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Aggregation of cell surface receptor proteins by multivalent
antigens is an essential early step for immune cell signalling.
A number of experimental and modelling studies in the past
have investigated multivalent ligand-mediated aggregation
of IgE receptors (FceRI) in the plasma membrane of mast
cells. However, understanding of the mechanisms of FceRI
aggregation remains incomplete. Experimental reports
indicate that FceRI forms relatively small and finite-sized
clusters when stimulated by a multivalent ligand. By
contrast, modelling studies have shown that receptor
cross-linking by a trivalent ligand may lead to the formation
of large receptor superaggregates that may potentially give
rise to hyperactive cellular responses. In this work, we have
developed a Brownian dynamics-based spatio-temporal
model to analyse FceRI aggregation by a trivalent antigen.
Unlike the existing models, which implemented non-spatial
simulation approaches, our model explicitly accounts for
the coarse-grained site-specific features of the multivalent
species (molecules and complexes). The model incorporates
membrane diffusion, steric collisions and sub-nanometre-
scale site-specific interaction of the time-evolving species of
arbitrary structures. Using the model, we investigated
temporal evolution of the species and their diffusivities.
Consistent with a recent experimental report, our model
predicted sharp decay in species mobility in the plasma
membrane in response receptor cross-linking by a multivalent
antigen. We show that, due to such decay in the species
mobility, post-stimulation receptor aggregation may become
self-limiting. Our analysis reveals a potential regulatory
mechanism suppressing hyperactivation of immune cells in
response to multivalent antigens.

© 2018 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http:/creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
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1. Introduction

Cross-linking of cell surface receptor proteins by antigens is an essential early step for the activation of all
immunoreceptor signalling pathways. In the past, both experimental and modelling studies investigated
multivalent ligand-mediated cross-linking of IgE receptors (FceRlI) in the plasma membrane of basophil
or mast cells [1-8]. Synthetic multivalent ligands have been used to understand the correlation between
membrane clustering of FceRI and cellular histamine release or degranulation [8-13]. However, the
mechanistic understanding of multivalent ligand-FceRI assembly in the cell membrane remains incomplete.

A number of experimental studies have found that stimulation of cells with a synthetic multivalent
ligand forms finite-sized FceRI clusters in the plasma membrane [8,14—16]. This observation contradicts
model-based analysis [3,7]. On the contrary, an early theoretical model by Goldstein & Perelson [3]
predicted that stimulation of a bivalent FceRI with a trivalent ligand may lead to a condition where all
the receptors can be incorporated into a single large complex (superaggregate or gel). They postulated
that such superaggregate formation might enable a cell to be hyper-responsive against infection. Recently,
using a stochastic model, Monine et al. [7] also showed similar phenomenon in FceRI aggregation. Lately,
Mahajan et al. [8] reported a model similar to the model of Monine et al. [7]. However, this model
imposed a condition on receptor cross-linking to prohibit superaggregate formation.

A common caveat of these earlier models was that the models were non-spatial and hence lacked the
ability to incorporate the spatio-temporal effects, such as membrane diffusion, steric collision and
geometry of the dynamically evolving species (ligand and receptor molecules and their complexes).
We were interested in investigating whether a spatial model could explain the reported behaviour of
FceRI aggregation. Recent experimental studies by Shelby et al. [16] and Andrews et al. [14,15] indicate
that the diffusion of multivalent antigen-cross-linked receptors falls sharply upon stimulation of mast
cells. In particular, the analysis of Andrews et al. [14] suggests that the multivalent ligand cross-linked
receptor cluster display reduced mobility through the actin network of the cell plasma membrane. The
question we wanted to answer is whether such decrease in the receptor mobility could ultimately
dictate receptor cross-linking and the size distribution of FceRI aggregates in the plasma membrane.

To develop a spatial model, we needed a computationally efficient simulation framework that can
efficiently capture the site-specific interactions of the molecules and complexes at reasonably high
resolutions. A typical molecular dynamics (MD) simulation was deemed infeasible because of the
timescale and spatial domains of our interests. Therefore, we adopted a Brownian dynamics (BD)-
based approach. To leverage computation, we implemented a time-adaptive feature in the BD
simulation algorithm based on our recent work [17]. We integrated the time-adaptive BD algorithm
with an agent-based framework, where we used spatial graphs to define the coarse-grained structures
(site-specific features) of the trivalent ligand and bivalent FceRI molecules in a two-dimensional plane
(cell membrane).

Using the model, we investigated the effects of membrane diffusion on the interaction of dynamically
evolving ligand-receptor complexes. Consistent with [16], our model indicated that there could be a
rapid decay of species diffusion in the membrane upon stimulation by a multivalent antigen. We showed
that the dynamics of this decay is correlated to the level of receptor density in the cell membrane. We
compared the predictions of our spatial model with a non-spatial model, which we developed based on
the models in [7,8]. The spatial model predicted finite-sized receptor clusters distributed over a broad
range of sizes. By contrast, the non-spatial model revealed a single superaggregate incorporating
approximately all receptors. We found that when the diffusion constant in the spatial model was made
time-invariant and species-independent, it also predicted superaggregate formation like the non-spatial
model. These results underscore a limitation of the non-spatial models, where a bimolecular association
rate constant accounts for the ligand-receptor assembly while ignoring the time-evolving size and
geometry of the species. Our analysis indicates that cell surface receptor aggregation could be self-
limiting due to the growing aggregate sizes and concurrent reduction in their mobilities. We conclude
that such a self-regulatory mechanism may serve to contain hyperactive cellular responses.

2. Material and methods

Our spatio-temporal model was based on a trivalent ligand and a bivalent receptor molecule. The model
resembles the trivalent ligand and bivalent FceRI systems studied in [8]. The model is developed using
the agent-based approach combined with a time-adaptive BD simulation algorithm. Below we provide
the details of the model and the BD algorithm.
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Figure 1. lllustration of spatial graphs. (a) A trivalent molecule. The white unfilled circle at the centre defines the molecule centre,
and each yellow circle represents a reaction centre. (b) A bivalent receptor molecule. The unfilled circle at the centre defines the
molecule centre, and each yellow circle represents a reaction centre. (c) A ligand-receptor complex.

2.1. Spatio-temporal model of trivalent ligand-bivalent receptor interaction in the
cell membrane

In our model, ligand and receptor molecules are described by agents or software objects. We consider a
two-dimensional rectangular plane to define the plasma membrane, where the molecules can diffuse and
mediate site-specific interactions. Using an approach similar to [18], we use spatial graphs to describe the
ligand and receptor molecules (figure 1). A spatial graph is a collection of small circles, which we refer to
as subunits. The spatial orientation of the subunits defines the structure of a molecule and its site-specific
features, such as binding domains or motifs.

We define a ligand molecule based on the synthetic trivalent ligand described in Mahajan et al. [8].
The molecule has three identical binding arms each of which is approximately 17 A long. The binding
arms are symmetrically spaced, i.e. the angle between two adjacent arms is 120°. We consider a single
subunit of radius 1.5 A to define the centre of the molecule (figure 1a). We define each binding arm
by five adjacent subunits each of which is also 1.5 A in radius. Thus, the distance between the
molecule centre to the tip of each binding arm is approximately 16.5 A. We consider each binding arm
to have a reaction centre that can form a bond with a complementary region of a receptor molecule.
In each binding arm, we designate the subunit at the tip as the reaction centre (yellow circles in figure 1a).

We model the bivalent FceRI by a graph containing two identical binding arms 180° apart (figure 1b).
Reports indicate that the approximate FceRI radius is 46-51 A [19]. We consider each binding arm to
have five identical subunits each of which is also 5 A in radius. Thus, the length of each binding arm
is 50 A. We consider a molecule centre separating these two arms. A single subunit of 5A radius
defines the molecule centre. Similar to a ligand molecule graph, each binding arm contains a reaction
centre at the tip (yellow circles in figure 1b).

In the model, when the reaction centres of a ligand and a receptor molecule graph come within a close
proximity (a predefined short distance that we call reaction layer), they may form an (implicit) bond. The
bond holds the two molecules together in a complex. Similarly, a complex may form larger complexes
through association with other molecules or complexes via their unoccupied reaction centres.
Figure 1c illustrates a complex containing multiple ligand and receptor molecules.

2.2. Time-adaptive Brownian dynamics simulation algorithm

We use a time-adaptive BD algorithm to simulate species diffusion in the two-dimensional membrane.
The time adaptive feature is included to accelerate computation, especially in the dilute regimes. The
algorithm is based on our recent work [17]. It selects the time step sizes adaptively to facilitate
computation while capturing the site-specific interactions of the species at the sub-nanometre resolution.

2.2.1. Lateral and rotational diffusion of species

In the BD algorithm, we consider both lateral and rotational diffusion for the spatial graphs representing
the species (molecules and complexes). Because the size and structure of these graphs evolve dynamically
due to their site-specific assembly and dissociation, their lateral and rotational diffusivities also change
with time. In every BD step, a species graph is translated or rotated as a rigid body over time step At.
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two-dimensional membrane

C: centre of mass
R: effective radius

Figure 2. Disc representation of molecules and complexes. Each molecule and complex graph is contained by a hypothetical disc
(grey circles). The centre of each disc is located at the centre of mass of the corresponding graph. The radius of the disc is the
shortest distance that allows the disc to fully encompass the structure of the graph. The radius of the disc represents the
effective radius of the corresponding species. (a) The centre of mass (C) and effective radius (R) of a ligand molecule, a
receptor molecule and a complex. (b) Molecule and complex graphs in a two-dimensional plane (cell membrane). The variable
d;; represents the distance between a pair of discs / and j. A negative d;; implies the overlap between the two discs. Such
overlap is permitted as long as the structure defined by the graphs do not collide or conflict.

We assume that the translation and rotation of a graph occur with respect to its centre of mass. Both types
of diffusivities of a graph depend on its instantaneous size. We determine the centre of mass (C) and the
size (R) of a graph as explained next.

We consider a weight associated with each subunit of a molecule. The receptor molecule has a total of 11
subunits, whereas the ligand molecule graph has a total of 16 subunits. We assign each receptor subunit a
mass of 1 (arbitrary unit). Comparing the volume of a ligand subunit with that of a receptor subunit, we
assign each ligand subunit a mass of 0.027. Because these molecule graphs have symmetric structures,
their centre of mass corresponds to the molecule centre (figure 2a). However, for a multimolecular
complex, the centre of mass depends on the instantaneous spatial organization of the subunits (figure 2a).

We define the size of a graph by its effective radius R. To calculate R, we envision a hypothetical disc
encompassing each species graph (figure 2a). The centre of the disc is located at the centre of mass of the
graph. We consider R to be the distance from the centre of mass to the farthest point of the graph. For
example, if (x, y) represents the centre of mass of a graph, and (xj, y;) represents the centre of any

subunit 7, then R = max{ (\ [x; — x)2 + (i — y)2 + rz}, where 7; is the radius of subunit i.

We relate the diffusion constant of a species to its size by the following expression: D oc 1/R*. Here,
the exponent « is a tunable parameter in the model. Setting & = 0 makes D a constant (independent of
time or species). This condition corresponds to a non-spatial model, where the single-site ligand-receptor
association is governed by a constant rate parameter typical for any bimolecular reaction. At « =1, D
evolves naturally (based on the Einstein—Stokes equation) with the size of a graph. Finally, at & > 1,
the model captures an arbitrarily large decrease of D of a growing species.

For an isolated receptor molecule, whose size (and hence diffusion) is time-invariant, we consider a
baseline diffusion constant, Dy = 10* nm?s~! [20]. For any other species, which includes an isolated
ligand molecule, we consider D = Dy(Ry/R)“, where R and Ry represent the effective radius of the
species and an isolated receptor molecule, respectively.

During each BD time step At, we advance each graph as a rigid body by a distance I = v4DAte,
where D is the lateral diffusion constant of the graph and e is a unit vector in a random direction.
After the lateral translation, we rotate the graph around the centre of mass C by an angle
¢ = (v/3/2v2)(I/R). The direction of rotation is chosen randomly clockwise or anti-clockwise in each
time step. The expression for ¢ is derived considering | = v4DAt and ¢ = V2D, At, where [ and ¢,
respectively, represent the lateral and angular displacements over time Af, D represents the lateral
diffusion constant, and D, represents the rotational diffusion constant. Again, D and D, can be related
based on Einstein—Stokes equation, D = KgT/67uR and D, = KgT/8m7uR, where Kg is the Boltzmann
constant, T is temperature and w is the membrane viscosity.

2.2.2. Time-adaptive advancement of molecule and complex graphs

In each BD step, we calculate the time step At adaptively. The adaptive At is computed based on the inter-
species distances d; js (figure 2b). If d; ; for any pair of graphs (i, j) is small (i.e. an encounter between a pair
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of graphs is likely), At is chosen small. On the other hand, if d;; is large for all unique pairs (i, j), At is [ 5 |
chosen large to accelerate computation.

To calculate the appropriate size for At, we first compute d;; for all unique pairs of (i,j) for i # j.
As illustrated (figure 2b), d;; >0 implies that the corresponding discs are at non-overlapping
positions. On the other hand, d;; < 0 implies that the discs are at overlapping positions. We compute
the smallest inter-species distance, dmin = min{d;;} for i # j. If dmin > 0, then none of the discs in the
system should be at an overlapping position. On the other hand, if dmin < 0, at least one pair of discs
should be at overlapping positions.
capture such events more accurately, we consider a fine resolution At under such conditions. We set
the time step, At = lfnin /4Dmax, Where I,y is the lower bound on species jumps in our simulation, and
Dimax is the diffusion coefficient of the fastest (smallest) disc in the system. We consider Iyin = 1nm.
Thus, all discs advance by less than or equal to 1 nm when the probability of a collision or reaction
is high.

If dmin > 0, i.e. none of the discs are at overlapping positions, we calculate the shortest possible time
(At,) that can potentially lead to an overlap between any two discs: Aty = min{d?,/4(v/D; + VD;}. We
then check if At is too small to consider for computational efficiency. We compare it with a defined lower
bound on time step size, Afmin = 1075s. If Aty < Atpin, we disregard At, and set time step
At = lrznin
than Im.x = 10nm, where Iy is an upper bound imposed on the jump size of species. To ensure that
no species violates this upper bound, we evaluate if v/ADpmaxAfs > Inax. If this condition is satisfied, we
set time step Af = 12 /4(vDimax + VDmax)* = ., /16Dy s0 that the jump remains within the upper
bound. Otherwise, we set time step At = Alf,.

If dmin <0, ie. at least one disc pair is overlapping, a collision or reaction could be imminent. To
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/4D max. However, if Af; > Atnin, we check if any specie may advance by a distance greater

2.2.3. (ollision, binding and dissociation

A collision may occur if two graphs occupy conflicting positions as a result of a move. In such a
possibility, we simply reject the move of the particular graph while advancing others. In the model, a
binding may occur if a ligand reaction centre and a receptor reaction centre fall within a predefined
small distance (reaction layer) I, [21]. For each such pair of reaction centres, we consider a probability
of bond formation, k; < 1. We draw a random number between 0 and 1. If the random number is
smaller than k¢, we consider the formation of an (implicit) bond between the reaction centres. In our
simulations, we assign I, = 5:&, a distance comparable to the radius of a receptor reaction centre. In
the model, either [, or k¢ value can be tuned to make the system reaction-limited or diffusion-limited.

After the bond formation between the reaction centres, we treat the two associated graphs as a single
(larger) graph. As in the existing non-spatial models [3,7,8], we prohibit intra-complex binding (ring
formation). A bond can form only if the reaction centres belong to two distinct species (separate
molecules or complexes).

We consider a dissociation rate constant k, for each ligand-receptor bond. Thus, the lifetime of
each bond is exponentially distributed with mean lifetime A = 1/k;s. At the end of each BD step, we
calculate the probability of dissociation of each ligand-receptor bond. We draw a random number
between 0 and 1. If the random number is smaller than 1 — exp (—k.Af), where At is the latest time step,
we assume the bond is broken and the graph is separated into two smaller graphs. In the next step, the
separated graphs may move away from each other because of their diffusion. Alternatively, they may
recombine based on the probability k¢ to form a complex again. We consider k, = 0.001s™! [8]. Setting
this parameter to zero makes ligand-receptor binding irreversible. Table 1 summarizes the default
values used in the model.

2.3. Non-spatial trivalent ligand-bivalent receptor model

We developed a corresponding non-spatial model using the network-free kinetic Monte Carlo (KMC)
approach [22]. The model is based on the earlier models in [7,8]. The purpose of this non-spatial
model was to compare it with the spatial model predictions. Although written in C++, for
convenience, we explain this model using the standard notations of BNGL [23], a rule-based model
specification language.

The model can be described by the BNGL rule in equation (2.1). The rule defines the single-site
binding and dissociation between a trivalent ligand molecule L(a,a,a) and a bivalent receptor
molecule R(b, b). The ligand molecule contains three identical reaction centres (binding sites) denoted
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Table 1. Default parameter values used in the spatial model.

parameter comment

A = 1000 x 1000 nm dimension of the plasma membrane domain

N nR S me_ .............................................. dens|ty o re(eptor e
N nL g me’Z ............................................. dens|ty o “ga e
NRSII&:z numberofbmdmgarms |nareceptormolecule(b|va|ent)

N NLS,te L e g . I|gand e (tnvale nt) ....................
N RR e o re(eptor e
RL ..... T effectweradmsofahgandmolecule ...............................................
N DR T e G receptor T
N D|_ - 104[RR /RL]“ e O ||gand T
D(t): g 04[RR/R(t )]a P e foracomplex ......................................................
T exponent relatmg : d|ffus|v|ty e /Ra ..............................
N lr B R Iayer e
kf e o formanonprobab|||tywhentworeacnon . arew|th|n/,
N k, T e

Table 2. Default parameter values used in the non-spatial model.

parameter comment

ng = 80 molecules number of receptor molecules

n. = 80 molecules number of ligand molecules

Nesite = 2 number of binding sites in a receptor molecule

Nisie = 3 number of binding sites in a ligand molecule

kon = 1.66 x 10* nm? s~ forward rate constant for single-site hinding (this work)
k = 0.001s~" reverse rate constant for single-site dissociation

as a and the receptor molecule contains two identical reaction centres denoted as b. We use non-spatial
graphs to define these molecules.

L(@) + R(b) —— L@1).RG!1)  kon, kot @.1)

The rule above specifies the binding and dissociation between a pair of ligand and receptor reaction centres.
In the rule, the remaining reaction centres of the two molecules are not specified. These unspecified reaction
centres are wildcards, meaning those could either be free or connected to other molecules. In the rule,
the symbol ! followed by a matching number (1 in this example) represents a bond connecting the
reaction centres. The parameter k,, represents the rate constant for the single-site bimolecular binding
(forward reaction). The parameter kg represents the rate constant for the unimolecular bond dissociation
(reverse reaction). The values of these rate parameters are independent of the remaining reaction centres
that are not specified in the rule. These parameters are also independent of time and size of the species
involved. Thus, at any time during the course of a simulation, the above rule gives rise to an arbitrary
number of elementary reactions depending on the number of free reaction centres in different molecules
and complexes.

It should be noted that the earlier models in [7,8] consider an additional rule to describe ligand
recruitment from the solution (extracellular space) to the plasma membrane. In our model, we
eliminate this additional step to make the non-spatial model consistent with the spatial model. This
simplification is based on our assumption that the extracellular solution is well-mixed and diffusion
there is fast compared to diffusion in the cell membrane.

We set kog = 0.001s7! [8] (the corresponding parameter in the spatial model k, has the same value).
As discussed in the Results section, by comparing the non-spatial model and spatial model predictions, we
determined k., = 1.667 x 10* nm? s~1. Table 2 summerizes the default parameter values used in the model.
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Figure 3. Simulation snapshots of ligand and receptor clusters in the cell membrane. (a) n, = ng = 80 molecules um=2, t = 0s.
(b) n. = ng = 80 molecules um~2, t=30s. () n, = ng = 800 molecules um =2, t = 0s. (d) n, = nz = 800 molecules m=2,
t = 30s. (e) A zoomed-in region of (d).

2.3.1. Code implementation

Both the spatial and non-spatial models were written in Object-Oriented C++. The source codes
for both models are included in the electronic supplementary material (archived folders named
‘spatial_model.tar.gz" and ‘nonspatial_model.tar.gz’, respectively). Detailed instructions for the

installation and execution of simulations are provided in a file named ‘README.txt’ in each folder.

3. Results

3.1. Effect of receptor density on ligand-receptor assembly

We first used the spatial model to investigate ligand-receptor assembly at different levels of receptor
densities in the cell membrane. Reportedly, FceRI copy number in mast cells may vary between
10* and 10° molecules per cell [24]. We wanted to see how such variations in the receptor expression
may affect receptor cross-linking. Figure 3 shows several snapshots from our simulations. As indicated
in the figure, in one case we considered a relatively modest level of receptor density,
ng = 80 molecules pm~2 (figure 3a-b). In the other case, we considered a 10-fold higher receptor
density, ng = 800 molecules um~2 (figure 3c—e). These densities correspond to 10° and 10° receptor
molecules per cell, respectively, assuming a spherical cell of 10 um radius. In both cases, we kept
receptor to ligand ratio 1. In the cell membrane, the ligand density cannot exceed twice the FceRI
density because a single FceRI can bind at most two ligand molecules at a time. By choosing this
ratio, we allowed adequate receptor cross-linking.

Figure 3a,c, respectively, shows snapshots corresponding to the above two receptor densities at ¢ = 0.
Figure 3b,d shows corresponding snapshots at t=30s after the ligand addition. Both cases
indicate finite-sized receptor aggregation at t = 30s. Not surprisingly, the higher density case shows
relatively larger aggregate formation. However, the formation of larger aggregates also came at the
expense of lesser mobilities. If continued longer, the aggregates in both cases would further grow but
at relatively slow rates. The dynamics in the high-density case would be rather slower due to the
more sluggish motion of the larger aggregates. In these simulations, we set a=1. Therefore,
the diffusivities of the aggregates changed naturally (based on the Einstein—Stokes equation).
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Figure 4. Experimental data adapted from published literature. In (a,b), the Y-axis represents normalized diffusion coefficient of
species in the plasma membrane of rat basophil leukaemia (RBL)-2H3 cells. The X-axis represents stimulation time. Time zero is the
time of addition of a multivalent ligand. (a) Fig. 2C of Shelby et al. [16]. (b) Fig. 6¢ of Andrews et al. [14].

As discussed in the next section, even such natural decrease in diffusion led to a sharp decay in their
mobility for further growth and aggregation.

3.2. Temporal evolution of species diffusivity

Recently, Shelby et al. [16] and earlier Andrews et al. [14,15] investigated post-stimulation change in the
diffusion of FceRI in the plasma membrane of rat basophilic leukaemia (RBL)-2H3 cells. Their studies
showed rapid decay in the mobility of FceRI within a few seconds of stimulation with multivalent
DNP-bovine serum albumin (DNP-BSA) antigens. By tracking individual receptor aggregates using
super-resolution microscopy, Shelby et al. [16] showed about an order of magnitude decrease in
mobility in 10-15min (figure 4a). On the other hand, by tracking quantum dot (QD)-conjugated
individual IgE-receptor complexes, Andrews et al. [16] reported about twofold decrease in the
diffusion constant within a minute after stimulation (figure 4b). A direct and quantitative comparison
or fitting between these data and our simulation results is not possible due to unknown parameters.
Both studies used multivalent DNP-BSA ligands, whose exact structure and number of binding sites
to interact with the receptors are unknown. On the other hand, we specifically modelled the structure
of the trivalent ligand, DF3, reported in Mahajan et al. [8]. However, we were interested in
investigating whether our model could predict similar rapid decay in post-stimulation diffusivity.
Figure 5a shows our model-predicted decay in the species diffusion after stimulation with the
trivalent ligand. Figure 5b shows the corresponding time-evolution of the species sizes (effective radii).
These results are obtained by using the default parameter values listed in table 1. In figure 5a, the
diffusion constants of the time-evolving species are shown by the horizontal lines of distinct colours.
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Figure 5. Temporal changes in species diffusion after stimulation. (a) Diffusion constants of individual receptor species (a single
receptor molecule or a cluster). D and D, stand for the diffusion constants of an arbitrary receptor species and an isolated
receptor molecule, respectively. Each horizontal line of a distinct colour represents a distinct receptor species of a finite
lifetime. The thick dark line represents the mean diffusivity averaged over all the receptor species. (b) The sizes (effective
radii) of individual receptor species are shown by the horizontal lines of distinct colours. R and Ry stand for the effective
radius of an arbitrary receptor species and a single isolated receptor molecule, respectively. The thick black line represents
the mean size averaged over all receptor species. (c) Effect of receptor expression on the mean diffusivity. py indicates
receptor density normalized by the nominal density ng = 80 receptors um=2 (table 1). (d) Effect of the probability
parameter k¢ (table 1) on the mean diffusivity.

The length of these lines indicate the lifetimes of the corresponding species. The start and end of each line
indicate the time of appearance and disappearance of a species, respectively.

The mean diffusivity, which was obtained by averaging the diffusion constants of all species,
indicates a rapid exponential decrease in mobility of the receptor aggregates immediately after
stimulation. The result is consistent with the experimental observations in [14—16]. This rapid decrease
is due to the fast growth of the initial species, which were relatively small and short-lived. The rate of
decay eventually plateaued down as the larger aggregates populated at the expense of the more
mobile smaller aggregates. The larger aggregates were relatively long-lived because they were less
mobile and the system transitioned into a more dilute regime, as the interspecies distances became large.

We then investigated how receptor expression level may affect the dynamics (figure 5¢). At low
receptor densities, the rate of decay of diffusion became slower (figure 5d). This is expected because
the larger interspecies distances in a dilute regime involved a less frequent encounter among the
species. A reduced k¢ also resulted in a slower decay in the diffusion (figure 5d). At a small kg,
the system became more reaction-limited leading to many unproductive encounters among the
species. It should be noted that, in our simulations, we considered monomeric FceRI diffusion
constant to be 10* nm?s~! [20]. However, Andrews et al. [14] reported FceRI diffusion in unstimulated
cells to be around 7 x 10*nm?s~!. We used this value of diffusion constant to reproduce figure 5d.
Corresponding figure is included in electronic supplementary material, figure S1). There was virtually
no difference in the predictions with this new value of the diffusion constant (electronic
supplementary material, figure S1).
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Figure 6. Comparison between the spatial and non-spatial model. (@) Amount of bound ligand (to receptors) versus time when
ligand-receptor binding is irreversible in both models (k, = k. = 0). Red and black correspond to the non-spatial and spatial
model, respectively. (b) The same as in (a) considering reversible binding (k = ko = 0.001 s71). () The non-spatial model-
predicted receptor aggregate size distribution at t = 500s. The distribution was created by grouping receptor aggregate sizes
into different bins. Each bin indicates the range of aggregate sizes in terms of the number of receptor molecules. The Y-axis
represents the normalized amount of receptors corresponding to each bin. The distribution represents samples from 1000
simulation runs. The simulations were performed using the default parameter values listed in table 2. (d) The spatial model-
predicted receptor aggregate size distribution at t = 500s. The distribution was created in the same way as in (c). The
simulations were performed using the default parameter values listed in table 1. (e) The same as in (c) when k¢ is reduced by
10-fold. (f) The same as in (d) when oo = 0.

3.3. Self-limiting receptor cross-linking and aggregation

The non-spatial models in the past indicated that FceRI cross-linking by a trivalent ligand may lead to the
superaggregate formation in the cell membrane [3,7]. We investigated to what extent the predictions of
our spatial model might agree with the predictions of a non-spatial model. However, a direct comparison
between the spatial and non-spatial model was not possible. In the spatial model, explicit diffusion and
steric collisions determine receptor cross-linking. The non-spatial model lacks these features. In the non-
spatial model, the association constant (k) implicitly accounts for the diffusion and steric effects, as in
any typical bimolecular reaction. This parameter is time-invariant and identical for all species regardless
of their size or geometry.

To make the spatial and non-spatial model more comparable, we first used the spatial model to
predict the kinetics of ligand binding under two distinct conditions: irreversible binding (k. = 0)
(figure 6a) and reversible binding (k; = 0.001s7!) (figure 6b). We then fitted the non-spatial model to
these predictions to evaluate k., (figure 6a,b). We found the two models agreed well at
kon = 1.67 x 10*nm? s~

We then used both models to predict the distribution of receptor aggregates at t=500s. This
simulation time was chosen to ensure that the mean distribution reached the steady-state
condition. Similar to the earlier models [3,7], the non-spatial model predicted superaggregate
formation where a single complex incorporated approximately all receptor molecules (figure 6c). By
contrast, the spatial model predicted remarkably different distribution showing finite-sized receptor
aggregation over a wide range of sizes (figure 6d). To check if the non-spatial model could also
predict finite-sized aggregation at a lower k,,, we reduced the parameter by 10-fold. However, the
model still predicted superaggregate formation as shown in figure 6e. We found that the non-spatial
model required approximately 100-fold reduction in k., to predict finite-sized receptor aggregation
(result not shown).

We then set @ =0 and allowed the spatial model to predict the distribution. At & =0, the spatial
model predicted superaggregate formation like the non-spatial model (figure 6f). In fact, at a =0, the
spatial model becomes more akin to the non-spatial model because the diffusivities of all species
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Figure 7. Self-limiting aggregation of receptors. The distributions correspond to simulation time t =s. () & = 2, (b) o = 3.
Other parameter values used in the simulations are listed in table 1.

become time-invariant and identical. This is similar to the non-spatial model where the bimolecular
association constant k, is time-invariant and independent of the species.

We next investigated the distribution of receptor aggregates at & > 1. An earlier experimental study
by Menon et al. [25] demonstrated a dramatic loss of motion of FceRI clusters containing more than two
receptor proteins. Recently, Mahajan et al. [8] also reported a similar finding. These reports indicate that
the diffusivity of the cross-linked receptors in the membrane may not exactly follow the natural size-
dependence (a = 1). There might be anomalous effects giving rise to the sharp fall in the diffusivity of
cross-linked receptors. In our model, we attempted to capture this effect by setting « > 1. Because
D oc1/R*, a>1 makes the diffusivity decay relatively faster. Figure 7a,b shows the distributions at
a=2 and a =3, respectively. These values led to narrower distribution peaks and smaller receptor
aggregate sizes when compared with the distribution in figure 64 (e =1). In these analyses, the
diffusion constant of monomeric FceRI was set at the default value (10*nm?s~!). However, a
significantly higher value reported in Andrews et al. [14] (7 x 10*nm?s~!) also did not change the
result or conclusion (electronic supplementary material, figure S2).

It should be noted that, in our analysis, we treated the two ligand binding sites of the IgE-FceRI as
identical. However, the complex has an asymmetrical structure despite containing two identical chains
[26]. It is unknown whether or to what extent such structural asymmetry makes a difference between
the two sites in ligand binding. To our knowledge, all earlier models have treated the two sites as
identical [3,7,8,27]. Our default condition was also set accordingly. However, to see if a mild
difference between the two sites could change the predictions, we reduced the value of the intrinsic
forward rate constant k¢ by half for one of the two sites. This change virtually had no effect on the
predictions. As shown in electronic supplementary material, figure S3, the model predicted finite-
sized receptor aggregates identical to figure 6d. A significant reduction in k¢ for one site would
definitely make a difference because this would transform the receptor into a monomeric molecule,
thus abolishing receptor cross-linking. However, since receptors do form aggregates via ligand-
mediated cross-linking, such a scenario is unlikely. We should mention that a better strategy to
consider the asymmetry would be to explicitly incorporate the structural topology of the IgE-FceRI
complex. However, this would require a three-dimensional extension of the spatial graphs, which is
not within the scope of our current algorithm.
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4. Discussion

Receptor aggregation and consequent reduction in their lateral diffusion in the cell membrane is a
common phenomenon for many cell signalling receptor systems. Earlier, Schlessinger et al. [28,29]
reported reduced diffusion of insulin growth factor receptor (IGFR) and epidermal growth factor
receptor (EGFR) in response to stimulation by corresponding ligands, IGF and EGF, respectively [29].
Venkatakrishnan et al. [30] reported constitutive aggregation and reduced mobility of nerve growth
factor receptors in the plasma membrane of medulloblastoma cells. T cell receptors (TCR) also form
immobile microclusters during the formation of immunological synapse upon exposure to an antigen
presenting cell (APC) [31,32]. The most extensively studied system in this regard is perhaps the FceRI
system, as evident from many experimental investigations spanning more than three decades
[14-16,25,33—-38]. Despite the numerous experimental investigations, however, very little theoretical or
computational modelling works have been done to further gain insights into the consequences of such
interrelationship between receptor aggregation and diffusion. To our knowledge, the first and perhaps
the only modelling work in this context is the recent work of Mahajan et al. [8] who employed a non-
spatial model to explain the phenomenon. The non-spatial model placed an implicit constraint that
two receptor aggregates above a certain threshold size are unable to combine to form a larger
aggregate. Because the model was non-spatial, this imposed constraint did not capture or explain the
actual diffusion effect arising from the receptor aggregation in the membrane.

In this work, we used a spatio-temporal model to understand this relationship. Based on [8], we took
FceRI aggregation by a trivalent antigen as a model system for our analysis. However, the insights gained
from the analysis may be generalized for other multivalent ligand-receptor systems as well. Multivalent
ligand-mediated FceRI aggregation is perhaps the most thoroughly studied problem in the context of the
antigen—receptor interaction. Pioneering experimental works have been led by the Baird and Holowka
laboratory and complementary modelling works have been done by scientists at the Los Alamos
National Laboratory for decades [9,25,39,40]. Nonetheless, with the advent of new quantitative
measurement tools and high-resolution microscopy techniques, many of these earlier works have been
revisited [7,8,14-16].

Our study was primarily inspired by a caveat that most of the existing multivalent FceRI aggregation
models are non-spatial. This motivated us to develop the spatial model and investigate if incorporation of
space could explain the experimentally observed phenomena in FceRI aggregation. To the best of our
knowledge, this work introduces the first spatio-temporal model of multivalent ligand-mediated FceRI
assembly in the cell membrane. The BD-based simulation approach used in the model is based on our
recent work where we studied a generic multivalent ligand-receptor interaction [17]. The simulation
approach explicitly accounts for the coarse-grained structure of the time-evolving species, their
diffusion, and steric collisions.

An early model by Goldstein & Perelson [3] focused on equilibrium FceRI aggregation in response to
a trivalent ligand. This theoretical model was not capable of tracking the evolution of individual
molecules or complexes. A later model by Monine et al. [7,41] allowed this capability by
implementing a kinetic Monte Carlo (KMC) approach, called network-free simulation [22]. The
network-free approach combined with the rule-based modelling (RBM) [23,42] provides a unique
capability to model multivalent species interactions in signalling network system [41]. However, the
models developed in this approach are non-spatial. Both the models in [2,21] indicated large FceRI
superaggregate formation in response to the trivalent antigen. The more recent model [8] was also
developed using the non-spatial network-free KMC. However, the model prohibited superaggregate
formation with the assumption that receptor clusters above a certain threshold size are immobile,
whereas all clusters smaller than that threshold are equally mobile in the membrane.

While addressing the limitation of the non-spatial models above, our work provides important
insights into the potential roles of membrane diffusion on immunoreceptor signalling. The key
message from our analysis is that the membrane diffusion may limit receptor cross-linking and
activation against stimulation by antigens. Earlier modelling studies postulated that FceRI
superaggregate formation may enable cells to become hyper-responsive against multivalent foreign
antigens [3]. By contrast, our analysis in figures 6 and 7 indicates that the diffusion barriers limit
receptor clustering, which may contain a cell from being hyper-responsive.

Similar to the earlier models, our model lacks receptor trafficking in the plasma membrane. We
consider a fixed amount of FceRI and we do not incorporate receptor synthesis, endocytosis, recycling
or degradation. However, the potential effects of receptor trafficking in the model could be surmised.
Receptor endocytosis might further put a restriction on receptor aggregation sizes. If receptors have a
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finite lifetime in the membrane, it would be less likely for the slowly diffusing receptor clusters to [ 13 |
combine and form large aggregates. This may further diminish the possibility of a superaggregate
formation. In our model, we analysed receptor size distribution at 500s after stimulation. We did not
see appreciable changes in the distributions at f > 500s even at « = 1. However, if infinite receptor
lifetime is allowed in the absence of endocytosis and a sufficiently small rate for the bond dissociation
is assumed, it is theoretically possible to form superaggregates in the spatial model.

We limited the scope of our model to the simple ligand-receptor system in two dimensions. The
approach could be extended for spatio-temporal modelling of more complex signalling network
systems. A three-dimensional extension of the approach might be required to more realistically model
the extracellular and intracellular compartments of a cell. However, such an extension entails
additional measures to address the computational challenges which were beyond the scope of this
work. We believe that the predicted effects of diffusion on the receptor aggregation would remain
similar if a three-dimensional membrane was considered in our model.

Currently, the RBM approach enables site-specific features and interactions of protein molecules.
However, most of the RBM tools rely on non-spatial graphs to define these features. Recent efforts
have been undertaken to enable spatio-temporal modelling in several rule-based tools, which include
Kappa [43], Simmune [44] and BioNetGen [23]. Besides, there exist many stochastic modelling
tools for spatio-temporal modelling with advanced capabilities [45]. Examples include MCell [46],
Smoldyn [47], SPATKIN [48], ReaDDy [49] and SpringSalLaD [50]. However, to our knowledge,
none of these tools have been used to create spatio-temporal models considering the site-specific
coarse-grained structure of ligand and receptor molecules and their interactions.

Many of the above tools do not permit geometry or structure of molecules in a model. MCell [46] and
Smoldyn [47] are two powerful tools that enable versatile capabilities to model reaction and diffusion in
complex geometries (cellular or reaction compartments). However, both employ particle-based
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simulations where species are treated as points. Although Smoldyn can consider volume exclusion for
isolated structures [51], to our knowledge, it does not permit time-evolving structures (geometries)
arising from the site-specific binding of molecules or complexes, as implemented in our model.

The tools that might be closely related to our approach are SPATKIN [48], ReaDDy [49], and
SpringSaLaD [50]. These software tools describe coarse-grained structures of species by spatial
orientation of small beads, as in our model. However, SPATKIN allows lattice-based BD simulation.
Because the lattice must be described a priori, unlike the time-adaptive feature implemented in our
approach, such simulation could be expensive. The lattice must be very finely grained if the site-
specific interaction of species is to be captured at a high resolution. Both ReaDDy and SpringSalLaD
allow off-lattice BD. However, the simulation algorithm is distinct from the time-adaptive BD
implemented in our approach. It is also unclear from the published literature if these tools permit
time-evolving diffusion constant based on the evolving size and geometry of the species, an essential
feature of our model. Nevertheless, the modelling and algorithmic features presented in our work
may also be implemented in some of these tools without requiring any non-trivial modification in the
software code.
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