

2

compute sweep line schedules in simply-connected envi-

ronments (Section VI);

• we provide solutions for the subproblem of computing

shortest sweep lines and show experimental support for

our conjecture that connected and monotone Line-Clear

in simply-connected environments can be solved in poly-

nomial time.

Not all questions we raise in this paper can be answered

at this time. We restrict our attention to sweep schedules that

are connected and monotone. This means that the area of the

environment that has been cleared from intruders is connected

(in a topological sense) and that every area is cleared only

once (monotone). For other related pursuit-evasion problems

it has been shown that imposing monotonicity can lead to

solutions with higher cost but for others this is not the case

(see Section II). So far we have not investigated how lifting

these requirements would impact the algorithms we developed.

II. RELATED WORK

Our work is connected to a wide range of applications,

such as search, exploration, tracking, and surveillance. Each

of these has a long history in the robotics literature, and is

often connected to graph theory and computational geometry.

A comprehensive review is beyond the scope of this section,

and we provide only pointers to selected relevant contributions.

We focus on visibility-based pursuit-evasion as a natural

predecessor to our work and we also discuss other approaches

for search, pursuit and capture that arrange robots on lines,

as well as graph-based search models. Since our approach is

deterministic, we skip the rich body of literature related to

probabilistic approaches. From a robotics perspective, surveys

such as [6], [7], and [8] provide an excellent overview of the

different variants and assumptions that are made with regard

to search problems. An intereseting recent tutorial was also

presented in [9].

One of the first graph-based pursuit-evasion models, also

know as graph-searching, was introduced by Parsons [10].

In graph-search a number of searchers moves along edges

to catch an omniscient intruder with unbounded speed. The

concept of contamination is introduced to represent the pos-

sibility of the intruder being located in a part of the graph. If

an area is not contaminated it is said to be clear, and the goal

then becomes to turn all contaminated areas into clear areas

using the least number of searchers. A great deal of work has

been done in this domain and an overview of results can be

found in [11] and [12]. Starting from this model, numerous

variations were proposed. Node search, mixed search, and

connected search consider contamination on edges or vertices,

different capture conditions such as being on the same vertex

or on adjacent vertices, or require the cleared parts of the

graph to be connected. The most prominent question for

these graph-based problems usually relates to the number of

searchers needed to clear the graph. This value is commonly

referred to as the search number. The first complexity result

is due to Meggido et al. [13] who proved that finding the

search number for the model from [10] is NP-hard. Another

important question is whether recontamination matters for

optimal solutions. Recontamination occurs when a previously

cleared area becomes again contaminated during the search.

It is then interesting to know whether one can always find a

strategy that does not generate recontamination and only uses

as many searchers as given by the search number of the graph.

Graph-searching models that have this property are called

monotone and Parson’s model was shown to be monotone in

[14]. It is worth noting that connected edge-searching is not

monotone as shown in [15], and connectedness comes at an

increased cost, but this increase is conjectured to be no more

than two searchers [12] for any graph. For trees, however,

requiring connectedness will not lead to more costly strategies.

There is also a rich vein of results connecting global graph

parameters to search numbers of different search variants.

Parameters such as cutwidth and treewidth also play a role

in the monotonicity proofs, culminating into a generalization

of such proofs given in [16]. Graph-based models have found

various applications in robotic systems, such as in [17]–

[20] which used and modified existing edge-searching and

node-searching models. A new graph-based model for robotic

applications, called Graph-Clear, was developed in [2], [3],

[21], [22] in which vertices are cleared and edges are blocked

to prevent recontamination. Therein edges and vertices have

weights representing the number of robots needed to clear

a vertex or prevent recontamination through an edge. The

problem of finding search strategies was shown to NP-hard

on graphs, but for trees with n vertices an O(n2) monotone

algorithm was shown to exist. Interestingly, the weighted

version of edge-searching, introduced in [23], turns out to be

NP-hard even on trees as shown in [24] and not polynomial

time as formerly reported in [23].

In robotics, pursuit-evasion has primarily been studied in the

form of visibility-based pursuit-evasion and with an emphasis

on single searchers with infinite line of sight. In this setting

an intruder is detected when it falls within the unlimited range

sensor of a pursuer in a 2D environment. The field was pio-

neered by Suzuki and Yamashita [25] who considered polyg-

onal environments only, and a sensor model (flashlight) with

unlimited range but incapable of detecting intruders behind

obstacles. They introduced the concept of k-searcher, where k

is the number of sensing beams emitted by the searcher, with

the special case of an ∞-searcher being a searcher with an

omnidirectional sensor with infinite range. As for graphs, a

2D environment also has a search number, i.e., the minimum

number of searchers needed to detect all intruders. Also similar

to graphs, the possibility of an intruder being located in the

environment is often represented by contamination that is

then cleared by searchers. The visibility-based pursuit-evasion

problem for a single ∞-searcher was solved by LaValle et

al. [26]. The problem of finding the minimal number of ∞-

searchers for any polygon is proven to be NP-hard in [27]. The

authors also show that recontamination is sometimes useful in

order to find the optimal solution, i.e., visibility-based pursuit-

evasion with a single searcher is not monotone. An important

result regarding the required capability to search environments

was presented in [28] and it states that a searcher that can

only detect gaps, i.e., discontinuities in the environment, and

move towards these gaps is sufficiently capable to clear any

4

Definition 2 (Moving Sweep Line). A moving sweep line is

a function l : R+ → S(n) with l(t) = [x1(t), . . . , xn(t)] such

that xi(t) is continuous in t ∀i ∈ {1, . . . , n}.

Definition 3 (Sweep Schedule). A sweep schedule is a function

τ : [0, Tf]→ P(S), where P(S) is the powerset of all sweep

lines with any number of segments.

Note that the specific value of Tf (final time) in the

above definition is immaterial to the remaining discussion. The

definition of sweep schedules above is rather unconstrained as

it can map into any set of sweep lines. For example, a set of

k moving sweep lines l1(t), l2(t), . . . , lk(t) defines the sweep

schedule τ(t) = l1(t) ∪ . . . ∪ lk(t). But we can also add and

remove moving sweep lines to a sweep schedule. Constraints

on sweep schedules will arise later through the requirement

that they clear an environment, e.g., continuity is necessary

to avoid discrete jumps that prevent clearing. For this we will

have to define contamination and how it is cleared by a sweep

schedule. Intuitively a sweep schedule should be thought of

as maintaining and expanding a cleared area with sweep lines,

controlling their addition, motion, splitting, and removal (as

shown in Fig. 3).

e3

e13

e3

e8
e9

e10

e13

e14

e3

e8
e9

e10

e13

e14

R(t1)
R(t2)

e1

e16

R(t3)
R(t4)

1) 2)

C(t1)

3) 4)

Fig. 3. Four snapshots of a sweep schedule at times t1, t2, t3, and t4 showing
how a sweep line (dashed line) moves forward, extends the cleared area R(t),
is replaced by a sweep line with a midpoint at time t3 which then splits on
e9 and is replaced by two sweep lines between e9 and e3 and e9 and e13
which can now move independently. The boundary is drawn with thick lines.

In order to relate a sweep schedule to contamination we

define coverage sets for sweep lines which follow from the

interpretation of sweep lines as chains of line segments.

Definition 4 (Coverage sets). Let l = [x1, . . . , xn] be a sweep

line. Its coverage set P̄ (l) ⊂ E is the part of E covered by its

n − 1 segments. If S = {l1, . . . , lk} is a finite set of sweep

lines, then its coverage set is P̄ (S) =
⋃k

i=1 P̄ (li).

Referring to Figure 2, P̄ (l1) is given by its five segments,

whereas P̄ ({l1, l2}) is given by all the segments shown in

the figure. Moreover, as τ(t) is a set of sweep lines at

time t (definition 3), it is possible to consider P̄ (τ(t)), i.e.,

the coverage set of the sweep lines defined by the sweeping

schedule at time t.)

We can now define contamination and disallow it from

crossing the coverage set of a sweep schedule.

Definition 5 (Clear and contaminated points). For each time t

a point in E is either clear or contaminated. R(t) is the set of

all clear points at time t and C(t) is the set of contaminated

points.

A point p ∈ E is contaminated if a target may be located

at p. Conversely, p ∈ E is cleared if it is known that no target

is located at p. Consistent with the hypothesis that targets

are omniscient and travel at unbounded speeds, as soon as

a chance of recontamination arises, targets immediately take

action and previously cleared points can become recontam-

inated. In other words the boundary of the set of cleared

points must be continually guarded with sweep lines to prevent

recontamination. The following definitions formalize this idea.

Definition 6 (Contamination path). Let x be a point in E
and τ(t) the set of sweep lines at time t for schedule τ . A

contamination path for x at time t is a path3 between x and

a point y ∈ C(t) that does not intersect P̄ (τ(t)).

A contamination path for a point models the existence of a

path between the point and the contaminated region that does

not go through the coverage set of a sweep schedule, i.e., the

area guarded robots. As common in the literature, if there is

a contamination path, then the point becomes contaminated

itself. Analogously, a point that is in the coverage set is

considered clear until it is recontaminated. Therefore, as

illustrated in figure 3, the boundary between R(t) and C(t)
is given by P̄ (S) where S is the set of sweep lines at time t.

The next definition formalizes this.

Definition 7 (Clearing and recontamination). A point x is

clear at time t if x ∈ P̄ (τ(t)). A point x is contaminated

at time t if there is a contamination path at time t. A point x

is recontaminated if it is clear at time t and contaminated at

time t′ > t.

The purpose of sweep lines is to represent the ability of a

team of robots to guard a region of space with one or more

robots, such that no intruder can cross without being detected.

The cost of a sweep line then represents the number of robots

that a particular sweep line requires.

Definition 8 (Cost of Sweep Lines). Let l be a sweep line.

Its cost c(l) is a non-decreasing integer function of its length,

where the length of a sweep line is the sum of the lengths of

its segments. That is to say that if l1 is a sweep line longer

than l2, then c(l1) ≥ c(l2). For a finite set of sweeplines S, its

cost is the sum of the costs of its individual sweeplines. For a

sweep schedule τ define the cost c(τ) = maxt∈[0,T]{c(τ(t))}.

3A path between two points x1 and x2 is defined as a continuous function
f : [0, 1] → E with f(0) = x1 and f(1) = x2.

5

The cost c(τ) represents the minimum number of robots

needed to ensure that every sweep line in the sweep schedule

can be covered with sensors. The precise number depends

on the sensors used to cover the sweep line and this generic

formulation allows to tackle the problem without committing

to a specific sensor type. Our only assumption is that the cost

is a non-decreasing function of the sweep line length. This

formalizes the intuition that as a sweep line gets longer one

needs at best the same, but potentially more, robots to cover

it.

The Line-Clear problem asks for sweep schedules that clear

an initially contaminated E at the lowest possible cost. We

also introduce two additional properties of sweep schedules,

namely connectedness and monotonicity, and allow variants of

the Line-Clear problem that are restricted to sweep schedules

with these properties.

Definition 9 (Connected and monotone sweep schedules). Let

τ be a sweep schedule that clears E . If R(t) is a connected set

∀t ∈ [0, Tf], then τ is connected. If t ≤ t′ ⇒ R(t) ⊆ R(t′),
then τ is monotone.

Definition 10 (The Line-Clear problem). The Line-Clear

problem is to find an optimal sweep schedule

τopt := argmin
τ

c(τ).

such that R(Tf) = E . The connected Line-Clear problem

additionally requires τopt to be connected, and its optimal

solution is indicated as τcon,opt. We define the Line-Clear

number of E lc(E) := c(τopt) and the connected Line-Clear

number as clc(E) := c(τcon,opt).

IV. COMPUTATIONAL COMPLEXITY

We show that Line-Clear is NP-hard by establishing a cor-

respondence between Line-Clear and edge-searching. Edge-

searching is one of the more researched pursuit-evasion prob-

lems on graphs [10] and is defined as follows. Given a graph

G, an intruder moves along its edges while a team of searchers

tries to capture it. Searchers can perform three operations: 1)

position themselves on a vertex, 2) move along an edge, and

3) move away from a vertex. The intruder is captured when

it visits a vertex where a searcher is positioned, or when it

is located on an edge along which a searcher is moving. The

intruder is assumed to be omniscient whereas searchers just

know the structure of the graph G. The goal of the searchers

is to determine a strategy S, i.e., a sequence of the three

operations described above, that guarantees capture of the

intruder. This problem can also be modeled with contamination

that is cleared by a strategy, with contamination residing in the

edges of the graph. The search number of a graph, s(G), is the

minimum number of searchers required to capture an intruder

in G. For a given integer K and graph G, determining whether

s(G) ≤ K was shown to be NP-complete [13], [14]. It is also

known that the problem is NP-complete even if one restricts

G to be a planar graph with vertex degree at most three [37].

Let G3 be such a planar graph with maximum vertex degree at

most three. For this graph we will now construct an instance

of the Line-Clear problem and relate the Line-Clear number

lc(E) to s(G3).
For a given G3 we construct the associated Line-Clear

environment E3 by combining three different elementary com-

ponents called intersection, corridor, and dead-end. Every

vertex of degree 3 is associated to an intersection in E3, every

vertex of degree 2 to a corridor, and every vertex of degree 1

to a dead-end. These three elementary components are defined

as shown in Fig. 4. These components rely on two parameters,

d and l, that are constrained as follows. For a sweep line l1 of

length d going through a corridor we require that c(l1) = 1.

This ensures that corridors are narrow enough to be cleared

at cost 1. For a sweep line l2 of length l, we require that

c(l2) > s(G3). This ensures sufficient separation between

the vertices and their areas A(v) shown in Figure 4, since

any sweep line intersecting A(v1) and A(v2) for two vertices

v1 and v2 would have cost larger than s(G3). Now, given a

planar embedding of G3 we can replace every vertex with

its associated component and where necessary extend their

length beyond l. For every edge between two vertices in G3

we now have a corridor in E3 with length at least 2 · l. Given

an edge e = (v, v′) we write A(e) ⊂ E3 for the area of the

corridor and A(v) ⊂ E3 for the area of the vertex v between

corridors, exactly as shown in Fig. 4. It is straightforward to

verify that from a planar embedding of G3 we can use the

above components to construct E3 without intersections. In

such case we say that E3 is the environment associated to G3.

ld l l

d
A(v)

A(e1) A(e2)

A(e3) A(v)

A(e1) A(e2)

A(v)

A(e1)

corridor dead-endintersection

d

l

Fig. 4. The three components for the construction of E3 from G3. Areas
associated to edges are marked in grey and areas associated to vertices are
marked in white. For simplicity we show straight corridors but turns are
allowed given that their width does not exceed d.

The following theorem formalizes the equivalence between

a sweeping schedule in E3 and a strategy in G3. Its proof,

clarifying the remaining details in the construction outlined

above, is given in the appendix.

Theorem 1. Let G3 be a planar graph whose vertex degree

is at most 3 and let E3 be its associated environment. Then

s(G3) = lc(E3).

The above theorem immediately leads to the following

corollary considering how an instance of edge-searching on

G3 can be reduced to an instance of Line-Clear on E3.

Corollary 1. Recalling that edge-searching is NP-complete

on graphs of type G3 the NP-hardness of Line-Clear follows.

Note that the converse, a reduction of Line-Clear to in-

stances of edge-searching, is far more challenging. Attempts

at using edge-searching algorithms to develop algorithms for

Line-Clear, although not described here, have proven to be thus

far unproductive. Why this is the case will become clearer

6

as we proceed to solve the Line-Clear problem in a more

restricted setting in the next sections.

V. REDUCTION TO A COMBINATORIAL PROBLEM

Having established the NP-hardness of the Line-Clear prob-

lem for the general case of multiply-connected environments,

we switch to considering the computation of monotone sweep

schedules for the connected Line-Clear problem for the sim-

pler case of simply-connected environments, i.e., environments

without holes and one exterior polygon describing the bound-

ary. The key insight to solve this special case is in observing

that one only needs to keep track of the sequence in which

polygon edges on the boundary of the environment are cleared.

This allows us to ignore the continuous nature of the original

problem and focus on a simpler set of critical moments that

determine the cost of sweep schedules. To demonstrate this we

will first have to introduce the concept of choice sets to keep

track of the remaining contaminated edges on the boundary of

the environment. We then show that any sweep schedule has

to satisfy lower bounds that are expressed in terms of choice

sets. This shows that choice sets can capture the cost relevant

structure of the problem. Consequently, the remaining sections

will be focused around choice sets.

Let Es be a simply-connected environment for the connected

Line-Clear problem and let {v1, . . . , vn} be the set of vertices

defining its outer polygonal boundary, with edges written ei =
[vi, vi+1] (with en = [vn, v1]). We refer to an index i as an

obstacle index. For notational convenience, indices for vertices

and edges are modulo n, i.e., we identify n+ 1 with 1, i+ n

with i, and so on. We call an edge ei cleared if any point on

the segment [vi, vi+1] is cleared.

Now, consider the progression of a sweep schedule that

expands a connected R(t) without recontamination, as shown

in Figure 5 for some time t. Note that each connected

contaminated component (two such components are shown in

Figure 5) has on its boundary a sequence of contaminated

edges with consecutive indices. A sweep schedule that clears

Es will eventually have to choose another contaminated edge to

be cleared when expanding R(t). In Figure 5 this choice could

be an edge from either connected component, i.e., an edge ei
with index i ∈ {4, 5, 6, 7} or i ∈ {11, 12}. The following

definition of choice sets generalizes this observation to any

sweep schedule at any time t.

Definition 11 (Choice Set). For any k = 1, . . . , n and i =
1, . . . , n let

T i
k := {i, i+ 1, . . . , i+ k − 1} ⊆ {1, . . . , n}

and call it a choice set. For k = 0 let T i
0 = T0 = ∅ and call

them empty choice set.

In essence T i
k is a sequence of k integers starting at i and

wrapping around n. For example, for n = 6, i = 5, k = 4,

we obtain T i
k = {5, 6, 1, 2}. The important part is that we can

now associate any connected contaminated component of Es
at some time t with a choice set T i

k. For convenience, we write

C(T i
k) for the connected contaminated component represented

by T i
k, as shown in Figure 5. Note that T i

k can represent

connected contaminated components of slightly varying shapes

as long as it contains all the contaminated edges, a sweep line

with endpoints on ei−1 and ei+k and potentially a subset of

the cleared edges ei−1 and ei+k.

Let T (t) be all the choice sets associated with the connected

components of C(t). Without loss of generality let exactly one

edge be cleared at each time t1 < t2 < . . . < tn. Conse-

quently, the different sets of choice sets can be enumerated

as T (t0) = {T 1
n}, T (t1), . . . , T (tn) = {T0}, starting at t0

with all edges contaminated and ending at tn with all edges

cleared. Note that this is uniquely determined by the sequence

in which edges are cleared which we shall write as o1, . . . , on,

with each oj ∈ {1, . . . , n} being the index for edge eoj .

e3

e8
e9

e10

e13

e14
R(t)

C(T 4
4)

C(T 11
2)

T (t) = {T 4
4 , T

11
2 }

e1

e2

e4

e5

e6

e7

e11

e12

e15

e16
e17

e18

Fig. 5. An illustration of how choice sets capture the progress made by the
sweep schedule with each choice set representing a connected contaminated
area. The grey part is cleared and the white part inside the polygon is
contaminated.

Our goal is now to show that all sweep schedules that make

the same choices for o1, . . . , on (and therefore have the same

choices sets) also have the same lower bound for their cost. We

do this by expressing a lower bound for the sweep schedule

in terms of T (t1), . . . , T (tn−1).
Let d(·, ·) be the shortest path in Es between two points or

edges4. Since Es is bounded by a polygon, there also exists

a sweep line between these two points or edges with length

d(·, ·). For a choice set T i
k we define (recall definition 8)

b(T i
k) := c(d(ei−1, ei+k)).

b(T i
k) is called the blocking cost for T i

k, since it reflects

the minimal costs for blocking recontamination from entering

R(t) when T i
k ∈ T (t).

Now, as the sweep schedule progresses it will expand R(t)
until it clears a first edge from T i

k. Figure 6 illustrates this

process. Let eo be this first edge with o ∈ T i
k. Clearing eo

requires moving the sweep line that bounds C(T i
k) onwards

toward eo at some additional cost. A lower bound for this

cost is obtained by considering the lowest cost for two sweep

4This path can be computed efficiently combining ideas from [38, Chap-
ter 6.2.4] with [39] (see Section VII.)

7

eoj

ei−1

ei+k

C(T i
k)

R

eoj+1

1) 2)

3) 4)

Fig. 6. An illustration of a sweep line from part 1) splitting in part 2) and
moving to the lowest blocking cost in part 3). Part 4) shows another split that
occurs at no additional cost for which the left side has a zero length sweep
line, clearing eoj+1. Cleared edges are grey.

lines, one between ei−1 and eo and one between ei+k and eo,

which have the same endpoint on eo. We call this lower bound

the cost for choosing o out of T i
k and define it as:

c(o|T i
k) := min

p∈eo
{c(d(p, ei−1)) + c(d(p, ei+k))} .

It is now straightforward to show that at any point in time

t in between tj < t < tj+1 we have

c(τ(t)) ≥
∑

T∈T (t)

b(T)

and that at time tj when clearing edge eoj with oj ∈ T i
k ∈

T (tj−1) we have

c(τ(tj)) ≥ c(oj |T
i
k) +

∑

T i
k
∈T (tj−1)\T i

k

b(T).

In addition to providing a lower bound the above also gives

us a construction for a minimal cost sweep schedule with fixed

choices for the sequence o1, . . . , on. For this it suffices to

observe that there exist blocking sweep lines with cost b(T) for

every choice set T , that there exist splitting sweep lines with

cost c(o|T i
k), and that one can move between these (for this

one requires simply-connectedness). In this sense the lower

bounds are tight, i.e., achievable with a sweep schedule.

The above considerations reduce the problem of comput-

ing a sweep schedule to the problem of determining which

sequence o1, . . . , on leads to a solution for the Line-Clear

problem, since for any sequence we can construct its minimal

cost sweep schedule. Clearly, a brute force approach testing all

n! possible sequences is not practical and in the next section

we will demonstrate how to use choice sets for a more efficient

solution.

VI. FINDING OPTIMAL SWEEP SCHEDULES FOR

SIMPLY-CONNECTED ENVIRONMENTS

In this section we show how to compute sequences

o1, . . . , on that lead to optimal cost sweep schedules and hence

solve the connected and monotone Line-Clear problem. We

first develop a representation of the search space for these

sequences, and then turn to efficiently determining their cost.

The basic idea is to use the choice sets from Section V to

build a sequence o1, o2, . . . , on recursively.

The initial choice set for an environment with n vertices

is {1, . . . , n}. From this set we choose some o1 as the

first obstacle index. The next choice, for o2, will lead to a

separation of the remaining choices {1, . . . , n} \ {o1, o2} into

two sets, the right side and left side. On the left side are all

indices o such that o1 < o < o2 whereas on the right side

are all indices o such that o2 < o < o1.5 These sides are

represented by choice sets and their connected contaminated

components. There will be one choice set in T (t2) if o1
and o2 are consecutive and two if they are not. In one of

these connected components we can make a further choice of

obstacle index for o3 and so on. Figure 7 illustrates this idea.

On the left subfigure, a line is setup between obstacles e3 and

e8. Therefore two contaminated regions are placed to the left

and the right of the initial line. The edges on the boundary

of the left area are given by the choice set T 4
4 , whereas the

edges of the right side are given by T 9
12. On the right subfigure,

the initial lines are setup along edges e3 and e4 and there is

therefore just one contaminated area whose edges are given

by the choice set T 5
16.

C(T 4
4) R(t)

left side

right side

R(t)

right side

2)

C(T 5
16)

C(T 9
12)

e5

e6

e7

e10
e11

e12
e13

e14

e15

e16e17

e2

e1

e18

e4

e3

e8
e9

e5

e6

e7

e10
e11

e12
e13

e14

e15

e16e17

e2

e1

e18

e4

e3

e8
e9

1)

Fig. 7. An illustration of the first two choices, o1 and o2. On the left we have
o1 = 3 and o2 = 8 resulting in a cleared line on the shortest path between e3
and e8 and T (t2) = {T 4

4
, T 9

12
}. On the right a consecutive choice of o1 = 3

and o2 = 4 leads to an empty choice set on the left side and T (t2) = {T 5
16
}

on the right side.

The key to an efficient solution is to exploit the recursive

structure of choice sets that emerges because of these splits

into left and right sides. The next subsections characterize this

structure and provide the associated algorithms to efficiently

solve subproblems that arise.

A. Obstacle Sequences in Choice Sets

For a given choice set T i
k and its associated contaminated

area C(T i
k) we are now going to construct a “local” sequence

of obstacle indices only from T i
k which corresponds to a

“local” sweep schedule that clears C(T i
k). Let O(T i

k) be the

set of all sequences of obstacle indices from T i
k. Among these

k! sequences we would like to determine the best one, i.e., the

one leading to the lowest cost sweep schedule. To this end,

we define the cost of an obstacle index sequence based on the

blocking and clearing costs of choice sets. Let O ∈ O(T i
k)

5Recall that we consider a circular ordering.

8

be a shorthand for one sequence, written O = o1, o2, . . . , ok.

As mentioned earlier the choice for o1 splits the contaminated

region C(T i
k) into (at most) two regions, called the right side

and the left side. Both of these are associated with choice

sets that are subsets of T i
k. These must be cleared as well

by defining their own sweep schedules with associated costs.

This continues until all indices are chosen. The cost for the

s-th choice, i.e., for os, is determined as follows. Write T s

for the choice set out of which we choose os. Moreover, let

T r,s and T l,s be the left and right choice sets into which T s

will split when clearing eos . The cost at step s of O, written

cs(O), is then defined as follows.

Definition 12 (Sequence Costs). Let O ∈ O(T i
k) be a

sequence of obstacle indices. For s = 0, . . . , k we recursively

define the sequence costs as follows:

c0(O) := 0 and b0(O) := b(T i
k)

cs(O) := bs−1(O)− b(T s) + c(os|T
s) s ≥ 1

bs(O) := bs−1(O)− b(T s) + b(T l,s) + b(T r,s) s ≥ 1

The rationale behind the definition is as follows. The term

b0(O) is the initial blocking cost to prevent recontamination

from C(T i
k). The term bs(O) describes the cost to prevent

recontamination after having executed step s and cleared eos .

It is computed from the previous blocking cost at s − 1 by

removing b(T s), since T s is split, and adding the costs for

the resulting left b(T l,s) and right side b(T r,s). The total cost

to execute s is then the cost to prevent recontamination from

the previous step s−1 except for the b(T s) robots blocking T s

which can be reused for clearing eos at the cost of c(os|T
s)

robots. The sequence is seeded at c0(O) = 0 for convenience.

The steps above can also be seen in the context of Figure 6

with subfigure 1 showing b0(O), subfigure 2 showing c1(O),
and subfigure 3 showing the updated b1(O). Also note that

subfigure 4 shows a particular case in which there is no notice-

able movement or change in cost when clearing eoj+1, since

the left side is empty and b(T s) = b(T r,s) = c(oj + 1|T s),
effectively clearing eoj+1 at no additional cost.

We next introduce the notion of critical steps that will aid

us in the construction of a low cost sequence O.

Definition 13 (Critical Step). For a given sequence O of length

k and for all s ≤ k, define cmax
s (O) := maxj≤s{cj(O)}. A

critical step of O is a step s that satisfies:

cmax
s′ (O) ≤ cmax

s (O)⇒ bs′(O) ≥ bs(O) (1)

for all steps s′ ∈ {1, . . . , k}.

In other words, a critical step is a step that has the lowest

blocking cost bs amongst all other steps that have the same or

lower total cost to reach, given by cmax
s . Conversely, a critical

step s has the lowest total cost cmax
s with which we can reach

a blocking cost of bs and is hence the cheapest way to reach

this blocking cost. Note that to reach step s all previous steps

need to be executed, hence the definition of cmax. Let us write

S(O) := {s1, . . . , sk′} for all critical steps of O in order. Note

that the first critical step is always s1 = 0 with b0(O) and

c0 = 0 and the last critical step is always sk′ = |T i
k| = k

with bk(O) = 0 with the highest total cost to reach. For each

critical step sj , j = 1, . . . , k′ we now define:

ρsj (O) = cmax
sj

(O)− bsj−1
(O).

For all non-critical steps s ∈ (sj−1, sj) ⊂ N we define

ρs(O) := ρsj (O). The following lemma establishes some facts

about sequences of critical steps that will be useful later on.

Lemma 1. The following statements hold:

1) bsj (O) is a decreasing sequence with j = 1, . . . , k′;
2) ρs(O) is a non-decreasing sequence with s = 1, . . . , k;

3) cmax
sj

(O) = maxs∈(sj−1,sj] cs(O).

Proof: See appendix.

We now turn to the problem of choosing the best index out

of T i
k. Write o ∈ T i

k for the chosen obstacle index for splitting

T i
k into T l and T r. Suppose that we are already given fixed

sequences to clear C(T l), written as Ol ∈ O(T l), and C(T r),
written as Or ∈ O(T r). Algorithm 1 shows how to construct

a sequence o1, . . . , ok = Oa ∈ O(T i
k) given fixed choices

for o1 = o, Ol, and Or. Therein the obstacle indices on the

left and right sides are simply ordered with their respective ρs
increasing and then added to Oa in that order (line 4-8).

Algorithm 1 Min Obstacle Sequence(i, k, o, Ol, Or)
1: o1 ← o

2: sl ← 1, sr ← 1, s← 2.

3: while s ≤ k do

4: if ρsl(O
l) < ρsr (O

r) then

5: os ← Or
sl

, sl ← sl + 1
6: else

7: os ← Or
sr , sr ← sr + 1

8: end if

9: s← s+ 1
10: end while

11: return {o1, . . . , ok}

The following theorem proves that Oa has not only the

lowest possible cost of all sequences starting at o and having

Ol and Or as subsequences, but also that no other sequence

can have an intermediate step that is better (i.e., a step with a

lower block cost that is reached at lower total cost). In other

words, Oa is the best possible combination of Ol and Or.

Theorem 2. Let O ∈ O(T i
k) with o1 = o and let Ol ∈ O(T l)

and Or ∈ O(T r) be the obstacle sequences from the left and

right choice set that are subsequences of O. Now, let Oa ∈
O(T i

k) be the obstacle sequence constructed by Alg. 1 with

input k, i, o, Ol, Or. Then for all critical steps s ∈ S(O), s′ ∈
S(Oa):

cmax
s (O) < cmax

s′ (Oa) =⇒ bs(O) > bs′(O
a).

Proof: See Appendix.

The next lemma is concerned with sequences O ∈ O(T i
k)

that will never be useful subsequences for a larger sequence.

We call these inferior sequences, defined as follows:

9

Definition 14 (Inferior Obstacle Sequence). A sequence O ∈
O(T i

k) is called inferior if ∃Õ ∈ O(T i
k) s.t.:

bs(O) ≤ bs′(Õ) =⇒ ρs(O) ≥ ρs′(Õ)

∧ cmax
s (O) ≥ cmax

s′ (Õ)

It follows directly from the definition and substitutions

in the equations in the proof of Theorem 2 that inferior

sequences, when considered as a left or right subsequence (Ol

or Or), cannot yield a non-inferior larger sequence Oa. As a

consequence, in a recursive construction, we do not have to

include inferior sequences when computing optimal sequences.

Algorithm 2 shows how to test whether an obstacle sequence is

inferior to another. It simply scans through the sequences and

tests if O is inferior by applying Definition 14, i.e., it returns

false if it finds a step that has a better or equal blocking cost

reachable at lower total cost (returning false on line 6) or a

lower blocking cost reached at the same total cost (returning

false on line 13). If it cannot find such a step, then O is inferior.

Algorithm 2 is inferior(O, Õ)

1: bmin ← b1(O), b̃min ← b1(Õ)
2: cmax ← c1(O), c̃max ← c1(Õ)
3: while j ≤ k AND s ≤ k do

4: if cmax < c̃max then

5: if bmin ≤ b̃min then

6: return false

7: end if

8: cmax ← max{cmax, cs(Õ)}
9: bmin ← min{bmin, bs(O)}

10: s← s+ 1
11: else

12: if cmax = c̃max AND bmin < b̃min then

13: return false

14: end if

15: c̃max ← max{c̃max, cj(Õ)}
16: b̃min ← min{b̃min, bj(Õ)}
17: j ← j + 1
18: end if

19: end while

20: return true

Algorithm 3 shows how to exploit this for finding all obsta-

cle sequences for a choice set T i
k and a choice o ∈ T i

k adding

the resulting obstacle sequences to a set Õ(T i
k) ⊂ O(T

i
k),

unless it is inferior. This requires that previously all relevant

sequences on the left and right sides (Õ(T l) and Õ(T r))
have already been constructed. Calling Algorithm 3 for every

choice o ∈ T i
k would build up the complete Õ(T i

k), an

auxiliary structure that collects all relevant obstacle sequences

for T i
k. The set Õ(T i

k) contains at most one sequence for every

combination of sequences from the left and right sides due

to Theorem 2 (instead of all possible
(

k−1
|Or|

)

combinations)

and only non-inferior sequences, which makes it significantly

smaller than the set of all sequences O(T i
k).

Algorithm 3 can be applied to all choice sets with the outer

loop going from k = 1 to k = n, an inner loop going from

i = 1 to i = n, and an innermost loop with all o ∈ T i
k as shown

Algorithm 3 Combine Obstacle Sequences(i, k, o)

1: T l ← T i+1
o−i , T r ← T o+1

i+k−o−1

2: o1 ← o

3: for all (Ol, Or) ∈ Õ(T l)× Õ(T r) do

4: O ←Min Obstacle Sequence(i, k, o, Ol, Or)
5: inferior ← false

6: for all Õ ∈ Õ(T i
k) do

7: if is inferior(O, Õ) then

8: inferior → true, break

9: else if is inferior(Õ, O) then

10: Õ(T i
k)← Õ(T

i
k) \ {Õ}

11: end if

12: end for

13: if ¬inferior then

14: Õ(T i
k)← Õ(T

i
k) ∪ {O}

15: end if

16: end for

17: return

in Algorithm 4. This ensures that all necessary sequences on

every possible left and right side are built before they are

required. Finally, the best obstacle sequence is selected among

all choice sets with k = n. Theorem 2 and the fact that inferior

sequences cannot construct optimal sequences guarantee that

Algorithm 4 will find the optimal obstacle sequence. The

corresponding sweep schedule is hence an optimal sweep

schedule and a solution for the connected Line-Clear problem

in simply-connected environments.

Algorithm 4 Connected Line Clear Number(Es)

1: Define b(·) and c(·|·) using Es
2: for all k = 1, . . . , n do

3: for all i = 1, . . . , n do

4: for all o ∈ T i
k do

5: Combine Obstacle Sequences(i, k, o)
6: end for

7: end for

8: end for

9: min←∞
10: for all i = 1, . . . , n do

11: Omin ← argminO∈Õ(T i
n)
{cmax

n (O)}
12: if cmax

n (Omin) < min then

13: min← cmax
n (Omin)

14: end if

15: end for

16: return min

B. Complexity

The complexity of Algorithm 4 is difficult to determine.

The non-trivial parts are the additions to the sets Õ and

the cartesian product of all sequences on the left and right

(Algorithm 3 line 3). The result from Theorem 2 allows to

ignore all combinations of left and right subsequence but one.

Yet this can still lead to exponential growth of Õ(T i
k) with

increasing k due to the cartesian product in line 3 of Algorithm

3.

10

The key questions remaining is how much further the

consideration of only non-inferior sequences reduces the com-

plexity or, in other words, how many sequences in O(T i
k)

can be non-inferior and hence become part of Õ(T i
k). From

Definition 14 it follows that if for all Õ there is some s, s′ so

that:

bs(O) ≤ bs′(Õ) ∧ (ρs(O) ≥ ρs′(Õ) ∨ cmax
s (O) ≥ cmax

s′ (Õ))

then O is non-inferior. Hence O has to have at least one

step that has a low blocking cost that cannot be achieved

by another obstacle sequence either earlier in the ρ-ordering

or with lower cost cmax. If all the term above are equal we

could consider one of the two sequence as a duplicate and

remove it, but this does not make a significant difference.

The problem is that the criterion above may still allow us

to generate an exponential number of sequences by setting

appropriate values for ρ, cmax, b in which each sequence has

some advantage over another. Given these values the next

open question is whether one can construct an environment

Es. If it is, then our algorithm has exponential complexity

in n and we would conjecture that connected Line-Clear

in simply-connected environments is NP-hard. If not, then

our algorithm has polynomial time complexity. Discussing

how one may generate an exponential number of appropriate

values for ρ, cmax, b that is required to generate an exponential

number of non-inferior sequences and the construction of a

corresponding environment is beyond the scope of this paper

and an interesting question for further work. In practice,

however, one is unlikely to encounter such an environment. A

single narrow section with a low blocking cost b will already

wipe out many alternative obstacle sequences. In practice, we

hence expect polynomial runtime and we provide some support

for this conjecture in the next section.

In the next section we also discuss further practical im-

provements, an implementation for finding shortest block and

split lines, and experiments on random environments that shed

some light on the number of non-inferior sequences and their

growth in larger environments. In addition we compare two

simpler heuristic variants to our algorithm with respect to their

computation time and resulting cost of sweep schedules.

VII. IMPLEMENTATION AND EXPERIMENTS

A. Implementation Details

To solve the connected Line-Clear problem in simply-

connected environments we need to compute c(o|T i
k) and

b(T i
k). These two costs are the connection between the geome-

try of the environment and the combinatorial perspective of the

problem established in Section V. Accordingly, we combine

ideas from shortest-path roadmaps with edge to edge visibility

considered. For our purposes two edges are visible if there

exists a straight line l between two points on either edge that

is a subset of l ⊂ E . The key observation exploited in [39]

is that two edges are visible either when one of the edges is

visible from an endpoint of the other or when another vertex,

which is not part of either edge, sees both edges (illustrated

in Fig. 8). It hence suffices to look at the visibility polygons

at every vertex since two edges will have a line going through

some vertex.

To compute the shortest path between any two obstacle

edges in our polygon environment classic algorithms like [40]

can be used on the full-visibility graph augmented with edges

towards all reflex vertices (see also [38, Chapter 6.2.4]). Within

this graph there are two types of vertices, those corresponding

to a vertex of an obstacle edge and those corresponding to the

obstacle edge. To search this structure one can use A* with

edge weights corresponding to the distance between reflexive

vertices and reflexive vertices to obstacle edges [41]. A valid

path starts at an obstacle edge, possibly continues across

multiple reflexive vertices, and ends at an obstacle edge. This

determines all b(T i
k) in O(nE), with E being the number

of edges in the roadmap, by computing the shortest edge-edge

path for each edge to all others (note that there are n2 different

T i
k).

To compute c(o|T i
k) we leverage the computation above by

looking up the shortest path between edges ei−1 and eo as well

as ei+k and eo. Let [a1, b1] and [a2, b2] be the last line segment

of these paths which have endpoints b1 and b2 on eo. The point

p on eo that realizes c(o|T i
k) has the same angle for [p, xr] and

[p, xl], as shown in Fig. 9. Now, the previous xr and xl may

not anymore be the endpoints of the shortest path from p to

the respective obstacle edges, if the line segment ’peeled’ off

the reflexive vertex, as shown in Fig. 9 for xr. The number of

times this can happen is bounded by the number of reflexive

vertices visible from the obstacle edge eo.

Fig. 8. Thick lines show obstacle edges. Any visibility line between two edges
that is not at an endpoint, shown as a dashed line, can be moved in either
direction until it touches a vertex of another edge. Hence visibility between
any two edges implies a shortest visibility line at a vertex.

B. Polynomial Growth Experiments

The primary concern for the complexity of Algorithm 4 is

the growth of |Õ(T i
k)|, in particular that it should not grow

exponentially. To experimentally estimate its growth trend we

implemented the algorithms and tested them with random

polygons of varying sizes ranging from n = 5 to n = 400
vertices. Results are shown in Fig. 10 and hint that the number

of obstacle sequences that have to be considered grows at a

similar rate than the number of choice sets (which is exactly

n2).

Overall this suggests that obtaining O(n3) complexity,

under reasonable conditions, is within reach, since Alg. 3

can potentially be improved to require O(n) steps. Note that

the related Graph-Clear problem is O(n2) on trees (which

correspond to simply-connected environments) and in a sense

11

ei+k
ei−1

eo

αα

a) b)

xl

xr

xr

xl

Fig. 9. This figure illustrates how to compute the best split point on an
obstacle edge eo for c(o|T i

k
). In part a) the shortest lines between eo and the

two other obstacle edges are shown as dashed lines. The best split point for
the final segment of these two lines is where the angle to the endpoints, xr

and xl, is identical, shown as α. Now, the new shortest line from this point
may not go through these endpoints in which case the procedure has to be
repeated for these endpoints.

the Line-Clear problem has to deal with all possible trees that

can be embedded into Es (with the choices at each choice set

defining the structure of the tree).

l
l

l

l

l

l
l

l
l

l

l

l
l

l
l

l
l

0 100 200 300 400

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

Number of vertices

N
u

m
b

e
r

o
f

s
e

q
u

e
n

c
e

s
 p

e
r

c
h

o
ic

e
 s

e
t

llllllllll

l

l

l

l

l

l

l

0
5

0
0

0
1

5
0

0
0

2
5

0
0

0
3

5
0

0
0

N
u

m
b

e
r

o
f

s
e

q
u

e
n

c
e

s
 i
n

 t
o

ta
l

Number of sequences per choice set

Number of sequences in total

Fig. 10. Total number of sequences computed across all choice sets. For
each data point 10 random polygons were constructed and the plot shows the
resulting mean.

C. Further Improvements and Heuristic Comparisons

Additional practical enhancements to Algorithm 4 can avoid

computing the sequences for all choice sets. One simple

improvement to line 4 is to compute the sequences only if the

shortest line that realizes the cost b(T i
k) does not pass through

a reflexive vertex of a contaminated obstacles oc ∈ T i
k. If it

does, then a split on oc could have executed earlier thereby

avoiding ever reaching a state in which T i
k appears. On tests

with polygons with 10 to 400 vertices, we observed that adding

this we can avoid between 11% (for environments with 10
vertices) and 62% (for environments with 400 vertices) of all

choice sets.

To derive some useful “yardsticks” to compare the perfor-

mance of our algorithms with heuristic approaches solving the

same problem, we derive simpler variants of the algorithm. For

example, instead of considering all possible o ∈ T i
k in lines 4

to 6 in Algorithm 4, we can introduce a heuristic that chooses

either the best next split osplit = argmino∈T i
k
{c(o|T i

k}
or the best next choices for minimizing the blocking cost

oblock = argmino∈T i
k
{b(T l)+ b(T r)}. This approach reduces

the number of sequences in Õ(T i
k) to one for each choice

set, and then we only have to assemble a single sequence in

Algorithm 3. This leads to a single call to Algorithm 1 taking

O(k) time. Hence the overall complexity for these simpler

variants is O(n4). We shall call minimum split the heuristic

choosing the best split, and minimum block the one that selects

the choice for minimizing the best block.

To assess the performance of our optimal algorithm, we

contrast its runtime and solution quality against the heuristics

we just described and display the results in Fig. 11 and Fig.

12.

* * * * * * * * * *

*

*

*

0 100 200 300 400

0
5

1
0

1
5

2
0

2
5

Number of vertices

T
im

e
 (

in
 s

e
c
o

n
d

s
)

++++++++++ +
+

+

^ ^ ^ ^ ^ ^ ^ ^ ^ ^
^

^

^

*
+

^

 optimal

 minimum split

 minimum block

Fig. 11. A comparison of actual runtimes on a regular consumer laptop (2013
Macbook Pro) between the optimal algorithm and two simplified variants
choosing either a minimum split or minimum block in each choice set. For
each data point 10 random polygons were constructed and the plot shows the
resulting mean and standard error.

Fig. 11 shows that, as expected, the two heuristics are

faster than the optimal algorithm because they consider a

significantly smaller search space. However, Fig. 12 confirms

that there is value in using the optimal algorithm, as the strate-

gies it produces are clearly less costly. Combined, the three

algorithms we presented offer a range of different approaches

to solving instances of the Line-Clear problem.

12

*

*

*

*

* * *

*
*

*

*

*

*

0 100 200 300 400

1
5

0
2

0
0

2
5

0
3

0
0

3
5

0
4

0
0

Number of vertices

C
o

s
t

(l
in

e
 c

le
a

r
n
u

m
b

e
r)

+

+

+

+

+
+++

++

+

+ +

^

^

^

^

^
^ ^

^

^
^

^

^

^

*
+

^

 optimal

 minimum split

 minimum block

Fig. 12. A comparison of cost of strategies resulting from the optimal
algorithm and two simplified variants choosing either a minimum split or
minimum block in each choice set. For each data point 10 random polygons
were constructed and the plot shows the resulting mean.

VIII. DISCUSSION AND CONCLUSION

We presented and formalized the problem of searching

for worst-case intruders in a bounded two dimensional en-

vironment, coined Line-Clear. Through a reduction from a

graph-based pursuit-evasion problem known to be NP-hard,

we showed that Line-Clear is also NP-hard.

We then considered the connected Line-Clear problem in

simply-connected environments and provided a combinatorial

perspective for this restricted setting that is related to the

original problem via a minimal sweep schedule construction.

Exploiting this combinatorial perspective we showed how to

compute optimal sweep schedules based on the sequence in

which they clear all obstacles in the environment. Questions

regarding its complexity remain open and we identified con-

ditions under which the algorithm runs in polynomial time.

Practical considerations regarding the covering of sweep lines

with sensors were addressed in prior work, in addition to

applying the algorithm for simply-connected environments to

multiply-connected environments [4], [42].

Overall, the problem of searching for targets in 2D, as one

would expect, is considerably more challenging than searching

on a graph. While graph-searching algorithms have been

applied to robotics problems [17], [20], [22], [43] the problem

of constructing suitable graphs has remained challenging. The

work presented here fills this gap and in a way the structures

here can be thought of as finding the optimal combinatorial

representation of an environment. In addition, our methods

also exploit techniques from graph-searching, particularly with

the trade-off between the cost to block recontamination and to

further expand a cleared area.

From a theoretical perspective there are a number of open

problems that can now be addressed using our formal problem

definition. Especially the question of whether recontamination

matters is of interest. Visibility-based pursuit-evasion with

unlimited range sensors is not monotone but many graph-based

models are. We conjecture that connected Line-Clear is in fact

monotone and a combination of the proof strategies developed

in [44] with a geometric analysis may lead to a proof of this

conjecture. In addition, the question regarding the number of

inferior obstacle sequences is left open, particularly whether

2D environments can be constructed in which the number of

non-inferior sequences grows exponentially.

From a practical perspective there are more questions that

need to be addressed. One of the first is the consideration of

time-optimal strategies, with some preliminary work presented

in [5]. Second one should consider a distributed variant, similar

to [36] and [3], that utilizes the theoretical insights developed

here and investigates the trade-off between the time it takes

to clear a known and an unknown environment. Thirdly, one

can consider probabilistic aspects of the search problem and

integrate these into Line-Clear. In particular, the relaxation

of the target model from worst-case to probabilistic models,

as already successfully done for graphs in [45], bears some

promise. In the context of visibility-based pursuit-evasion this

has been attempted in [46]. Further probabilistic considerations

can be made with regard to maximizing the expected time

to capture, similar to what was done in [43] for graphs.

Probabilistic sensors could also be considered building on the

work in [21] and [47] which consider probabilistic detection

for graph-based and visibility-based models respectively.

The basic ideas of this paper may also be extended to

3D environments, although the computation of smallest sweep

planes (the 3D analogue of shortest sweep lines) and how to

cover them with sensors is more difficult. But the order in

which to move such planes may have a similar structure.

APPENDIX

Proof of Theorem 1: We first show how to construct a

sweep schedule for E3 from an edge-searching strategy for

G3. Let S(G3) be an optimal edge-searching strategy for G3,

i.e., an edge-searching strategy for G3 using s(G3) searchers.

We now show how to construct a schedule τ to clear E3

with cost s(G3). As shown in [14], recontamination does not

improve edge-searching strategies, and hence, without loss of

generality, we can assume that S(G3) does not recontaminate

edges. To prevent recontamination, if a vertex v has at least one

edge contaminated and one cleared there must be a searcher

located in v.

A sweep schedule τ for E3 can be constructed by moving

sweep lines through the corridors of E3 based on how S(G3)
clears G3. Let us consider a vertex v with degree 3 and show

how edges incident to v are cleared. During the execution of

S(G3) the edges of v are either cleared by a searcher moving

in or out of v. An edge (v1, v) is cleared moving in if the

searcher moves from v1 to v, whereas it is cleared moving

out if the searcher moves from v to v1. Let e1, e2, and e3
be the first, second, and third edge of v that are cleared in

13

S(G3). Note that since we ruled out recontamination, each

edge is cleared only once and the order is then well defined.

If e1 = (v, v1) is cleared by an out step, then there must be

at least two searchers on v prior to this step. Two searchers

are needed because one will move along e1 whereas the other

will stay in v to prevent recontamination because edges e2 and

e3 are still contaminated. The associated sweep schedule τ in

E3 will be as follows. Two sweep lines l1, l2 are added to τ

to cover A(e1) ∩ A(v), i.e., P̄ (l1) = P̄ (l2) = A(e1) ∩ A(v).
Sweep line l1 is then moved through A(e1) to clear it, stopping

at A(e1)∩A(v1). If e1 is cleared by an in step, then a sweep

line from its neighbor vertex is moving through A(e1) and

stops at A(e1)∩A(v). Fig. 13 illustrates these two cases. Note

that because of the assumptions made about d, one searcher

suffices to clear the corridor, and one searcher can prevent

recontamination, i.e., c(l1) = c(l2) = 1.

Similarly, if e2 is cleared by an out step, there must be two

searchers in v to prevent recontamination from e3. In τ we

have one sweep line l with P̄ (l) = A(e1)∩A(v). We move l

at cost at most 2 to split on A(v)∩ (A(e2)∪A(e3)) into two

sweep lines l1, l2, each at cost 1, with P̄ (l1) = A(e2) ∩A(v)
and P̄ (l2) = A(e3) ∩ A(v). Sweep line l1 is then moved

through A(e2) whereas l2 prevents recontamination. If e2 is

cleared by an in step, then the new sweep line merges with

the existing sweep line in τ and moves towards A(v)∩A(e3).
For e3, in and out, either the sweep line at A(v) ∩ A(e3)

is moved outward or a new sweep line is coming in through

e3. Fig. 13 illustrates the above. The cases for vertices with

degree one and two are analogue and omitted for brevity. It

is now immediate to verify that if two edges of v are cleared,

then so is A(v) and if an edge e is clear then so is A(e).
Similarly, the number of agents is the same as the cost for the

sweep lines. Hence τ clears E3 at cost s(G3).
Next we show how to construct an edge-searching strategy

from a given sweep schedule. Let τopt be an optimal sweep

schedule for E3. We can construct an edge-searching strategy

Sτopt(G
3) by reversing the idea described above. Note that

because s(G3) is strictly speaking not known yet (since we

only have an optimal sweep schedule), the construction of E3

for this direction uses R(l) > lc(E3) instead of R(l) > s(G3).
For this, we order all corridors A(e) by the time at which they

are cleared last.6 Now, construct an edge-searching strategy

Sτopt(G
3) which clears all edges e in the same order as A(e),

adding and removing searchers to guard vertices wherever

necessary.7

It is easy to verify that the cost of Sτopt(G
3) is not more

than than lc(E3) by using the fact that R(l) > s(G3) (or

R(l) > lc(E3)). This forces every sweep line to be contained

within their corridors as they move between the areas asso-

ciated to vertices. Together with the above construction of a

sweep schedule from a strategy this proves the claim. �

Proof of Lemma 1 By definition cmax
sj

(O) is non-decreasing.

Hence, two critical steps with sj′ and sj with j′ < j satisfy

6Note that we need the last since it is not proven that Line-Clear is
monotone.

7An optimal edge-searching strategy can also be written as a sequence of
only edge moves, since the placement and removal of searchers on vertices
is implicitly given by the constraints from avoiding recontamination.

add
add

out

in

out

add
add

out

out

add out

out
add

out

in

out

in

in

Case 1

Case 2

Case 5

Case 3/4

Fig. 13. An illustration of the relevant cases for constructing a sweep schedule
from an edge-searching strategy on a graph G3. Cleared areas are grey and
sweep lines are dashed lines.

cmax
sj′

(O) ≤ cmax
sj

(O) and by definition of critical steps it fol-

lows that bsj′ (O) ≥ bsj (O). Assuming the removal of dupli-

cate critical steps we have cmax
sj′

(O) < cmax
sj

(O) and therefore

bsj′ (O) > bsj (O) (otherwise we get a contradiction to sj′

being a critical step). Since cmax
s (O) is non-decreasing and

bsj (O) is decreasing it follows that ρs(O) is non-decreasing.

Statement 3 also follows directly from cmax
sj′

(O) < cmax
sj

(O),
i.e., the step s that assumes the maximum must occur between

sj−1 and sj or at sj . �

Proof of Theorem 2: First we will express the costs for

O in terms of Ol and Or. We write os, o
l
s and ors for the

elements in the sequences O, Ol and Or, respectively, and use

the superscripts l and r when referring to the left and right

subsequences. Given any O, by definition we have c1(O) =
c(o1|T

i
k) and b1 = b(T l)+b(T r). For the remaining os, s ≥ 2,

we have a corresponding obstacle index either in Ol or Or.

To identify this index we write, for every s = 2, . . . , k,

l(s) := max{0,max{s′ | ∃s′′ ≤ s : ols′ = os′′}},

for the last index in Ol whose obstacle corresponds to one

of {o1, . . . , os} (or 0 if there is no such index). For r(s) the

definition is analogous. For s > 1 we can now write:

cs(O) = bl(s−1)(O
l) + br(s−1)(O

r) + c(os|T
s)− b(T s).

Written in this manner is becomes clear that c(os|T
s) −

b(T s) is independent of the ordering of indices from Ol and

Or in O, i.e., it is simply the additional cost required to move

a sweep line that is blocking T s with cost b(T s) to split

on os. The terms bl(s−1)(O
l) and br(s−1)(O

r) are the parts

with which the left side contributes to the cost when clearing

an obstacle on the right side and vice versa. Here is where

14

the term ρ becomes relevant since it determines the trade-off

between continuing on the left or right. The statement of the

lemma can also be interpreted in colloquial terms as saying

that no other obstacle sequence O can have a better critical

step than Oa.

First let us show that we only need to consider sequences

that change between Ol and Or after a critical step in Ol and

Or. Consider sj and sj+1, two consecutive critical steps in

Ol. All steps in between s ∈ (sj , sj+1) either satisfy:

1) cmax
s (Ol) > cmax

sj
(Ol) and bs(O

l) ≥ bsj (O
l) or

2) cmax
s (Ol) = cmax

sj+1
(Ol) and bs(O

l) ≥ bsj+1
(Ol).

This means that they either have a higher total cost but no

benefit in blocking, or they already have the same total cost

as the next critical step which reduces the blocking cost by at

least as much. Now, if we add a step os to O from the left

side Ol and it is not critical and the next step os+1 is on the

right side Or, then in case 1) the removal of all previous steps

until olsj (and in case 2) the addition of all steps until olsj+1
)

would not lead to a worse sequence.

Therefore, we can simplify the cost representation further

by only considering the steps cj which ocj = olsj or oaj
= orsj

for some critical step sj in either Ol or Or. Since cmax
l(cj)

(Ol)

and cmax
r(cj)

(Or) are non-decreasing sequences in j we get:

max
cj−1<s≤cj

cs(O) =

{

br(cj−1)(O
r) + cmax

l(cj)
(Ol), if ocj ∈ Ol

bl(cj−1)(O
l) + cmax

r(cj)
(Or), otherwise.

Also note that bl(cj)(O
l) and br(cj)(O

r) are both non-

increasing sequences in j. Now let O be any obstacle sequence

with Ol and Or as subsequences. Write cj for the steps at

which the critical steps on the right and left are added to O.

Similarly, write caj for the same for Oa. Let aj be the first

step so that ocj 6= oaca
j
, i.e., the first difference in critical steps

between O and Oa. Without loss of generality, let ocj ∈ Ol,

and hence oaca
j
∈ Or. Note that caj−1 = cj−1 and oaca

j−1
= ocj−1

and consider the following:

ρl(cj)(O
l) ≥ ρr(ca

j
)(O

r)

cmax
l(cj)

(Ol)− bl(cj−1)(O
l) ≥ cmax

r(ca
j
)(O

r)− br(ca
j−1

)(O
r)

cmax
l(cj)

(Ol) + br(ca
j−1

)(O
r) ≥ cmax

r(ca
j
)(O

r) + bl(cj−1)(O
l)

cmax
l(cj)

(Ol) + br(cj−1)(O
r) ≥ cmax

r(ca
j
)(O

r) + bl(ca
j−1

)(O
l)

max
cj−1<s≤cj

cs(O) ≥ max
ca
j−1

<s≤ca
j

cs(O
a).

Let b be the index at which ob = oaca
j−1

+1 and oy = oaca
j
.

Consider the sequence

O′ = {o1, . . . , ocj−1
, oaca

j−1
+1, . . . , o

a
ca
j
,

ocj−1+1, . . . , ob−1, oy+1, . . . , ok}

based on O but with the indices oaca
j−1

+1 to oaca
j

moved to the

position they have in Oa. Now since maxcj−1<s≤cj cs(O) ≥
maxca

j−1
<s≤ca

j
cs(O

a) and bl(ca
j
)(O

l) < bl(cj−1)(O
l) the only

difference between O and O′ is that the blocking cost on

the left is reduced earlier without incuring a larger cmax.

Hence all subsequent costs are either the same or lower, i.e.,

∀s, s′ with os = o′s′ we have:

bs′(O
′) ≤ bs(O) and cmax

s′ (O′) ≤ cmax
s (O).

Repeating the above procedure for O′, which is now identi-

cal up to obstacle oaca
j

with Oa we can move all steps into the

order they are in Oa without incurring larger cmax or larger

b costs.

At this point, the statement follows from a simple contra-

diction. Assume that there is an O with an s ∈ S(O) and

s′ ∈ S(Oa) so that

cmax
s (O) < cmax

s′ (Oa) and bs(O) ≤ bs′(O
a).

Let oas′′ = os and by the above construction

cmax
s (O) ≥ cmax

s′′ (Oa) and bs(O) ≥ bs′′(O
a)

and hence

cmax
s′ (Oa) > cmax

s′′ (Oa) and bs′(O
a) ≥ bs′′(O

a)

which contradicts s ∈ S(Oa). �

REFERENCES

[1] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
Computational geometry: algorithms and applications. Springer, 2000.

[2] A. Kolling and S. Carpin, “Surveillance strategies for target detection
with sweep lines,” in Proceedings of the IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, 2009, pp. 5821–5827.

[3] ——, “Multi-robot pursuit-evasion without maps,” in Proceedings of the

IEEE International Conference on Robotics and Automation, 2010, pp.
3045–3051.

[4] A. Kolling and A. Kleiner, “Multi-uav motion planning for guaranteed
search,” in Proceedings of the Twelth International Joint Conference on

Autonomous Agents and Multiagent Systems, 2013, pp. 79–86.

[5] A. Kolling, A. Kleiner, and P. Rudol, “Fast guaranteed search with
unmanned aerial vehicles,” in Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2013.

[6] T. Chung, G. Hollinger, and V. Isler, “Search and pursuit-evasion in
mobile robotics,” Autonomous Robots, vol. 31, no. 4, pp. 299–316, 2011.

[7] A. Khan, B. Rinner, and A. Cavallaro, “Cooperative robots to observe
moving targets: Review,” IEEE Transactions on Cybernetics, to appear.

[8] Y. Liu and G. Nejat, “Robotic urban search and rescue: A survey
from the control perspective,” Journal of Intelligent & Robotic Systems,
vol. 72, no. 2, pp. 147–165, 2013.

[9] N. Noori, A. Beveridge, and V. Isler, “Pursuit-evasion: A toolkit to
make applications more accessible [tutorial],” IEEE Robotics Automation

Magazine, vol. 23, no. 4, pp. 138–149, 2016.

[10] T. Parsons, “Pursuit-evasion in a graph,” in Theory and Applications of

Graphs, Y. Alavi and D. R. Lick, Eds. Springer Berlin / Heidelberg,
1978, vol. 642, pp. 426–441.

[11] B. Alspach, “Searching and sweeping graphs: a brief survey,” Le

matematiche, vol. 59, no. 1, 2, pp. 5–37, 2006.

[12] F. V. Fomin and D. M. Thilikos, “An annotated bibliography on
guaranteed graph searching,” Theoretical Computer Science, vol. 399,
no. 3, pp. 236–245, 2008.

[13] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H.
Papadimitriou, “The complexity of searching a graph,” Journal of the

ACM, vol. 35, no. 1, pp. 18–44, 1988.

[14] A. S. LaPaugh, “Recontamination does not help to search a graph,”
Journal of the ACM, vol. 40, no. 2, pp. 224–245, 1993.

[15] B. Yang, D. Dyer, and B. Alspach, “Sweeping graphs with large clique
number,” Lecture notes in computer science, pp. 908–920, 2004.

[16] F. V. Fomin and D. M. Thilikos, “On the monotonicity of games
generated by symmetric submodular functions,” WG 2001: 177-188,
2001.

[17] G. Hollinger, A. Kehagias, and S. Singh, “GSST: Anytime guaranteed
search,” Autonomous Robots, vol. 29, no. 1, pp. 99–118, 2010.

15

[18] A. Kolling, A. Kleiner, M. Lewis, and K. Sycara, “Solving pursuit-
evasion problems on height maps,” in ICRA2010 Workshop: Search

and Pursuit/Evasion in the Physical World: Efficiency, Scalability, and

Guarantees, 2010.
[19] ——, “Pursuit-evasion in 2.5d based on team-visibility,” in Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and

Systems, 2010, pp. 4610 – 4616.
[20] A. Kleiner, A. Kolling, M. Lewis, and K. Sycara, “Hierarchical visibility

for guaranteed search in large-scale outdoor terrain,” Autonomous Agents

and Multi-Agent Systems, pp. 1–36, 2011.
[21] A. Kolling and S. Carpin, “Probabilistic Graph-Clear,” in Proceedings of

the IEEE International Conference on Robotics and Automation, 2009,
pp. 3508–3514.

[22] ——, “Pursuit-evasion on trees by robot teams,” IEEE Transactions on

Robotics, vol. 26, no. 1, pp. 32–47, 2010.
[23] L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro, “Capture of an

intruder by mobile agents,” in Proceedings of the Fourteenth Annual

ACM Symposium on Parallel Algorithms and Architectures. New York,
NY, USA: ACM Press, 2002, pp. 200–209.

[24] D. Dereniowski, “Connected searching of weighted trees,” Mathematical

Foundations of Computer Science 2010, pp. 330–341, 2010.
[25] I. Suzuki and M. Yamashita, “Searching for a mobile intruder in a

polygonal region,” SIAM Journal on Computing, vol. 21, no. 5, pp.
863–888, 1992.

[26] S. M. LaValle, D. Lin, L. Guibas, J.-C. Latombe, and R. Motwani,
“Finding an unpredictable target in a workspace with obstacles,” in
Proceedings of the IEEE International Conference on Robotics and

Automation, 1997, pp. 737–742.
[27] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani,

“A visibility-based pursuit-evasion problem,” International Journal of

Computational Geometry and Applications, vol. 9, pp. 471–494, 1999.
[28] S. Sachs, S. M. LaValle, and S. Rajko, “Visibility-based pursuit-evasion

in an unknown planar environment.” The International Journal of

Robotics Research, vol. 23(1), pp. 3–26, 2004.
[29] N. M. Stiffler and J. M. O’Kane, “A complete algorithm for visibility-

based pursuit-evasion with multiple pursuers,” in Proceedings of the

IEEE International Conference on Robotics and Automation, 2014, pp.
1660–1667.

[30] ——, “Pursuit-evasion with fixed beams,” in Proceedings of the IEEE

International Conference on Robotics and Automation, 2016, pp. 4251
– 4258.

[31] K. J. Obermeyer, A. Ganguli, and F. Bullo, “A complete algorithm
for searchlight scheduling,” International Journal of Computational

Geometry and Applications, vol. 21, no. 1, pp. 101–130, 2011.
[32] A. Efrat, L. J. Guibas, S. Har-Peled, D. C. Lin, J. S. B. Mitchell, and

T. M. Murali, “Sweeping simple polygons with a chain of guards,”
in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
2000, pp. 927–936.

[33] X. Tan, “Sweeping simple polygons with the minimum number of chain
guards,” Information processing letters, vol. 102, no. 2-3, pp. 66–71,
2007.

[34] S. Bopardikar, F. Bullo, and J. P. Hespanha, “On discrete-time pursuit-
evasion games with sensing limitations,” IEEE Transactions on Robotics,
vol. 24, no. 6, pp. 1429–1439, 2008.

[35] R. Isaacs, Differential Games. Wiley, New York, NY, 1965.
[36] J. W. Durham, A. Franchi, and F. Bullo, “Distributed pursuit-evasion

without mapping or global localization via local frontiers,” Autonomous

Robots, vol. 32, no. 1, pp. 81–95, 2012.
[37] B. Monien and I. H. Sudborough, “Min cut is NP-complete for edge

weighted trees,” Theoretical Computer Science, vol. 58, no. 1-3, pp.
209–229, 1988.

[38] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[39] S. K. Wismath, “Computing the full visibility graph of a set of line
segments,” Information processing letters, vol. 42, no. 5, pp. 257–261,
1992.

[40] T. Lozano-Pérez and M. Wesley, “An algorithm for planning collision-
free paths among polyherdral obstacles,” Communications of the ACM,
vol. 22, no. 10, pp. 560–570, 1979.

[41] G. Gallo and S. Pallottino, “Shortest path algorithms,” Annals of

Operations Research, vol. 13, no. 1, pp. 1–79, 1988.
[42] A. Kleiner and A. Kolling, “Guaranteed search with large teams of

unmanned aerial vehicles,” in Proceedings of the IEEE International

Conference on Robotics and Automation, 2013, pp. 2977 – 2983.
[43] G. Hollinger, S. Singh, J. Djugash, and A. Kehagias, “Efficient multi-

robot search for a moving target,” The International Journal of Robotics

Research, vol. 28, no. 1, pp. 201–219, February 2009.

[44] D. Bienstock and P. Seymour, “Monotonicity in graph searching,”
Journal of Algorithms, vol. 12, no. 2, pp. 239–245, 1991.

[45] M. Adler, H. Räcke, N. Sivadasan, C. Sohler, and B. Vöcking, “Ran-
domized pursuit-evasion in graphs,” Combinatorics Probability and

Computing, vol. 12, no. 3, pp. 225–244, 2003.
[46] B. Tovar and S. M. LaValle, “Visibility-based pursuit-evasion with

bounded speed,” in Proceedings of the Workshop on Algorithmic Foun-

dations of Robotics, 2006, pp. 475–489.
[47] N. M. Stiffler, A. Kolling, and J. M. O’Kane, “Persistent pursuit-evasion:

The case of the preoccupied pursuer,” in Robotics and Automation, 2017

IEEE International Conference on. IEEE, 2017, pp. 5027–5034.

Andreas Kolling is a scientist and technology lead
at iRobot. He received a Ph.D. degree in electrical
engineering and computer science in 2009 from
the University of California, Merced, and a M.S.
degree in computer science in 2006 and B.S. degree
in mathematics in 2004 from Jacobs University,
Bremen, Germany. From 2013 to 2016 he was an
assistant professor in the Department of Automatic
Control and Systems Engineering at The University
of Sheffield, UK, where he led the multi-robot sys-
tems lab. From 2010 to 2012 he was a postdoctoral

research fellow at the Robotics Institute at Carnegie Mellon University and
at the University of Pittsburgh. His research interests include planning, multi-
robot systems, and human-robot interaction. He has served as a general co-
chair for DARS in 2016, as associate editor for ICRA and IROS since 2014,
and as guest editor for Autonomous Robots for the special issue ’Distributed
Robots: From Fundamentals to Applications’.

Alexander Kleiner received a M.Sc. degree (with
distinction) in computer science at the Stafford Uni-
versity, UK, in 2000, a Ph.D degree (magna cum
laude) in computer science at the University of
Freiburg, Germany in 2008, and a docent degree
(habilitation) at Linkoeping University, Sweden, in
2013. He was a postdoctoral fellow at Carnegie
Mellon University in 2010 and at La Sapienza Uni-
versity, Rome, Italy in 2011. From 2011 to 2014
he was associate professor at Linkoeping University,
Sweden, where he led the research group on collab-

orative robotics.From 2014 to 2017 he worked as a scientist and technology
lead at iRobot, and now works as President of AI for FaceMap LLC. His
research interests include collaborative robotics, navigation planning, and
machine learning. From 2006 to 2014 he served as a member of the executive
committee of RoboCup, and since 2008 as member of the IEEE Technical
Committee on Safety Security and Rescue Robotics. He served as General
Chair of the SSRR in 2013 and program chair in 2012. From 2012 to 2017
he served as an associate editor for IROS and ICRA.

Stefano Carpin is Professor of engineering at the
University of California, Merced. He received Lau-
rea (M.Sc.) and Ph.D. degrees in electrical engi-
neering and computer science from the University
of Padova, Italy in 1999 and 2003, respectively.
From 2003 to 2006 he held faculty positions with
Jacobs University Bremen, Germany. Since 2007 he
has been with the School of Engineering at UC
Merced, where he established and leads the robotics
laboratory. His research interests include mobile and
cooperative robotics for service tasks, and robot

algorithms. He is an associate editor for the IEEE Transactions on Automation
Science and Engineering and for the IEEE Robotics and Automation Letters.
From 2006 to 2009 he was an elected executive member of the RoboCup
federation. Under his supervision, teams participating in the RoboCup Virtual
Robots Rescue competition won second place in 2006 and 2008, and first
place in 2009.

