is a type of coefficient of
variation, similar to detrended fluctuation analysis [24], and it
serves to normalize for the average event rate at each give time-
scale. This normalization helps to reduce the influence of
factors like overall pitch and tempo on the pattern of hierarchical
clustering in AF functions.

A(T ) was computed over three orders of magnitude, from
T � 30 ms to T � 30 s, with 11 values of T in between, logar-
ithmically spaced to compute the orthonormal basis. The
shortest timescale is near the auditory flutter fusion threshold
of approximately 30 Hz [25,26], and shifting the window sizes
by small amounts has no appreciable effect on results. Therefore,
the smallest clusters analysed were big enough to be individually
perceived, and at least for speech, individually controlled in
articulatory production because phonetic features like plosivity
are on this timescale. If there is no clustering of events beyond
chance, then events are Poisson distributed and A(T ) � 1 for all
T. Similarly, if events are periodically distributed, then A(T )
will approach zero for timescales larger than the period. If
events are clustered across timescales, then A(T ) . 1 and
increases with T. If clusters are nested self-similarly across
timescales, then A(T ) scales up as a power law, A(T ) � Ta,
where a. 0. If clustering generally scales as a power law but
drops off beyond some timescale, as in short-range correlation,
then A(T ) will flatten out beyond that timescale.

AF analysis is akin to spectral analysis for a point process,
and applying it the Hilbert envelope is akin to computing the
modulation spectrum, which is based on the autocorrelation of
the amplitude envelope. The modulation spectrum has been
examined for the purpose of automatic speech recognition [27],
uncovering the neural bases of speech processing [28], and
music classification [29]. The modulation spectrum can be com-
puted as the spectrum of the Hilbert envelope, which makes it
similar to AF analysis of peaks in the Hilbert envelope—both
analyses reflect the amount of energy at different frequencies of
the amplitude envelope. However, the AF function for a given
signal is not the same as its modulation spectrum over a given
range of timescales. The reason is that peak extracting is a kind
of signal reduction relative to the modulation spectrum.
A large amount of detailed information about the amplitude
envelope is removed in the peak event series, and peaks are
equalized to one. Equalization serves to normalize amplitudes,
as well as reduce the signal.

The modulation spectrum has been used to compare different
categories of sounds in at least two previous studies. Singh &
Theunissen [30] compared speech, Zebra Finch songs and natural
sounds such as those of fires and streams. The authors found
differences among these categories in joint spectral and temporal
statistics. They also found that, with respect to the average modu-
lation spectra, all three categories similarly followed a power law
analogous to the AF power law described above. Ding and col-
leagues [21] also computed average modulation spectra, but for
speech versus music. Spectra for speech showed a consistent
peak around 5 Hz, whereas spectra for music showed a consistent

peak around 2 Hz. Numerous differences between the studies
might explain the difference in results.

We formulated our method of analysis as an alternative to
the modulation spectra designed to extract and normalize hier-
archical temporal structure for a broad range of complex
acoustic signals. As a point of comparison, we conducted
the same analyses for the modulation spectrum as we did for
AF analysis, over roughly the same range of timescales. Specifi-
cally, the fast Fourier transform (FFT) was computed for each
of the 4min windows of the Hilbert envelope used in AF
analyses. The resulting spectral power (squared amplitude) esti-
mates were averaged within logarithmically sized frequency
bins, akin to computing AF variance at timescales spaced by
powers of two. The resulting modulation spectra are plotted in
the electronic supplementary material, and they are broadly simi-
lar to the AF functions reported below. However, the modulation
spectra are more irregular and idiosyncratic than AF functions
because of they retain more detail from the original signal.
Here we focus on AF functions because their regularity facilitates
quantification, interpretation and comparison.

3. Results

3.1. Allan factor
All types of vocalizations and musical performances yielded

clustered event series. This clustering was often plainly vis-

ible, as shown in figure 2 for four representative segments

of recordings, one from each of the four main categories.

AF analysis yielded a clustering function A(T ) for each

recording, and the means of these functions for each subcate-

gory are plotted in the four panels of figure 3 on logarithmic

coordinates. The most general result is an overall trend for

A(T ) to increase with timescale for all complex signals,

which indicates a general property of nested clustering.

Beyond this overall trend, categories differed in how A(T )

increased with timescale, and these differences shed light

on the behavioural and social processes that underlie

speech, song and music. The statistical reliability of differ-

ences is visible in the 95% confidence intervals shown in

figure 3 [31].

Most broadly, all human-generated signals showed

reliable increases in A(T ) at the longer timescales of seconds

to tens of seconds. By contrast, synthesized speech and most

animal vocalizations showed some decrease in A(T ) in the

longer timescales (top left figure 3), which indicates an

upper limit to nested clustering. This difference shows that

human speech and music are more hierarchically structured

than synthesized speech and most animal vocalizations, par-

ticularly at timescales of seconds to tens of seconds.

Regarding synthesized speech, the lack of structure appears

to stem from a lack of richness in prosodic variation because

synthesizers generate prosody using impoverished correlates

of meaning and intent. Consistent with this interpretation,

Falk & Kello [15] recently showed that hierarchical temporal

structure is enhanced in infant-directed speech compared

with adult-directed speech, the former being associated

with rich, exaggerated prosodic variation [32]. Together

these results provide clear evidence for prosody as a factor

in creating the nested clustering of peak events in speech.

Our analyses do not shed light on whether the decrease in

A(T ) for some animal vocalizations relates to prosody,

although some bird and whale songs have been considered

in terms of their prosodic structure [33]. It is particularly
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interesting to note that the songs of humpback whales and

hermit thrushes were highly similar in terms of their hierarch-

ical temporal structure (middle right figure 3). This similarity

is striking given such large differences in the environments,

vocal apparatus and anatomy of these species. Further inves-

tigation is needed into prosody and behavioural factors that

might explain such an unexpected similarity.

One such factor is the degree of social interaction reflected

in recorded bird and whale vocalizations. The songs of

humpbacks and hermit thrushes are solitary, as are nightin-

gales. Only solitary male humpbacks sing long complex

songs, and they mostly sing one song which changes over

long periods of time. As for bird song recordings, they

were collected from individual birds, with minimal inter-

actions or singing from other birds (sometimes faintly in

the background, but below the peak amplitude threshold).

By contrast, killer whale vocalizations reflect their social

interactions [34], and their recordings exhibited nested

clustering that was surprisingly similar to human speech—

conversational speech in particular. We hypothesize that

this difference was observed because killer whale recordings

reflected their social interactions whereas other animal

recordings were solitary. This result suggests that hierarchical

temporal structure is enhanced by social interaction as well as

prosodic variation.

The hypothesized effect of social interaction is further

supported by examination of AF functions for different

types of human vocalizations. Just as nested clustering

dropped off at longer timescales for solitary animal vocaliza-

tions, it also tapered off for monologue TED talks compared

with conversational interviews, regardless of the language

spoken (bottom left figure 3). We can explain this effect of

social interaction by considering the sound of only one side

of a conversation, like overhearing someone talking on the

phone. The sound will have varying periods of silence

during which the other person is speaking. If the temporal

patterning of these periods is non-random and non-periodic,

then it will create and enhance nested clustering in speech

energy. The interview recordings primarily captured the

interviewee’s voice alone, which means that periods of

0 5 10 15 20 25 30

time (s)

Figure 2. Four waveform segments, with corresponding Hilbert envelopes and peak event series, for one example recording from each of the four main signal types:

Humpback whale song (top), TED talk (upper middle), rock music (lower middle; ‘Back in Black’ by ACDC) and symphony (bottom; Brahms symphony number 4, first

movement).
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relative silence reflected turn-taking and other dynamics

of coordination between interlocutors. Similarly, pop/R&B

vocal recordings only captured the singer’s side of inter-

actions and coordination with other musicians and

instruments, and their AF functions were strikingly like

those of conversations (top left figure 3). Taken together,

the evidence indicates that interaction dynamics enhance

hierarchical temporal structure on timescales of seconds to

tens of seconds.

Another factor that appeared to increase A(T ) at the

longer timescales is musical structure. In general, AF func-

tions were steeper in the longer timescales for musical

recordings compared with speech or animal vocalizations

(top right figure 3). This difference suggests that the hierarch-

ical structure typical of musical compositions—roughly

from phrases to melodies to periods—imparts even more

nested clustering in peak events compared with the effects

of prosody and social interaction. It is worth noting that,

on top of the structure of a musical composition, musical

recordings also capture interactions among musicians, akin

to social interactions. These interactions do not explain steep-

er AF functions for music compared with conversational

interactions.

The effects of musical structure and performance are

further supported by the finding that nested clustering was

most prominent across timescales for classical music record-

ings (middle left figure 3). This finding may stem from the

fact that classical music possesses hierarchical structure in

the melodic and metrical complexity conveyed by different

instruments at different timescales, as compared with popular
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Figure 3. Mean A(T ) functions for all subcategories of signals analysed, with error bars representing 95% confidence intervals around mean AF variances for the

sample of recordings within each subcategory, at each timescale. Power law AF functions would appear as positively sloped straight lines.
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music. In fact, classical music exhibited a power law increase

in A(T ) as a function of T (i.e. linear in logarithmic coordi-

nates), which indicates balanced nesting of events across

timescales (for similar results based on the timing of notes,

see [35]). The proportion of variance accounted for, R2, was

computed for each linear regression line fit to each classical

music AF function in log–log coordinates. The mean R2 was

98.4% for three orders of magnitude in timescale, which is

strong evidence for power law AF functions.

In contrast with a power law, the temporal structure of

popular music is often dominated by its rhythmic beat struc-

ture. As a result, their AF functions plateaued around the

typical 1–2 beats per second. Note that AF analysis is not

designed to pinpoint beat periods or other temporal rhythms

at precise frequencies. Steady beats result in evenly timed,

alternating periods of relatively few versus many events,

which reduce A(T ) variance at timescales near the period of

alternation. Jazz provided an interesting contrast—AF func-

tions for jazz instrumentals closely followed that of

conversations, rather than popular or classical music

(bottom right figure 3). This exception is consistent with the

adage that jazz is like a conversation [36], and may partly

emerge from similar complexities in the temporal structure

of jazz and speech, relative to popular music.

Finally, we applied our method to thunderstorms as a

non-biological reference sound predicted to exhibit nested

clustering in peak events. This prediction is based on the

observation that thunder often occurs in long bouts, with

shorter bursts of sound nested within bouts, and shorter

crackles and booms further nested within bursts [37]. As pre-

dicted, AF analyses yielded nested clustering for three

example thunderstorm recordings (bottom right figure 3).

Intriguingly, their A(T ) functions followed a power law func-

tion very similar to that of classical music, and in particular,

symphonies. Thus, it appears that nested clustering of events

can be balanced across timescales as a product of human

composition and performance, and also as a product of

natural interactions across timescales.

3.2. Classification
Results thus far reveal a taxonomy of complex acoustic signals

based on their patterns of clustering. This taxonomy is defined

by three main dimensions of variation in AF functions: The

degree of overall nesting as expressed by the slope in A(T )

as a function of T, the degree of floor or ceiling effects as

expressed by the amount and direction of inflection in A(T ),

and the degree of reduced nesting in middle timescales as

expressed by the amount of middle flattening in A(T ). These

three dimensions of variation can be neatly captured by fitting

a third-order polynomial to each A(T ) function in logarithmic

coordinates. The linear, quadratic and cubic coefficients

become measures of the slope, inflection and flattening in

A(T ). Analyses confirmed that polynomial fits captured the

data, explaining about 99% of the variance for each A(T ) func-

tion. However, further analyses showed that three degrees of

freedom were actually more than necessary. Correlations

among coefficients suggested lower dimensionality in the

data, and principal components analysis indicated that the

first two components were sufficient to capture 99% of the var-

iance. These components are largely reflected in the linear and

quadratic coefficients, so for the sake of interpretability,

individual recordings were plotted in figure 4 as points in

two-dimensional coefficient space.

The scatter plot shows that the four main categories of

complex acoustic signals were well-differentiated in terms

of linear and quadratic features of their A(T ) functions.

Animal vocalizations had steep and inflected A(T ) functions

compared with human vocalizations, and the same was true

for classical music compared with popular music. The two

vocal categories were also separated from the two musical

categories, in that animal and human vocalizations had

lower quadratic coefficients than classical and popular

music, respectively. To quantify separability, we trained

and tested two linear support vector machines using fivefold

cross-validation to classify individual A(T ) functions for two

different levels of categorization: a superordinate level of cat-

egorization using the four main categories (40 recordings per

category), and a subordinate level using all 16 subcategories

shown in figure 4 (10 recordings per subcategory).

Classification performance showed that hierarchical tem-

poral structure, as expressed in the shapes of AF functions,

is highly diagnostic of their natural category. Classifiers

were 92% correct on average (25% chance baseline) for the

four superordinate categories, and 63% correct (6.25%

chance) for the 16 subordinate categories. The different cat-

egories of recordings may appear easily discriminable in

figure 2, but classification also requires generalization over

variations within categories that are not shown. Classification

results demonstrate that AF functions serve both to relate and

distinguish different types of vocalizations and musical

performances.

The added value of AF analysis is further bolstered by

comparison with classification performance using two basic

spectral measures, its mean and width (full width at half

maximum), instead of temporal measures like AF linear

and quadratic coefficients. Classifiers were only 55% correct

on average, with animal vocalizations and classical music

being somewhat more discriminable. Spectral mean and

width are simple measures and there may be better spectral

measures for classification. However, with no theoretical

guide in hand, we leave it to future research to explore

other measures. The present results allow us to conclude

that nested clustering of peak events reflects a natural taxon-

omy of complex acoustic signals based on their hierarchical

temporal structures.

4. Discussion
Hierarchical temporal structure is a fundamental property of

speech, language, music and complex animal vocalization

[38], but it has been challenging to measure and relate struc-

tures across different vocal and musical signals. In the present

study, we formulated a method for measuring temporal hier-

archies in complex acoustic signals from different domains.

We found that patterns of event clustering across timescales

could be reduced to points in an AF feature space, which

allowed us to relate signals both within and across domains.

We defined the space in terms of deviations from, and resem-

blance to, a power law relating AF variance and timescale. AF

analysis is closely related to spectral analysis, and researchers

have found similar power laws in spectral analyses of speech

and music [35,39]. A power law in AF variance is indicative

of nested event clustering that is self-similar across the
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range of timescales measured [40], and deviations from a

power law indicate the relative enhancement or suppression

of clustering at particular timescales.

Based on over 200 sound recordings, we found that

enhancement and suppression of clustering revealed a taxon-

omy of sounds grouped by the behavioural and social

processes involved in generating them. The superordinate

categories reflected natural domains—human versus animal

vocalizations, and popular versus classical music. The more

specific subcategories reflected properties of vocal and musi-

cal production and interaction. Organization of the taxonomy

yielded several useful and informative results. In terms of

usefulness, methods for automatic classification of musical

genres, and for distinguishing music from speech, have

been developed for various music and speech applications

[41,42]. The observed taxonomy illustrates how hierarchical

temporal structure may be used to aid in numerous possible

classifications among the categories and subcategories of

sounds analysed [43]. Our method of AF analysis is simple

and automatic, with the caveat that minutes-long recordings

are needed to acquire data for the longer timescales.

Peak events in the amplitude envelope were chosen as

acoustic features whose clustering may reflect the hierarchical

temporal structures of processes that generate music and

complex vocalizations. Peak events were not chosen as per-

ceptual features, although the amplitude envelope is

relevant to auditory perception [44], and the clustering of

peak events may correlate with salient auditory features

like temporal contrasts [45]. But in terms of generative pro-

cesses, analyses identified three main factors that drove up

the degree of nested clustering: prosodic variation, social

interaction and musical structure. These all appear to be

general sources of hierarchical temporal structure in the

dynamics of vocalization and musical performance. Evidence

for their generality is found in how AF functions showed

commonalities among different types of speech and music,

as opposed to the differences useful for classification.

First, prosodic variation had the same kind of effect on

nested clustering regardless of whether it stemmed from

infant-directed speech or synthesized speech. It also

appeared to have a consistent effect on TED talks regardless

of language spoken. This uniformity across languages is

interesting because different languages are hypothesized to

conform to different rhythmic patterns. Spanish, French and

Mandarin are categorized as syllable-timed languages,

whereas English, Arabic and Russian are categorized as

stress-timed languages [46]—intervals between either syllables

or stressed syllables are hypothesized to be roughly constant

in duration. As noted earlier, constancy in timing means a

lack of nested clustering, so one might expect stress timing

and syllable timing to create plateaus in AF functions, like

those associated with the beat structure of popular music.

However, no such plateaus were observed in speech record-

ings, indicating that hypothesized effects of syllable/stress

timing were either absent or not detectable with AF analysis.

Instead, AF functions appeared to reflect a style of presen-

tation common to TED talks, in that speakers of any

language may use a common register in performing a

rehearsed lecture designed to engage and inform. More

work is needed to investigate this interpretation, but we

can conclude that AF functions captured hierarchical tem-

poral structure common to human speech, regardless of the

inventories of phonemes, syllables, words, and sentences

being spoken, and regardless of the cultural context.

Second, we found that interaction dynamics had the same

effect on nested clustering regardless of whether interactions

were among whales, speakers or musicians. Specifically,

nested clustering was greater for conversational interviews
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versus monologue TED talks, for musical interactions versus

solitary vocal tracks, and for killer whales versus humpback

whales. The unifying effect of interaction dynamics was even

more stark and direct in the similarities between jazz instru-

mentals, spoken conversations and killer whale interactions.

These results suggest further investigations into factors like

turn-taking and coordination dynamics [47] that may have

general effects on the dynamics of social interactions. Such

investigations may use AF analysis as well as other comp-

lementary techniques like wavelet coherence analysis [48]

and recurrence quantification analysis [49] that focus on

more specific timing relations.

Third, similar musical compositions had similar AF func-

tions regardless of singer, musical instrument, musical

surface features such as pitch that do not directly relate to

the hierarchical temporal structure of a performance. AF

functions for songs from popular music reflected their similar

structure characterized by a prominent beat, which sup-

pressed nested clustering near the period of the beat. Songs

from classical music reflected common structural complexity

in terms of self-similar nested clustering (e.g. structure of

grouping) across the range of measured timescales. The

degree of self-similar clustering, as measured by the slope

of AF functions, was greatest in symphonies, and intriguingly

similar to the sounds of thunderstorms. On the one hand,

this last similarity may seem most puzzling because sympho-

nies and thunderstorms are so unalike in so many ways.

On the other hand, the power laws observed in these two

signals are akin to another power law known as 1/f noise

that is common throughout nature [50]. It is informative to

consider some hypothesized explanations of 1/f noise that

might shed light on self-similar clustering in classical music

and thunderstorms.

One hypothesized explanation for 1/f noise is that power

law dynamics reflect a balance between predictability and

surprise in temporal structure that is aesthetically pleasing

[51]. In this case, the power law in thunderstorms [52]

would reflect an aspect of nature that humans perceive as

aesthetically pleasing, and reproduce in various artistic

forms [53]. A related hypothesis is that power law structure

and dynamics are ubiquitous in nature, and human systems

have evolved to adapt to these power laws by mirroring

them in various respects [54]. A third hypothesis is that

power laws reflect the tendency of complex systems to be

poised near phase transitions between ordered and disor-

dered states [55]. Several studies have reported evidence

that the connectivity of neural systems is hierarchically

power law structured [56–58], and temporal interactions

across the hierarchy may give rise to power laws in neural

and behavioural activity [59–62], including music and

complex vocalizations.

The present study was not designed to address hypoth-

eses about the origins of power laws in hierarchical

temporal structure, and none of them seem to readily explain

why only classical music and thunderstorms were found to

exhibit these power laws in their AF functions. Further inves-

tigation is needed, but we note that both are characterized by

multiple timescales of interacting processes, stemming from

either the structure of grouping and performance in classical

music, or natural processes in thunderstorms. Some of these

processes are neural and behavioural, as noted above, and

they may also include social processes as well. Power laws

can emerge as a general property of interactions across time-

scales, irrespective of the components and processes

supporting these interactions [63].

In conclusion, we have developed a simple method for

analysing nested clustering in a wide variety of complex

acoustic signals. Results go beyond previous studies in their

ability to clearly delineate and relate the hierarchical tem-

poral structures underlying human speech and music, and

complex animal vocalizations as well. Further investigation

is needed to examine whether AF functions may reflect

other aspects of behavioural and social processes not tested

herein that underlie complex vocalizations and musical per-

formances. New insights may be uncovered about the

relationships between human speech and music, and other

complex animal vocalizations.
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