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Aggregation of cell surface receptor proteins by multivalent

antigens is an essential early step for immune cell signalling.

A number of experimental and modelling studies in the past

have investigated multivalent ligand-mediated aggregation

of IgE receptors (Fc1RI) in the plasma membrane of mast

cells. However, understanding of the mechanisms of Fc1RI

aggregation remains incomplete. Experimental reports

indicate that Fc1RI forms relatively small and finite-sized

clusters when stimulated by a multivalent ligand. By

contrast, modelling studies have shown that receptor

cross-linking by a trivalent ligand may lead to the formation

of large receptor superaggregates that may potentially give

rise to hyperactive cellular responses. In this work, we have

developed a Brownian dynamics-based spatio-temporal

model to analyse Fc1RI aggregation by a trivalent antigen.

Unlike the existing models, which implemented non-spatial

simulation approaches, our model explicitly accounts for

the coarse-grained site-specific features of the multivalent

species (molecules and complexes). The model incorporates

membrane diffusion, steric collisions and sub-nanometre-

scale site-specific interaction of the time-evolving species of

arbitrary structures. Using the model, we investigated

temporal evolution of the species and their diffusivities.

Consistent with a recent experimental report, our model

predicted sharp decay in species mobility in the plasma

membrane in response receptor cross-linking by a multivalent

antigen. We show that, due to such decay in the species

mobility, post-stimulation receptor aggregation may become

self-limiting. Our analysis reveals a potential regulatory

mechanism suppressing hyperactivation of immune cells in

response to multivalent antigens.
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1. Introduction
Cross-linking of cell surface receptor proteins by antigens is an essential early step for the activation of all

immunoreceptor signalling pathways. In the past, both experimental and modelling studies investigated

multivalent ligand-mediated cross-linking of IgE receptors (Fc1RI) in the plasma membrane of basophil

or mast cells [1–8]. Synthetic multivalent ligands have been used to understand the correlation between

membrane clustering of Fc1RI and cellular histamine release or degranulation [8–13]. However, the

mechanistic understanding ofmultivalent ligand-Fc1RI assembly in the cell membrane remains incomplete.

A number of experimental studies have found that stimulation of cells with a synthetic multivalent

ligand forms finite-sized Fc1RI clusters in the plasma membrane [8,14–16]. This observation contradicts

model-based analysis [3,7]. On the contrary, an early theoretical model by Goldstein & Perelson [3]

predicted that stimulation of a bivalent Fc1RI with a trivalent ligand may lead to a condition where all

the receptors can be incorporated into a single large complex (superaggregate or gel). They postulated

that such superaggregate formation might enable a cell to be hyper-responsive against infection. Recently,

using a stochastic model, Monine et al. [7] also showed similar phenomenon in Fc1RI aggregation. Lately,

Mahajan et al. [8] reported a model similar to the model of Monine et al. [7]. However, this model

imposed a condition on receptor cross-linking to prohibit superaggregate formation.

A common caveat of these earlier models was that the models were non-spatial and hence lacked the

ability to incorporate the spatio-temporal effects, such as membrane diffusion, steric collision and

geometry of the dynamically evolving species (ligand and receptor molecules and their complexes).

We were interested in investigating whether a spatial model could explain the reported behaviour of

Fc1RI aggregation. Recent experimental studies by Shelby et al. [16] and Andrews et al. [14,15] indicate
that the diffusion of multivalent antigen-cross-linked receptors falls sharply upon stimulation of mast

cells. In particular, the analysis of Andrews et al. [14] suggests that the multivalent ligand cross-linked

receptor cluster display reduced mobility through the actin network of the cell plasma membrane. The

question we wanted to answer is whether such decrease in the receptor mobility could ultimately

dictate receptor cross-linking and the size distribution of Fc1RI aggregates in the plasma membrane.

To develop a spatial model, we needed a computationally efficient simulation framework that can

efficiently capture the site-specific interactions of the molecules and complexes at reasonably high

resolutions. A typical molecular dynamics (MD) simulation was deemed infeasible because of the

timescale and spatial domains of our interests. Therefore, we adopted a Brownian dynamics (BD)-

based approach. To leverage computation, we implemented a time-adaptive feature in the BD

simulation algorithm based on our recent work [17]. We integrated the time-adaptive BD algorithm

with an agent-based framework, where we used spatial graphs to define the coarse-grained structures

(site-specific features) of the trivalent ligand and bivalent Fc1RI molecules in a two-dimensional plane

(cell membrane).

Using the model, we investigated the effects of membrane diffusion on the interaction of dynamically

evolving ligand-receptor complexes. Consistent with [16], our model indicated that there could be a

rapid decay of species diffusion in the membrane upon stimulation by a multivalent antigen. We showed

that the dynamics of this decay is correlated to the level of receptor density in the cell membrane. We

compared the predictions of our spatial model with a non-spatial model, which we developed based on

the models in [7,8]. The spatial model predicted finite-sized receptor clusters distributed over a broad

range of sizes. By contrast, the non-spatial model revealed a single superaggregate incorporating

approximately all receptors. We found that when the diffusion constant in the spatial model was made

time-invariant and species-independent, it also predicted superaggregate formation like the non-spatial

model. These results underscore a limitation of the non-spatial models, where a bimolecular association

rate constant accounts for the ligand-receptor assembly while ignoring the time-evolving size and

geometry of the species. Our analysis indicates that cell surface receptor aggregation could be self-

limiting due to the growing aggregate sizes and concurrent reduction in their mobilities. We conclude

that such a self-regulatory mechanism may serve to contain hyperactive cellular responses.
2. Material and methods
Our spatio-temporal model was based on a trivalent ligand and a bivalent receptor molecule. The model

resembles the trivalent ligand and bivalent Fc1RI systems studied in [8]. The model is developed using

the agent-based approach combined with a time-adaptive BD simulation algorithm. Below we provide

the details of the model and the BD algorithm.

http://rsos.royalsocietypublishing.org/


ligand receptor

complex

(a)

(c)

(b)

Figure 1. Illustration of spatial graphs. (a) A trivalent molecule. The white unfilled circle at the centre defines the molecule centre,
and each yellow circle represents a reaction centre. (b) A bivalent receptor molecule. The unfilled circle at the centre defines the
molecule centre, and each yellow circle represents a reaction centre. (c) A ligand-receptor complex.
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2.1. Spatio-temporal model of trivalent ligand-bivalent receptor interaction in the
cell membrane

In our model, ligand and receptor molecules are described by agents or software objects. We consider a

two-dimensional rectangular plane to define the plasma membrane, where the molecules can diffuse and

mediate site-specific interactions. Using an approach similar to [18], we use spatial graphs to describe the

ligand and receptor molecules (figure 1). A spatial graph is a collection of small circles, which we refer to

as subunits. The spatial orientation of the subunits defines the structure of a molecule and its site-specific

features, such as binding domains or motifs.

We define a ligand molecule based on the synthetic trivalent ligand described in Mahajan et al. [8].
The molecule has three identical binding arms each of which is approximately 17 Å long. The binding

arms are symmetrically spaced, i.e. the angle between two adjacent arms is 1208. We consider a single

subunit of radius 1.5 Å to define the centre of the molecule (figure 1a). We define each binding arm

by five adjacent subunits each of which is also 1.5 Å in radius. Thus, the distance between the

molecule centre to the tip of each binding arm is approximately 16.5 Å. We consider each binding arm

to have a reaction centre that can form a bond with a complementary region of a receptor molecule.

In each binding arm, we designate the subunit at the tip as the reaction centre (yellow circles in figure 1a).
We model the bivalent Fc1RI by a graph containing two identical binding arms 1808 apart (figure 1b).

Reports indicate that the approximate Fc1RI radius is 46–51 Å [19]. We consider each binding arm to

have five identical subunits each of which is also 5 Å in radius. Thus, the length of each binding arm

is 50 Å. We consider a molecule centre separating these two arms. A single subunit of 5 Å radius

defines the molecule centre. Similar to a ligand molecule graph, each binding arm contains a reaction

centre at the tip (yellow circles in figure 1b).
In the model, when the reaction centres of a ligand and a receptor molecule graph come within a close

proximity (a predefined short distance that we call reaction layer), they may form an (implicit) bond. The

bond holds the two molecules together in a complex. Similarly, a complex may form larger complexes

through association with other molecules or complexes via their unoccupied reaction centres.

Figure 1c illustrates a complex containing multiple ligand and receptor molecules.

2.2. Time-adaptive Brownian dynamics simulation algorithm
We use a time-adaptive BD algorithm to simulate species diffusion in the two-dimensional membrane.

The time adaptive feature is included to accelerate computation, especially in the dilute regimes. The

algorithm is based on our recent work [17]. It selects the time step sizes adaptively to facilitate

computation while capturing the site-specific interactions of the species at the sub-nanometre resolution.

2.2.1. Lateral and rotational diffusion of species

In the BD algorithm, we consider both lateral and rotational diffusion for the spatial graphs representing

the species (molecules and complexes). Because the size and structure of these graphs evolve dynamically

due to their site-specific assembly and dissociation, their lateral and rotational diffusivities also change

with time. In every BD step, a species graph is translated or rotated as a rigid body over time step Dt.

http://rsos.royalsocietypublishing.org/
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Figure 2. Disc representation of molecules and complexes. Each molecule and complex graph is contained by a hypothetical disc
(grey circles). The centre of each disc is located at the centre of mass of the corresponding graph. The radius of the disc is the
shortest distance that allows the disc to fully encompass the structure of the graph. The radius of the disc represents the
effective radius of the corresponding species. (a) The centre of mass (C ) and effective radius (R) of a ligand molecule, a
receptor molecule and a complex. (b) Molecule and complex graphs in a two-dimensional plane (cell membrane). The variable
di,j represents the distance between a pair of discs i and j. A negative di,j implies the overlap between the two discs. Such
overlap is permitted as long as the structure defined by the graphs do not collide or conflict.
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We assume that the translation and rotation of a graph occur with respect to its centre of mass. Both types

of diffusivities of a graph depend on its instantaneous size. We determine the centre of mass (C ) and the

size (R) of a graph as explained next.

We consider aweight associatedwith each subunit of a molecule. The receptor molecule has a total of 11

subunits, whereas the ligand molecule graph has a total of 16 subunits. We assign each receptor subunit a

mass of 1 (arbitrary unit). Comparing the volume of a ligand subunit with that of a receptor subunit, we

assign each ligand subunit a mass of 0.027. Because these molecule graphs have symmetric structures,

their centre of mass corresponds to the molecule centre (figure 2a). However, for a multimolecular

complex, the centre of mass depends on the instantaneous spatial organization of the subunits (figure 2a).
We define the size of a graph by its effective radius R. To calculate R, we envision a hypothetical disc

encompassing each species graph (figure 2a). The centre of the disc is located at the centre of mass of the

graph. We consider R to be the distance from the centre of mass to the farthest point of the graph. For

example, if (x, y) represents the centre of mass of a graph, and (xi, yi) represents the centre of any

subunit i, then R ¼ max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � x)2 þ (yi � y)2

q
þ ri

� ��
, where ri is the radius of subunit i.

We relate the diffusion constant of a species to its size by the following expression: D/ 1=Ra. Here,

the exponent a is a tunable parameter in the model. Setting a ¼ 0 makes D a constant (independent of

time or species). This condition corresponds to a non-spatial model, where the single-site ligand-receptor

association is governed by a constant rate parameter typical for any bimolecular reaction. At a ¼ 1, D
evolves naturally (based on the Einstein–Stokes equation) with the size of a graph. Finally, at a. 1,

the model captures an arbitrarily large decrease of D of a growing species.

For an isolated receptor molecule, whose size (and hence diffusion) is time-invariant, we consider a

baseline diffusion constant, D0 ¼ 104 nm2 s�1 [20]. For any other species, which includes an isolated

ligand molecule, we consider D ¼ D0(R0=R)a, where R and R0 represent the effective radius of the

species and an isolated receptor molecule, respectively.

During each BD time step Dt, we advance each graph as a rigid body by a distance l ¼
ffiffiffiffiffiffiffiffiffiffiffi
4DDt
p

e,

where D is the lateral diffusion constant of the graph and e is a unit vector in a random direction.

After the lateral translation, we rotate the graph around the centre of mass C by an angle

f ¼ (
ffiffiffi
3
p

=2
ffiffiffi
2
p

)(l=R). The direction of rotation is chosen randomly clockwise or anti-clockwise in each

time step. The expression for f is derived considering l ¼
ffiffiffiffiffiffiffiffiffiffiffi
4DDt
p

and f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2DrDt
p

, where l and f,

respectively, represent the lateral and angular displacements over time Dt, D represents the lateral

diffusion constant, and Dr represents the rotational diffusion constant. Again, D and Dr can be related

based on Einstein–Stokes equation, D ¼ KBT=6pmR and Dr ¼ KBT=8pmR, where KB is the Boltzmann

constant, T is temperature and m is the membrane viscosity.

2.2.2. Time-adaptive advancement of molecule and complex graphs

In each BD step, we calculate the time step Dt adaptively. The adaptive Dt is computed based on the inter-

species distances di,js (figure 2b). If di,j for any pair of graphs (i, j) is small (i.e. an encounter between a pair

http://rsos.royalsocietypublishing.org/
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of graphs is likely), Dt is chosen small. On the other hand, if di,j is large for all unique pairs (i, j), Dt is
chosen large to accelerate computation.

To calculate the appropriate size for Dt, we first compute di,j for all unique pairs of (i, j) for i = j.
As illustrated (figure 2b), di,j . 0 implies that the corresponding discs are at non-overlapping

positions. On the other hand, di,j , 0 implies that the discs are at overlapping positions. We compute

the smallest inter-species distance, dmin ¼ minfdi,jg for i = j. If dmin . 0, then none of the discs in the

system should be at an overlapping position. On the other hand, if dmin � 0, at least one pair of discs

should be at overlapping positions.

If dmin � 0, i.e. at least one disc pair is overlapping, a collision or reaction could be imminent. To

capture such events more accurately, we consider a fine resolution Dt under such conditions. We set

the time step, Dt ¼ l2min=4Dmax, where lmin is the lower bound on species jumps in our simulation, and

Dmax is the diffusion coefficient of the fastest (smallest) disc in the system. We consider lmin ¼ 1 nm.

Thus, all discs advance by less than or equal to 1 nm when the probability of a collision or reaction

is high.

If dmin . 0, i.e. none of the discs are at overlapping positions, we calculate the shortest possible time

(Dts) that can potentially lead to an overlap between any two discs: Dts ¼ minfd2i,j=4(
ffiffiffiffi
D
p

i þ
ffiffiffiffi
D
p

j)
2g. We

then check if Dts is too small to consider for computational efficiency. We compare it with a defined lower

bound on time step size, Dtmin ¼ 10�5 s. If Dts � Dtmin, we disregard Dts and set time step

Dt ¼ l2min=4Dmax. However, if Dts . Dtmin, we check if any specie may advance by a distance greater

than lmax ¼ 10 nm, where lmax is an upper bound imposed on the jump size of species. To ensure that

no species violates this upper bound, we evaluate if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4DmaxDts
p

� lmax. If this condition is satisfied, we

set time step Dt ¼ l2max=4(
ffiffiffiffi
D
p

max þ
ffiffiffiffi
D
p

max)
2 ¼ l2max=16Dmax so that the jump remains within the upper

bound. Otherwise, we set time step Dt ¼ Dts.

2.2.3. Collision, binding and dissociation

A collision may occur if two graphs occupy conflicting positions as a result of a move. In such a

possibility, we simply reject the move of the particular graph while advancing others. In the model, a

binding may occur if a ligand reaction centre and a receptor reaction centre fall within a predefined

small distance (reaction layer) lr [21]. For each such pair of reaction centres, we consider a probability

of bond formation, kf � 1. We draw a random number between 0 and 1. If the random number is

smaller than kf, we consider the formation of an (implicit) bond between the reaction centres. In our

simulations, we assign lr ¼ 5 Å, a distance comparable to the radius of a receptor reaction centre. In

the model, either lr or kf value can be tuned to make the system reaction-limited or diffusion-limited.

After the bond formation between the reaction centres, we treat the two associated graphs as a single

(larger) graph. As in the existing non-spatial models [3,7,8], we prohibit intra-complex binding (ring

formation). A bond can form only if the reaction centres belong to two distinct species (separate

molecules or complexes).

We consider a dissociation rate constant kr for each ligand-receptor bond. Thus, the lifetime of

each bond is exponentially distributed with mean lifetime l ¼ 1=kr s. At the end of each BD step, we

calculate the probability of dissociation of each ligand-receptor bond. We draw a random number

between 0 and 1. If the random number is smaller than 1� exp (�krDt), where Dt is the latest time step,

we assume the bond is broken and the graph is separated into two smaller graphs. In the next step, the

separated graphs may move away from each other because of their diffusion. Alternatively, they may

recombine based on the probability kf to form a complex again. We consider kr ¼ 0:001 s�1 [8]. Setting

this parameter to zero makes ligand-receptor binding irreversible. Table 1 summarizes the default

values used in the model.

2.3. Non-spatial trivalent ligand-bivalent receptor model
We developed a corresponding non-spatial model using the network-free kinetic Monte Carlo (KMC)

approach [22]. The model is based on the earlier models in [7,8]. The purpose of this non-spatial

model was to compare it with the spatial model predictions. Although written in Cþþ, for

convenience, we explain this model using the standard notations of BNGL [23], a rule-based model

specification language.

The model can be described by the BNGL rule in equation (2.1). The rule defines the single-site

binding and dissociation between a trivalent ligand molecule L(a, a, a) and a bivalent receptor

molecule R(b, b). The ligand molecule contains three identical reaction centres (binding sites) denoted

http://rsos.royalsocietypublishing.org/


Table 1. Default parameter values used in the spatial model.

parameter comment

A ¼ 1000� 1000 nm dimension of the plasma membrane domain

nR ¼ 80 molecules mm22 density of receptor molecules

nL ¼ 80 molecules mm22 density of ligand molecules

NRsite ¼ 2 number of binding arms in a receptor molecule (bivalent)

NLsite ¼ 3 number of binding arms in a ligand molecule (trivalent)

RR ¼ 55 Å effective radius of a receptor molecule

RL ¼ 16.5 Å effective radius of a ligand molecule

DR ¼ 104 nm2 s�1 diffusion constant for an isolated receptor molecule

DL ¼ 104[RR=RL]a nm2 s�1 diffusion constant for an isolated ligand molecule

D(t) ¼ 104[RR=R(t)]
a nm2 s�1 diffusion constant for a complex

a ¼ 1 exponent relating diffusivity and size: D/ 1=Ra

lr ¼ 5 Å reaction layer around each reaction centre

k f ¼ 1 bond formation probability when two reaction centres are within lr
kr ¼ 0:001 s�1 bond dissociation constant

Table 2. Default parameter values used in the non-spatial model.

parameter comment

nR ¼ 80 molecules number of receptor molecules

nL ¼ 80 molecules number of ligand molecules

NRsite ¼ 2 number of binding sites in a receptor molecule

NLsite ¼ 3 number of binding sites in a ligand molecule

kon ¼ 1:66� 104 nm2 s�1 forward rate constant for single-site binding (this work)

kr ¼ 0:001 s�1 reverse rate constant for single-site dissociation

rsos.royalsocietypublishing.org
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as a and the receptor molecule contains two identical reaction centres denoted as b. We use non-spatial

graphs to define these molecules.

L(a)þ R(b) ! L(a!1):R(b!1) kon, koff (2:1)

The rule above specifies the binding and dissociation between a pair of ligand and receptor reaction centres.

In the rule, the remaining reaction centres of the twomolecules are not specified. These unspecified reaction

centres are wildcards, meaning those could either be free or connected to other molecules. In the rule,

the symbol ! followed by a matching number (1 in this example) represents a bond connecting the

reaction centres. The parameter kon represents the rate constant for the single-site bimolecular binding

(forward reaction). The parameter koff represents the rate constant for the unimolecular bond dissociation

(reverse reaction). The values of these rate parameters are independent of the remaining reaction centres

that are not specified in the rule. These parameters are also independent of time and size of the species

involved. Thus, at any time during the course of a simulation, the above rule gives rise to an arbitrary

number of elementary reactions depending on the number of free reaction centres in different molecules

and complexes.

It should be noted that the earlier models in [7,8] consider an additional rule to describe ligand

recruitment from the solution (extracellular space) to the plasma membrane. In our model, we

eliminate this additional step to make the non-spatial model consistent with the spatial model. This

simplification is based on our assumption that the extracellular solution is well-mixed and diffusion

there is fast compared to diffusion in the cell membrane.

We set koff ¼ 0:001 s�1 [8] (the corresponding parameter in the spatial model kr has the same value).

As discussed in the Results section, by comparing the non-spatial model and spatial model predictions, we

determined kon ¼ 1:667� 104 nm2 s�1. Table 2 summerizes the default parameter values used in the model.

http://rsos.royalsocietypublishing.org/
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Figure 3. Simulation snapshots of ligand and receptor clusters in the cell membrane. (a) nL ¼ nR ¼ 80 moleculesmm�2, t ¼ 0 s.
(b) nL¼ nR¼ 80 moleculesmm�2, t¼ 30 s. (c) nL¼ nR¼ 800 moleculesmm�2, t ¼ 0 s. (d ) nL ¼ nR ¼ 800 moleculesmm�2,
t ¼ 30 s. (e) A zoomed-in region of (d ).
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2.3.1. Code implementation

Both the spatial and non-spatial models were written in Object-Oriented Cþþ. The source codes

for both models are included in the electronic supplementary material (archived folders named

‘spatial_model.tar.gz’ and ‘nonspatial_model.tar.gz’, respectively). Detailed instructions for the

installation and execution of simulations are provided in a file named ‘README.txt’ in each folder.
3. Results
3.1. Effect of receptor density on ligand-receptor assembly
We first used the spatial model to investigate ligand-receptor assembly at different levels of receptor

densities in the cell membrane. Reportedly, Fc1RI copy number in mast cells may vary between

104 and 106 molecules per cell [24]. We wanted to see how such variations in the receptor expression

may affect receptor cross-linking. Figure 3 shows several snapshots from our simulations. As indicated

in the figure, in one case we considered a relatively modest level of receptor density,

nR ¼ 80 moleculesmm�2 (figure 3a–b). In the other case, we considered a 10-fold higher receptor

density, nR ¼ 800 moleculesmm�2 (figure 3c–e). These densities correspond to 105 and 106 receptor

molecules per cell, respectively, assuming a spherical cell of 10mm radius. In both cases, we kept

receptor to ligand ratio 1. In the cell membrane, the ligand density cannot exceed twice the Fc1RI

density because a single Fc1RI can bind at most two ligand molecules at a time. By choosing this

ratio, we allowed adequate receptor cross-linking.

Figure 3a,c, respectively, shows snapshots corresponding to the above two receptor densities at t ¼ 0.

Figure 3b,d shows corresponding snapshots at t ¼ 30 s after the ligand addition. Both cases

indicate finite-sized receptor aggregation at t ¼ 30 s. Not surprisingly, the higher density case shows

relatively larger aggregate formation. However, the formation of larger aggregates also came at the

expense of lesser mobilities. If continued longer, the aggregates in both cases would further grow but

at relatively slow rates. The dynamics in the high-density case would be rather slower due to the

more sluggish motion of the larger aggregates. In these simulations, we set a ¼ 1. Therefore,

the diffusivities of the aggregates changed naturally (based on the Einstein–Stokes equation).

http://rsos.royalsocietypublishing.org/
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Figure 4. Experimental data adapted from published literature. In (a,b), the Y-axis represents normalized diffusion coefficient of
species in the plasma membrane of rat basophil leukaemia (RBL)-2H3 cells. The X-axis represents stimulation time. Time zero is the
time of addition of a multivalent ligand. (a) Fig. 2C of Shelby et al. [16]. (b) Fig. 6c of Andrews et al. [14].
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As discussed in the next section, even such natural decrease in diffusion led to a sharp decay in their

mobility for further growth and aggregation.
3.2. Temporal evolution of species diffusivity
Recently, Shelby et al. [16] and earlier Andrews et al. [14,15] investigated post-stimulation change in the

diffusion of Fc1RI in the plasma membrane of rat basophilic leukaemia (RBL)-2H3 cells. Their studies

showed rapid decay in the mobility of Fc1RI within a few seconds of stimulation with multivalent

DNP-bovine serum albumin (DNP-BSA) antigens. By tracking individual receptor aggregates using

super-resolution microscopy, Shelby et al. [16] showed about an order of magnitude decrease in

mobility in 10–15min (figure 4a). On the other hand, by tracking quantum dot (QD)-conjugated

individual IgE-receptor complexes, Andrews et al. [16] reported about twofold decrease in the

diffusion constant within a minute after stimulation (figure 4b). A direct and quantitative comparison

or fitting between these data and our simulation results is not possible due to unknown parameters.

Both studies used multivalent DNP-BSA ligands, whose exact structure and number of binding sites

to interact with the receptors are unknown. On the other hand, we specifically modelled the structure

of the trivalent ligand, DF3, reported in Mahajan et al. [8]. However, we were interested in

investigating whether our model could predict similar rapid decay in post-stimulation diffusivity.

Figure 5a shows our model-predicted decay in the species diffusion after stimulation with the

trivalent ligand. Figure 5b shows the corresponding time-evolution of the species sizes (effective radii).

These results are obtained by using the default parameter values listed in table 1. In figure 5a, the
diffusion constants of the time-evolving species are shown by the horizontal lines of distinct colours.
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The length of these lines indicate the lifetimes of the corresponding species. The start and end of each line

indicate the time of appearance and disappearance of a species, respectively.

The mean diffusivity, which was obtained by averaging the diffusion constants of all species,

indicates a rapid exponential decrease in mobility of the receptor aggregates immediately after

stimulation. The result is consistent with the experimental observations in [14–16]. This rapid decrease

is due to the fast growth of the initial species, which were relatively small and short-lived. The rate of

decay eventually plateaued down as the larger aggregates populated at the expense of the more

mobile smaller aggregates. The larger aggregates were relatively long-lived because they were less

mobile and the system transitioned into a more dilute regime, as the interspecies distances became large.

We then investigated how receptor expression level may affect the dynamics (figure 5c). At low

receptor densities, the rate of decay of diffusion became slower (figure 5d ). This is expected because

the larger interspecies distances in a dilute regime involved a less frequent encounter among the

species. A reduced kf also resulted in a slower decay in the diffusion (figure 5d ). At a small kf,
the system became more reaction-limited leading to many unproductive encounters among the

species. It should be noted that, in our simulations, we considered monomeric Fc1RI diffusion

constant to be 104 nm2 s�1 [20]. However, Andrews et al. [14] reported Fc1RI diffusion in unstimulated

cells to be around 7� 104 nm2 s�1. We used this value of diffusion constant to reproduce figure 5d.
Corresponding figure is included in electronic supplementary material, figure S1). There was virtually

no difference in the predictions with this new value of the diffusion constant (electronic

supplementary material, figure S1).
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3.3. Self-limiting receptor cross-linking and aggregation
The non-spatial models in the past indicated that Fc1RI cross-linking by a trivalent ligand may lead to the

superaggregate formation in the cell membrane [3,7]. We investigated to what extent the predictions of

our spatial model might agree with the predictions of a non-spatial model. However, a direct comparison

between the spatial and non-spatial model was not possible. In the spatial model, explicit diffusion and

steric collisions determine receptor cross-linking. The non-spatial model lacks these features. In the non-

spatial model, the association constant (kon) implicitly accounts for the diffusion and steric effects, as in

any typical bimolecular reaction. This parameter is time-invariant and identical for all species regardless

of their size or geometry.

To make the spatial and non-spatial model more comparable, we first used the spatial model to

predict the kinetics of ligand binding under two distinct conditions: irreversible binding (kr ¼ 0)

(figure 6a) and reversible binding (kr ¼ 0:001 s�1) (figure 6b). We then fitted the non-spatial model to

these predictions to evaluate kon (figure 6a,b). We found the two models agreed well at

kon ¼ 1:67� 104 nm2 s�1.

We then used both models to predict the distribution of receptor aggregates at t ¼ 500 s. This

simulation time was chosen to ensure that the mean distribution reached the steady-state

condition. Similar to the earlier models [3,7], the non-spatial model predicted superaggregate

formation where a single complex incorporated approximately all receptor molecules (figure 6c). By
contrast, the spatial model predicted remarkably different distribution showing finite-sized receptor

aggregation over a wide range of sizes (figure 6d ). To check if the non-spatial model could also

predict finite-sized aggregation at a lower kon, we reduced the parameter by 10-fold. However, the

model still predicted superaggregate formation as shown in figure 6e. We found that the non-spatial

model required approximately 100-fold reduction in kon to predict finite-sized receptor aggregation

(result not shown).

We then set a ¼ 0 and allowed the spatial model to predict the distribution. At a ¼ 0, the spatial

model predicted superaggregate formation like the non-spatial model (figure 6f ). In fact, at a ¼ 0, the

spatial model becomes more akin to the non-spatial model because the diffusivities of all species
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become time-invariant and identical. This is similar to the non-spatial model where the bimolecular

association constant kon is time-invariant and independent of the species.

We next investigated the distribution of receptor aggregates at a. 1. An earlier experimental study

by Menon et al. [25] demonstrated a dramatic loss of motion of Fc1RI clusters containing more than two

receptor proteins. Recently, Mahajan et al. [8] also reported a similar finding. These reports indicate that

the diffusivity of the cross-linked receptors in the membrane may not exactly follow the natural size-

dependence (a ¼ 1). There might be anomalous effects giving rise to the sharp fall in the diffusivity of

cross-linked receptors. In our model, we attempted to capture this effect by setting a. 1. Because

D/ 1=Ra, a. 1 makes the diffusivity decay relatively faster. Figure 7a,b shows the distributions at

a ¼ 2 and a ¼ 3, respectively. These values led to narrower distribution peaks and smaller receptor

aggregate sizes when compared with the distribution in figure 6d (a ¼ 1). In these analyses, the

diffusion constant of monomeric Fc1RI was set at the default value (104 nm2 s�1). However, a

significantly higher value reported in Andrews et al. [14] (7� 104 nm2 s�1) also did not change the

result or conclusion (electronic supplementary material, figure S2).

It should be noted that, in our analysis, we treated the two ligand binding sites of the IgE-Fc1RI as

identical. However, the complex has an asymmetrical structure despite containing two identical chains

[26]. It is unknown whether or to what extent such structural asymmetry makes a difference between

the two sites in ligand binding. To our knowledge, all earlier models have treated the two sites as

identical [3,7,8,27]. Our default condition was also set accordingly. However, to see if a mild

difference between the two sites could change the predictions, we reduced the value of the intrinsic

forward rate constant kf by half for one of the two sites. This change virtually had no effect on the

predictions. As shown in electronic supplementary material, figure S3, the model predicted finite-

sized receptor aggregates identical to figure 6d. A significant reduction in kf for one site would

definitely make a difference because this would transform the receptor into a monomeric molecule,

thus abolishing receptor cross-linking. However, since receptors do form aggregates via ligand-

mediated cross-linking, such a scenario is unlikely. We should mention that a better strategy to

consider the asymmetry would be to explicitly incorporate the structural topology of the IgE-Fc1RI

complex. However, this would require a three-dimensional extension of the spatial graphs, which is

not within the scope of our current algorithm.
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4. Discussion
Receptor aggregation and consequent reduction in their lateral diffusion in the cell membrane is a

common phenomenon for many cell signalling receptor systems. Earlier, Schlessinger et al. [28,29]

reported reduced diffusion of insulin growth factor receptor (IGFR) and epidermal growth factor

receptor (EGFR) in response to stimulation by corresponding ligands, IGF and EGF, respectively [29].

Venkatakrishnan et al. [30] reported constitutive aggregation and reduced mobility of nerve growth

factor receptors in the plasma membrane of medulloblastoma cells. T cell receptors (TCR) also form

immobile microclusters during the formation of immunological synapse upon exposure to an antigen

presenting cell (APC) [31,32]. The most extensively studied system in this regard is perhaps the Fc1RI

system, as evident from many experimental investigations spanning more than three decades

[14–16,25,33–38]. Despite the numerous experimental investigations, however, very little theoretical or

computational modelling works have been done to further gain insights into the consequences of such

interrelationship between receptor aggregation and diffusion. To our knowledge, the first and perhaps

the only modelling work in this context is the recent work of Mahajan et al. [8] who employed a non-

spatial model to explain the phenomenon. The non-spatial model placed an implicit constraint that

two receptor aggregates above a certain threshold size are unable to combine to form a larger

aggregate. Because the model was non-spatial, this imposed constraint did not capture or explain the

actual diffusion effect arising from the receptor aggregation in the membrane.

In this work, we used a spatio-temporal model to understand this relationship. Based on [8], we took

Fc1RI aggregation by a trivalent antigen as a model system for our analysis. However, the insights gained

from the analysis may be generalized for other multivalent ligand-receptor systems as well. Multivalent

ligand-mediated Fc1RI aggregation is perhaps the most thoroughly studied problem in the context of the

antigen–receptor interaction. Pioneering experimental works have been led by the Baird and Holowka

laboratory and complementary modelling works have been done by scientists at the Los Alamos

National Laboratory for decades [9,25,39,40]. Nonetheless, with the advent of new quantitative

measurement tools and high-resolution microscopy techniques, many of these earlier works have been

revisited [7,8,14–16].

Our study was primarily inspired by a caveat that most of the existing multivalent Fc1RI aggregation

models are non-spatial. This motivated us to develop the spatial model and investigate if incorporation of

space could explain the experimentally observed phenomena in Fc1RI aggregation. To the best of our

knowledge, this work introduces the first spatio-temporal model of multivalent ligand-mediated Fc1RI

assembly in the cell membrane. The BD-based simulation approach used in the model is based on our

recent work where we studied a generic multivalent ligand-receptor interaction [17]. The simulation

approach explicitly accounts for the coarse-grained structure of the time-evolving species, their

diffusion, and steric collisions.

An early model by Goldstein & Perelson [3] focused on equilibrium Fc1RI aggregation in response to

a trivalent ligand. This theoretical model was not capable of tracking the evolution of individual

molecules or complexes. A later model by Monine et al. [7,41] allowed this capability by

implementing a kinetic Monte Carlo (KMC) approach, called network-free simulation [22]. The

network-free approach combined with the rule-based modelling (RBM) [23,42] provides a unique

capability to model multivalent species interactions in signalling network system [41]. However, the

models developed in this approach are non-spatial. Both the models in [2,21] indicated large Fc1RI

superaggregate formation in response to the trivalent antigen. The more recent model [8] was also

developed using the non-spatial network-free KMC. However, the model prohibited superaggregate

formation with the assumption that receptor clusters above a certain threshold size are immobile,

whereas all clusters smaller than that threshold are equally mobile in the membrane.

While addressing the limitation of the non-spatial models above, our work provides important

insights into the potential roles of membrane diffusion on immunoreceptor signalling. The key

message from our analysis is that the membrane diffusion may limit receptor cross-linking and

activation against stimulation by antigens. Earlier modelling studies postulated that Fc1RI

superaggregate formation may enable cells to become hyper-responsive against multivalent foreign

antigens [3]. By contrast, our analysis in figures 6 and 7 indicates that the diffusion barriers limit

receptor clustering, which may contain a cell from being hyper-responsive.

Similar to the earlier models, our model lacks receptor trafficking in the plasma membrane. We

consider a fixed amount of Fc1RI and we do not incorporate receptor synthesis, endocytosis, recycling

or degradation. However, the potential effects of receptor trafficking in the model could be surmised.

Receptor endocytosis might further put a restriction on receptor aggregation sizes. If receptors have a
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finite lifetime in the membrane, it would be less likely for the slowly diffusing receptor clusters to

combine and form large aggregates. This may further diminish the possibility of a superaggregate

formation. In our model, we analysed receptor size distribution at 500 s after stimulation. We did not

see appreciable changes in the distributions at t . 500 s even at a ¼ 1. However, if infinite receptor

lifetime is allowed in the absence of endocytosis and a sufficiently small rate for the bond dissociation

is assumed, it is theoretically possible to form superaggregates in the spatial model.

We limited the scope of our model to the simple ligand-receptor system in two dimensions. The

approach could be extended for spatio-temporal modelling of more complex signalling network

systems. A three-dimensional extension of the approach might be required to more realistically model

the extracellular and intracellular compartments of a cell. However, such an extension entails

additional measures to address the computational challenges which were beyond the scope of this

work. We believe that the predicted effects of diffusion on the receptor aggregation would remain

similar if a three-dimensional membrane was considered in our model.

Currently, the RBM approach enables site-specific features and interactions of protein molecules.

However, most of the RBM tools rely on non-spatial graphs to define these features. Recent efforts

have been undertaken to enable spatio-temporal modelling in several rule-based tools, which include

Kappa [43], Simmune [44] and BioNetGen [23]. Besides, there exist many stochastic modelling

tools for spatio-temporal modelling with advanced capabilities [45]. Examples include MCell [46],

Smoldyn [47], SPATKIN [48], ReaDDy [49] and SpringSaLaD [50]. However, to our knowledge,

none of these tools have been used to create spatio-temporal models considering the site-specific

coarse-grained structure of ligand and receptor molecules and their interactions.

Many of the above tools do not permit geometry or structure of molecules in a model. MCell [46] and

Smoldyn [47] are two powerful tools that enable versatile capabilities to model reaction and diffusion in

complex geometries (cellular or reaction compartments). However, both employ particle-based

simulations where species are treated as points. Although Smoldyn can consider volume exclusion for

isolated structures [51], to our knowledge, it does not permit time-evolving structures (geometries)

arising from the site-specific binding of molecules or complexes, as implemented in our model.

The tools that might be closely related to our approach are SPATKIN [48], ReaDDy [49], and

SpringSaLaD [50]. These software tools describe coarse-grained structures of species by spatial

orientation of small beads, as in our model. However, SPATKIN allows lattice-based BD simulation.

Because the lattice must be described a priori, unlike the time-adaptive feature implemented in our

approach, such simulation could be expensive. The lattice must be very finely grained if the site-

specific interaction of species is to be captured at a high resolution. Both ReaDDy and SpringSaLaD

allow off-lattice BD. However, the simulation algorithm is distinct from the time-adaptive BD

implemented in our approach. It is also unclear from the published literature if these tools permit

time-evolving diffusion constant based on the evolving size and geometry of the species, an essential

feature of our model. Nevertheless, the modelling and algorithmic features presented in our work

may also be implemented in some of these tools without requiring any non-trivial modification in the

software code.
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