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Humans talk, sing and play music. Some species of birds and whales sing
long and complex songs. All these behaviours and sounds exhibit hierarch-
ical structure—syllables and notes are positioned within words and musical
phrases, words and motives in sentences and musical phrases, and so on.
We developed a new method to measure and compare hierarchical temporal
structures in speech, song and music. The method identifies temporal events
as peaks in the sound amplitude envelope, and quantifies event clustering
across a range of timescales using Allan factor (AF) variance. AF variances
were analysed and compared for over 200 different recordings from more
than 16 different categories of signals, including recordings of speech in
different contexts and languages, musical compositions and performances
from different genres. Non-human vocalizations from two bird species
and two types of marine mammals were also analysed for comparison.
The resulting patterns of AF variance across timescales were distinct to
each of four natural categories of complex sound: speech, popular music,
classical music and complex animal vocalizations. Comparisons within
and across categories indicated that nested clustering in longer timescales
was more prominent when prosodic variation was greater, and when
sounds came from interactions among individuals, including interactions
between speakers, musicians, and even killer whales. Nested clustering
also was more prominent for music compared with speech, and reflected
beat structure for popular music and self-similarity across timescales for clas-
sical music. In summary, hierarchical temporal structures reflect the
behavioural and social processes underlying complex vocalizations and
musical performances.

1. Introduction

Humans and other animals produce complex acoustic signals for various
purposes. Speech, song and music serve a variety of functions including com-
munication and entertainment. Long and varied vocalizations in certain whale
and bird species are used for courtship, territorial establishment and social
affiliation [1]. Intuitively, these vocalizations sound complex because they
resemble human speech, song and music. Human signals are complex also in
terms of their underlying syntax and meaning, which may be partly true of
some whale songs and bird songs as well [2,3]. But syntax and meaning
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aside, the present study is focused on complexities in the
sounds themselves, and how they are expressed in terms of
hierarchical temporal structure.

Currently there is no formalized method for quantifying
and relating the complex sounds of speech, music, whale
song and bird song. Most research has focused instead on
analyses specific to each given type of signal. For instance,
cues to timbre and rhythm are relevant to music [4], cues to
prosody are relevant to speech [5], and sinusoidal pulses
are relevant to bird calls [6]. However, one property that is
common to all complex vocal and musical signals is their
hierarchical temporal structure [7,8]. Speech production has
articulatory features like plosivity that unfold over milli-
second timescales, syllabic features that unfold over longer
timescales, lexical and phrasal features over even longer time-
scales, and so on [9]. Likewise, musical performances have
notes played over milliseconds, motives played over hun-
dreds of milliseconds, phrases played over seconds, and so
on [8]. Hierarchies of production units spanning embedded
timescales also have been hypothesized for whale song and
bird song [10,11], albeit we do not have the same firsthand
insight into these units compared with speech and music.

Metrical theories of temporal hierarchies are well known
in both speech [12] and music [13] research. We also posit
temporal hierarchies as a useful basis for quantifying and
comparing the complex structures of speech and music, and
bird song and whale song as well. However, rather than
posit abstract units and levels of a temporal hierarchy, we
hypothesize that hierarchical temporal structure in complex
vocalizations and musical performances is measurably
reflected in the hierarchical temporal structure of their
sound signals. We formulate a measure of temporal sound
structure aimed at categorizing and comparing the coarse-
grained shapes of temporal hierarchies across domains. We
investigate how these shapes inform the behavioural and
social processes that generate them.

Our measure of sound structure is based on instantaneous
events in acoustic waveforms defined only by their moments
in time. Each event is an acoustic feature of the sound
signal, but clusters and other aggregations of events may
relate to perceptual, motoric, behavioural and social processes
involved in producing music and complex vocalizations.
Transforming the waveform into a series of events has three
main benefits. First and foremost, the transformation distils
temporal information while leaving behind variability that is
irrelevant to hierarchical temporal structure. Second, it nor-
malizes temporal information in series of binary events that
are directly comparable across different sound signals. Third,
it results in a point process that is amenable to well-developed
methods for quantifying hierarchical temporal structure.

There are numerous possible events that may be extracted
from complex acoustic signals, but we chose peaks in the
amplitude envelope because they are universal and simple
to identify in the signal. Clusters of peaks, which are our
basic units of analysis, reflect periods of relatively greater
activity in acoustic energy for a given segment of time. The
smallest clusters can group together to form larger clusters
of clusters over longer periods of time, and so on, to form
hierarchical temporal structures [14]. Note that our method
does not require a one-to-one relationship between event
clusters and units of perception or production, such as sylla-
bles or chords, although there will be correspondences with
such units in many cases. Instead, we compute the overall

degree of clustering, based on variance in the overall group- n

ing of events, that is related to hierarchically nested units of
vocalization and music. In support of this aim, a recent
study [15] showed that variance in the clusters of peak
events in speech is highly correlated with variance in phone-
tically transcribed durations of linguistic units across
hierarchical levels like syllables, words, phrases and sen-
tences. This result supports a link between event clustering
and linguistic units at the aggregate level of variability
across timescales. It does not speak to relationships at the
level of individual clusters and units. Here, we take a similar
approach by testing whether the clustering of events relates to
domain-general dimensions of vocalization and music that
shed light on their hierarchical temporal structures and
relations between them.

Once the peak events and their times of occurrence are
identified, we can use Allan factor (AF) analysis [16] to quan-
tify the clustering of events in terms of their variances in
timing at different timescales (see figure 1 for equation and
illustration). Details are provided below, but in brief: win-
dows of a given size are tiled across a time series of events,
and events are counted within each window. The mean
difference in event counts between adjacent windows is the
basis for measuring clustering—differences increase as
events cluster more within some windows and less within
adjacent windows. The mean difference is normalized and
computed for each of several different window sizes to
yield a measure of clustering as a function of timescale. Clus-
tering is hierarchical when smaller clusters in smaller
windows combine to form larger clusters in larger windows,
and larger clusters combine to form still larger clusters, and
so on. The pattern of hierarchical clustering is captured by
changes in AF variance as a function of timescale.

AF analysis and similar methods have been used in prior
studies of speech event series [15,17-19]. Together, these
studies showed that hierarchical temporal structure is present
in speech at multiple timescales. Abney et al. [17] reported
evidence that speakers in a conversation adapt the hierarchi-
cal temporal structure of their voices to each other, and
argumentative conversations have more structure compared
with affiliative conversations. Luque et al. [18] showed that
hierarchical temporal structure follows a power law in fast
timescales, and can be attributed to physiological processes
of speech that are common to several different languages.
Falk & Kello [15] showed that hierarchical temporal structure
is greater in infant-directed speech compared with adult-
directed speech, in conjunction with its relation to linguistic
units as noted above.

In the present study, we find that all complex acoustic sig-
nals analysed are well-characterized by nested event
clustering. Specific categories of signals are found to be
associated with specific patterns of clustering across time-
scales. The overall result is a natural taxonomy of complex
sounds in terms of the behavioural and social processes
that generated them. The taxonomy illuminates some of the
similarities, differences, and relationships underlying bird
song, whale song, human speech and music.

2. Material and methods

We analysed four main categories of complex vocalizations and
musical performances, each with four subcategories: (i) bird
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Figure 1. lllustration of Allan factor analysis using an example waveform segment from Michael Steger's TED talk entitled ‘What makes life meaningful’. The
waveform is at top (blue), followed by the Hilbert envelope (cyan) and the peak event series (red). Event counts N are shown inside brackets representing
tiled windows for three different sizes T (where timescale = 2T). The AF variance equation is also shown, along with the entire A(T) function for this talk.

song and whale song, including nightingale, hermit thrush,
humpback and killer whales (orca); (ii) human vocalizations,
including original and synthesized TED talks, naturalistic inter-
views, and singing; (iii) popular music, including rock,
instrumental pop/R&B, acappella, rap and electronic dance
music; and (iv) classical music, including piano solos, violin con-
certos, guitar solos and symphonies. We compared these vocal
and musical signals with jazz instrumentals as an additional
category, and thunderstorm recordings as a complex but
non-biological reference signal.

Ten recordings were chosen for each of 23 subcategories (see
figure 3 and electronic supplementary material), except for thun-
derstorms for which there were only three recordings. Musical
recordings were chosen to be prototypical of their genre, and
TED talks were chosen based on popularity and the absence of
sounds other than talking by the speaker. Conversational inter-
views were sampled randomly from 10 different speakers in
the Buckeye speech corpus [20]. Recordings were downsampled
from 44.1 KHz to 11 KHz to reduce the amount of data to be ana-
lysed (preliminary results showed no differences using the
original sample rate). For stereo recordings, each channel was
analysed separately and the resulting AF variances were aver-
aged together. Recordings were chosen to be at least 4 min
long, and window sizes were varied from approximately 15 ms
to 15 s. Preliminary results showed that there was no need for
windows shorter than 15 ms because events stopped being clus-
tered, and 15 s is the largest window possible given a 4 min long
recording—we required 16 windows to ensure a stable estimate
of clustering at the largest timescale. We chose 4 min as the mini-
mal recording length to acquire the longest timescale possible
while ensuring the availability of recordings (e.g. many popular
song recordings are less than 5 min long).

The first step of AF analysis was to divide the downsampled
signal into K segments, each one 4 min long, where K is number
of adjacent segments needed to cover a given recording, includ-
ing one aligned with the end of the recording and overlapping
with the previous segment. For each segment, the envelope
was computed using the Hilbert method (figure 1), although

results were virtually identical (see electronic supplementary
material) using half-wave rectification [21]. The latter is simpler
to compute, and the two methods may not always yield the
same results when signal bandwidths vary [22], but they yielded
equivalent AF functions for peak events. Envelope peaks were
identified in two steps. The first was to filter only peaks in the
envelope that were maximal within +5 ms, and set all remain-
ing points in the envelope to zero. We then zeroed out any
retained peaks less than H in amplitude, and all remaining
peaks were set to one. The threshold H was set such that one
peak event was identified for every 200 samples in each recording,
on average.

The +5 ms peak threshold served as a low pass filter because
it set the maximal peak rate at 200 peaks per second. It served to
bypass spurious peaks due to noise, while providing enough
events to estimate clustering at the shortest timescale of 30 ms
(two adjacent 15 ms windows). AF analysis requires a maximum
event rate that is substantially higher than the shortest timescale
to allow for sufficient variability in event counts per window.
Preliminary tests indicated that a maximal rate of 200 Hz sup-
ported reliable AF variance estimates across all timescales
measured—additional low-pass filtering would result in less
accurate and reliable estimates of clustering due to low event
counts. Events near the maximal rate of 200 Hz cannot be indivi-
dually distinguished and related to perception or production, but
they need not be, because clusters of events are the relevant units
of analysis. We posit that sensory and motor systems may inte-
grate over peak events to compute quantities like amounts of
signal activity that are related to event clusters. But perception
and production aside, our primary aim is to measure hierarchical
temporal structure in the signals themselves.

The amplitude threshold H served to filter out noise by
removing minor peaks from the analysis. It was set to create
event series as sparse as possible, but with sufficient numbers
of events to yield robust statistics. Finally, H also served to nor-
malize recording levels in effect, by setting the amplitude
threshold to yield roughly the same number of events per unit
time across all recordings. If we set H to a specific decibel level
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across all recordings, then the number of peaks identified
would be influenced by arbitrary recording conditions among
other factors. Nevertheless, analyses reported in the electronic
supplementary material show that the results are robust to
moderate changes in threshold settings [18,19].

Peak event series were submitted to AF analysis (figure 1),
which originally was developed to quantify clustering in event
times beyond chance, and has been used to measure clustering
in neuronal spike trains [23]. AF analysis computes the Haar
wavelet variance at a given timescale T by tiling an event series
with windows of size T, and counting the number of events N
within each window (figure 1). Differences in counts between
adjacent windows are squared and averaged, and divided by
twice the mean count, yielding an estimate of AF variance
A(T). Dividing variance by the mean is a type of coefficient of
variation, similar to detrended fluctuation analysis [24], and it
serves to normalize for the average event rate at each give time-
scale. This normalization helps to reduce the influence of
factors like overall pitch and tempo on the pattern of hierarchical
clustering in AF functions.

A(T) was computed over three orders of magnitude, from
T~30ms to T~ 30s, with 11 values of T in between, logar-
ithmically spaced to compute the orthonormal basis. The
shortest timescale is near the auditory flutter fusion threshold
of approximately 30 Hz [25,26], and shifting the window sizes
by small amounts has no appreciable effect on results. Therefore,
the smallest clusters analysed were big enough to be individually
perceived, and at least for speech, individually controlled in
articulatory production because phonetic features like plosivity
are on this timescale. If there is no clustering of events beyond
chance, then events are Poisson distributed and A(T) ~ 1 for all
T. Similarly, if events are periodically distributed, then A(T)
will approach zero for timescales larger than the period. If
events are clustered across timescales, then A(T)>1 and
increases with T. If clusters are nested self-similarly across
timescales, then A(T) scales up as a power law, A(T)~ T,
where a > 0. If clustering generally scales as a power law but
drops off beyond some timescale, as in short-range correlation,
then A(T) will flatten out beyond that timescale.

AF analysis is akin to spectral analysis for a point process,
and applying it the Hilbert envelope is akin to computing the
modulation spectrum, which is based on the autocorrelation of
the amplitude envelope. The modulation spectrum has been
examined for the purpose of automatic speech recognition [27],
uncovering the neural bases of speech processing [28], and
music classification [29]. The modulation spectrum can be com-
puted as the spectrum of the Hilbert envelope, which makes it
similar to AF analysis of peaks in the Hilbert envelope—both
analyses reflect the amount of energy at different frequencies of
the amplitude envelope. However, the AF function for a given
signal is not the same as its modulation spectrum over a given
range of timescales. The reason is that peak extracting is a kind
of signal reduction relative to the modulation spectrum.
A large amount of detailed information about the amplitude
envelope is removed in the peak event series, and peaks are
equalized to one. Equalization serves to normalize amplitudes,
as well as reduce the signal.

The modulation spectrum has been used to compare different
categories of sounds in at least two previous studies. Singh &
Theunissen [30] compared speech, Zebra Finch songs and natural
sounds such as those of fires and streams. The authors found
differences among these categories in joint spectral and temporal
statistics. They also found that, with respect to the average modu-
lation spectra, all three categories similarly followed a power law
analogous to the AF power law described above. Ding and col-
leagues [21] also computed average modulation spectra, but for
speech versus music. Spectra for speech showed a consistent
peak around 5 Hz, whereas spectra for music showed a consistent

peak around 2 Hz. Numerous differences between the studies
might explain the difference in results.

We formulated our method of analysis as an alternative to
the modulation spectra designed to extract and normalize hier-
archical temporal structure for a broad range of complex
acoustic signals. As a point of comparison, we conducted
the same analyses for the modulation spectrum as we did for
AF analysis, over roughly the same range of timescales. Specifi-
cally, the fast Fourier transform (FFT) was computed for each
of the 4min windows of the Hilbert envelope used in AF
analyses. The resulting spectral power (squared amplitude) esti-
mates were averaged within logarithmically sized frequency
bins, akin to computing AF variance at timescales spaced by
powers of two. The resulting modulation spectra are plotted in
the electronic supplementary material, and they are broadly simi-
lar to the AF functions reported below. However, the modulation
spectra are more irregular and idiosyncratic than AF functions
because of they retain more detail from the original signal.
Here we focus on AF functions because their regularity facilitates
quantification, interpretation and comparison.

3. Results
3.1. Allan factor

All types of vocalizations and musical performances yielded
clustered event series. This clustering was often plainly vis-
ible, as shown in figure 2 for four representative segments
of recordings, one from each of the four main categories.
AF analysis yielded a clustering function A(T) for each
recording, and the means of these functions for each subcate-
gory are plotted in the four panels of figure 3 on logarithmic
coordinates. The most general result is an overall trend for
A(T) to increase with timescale for all complex signals,
which indicates a general property of nested clustering.
Beyond this overall trend, categories differed in how A(T)
increased with timescale, and these differences shed light
on the behavioural and social processes that underlie
speech, song and music. The statistical reliability of differ-
ences is visible in the 95% confidence intervals shown in
figure 3 [31].

Most broadly, all human-generated signals showed
reliable increases in A(T') at the longer timescales of seconds
to tens of seconds. By contrast, synthesized speech and most
animal vocalizations showed some decrease in A(T) in the
longer timescales (top left figure 3), which indicates an
upper limit to nested clustering. This difference shows that
human speech and music are more hierarchically structured
than synthesized speech and most animal vocalizations, par-
ticularly at timescales of seconds to tens of seconds.
Regarding synthesized speech, the lack of structure appears
to stem from a lack of richness in prosodic variation because
synthesizers generate prosody using impoverished correlates
of meaning and intent. Consistent with this interpretation,
Falk & Kello [15] recently showed that hierarchical temporal
structure is enhanced in infant-directed speech compared
with adult-directed speech, the former being associated
with rich, exaggerated prosodic variation [32]. Together
these results provide clear evidence for prosody as a factor
in creating the nested clustering of peak events in speech.

Our analyses do not shed light on whether the decrease in
A(T) for some animal vocalizations relates to prosody,
although some bird and whale songs have been considered
in terms of their prosodic structure [33]. It is particularly
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Figure 2. Four waveform segments, with corresponding Hilbert envelopes and peak event series, for one example recording from each of the four main signal types:
Humpback whale song (top), TED talk (upper middle), rock music (lower middle; ‘Back in Black’ by ACDC) and symphony (bottom; Brahms symphony number 4, first

movement).

interesting to note that the songs of humpback whales and
hermit thrushes were highly similar in terms of their hierarch-
ical temporal structure (middle right figure 3). This similarity
is striking given such large differences in the environments,
vocal apparatus and anatomy of these species. Further inves-
tigation is needed into prosody and behavioural factors that
might explain such an unexpected similarity.

One such factor is the degree of social interaction reflected
in recorded bird and whale vocalizations. The songs of
humpbacks and hermit thrushes are solitary, as are nightin-
gales. Only solitary male humpbacks sing long complex
songs, and they mostly sing one song which changes over
long periods of time. As for bird song recordings, they
were collected from individual birds, with minimal inter-
actions or singing from other birds (sometimes faintly in
the background, but below the peak amplitude threshold).
By contrast, killer whale vocalizations reflect their social
interactions [34], and their recordings exhibited nested
clustering that was surprisingly similar to human speech—
conversational speech in particular. We hypothesize that

this difference was observed because killer whale recordings
reflected their social interactions whereas other animal
recordings were solitary. This result suggests that hierarchical
temporal structure is enhanced by social interaction as well as
prosodic variation.

The hypothesized effect of social interaction is further
supported by examination of AF functions for different
types of human vocalizations. Just as nested clustering
dropped off at longer timescales for solitary animal vocaliza-
tions, it also tapered off for monologue TED talks compared
with conversational interviews, regardless of the language
spoken (bottom left figure 3). We can explain this effect of
social interaction by considering the sound of only one side
of a conversation, like overhearing someone talking on the
phone. The sound will have varying periods of silence
during which the other person is speaking. If the temporal
patterning of these periods is non-random and non-periodic,
then it will create and enhance nested clustering in speech
energy. The interview recordings primarily captured the
interviewee’s voice alone, which means that periods of
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Figure 3. Mean A(T) functions for all subcategories of signals analysed, with error bars representing 95% confidence intervals around mean AF variances for the
sample of recordings within each subcategory, at each timescale. Power law AF functions would appear as positively sloped straight lines.

relative silence reflected turn-taking and other dynamics
of coordination between interlocutors. Similarly, pop/R&B
vocal recordings only captured the singer’s side of inter-
actions and coordination with other musicians and
instruments, and their AF functions were strikingly like
those of conversations (top left figure 3). Taken together,
the evidence indicates that interaction dynamics enhance
hierarchical temporal structure on timescales of seconds to
tens of seconds.

Another factor that appeared to increase A(T) at the
longer timescales is musical structure. In general, AF func-
tions were steeper in the longer timescales for musical
recordings compared with speech or animal vocalizations
(top right figure 3). This difference suggests that the hierarch-

ical structure typical of musical compositions—roughly

from phrases to melodies to periods—imparts even more
nested clustering in peak events compared with the effects
of prosody and social interaction. It is worth noting that,
on top of the structure of a musical composition, musical
recordings also capture interactions among musicians, akin
to social interactions. These interactions do not explain steep-
er AF functions for music compared with conversational
interactions.

The effects of musical structure and performance are
further supported by the finding that nested clustering was
most prominent across timescales for classical music record-
ings (middle left figure 3). This finding may stem from the
fact that classical music possesses hierarchical structure in
the melodic and metrical complexity conveyed by different
instruments at different timescales, as compared with popular
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music. In fact, classical music exhibited a power law increase
in A(T) as a function of T (i.e. linear in logarithmic coordi-
nates), which indicates balanced nesting of events across
timescales (for similar results based on the timing of notes,
see [35]). The proportion of variance accounted for, R?, was
computed for each linear regression line fit to each classical
music AF function in log—log coordinates. The mean R* was
98.4% for three orders of magnitude in timescale, which is
strong evidence for power law AF functions.

In contrast with a power law, the temporal structure of
popular music is often dominated by its rhythmic beat struc-
ture. As a result, their AF functions plateaued around the
typical 1-2 beats per second. Note that AF analysis is not
designed to pinpoint beat periods or other temporal rhythms
at precise frequencies. Steady beats result in evenly timed,
alternating periods of relatively few versus many events,
which reduce A(T) variance at timescales near the period of
alternation. Jazz provided an interesting contrast—AF func-
tions for jazz instrumentals closely followed that of
conversations, rather than popular or classical music
(bottom right figure 3). This exception is consistent with the
adage that jazz is like a conversation [36], and may partly
emerge from similar complexities in the temporal structure
of jazz and speech, relative to popular music.

Finally, we applied our method to thunderstorms as a
non-biological reference sound predicted to exhibit nested
clustering in peak events. This prediction is based on the
observation that thunder often occurs in long bouts, with
shorter bursts of sound nested within bouts, and shorter
crackles and booms further nested within bursts [37]. As pre-
dicted, AF analyses yielded nested clustering for three
example thunderstorm recordings (bottom right figure 3).
Intriguingly, their A(T') functions followed a power law func-
tion very similar to that of classical music, and in particular,
symphonies. Thus, it appears that nested clustering of events
can be balanced across timescales as a product of human
composition and performance, and also as a product of
natural interactions across timescales.

3.2. (lassification

Results thus far reveal a taxonomy of complex acoustic signals
based on their patterns of clustering. This taxonomy is defined
by three main dimensions of variation in AF functions: The
degree of overall nesting as expressed by the slope in A(T)
as a function of T, the degree of floor or ceiling effects as
expressed by the amount and direction of inflection in A(T),
and the degree of reduced nesting in middle timescales as
expressed by the amount of middle flattening in A(T). These
three dimensions of variation can be neatly captured by fitting
a third-order polynomial to each A(T') function in logarithmic
coordinates. The linear, quadratic and cubic coefficients
become measures of the slope, inflection and flattening in
A(T). Analyses confirmed that polynomial fits captured the
data, explaining about 99% of the variance for each A(T) func-
tion. However, further analyses showed that three degrees of
freedom were actually more than necessary. Correlations
among coefficients suggested lower dimensionality in the
data, and principal components analysis indicated that the
first two components were sufficient to capture 99% of the var-
iance. These components are largely reflected in the linear and
quadratic coefficients, so for the sake of interpretability,

individual recordings were plotted in figure 4 as points in

two-dimensional coefficient space.

The scatter plot shows that the four main categories of
complex acoustic signals were well-differentiated in terms
of linear and quadratic features of their A(T) functions.
Animal vocalizations had steep and inflected A(T) functions
compared with human vocalizations, and the same was true
for classical music compared with popular music. The two
vocal categories were also separated from the two musical
categories, in that animal and human vocalizations had
lower quadratic coefficients than classical and popular
music, respectively. To quantify separability, we trained
and tested two linear support vector machines using fivefold
cross-validation to classify individual A(T) functions for two
different levels of categorization: a superordinate level of cat-
egorization using the four main categories (40 recordings per
category), and a subordinate level using all 16 subcategories
shown in figure 4 (10 recordings per subcategory).

Classification performance showed that hierarchical tem-
poral structure, as expressed in the shapes of AF functions,
is highly diagnostic of their natural category. Classifiers
were 92% correct on average (25% chance baseline) for the
four superordinate categories, and 63% correct (6.25%
chance) for the 16 subordinate categories. The different cat-
egories of recordings may appear easily discriminable in
figure 2, but classification also requires generalization over
variations within categories that are not shown. Classification
results demonstrate that AF functions serve both to relate and
distinguish different types of vocalizations and musical
performances.

The added value of AF analysis is further bolstered by
comparison with classification performance using two basic
spectral measures, its mean and width (full width at half
maximum), instead of temporal measures like AF linear
and quadratic coefficients. Classifiers were only 55% correct
on average, with animal vocalizations and classical music
being somewhat more discriminable. Spectral mean and
width are simple measures and there may be better spectral
measures for classification. However, with no theoretical
guide in hand, we leave it to future research to explore
other measures. The present results allow us to conclude
that nested clustering of peak events reflects a natural taxon-
omy of complex acoustic signals based on their hierarchical
temporal structures.

4. Discussion

Hierarchical temporal structure is a fundamental property of
speech, language, music and complex animal vocalization
[38], but it has been challenging to measure and relate struc-
tures across different vocal and musical signals. In the present
study, we formulated a method for measuring temporal hier-
archies in complex acoustic signals from different domains.
We found that patterns of event clustering across timescales
could be reduced to points in an AF feature space, which
allowed us to relate signals both within and across domains.
We defined the space in terms of deviations from, and resem-
blance to, a power law relating AF variance and timescale. AF
analysis is closely related to spectral analysis, and researchers
have found similar power laws in spectral analyses of speech
and music [35,39]. A power law in AF variance is indicative
of nested event clustering that is self-similar across the
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Figure 4. Scatter plot with each point representing the polynomial fit to the A(T) function for a given individual recording. The linear and quadratic coefficients
were taken from third-order polynomial fits to individual AF functions in log—log coordinates. The four main categories are represented by colour (blue = animal
vocalization, red = human vocalization, green = classical music and cyan = popular music). Large symbols are placed at the centroid of each subcategory. Power

laws have quadratic coefficients of zero and linear coefficients greater than zero.

range of timescales measured [40], and deviations from a
power law indicate the relative enhancement or suppression
of clustering at particular timescales.

Based on over 200 sound recordings, we found that
enhancement and suppression of clustering revealed a taxon-
omy of sounds grouped by the behavioural and social
processes involved in generating them. The superordinate
categories reflected natural domains—human versus animal
vocalizations, and popular versus classical music. The more
specific subcategories reflected properties of vocal and musi-
cal production and interaction. Organization of the taxonomy
yielded several useful and informative results. In terms of
usefulness, methods for automatic classification of musical
genres, and for distinguishing music from speech, have
been developed for various music and speech applications
[41,42]. The observed taxonomy illustrates how hierarchical
temporal structure may be used to aid in numerous possible
classifications among the categories and subcategories of
sounds analysed [43]. Our method of AF analysis is simple
and automatic, with the caveat that minutes-long recordings
are needed to acquire data for the longer timescales.

Peak events in the amplitude envelope were chosen as
acoustic features whose clustering may reflect the hierarchical
temporal structures of processes that generate music and
complex vocalizations. Peak events were not chosen as per-
ceptual features, although the amplitude envelope is
relevant to auditory perception [44], and the clustering of
peak events may correlate with salient auditory features
like temporal contrasts [45]. But in terms of generative pro-
cesses, analyses identified three main factors that drove up
the degree of nested clustering: prosodic variation, social
interaction and musical structure. These all appear to be
general sources of hierarchical temporal structure in the
dynamics of vocalization and musical performance. Evidence

for their generality is found in how AF functions showed
commonalities among different types of speech and music,
as opposed to the differences useful for classification.

First, prosodic variation had the same kind of effect on
nested clustering regardless of whether it stemmed from
infant-directed speech or synthesized speech. It also
appeared to have a consistent effect on TED talks regardless
of language spoken. This uniformity across languages is
interesting because different languages are hypothesized to
conform to different rhythmic patterns. Spanish, French and
Mandarin are categorized as syllable-timed languages,
whereas English, Arabic and Russian are categorized as
stress-timed languages [46]—intervals between either syllables
or stressed syllables are hypothesized to be roughly constant
in duration. As noted earlier, constancy in timing means a
lack of nested clustering, so one might expect stress timing
and syllable timing to create plateaus in AF functions, like
those associated with the beat structure of popular music.
However, no such plateaus were observed in speech record-
ings, indicating that hypothesized effects of syllable/stress
timing were either absent or not detectable with AF analysis.
Instead, AF functions appeared to reflect a style of presen-
tation common to TED talks, in that speakers of any
language may use a common register in performing a
rehearsed lecture designed to engage and inform. More
work is needed to investigate this interpretation, but we
can conclude that AF functions captured hierarchical tem-
poral structure common to human speech, regardless of the
inventories of phonemes, syllables, words, and sentences
being spoken, and regardless of the cultural context.

Second, we found that interaction dynamics had the same
effect on nested clustering regardless of whether interactions
were among whales, speakers or musicians. Specifically,
nested clustering was greater for conversational interviews
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versus monologue TED talks, for musical interactions versus
solitary vocal tracks, and for killer whales versus humpback
whales. The unifying effect of interaction dynamics was even
more stark and direct in the similarities between jazz instru-
mentals, spoken conversations and killer whale interactions.
These results suggest further investigations into factors like
turn-taking and coordination dynamics [47] that may have
general effects on the dynamics of social interactions. Such
investigations may use AF analysis as well as other comp-
lementary techniques like wavelet coherence analysis [48]
and recurrence quantification analysis [49] that focus on
more specific timing relations.

Third, similar musical compositions had similar AF func-
tions regardless of singer, musical instrument, musical
surface features such as pitch that do not directly relate to
the hierarchical temporal structure of a performance. AF
functions for songs from popular music reflected their similar
structure characterized by a prominent beat, which sup-
pressed nested clustering near the period of the beat. Songs
from classical music reflected common structural complexity
in terms of self-similar nested clustering (e.g. structure of
grouping) across the range of measured timescales. The
degree of self-similar clustering, as measured by the slope
of AF functions, was greatest in symphonies, and intriguingly
similar to the sounds of thunderstorms. On the one hand,
this last similarity may seem most puzzling because sympho-
nies and thunderstorms are so unalike in so many ways.
On the other hand, the power laws observed in these two
signals are akin to another power law known as 1/f noise
that is common throughout nature [50]. It is informative to
consider some hypothesized explanations of 1/f noise that
might shed light on self-similar clustering in classical music
and thunderstorms.

One hypothesized explanation for 1/f noise is that power
law dynamics reflect a balance between predictability and
surprise in temporal structure that is aesthetically pleasing
[51]. In this case, the power law in thunderstorms [52]
would reflect an aspect of nature that humans perceive as
aesthetically pleasing, and reproduce in various artistic
forms [53]. A related hypothesis is that power law structure
and dynamics are ubiquitous in nature, and human systems
have evolved to adapt to these power laws by mirroring
them in various respects [54]. A third hypothesis is that
power laws reflect the tendency of complex systems to be
poised near phase transitions between ordered and disor-
dered states [55]. Several studies have reported evidence
that the connectivity of neural systems is hierarchically
power law structured [56-58], and temporal interactions
across the hierarchy may give rise to power laws in neural
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