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Abstract

Purpose of review: Advanced technologies can aid discoveries in stem cell sciencein
surprising ways. The application of electrokinetic techniques, which use electric fields to
interrogate or separate cells, to the study of stem cells has yielded important insights
into stem cell function. These techniques probe inherent cell properties, obviating the

need for cell type specific labels.

Recent findings: Analysis of a variety of stem cell types including hematopoietic,
mesenchymal and adipose-derived, neural, and pluripotent stem cells by electrokinetic
techniques has revealed fate specific signatures of cells. Distinct inherent cell properties

are sufficient for their label free enrichment without causing cell damage or toxicity.

Summary: The successful application of label free techniques to the analysis and
sorting of stem cells open new avenues for exploring the basic biology of stem cells and

optimizing their use in regenerative medicine applications.



Introduction

Stem cells are of great interest due to their potential to expand understanding of basic
developmental processes and to induce repair of damaged tissue in regenerative
medicine approaches. Stem cells proliferate, or self-renew, over an extended period and
differentiate to form the final mature cells of a tissue. During the differentiation process,
more committed progenitor cells with limited proliferative ability are formed that then
generate fully differentiated cells. Current approaches to study stem and progenitor cells
and their differentiated progeny usually employ labeling with an antibody on the cell
surface or genetically with a reporter construct that identifies differentiation along a
particular lineage. However, new methods are needed to assess the differentiation
process since specific and robust labels are lacking for many stem cell populations.
Further, minimal manipulation of cells is preferred in regenerative medicine applications,

so analysis and sorting methods that do not require cell labeling are advantageous.

Microdevices using a variety of separation techniques have been developed to identify

or sort cells without the use of labels and have been covered in several reviews (e.g. (1)).
Electrokinetic technologies can detect inherent cell electrophysiological properties
without the use of labels. A particularly promising electrokinetic technology for the
analysis and separation of stem cells is dielectrophoresis (DEP), in which non-toxic
inhomogeneous electric fields induce cell movement. Those interested in the current
state of the DEP field, with an eye toward newly developing trends, are directed to a

recent eloquent review by Pethig (2).

Progress in the application of DEP to stem cells is on a rapid pace; a search of stem cell
DEP studies identifies 2 publications in the 1990s, about 7 in the 2000s, and at least 30
in the 2010s, which is not yet a complete decade (3). Sections below describe the
advantages of DEP as a platform for use with stem cells, advances made in stem cell
research by using DEP for analysis and sorting of hematopoietic, mesenchymal and
adipose-derived, neural, pluripotent, and other stem cells, adaptation of DEP devicesto
improve applicability to stem cell studies, and the future of label free techniques for stem
cells. The literature reviewed herein clarify both the advantages of applying this
technology to the study of stem cells and the novel findings that are opening new

avenues of exploration in the stem cell field.



Theory and Advantages of DEP

Dielectrophoresis, first introduced by Pohl in the 1950s (4), is the induced motion of

polarizable particles when placed in a non-uniform electric field. The time-averaged DEP

-

force (Fy4) acting on a polarized particle (with spherical shape) can be expressed as
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di ectrc properties of the ce an medlum and determines the behavior of cells in a
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the cells experience no induced DEP force due to the transmon in thelr polarity.

In high frequency beA (>10 MHz), cell didiectdic properties are mostly affected by the
cytoplasm and nucleus. In contrast, at low frequencies (<1 MHz), membrane properties
such as membrane capacitance and conductance primarily dictate cell behavior, with

capacitance dominating (8). For viable mammalian cells, specific membrane capacitance
(Cy++ v ) can be approximated as (9):
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Measurement of C,+-y can be achieved by different methods such as DEP and



impedance sensing (Cy»y = — "), where Z, is the specific membrane impedance
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at which one type of cell experiences nDEP while the other experiences pDEP. Most

DEP-based methods have taken advantage of such distinct differences in DEP response

to sort cells based on Cy vy (Figure 1C).
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Figure 1: (A) Plot of the real part of the Clausius-Mossotti factor (Re |/1 ]) with,respect to the
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the difference in membrane capacitance results in distinct DEP responses at certain frequency

ranges. (C) Schematic depicts thq differential responses of two unique cell types in DEP. Since




the cells have different frequency responses and membrane capacitance values, a frequency can
be chosen (denoted by dashed green line) at which one cell is in pDEP and the other in nDEP,
providing a force for separating the two cell types. (Reprinted from (14), with permission from John
Wiley and Sons). (D) Still images from video (Supplemental video S1) show E12 mouse neural
stem cells in a microfluidic DEP trapping device with frequency set to 100 kHz such that some of
the cells experience pDEP and are attracted to electrode edges (electrodes in gold) while others
in nDEP pass by (to aid visualization of cells, some cells in pDEP in first panel are colored pink
while those in nDEP are green) (From (15) with permission from John Wiley and Sons).

DEP exploits inherent cell physical properties to distinguish different types of cellsand
thus requires no cell labeling (Figure 1D). Since cell behavior in DEP at lower
frequencies is dependent on membrane physical properties as well as the total amount
of membrane, which is affected by cell size, DEP can distinguish similarly sized cells as
long as their membrane properties significantly differ. The beauty of DEP lies in the fact
that even subtle cell features, such as cell membrane morphology and integrity, affect
overall cell dielectric properties and can lead to distinct behavior in DEP (2, 10). For
example, membrane capacitance and cell behavior in DEP distinguish normal and
malaria infected red blood cells (16), stimulated and unstimulated Jurkat cells (17),
breast cancer cells expressing different amounts of the neu oncogene (18), and oral
cancer cells differing in adhesion and tumorigenicity (19). Considering these advantages,
there has been growing interest in the use of DEP to characterize, manipulate, and
separate different types of cells. This is shown by the over 400% increase in DEP
publications since 2000 (2). As described further below, stem cell biology is animportant
area of research in which DEP has intrinsic advantages in distinguishing cells based on

their dielectric properties such as membrane capacitance.

Hematopoietic stem cells

Analysis:

DEP has been useful for analysis of cells in the hematopoietic stem cell (HSC)lineage.
DEP-based cell characterization revealed differences in the membrane capacitance
values of the six mature leukocyte subpopulations, suggesting that a combination of
membrane capacitance and cell size would be sufficient to isolate these cells without the
use of labels (20). Aggregates of lymphocytes, stromal cells, and osteoblasts were

formed using DEP to generate an in vitro HSC niche analogous to that found in bone




marrow (21). Mouse embryonic stem (ES) cells that can form HSCs were introduced into
the in vitro niche, suggesting that DEP is a viable method for generating complex cellular

structures to recreate in vivo cellular architectures as found in stem cell niches (21).

Sorting:

The earliest publications showing sorting of stem cells focused on the enrichment of
HSCs from blood or bone marrow (22, 23). Cells were collected from patient samples of
peripheral blood stem cell harvests or bone marrow and red blood cells were removed
by centrifugation prior to analysis of the remaining cells by DEP. Cells separated by DEP
were analyzed by flow cytometry for expression of CD34, which is a cell surface marker
of HSCs. The CD34-positive cells were enriched 6-fold by DEP (23). Subsequent plating
of DEP-sorted cells in colony forming assays showed that the sorted cells were viable
and able to proliferate at a level expected for CD34-positive cells (22). Thus, these early
studies indicate that HSC inherent properties are sufficient for their enrichment by DEP

and set precedence for the utility of DEP in stem cell applications.

Mesenchymal and adipose-derived stemcells

Analysis:

Like many stem cell populations, mesenchymal stem cells (MSCs) and adipose-derived
stem cells (ADSCs) lack adequate biomarkers, making label free techniques particularly
useful. As described above, membrane capacitance can be derived from either DEP
measurements or impedance sensing since there is an inverse relationship between
capacitance and impedance. Many MSC and ADSC studies have utilized impedance
sensing as well as DEP for label free analysis. Since MSCs and ADSCs similarly
differentiate into adipogenic and osteogenic cells, they will be considered collectively

here.

Baseline values have been established for undifferentiated human MSCs (total
membrane capacitance ~2.2 pF in 0.030 S/m conductivity medium and ~4.5 pF in 0.10
S/m conductivity medium)(24) and ADSCs (impedance ~450 A and capacitance of 1.65
+ 0.07 pF/cm2)(25). Altering the cell surface of human MSCs with a polymer shifts

membrane biophysical parameters measured by DEP, indicating that DEP at lower



frequencies reliably measures properties of the plasma membrane rather than internal

structures (24).

Dynamic changes in cell membrane biophysical properties during ADSC and MSC
differentiation have been assessed by treating cells with specific media to eitherinduce
adipogenesis or osteogenesis. Impedance sensing reveals that differentiation of human
ADSCs to adipocytes is associated with a decrease in impedance (increase in
capacitance) while formation of bone cells causes an increase in impedance (decrease
in capacitance)(25, 26). Also, adipogenic differentiation of a mouse 3T3-L1 preadipocyte
cell line resulted in a decrease in the measured impedance as the cells differentiated
(27). Treatment of these cells with an inhibitor that blocks differentiation affected both
the impedance measurements and the formation of lipid droplets used as a measure of
adipogenesis, suggesting impedance as a specific marker of differentiation (27).
Similarly, differentiation of human MSCs is associated with decreased impedance during
adipogenesis (26, 28) and increased impedance during osteogenesis (26, 28, 29).
Importantly, exposure of human MSCs to the electric fields required for impedance

sensing had no effect on cell viability (28).

The shifts in impedance associated with human MSC differentiation occurred well ahead
of detectable changes in traditional live cell assays used to identify differentiating cells.
For example, alkaline phosphatase staining did not distinguish osteogenic cells until 7
days of differentiation, whereas impedance differences were identified after 1-2 days of
differentiation for both osteogenic and adipogenic lineages (25, 26, 28). Impedance
signatures also reflect extracellular influences on differentiation since collagen induced
more robust osteogenesis than laminin, and MSCs differentiated on collagen showed
bigger impedance shifts than those on laminin (26). Shifts in the impedance of human
MSCs during osteogenic differentiation were detected for cells in a 2D monolayer culture
as well as those in 3D aggregates assessed by a capillary impedance measurement

system (29). The differentiation capacity of human MSCs and ADSCs changes with

[ ]
increasing cell passage and is detected by DEP (30). Re fi- measured bg DEP
decreased with increasing cell passage over a range of frequencies (10%-10°) for both
human MSCs and ADSCs (30). Osteogenic differentiation (measure by alkallne

]

phosphatase activity) decreased with increasing passage number (30). Thus, Re k "
and osteogenic fate potential are positively correlated for human MSCs and ADSCs,



indicating that stem cell fate potential is revealed by cell behavior in DEP.

While these studies consistently report a decrease in impedance with adipogenesis and
increase with osteogenesis, two studies report the opposite pattern. An early study
showed human MSC-derived adipocytes had an increase in impedance compared to
undifferentiated cells (31). Another study analyzed bone-marrow derived skeletal stem
cells (SSCs), which are a subpopulation of MSCs defined as Stro-1-positive and CD146-
positive cells whose differentiation potential is limited to the skeletal lineage (32, 33).
SSCs exhibited a decrease in impedance, which was quantified in terms of opacity and
measured at high and low frequencies, during osteogenic differentiation (34). Additional
studies will be necessary to clarify whether there are inherent differences in the
biophysical characteristics of cells that differentiate from SSCs compared to those from
MSCs or ADSCs.

Analysis of undifferentiated MSCs and ADSCs indicate additional utility of electrokinetic
techniques for stem cell characterization. High frequency DEP velocity measurements
are sufficient to distinguish rat ADSCs from bone marrow-derived MSCs (35). The
membrane capacitance values of human SSCs were lower than those of two human
osteosarcoma cell lines, suggesting that it might be possible to distinguish and separate
healthy stem cells from cancerous cells (36). However, it may be difficult to enrich SSCs
from other bone marrow cells since they appear to be similar in biophysical properties
(34). Taken together, numerous studies now provide evidence that impedance and
membrane capacitance serve as viable early biomarkers for MSC identification and

monitoring of differentiation to distinctlineages.

Sorting:

The distinct biophysical properties of undifferentiated cells (MSCs and ADSCs) and their
differentiated progeny suggest they can be separated with label-free techniques. Human
ADSCs were sorted from subcutaneous adipose tissue using DEP field-flow fractionation
to maximum levels of enrichment of ~12-15 fold for NG2-positive and ~4-5 fold for
nestin-positive ADSCs (37). This demonstrates that DEP is sensitive enough to discern
intrinsic differences in cellular properties within a cell population and enrich a given
subset of cells. A DEP-based microdevice was used to separate a mixed population of

human MSCs and differentiated osteoblasts (38). Cell collection efficiency and purity



were maximized at a low fluid flow rate and yielded enrichment of MSCs and osteoblasts
from a 1:1 mixture (50% each cell type) to 86% MSCs and 65% osteoblasts (38). These
studies demonstrate that inherent cell biophysical properties can be utilized to separate

undifferentiated stem cells from more differentiated cells in DEP.

Neural stem cells

Analysis:

An important issue relevant for the use of DEP to analyze and separate cells is whether
exposure to DEP electric fields affects the cells. This is particularly true for sensitive cell
populations such as neural stem cells. Neural stem cells grown in culture contain
undifferentiated stem cells as well as progenitors linked to the final differentiated cells of
the central nervous system (neurons, astrocytes, and oligodendrocytes), and are thus
referred to as neural stem/progenitor cells (NSPCs). Experiments tested effects of DEP
on human and mouse NSPCs by exposing cells to AC electric fields across a range of
frequencies and times (39). Cells were assessed for survival, proliferation, and
differentiation potential. Short-term DEP exposure (less than 5 minutes) had no effecton
NSPC survival, proliferation, or differentiation (39). Moreover, NSPC proliferation and
differentiation were not altered by any length of DEP exposure (up to 30 min). Long-term
exposure (> 5 min) to frequencies near the crossover frequency decreased survival of
NSPCs, with a maximum of ~30% cell loss after 30 min, while long-term exposure to
other frequencies had no effect (39). A different study assessed the effects of AC and
DC electric fields on human NSPCs and found significant increases in activated caspase
3 and cell death in DC, but not AC, electric fields (40). NSPCs exposed to AC fields
retained the ability to differentiate into neurons while cells in DC fields did not. These
studies found AC DEP is not harmful to NSPCs at short exposure times, thus providing
critical information for the design of experiments involving analysis or sorting of NSPCs
by DEP.

DEP can be used to detect NSPC fate potential before differentiation and discernable
marker expression in the cells (14). Cells isolated from the developing mouse cerebral
cortex at an early developmental stage (embryonic day 12, E12) at which most NSPCs

generate neurons were compared to those from a later stage (E16) when NSPCs form



more astrocytes. The E12 neurogenic NSPCs experienced pDEP at higher frequencies
than did E16 astrogenic NSPCs (14). Analysis of differentiated cells showed that
neurons experience pDEP at higher frequencies than astrocytes, suggesting thatthe
undifferentiated NSPCs begin to take on characteristics similar to those of the
differentiated cells they will eventually form and these characteristics are detectable by
DEP.

Measurements of membrane capacitance and conductance by DEP showed that the
neurogenic/astrogenic fate potential of both mouse and human NSPCs is reflected in
membrane capacitance, but not conductance, values (41). Whole cell membrane
capacitance of human NSPCs measured by DEP ranged from 5-13 picoFarad (pF),
which is within the range of 5-23 pF reported for rat NSPCs in patch clamp studies (42-
44), validating this approach for measuring cell electrophysiological properties (41). The
membrane capacitance values of NSPC populations generating more astrocytes were
higher than those of NSPCs that preferentially form neurons (41). As human NSPCs are
passaged in culture, their ability to generate neurons decreases as their membrane
capacitance values increase, showing this measure dynamically reflects fate potential
(41). E14 hippocampal rat NSPCs analyzed by impedance sensing exhibited an
increase in membrane capacitance as cells differentiated into astrocytes (45). Human
NSPCs differentiated in two distinct conditions - one in a medium containing noggin to
encourage neuron formation and the other BMP4 to stimulate formation of astrocytes -
showed lower capacitance values for cells differentiating in neuronal medium andhigher
values for those in astrocytic medium (40). Thus, higher membrane capacitance values

are linked to astrogenic fates and lower values to neurogenic fates in the neural lineage.

The cellular characteristics contributing to membrane capacitance are not well
understood, but for NSPCs may involve cell surface glycosylation. Based on biophysical
theory, whole cell membrane capacitance should be impacted by plasma membrane
surface area and thickness. Cell membrane microdomains such as ruffles, microvilli, or
other morphologies that increase membrane roughness are expected to alter membrane
capacitance by increasing cell surface area (46). While NSPCs that have distinct
membrane capacitance values do not differ in size as measured by phase contrast
microscopy, they may vary in membrane microdomains not visible by phase contrast

that could increase cell surface area (15, 41). A cellular process that modifies the



surface of the plasma membrane and contributes to membrane microdomains is
glycosylation, by which carbohydrates able to store charge are added to plasma
membrane proteins and lipids. Treatment of NSPCs with agents that modify cell surface
glycosylation alters their frequency response in DEP (15). Glycosylation may contribute
to membrane capacitance in other stem cell lineages since differentiation of MSCs to
adipogenic and osteogenic lineages is associated both with changes in membrane
capacitance (as described above) and glycosylation (47, 48). Thus, the interaction of
membrane capacitance, cell fate, and cell surface glycosylation may have relevance for

many stem cell lineages.

Sorting:

NSPCs have been sorted using a variety of DEP-based approaches (11). As shown for
other stem cell lineages, differentiated (neurons) and undifferentiated (NSPCs) cells can
be separated by DEP (49). However, DEP has also been used to enrich undifferentiated
cells on the basis of fate potential. NSPCs differing in neurogenic/astrogenic fate
potential display distinct behaviors in DEP and vary in membrane capacitance even
though the cells do not differ in size, suggesting that they could be enriched by DEP (15,
41). Mouse NSPCs were separated into distinct frequency bands and differentiation of
the separated cells showed that NSPCs forming astrocytes were enriched in lower
frequency bands while cells generating neurons were isolated at higher frequencies (15).
In a follow up study, low frequency sorts were used to enrich NSPCs biased toward
forming astrocytes from a heterogenous population of mouse NSPCs using either a
large capacity electrode array (LCEA) device with a microfluidic channel or a simple
device with electrodes in the base of a well, showing that sorting of fate-biased cells
from NSPCs is robust across multiple DEP platforms (50). Cells sorted by DEP retained
their enrichment over multiple passages post-sorting, enabling the generation of 10°
cells for further study (50). The ability to expand cells after sorting and maintain
enrichment is an advantage since many DEP-based sorting devices are fairly low
throughput and generate relatively few sorted cells. These studies show that the inherent
properties of NSPCs biased to form either neurons or astrocytes upon differentiation are
sufficient for their enrichment without the use of cell type specific labels in DEP and

provide a means to study cell fate in the neural lineage.

Pluripotent stem cells



Analysis - Differentiation:

Changes in cell electrophysiological properties detectable by label free techniques occur
during the differentiation of pluripotent stem cells into several distinct lineages.
Impedance sensing distinguishes undifferentiated Oct4-expressing P19 mouse
embryonal carcinoma pluripotent cells from differentiated cells, some of which express
the neuronal marker MAP2 (51). Single cell analysis of mouse embryonic stem (ES)
cells in an impedance sensor revealed an increase in membrane capacitance as the
cells underwent differentiation, although this study did not assess the types of
differentiated cells formed (52). Differentiation of human ES cells into either MSCs or
trophoblast cells was associated with shifts in DEP crossover frequencies andincreases
in membrane capacitance (53). In contrast, differentiation of human ES cells into
hepatocytes was accompanied by a decrease in membrane capacitance, although the
change in capacitance was of smaller magnitude (1.1-fold) than those observed between
undifferentiated ES cells and either MSCs (3-fold) or trophoblast cells (1.6-fold)(53, 54).
Differentiation of human induced pluripotent stem (iPS) cells to ectodermal lineages
resulted in higher capacitance values measured by impedance sensing than those for
cells forming mesendodermal lineages (55). There are clear differences in the
membrane capacitance values of undifferentiated pluripotent stem cells and their
differentiated progeny. The magnitude and direction of the shift in capacitance varies
depending on the type of differentiated cell formed, suggesting specific
electrophysiological properties may define distinct types of cells generated during

pluripotent stem cell differentiation.

Analysis - Patterning and embryoid body formation:

DEP devices have been designed to pattern stem cells, particularly pluripotent cells
since the size and shape of embryoid bodies generated during initial stages of
differentiation can affect the types of final differentiated cells formed. Rapid clustering of
pluripotent cells by pDEP enables control of embryoid body size since the number of
cells attracted can be controlled by modulating DEP electrode geometries. In one study,
induced pDEP forces were utilized to target mouse ES cells to microwells (56).
Live/dead assays indicated that the vast majority of the patterned cells were viable,
indicating the lack of toxicity with this approach. ES cell differentiation in patterned

embryoid bodies was assessed using 7a mouse ES cells with GFP under the control of a



constitutive promoter and Bry-ES cells expressing GFP from the brachury promoterto
mark cells of the mesodermal lineage (57). Cells were clustered at castellated DEP
electrodes then encapsulated in a Puramatrix peptide-based hydrogel (57).
Differentiation of the ES cells after clustering generated brachury-expressing
mesodermal derivatives, showing pluripotent stem cells can be aggregated and
differentiated in DEP devices to enable more control over the process of embryoid body
formation and differentiation (57). Mouse ES cells were patterned by DEP to enable
controlled formation of aggregates of increasing size that were then encapsulated in
PEG hydrogels (58). Live/dead cell assays showed no decrease in viability of the DEP-
exposed cells and this approach generated cell aggregates in a 3D structure. Adifferent
type of DEP device was used to induce clustering of mouse ES cells over 15 seconds to
form 3D spherical embryoid bodies with high cell viability in photo-polymerizable
methacrylated gelatin hydrogels (59). The cells in the DEP-formed embryoid bodies
differentiated, as shown by reduction of the stem cell marker nanog. In a different
approach, a DEP device designed to generate precise pairs of cells yielded patterned
pairs of mouse ES cells and 3T3 fibroblasts, enabling single cell level analysis of cell-cell
interactions (60). These studies show a variety of DEP-based approaches can be used
to rapidly and reproducibly pattern pluripotent stem cells to control embryoid body

formation and cell-cell interactions.

Other stem cell types

Sorting:

Other types of stem cells can be identified in DEP, including potential cancer stem cells
and muscle stem cells. PC3 human prostate cancer cells contain ~15% of cells
expressing ALDH, which is considered a marker for tumor initiating cells and may
indicate cancer stem cells. Analysis of PC3 cells by DEP indicates that complete
trapping of the ALDH-positive cells occurs at lower frequencies than those needed to
trap ALDH-negative cells (61). Sorting by DEP yielded populations of ALDH-positive and
negative cells, and only the positive cells were able to generate spheres, suggesting
tumor initiating ability. These data suggest it may be possible to identify and enrich
cancer stem cells from tumor samples containing a heterogeneous population of cells
with DEP. Analysis and sorting of muscle cells by DEP indicate the utility of this

technique for distinguishing undifferentiated cells from their more differentiated progeny,



as shown by the separation of C2C12 myoblasts and more differentiated myotubes (62).
In further analysis, myoblasts and myotubes were found to vary significantly in size,
which could contribute to their efficient sorting by DEP (63). DEP analysis and sorting is
of use for multiple stem cell populations, and continued investigation of additional stem

cell types with DEP will help to drive the field forward.

Adaptation and evolution of DEP for stem cells

Over the past few years and with advances in microfabrication and microfluidic
technologies, a variety of techniques have been proposed for DEP (64, 65). Generally,
methods for DEP can be classified into two main categories: electrode-based DEP and
insulator-based DEP (iDEP). Electrode-based DEP utilizes an AC electric field with
embedded microfabricated electrodes inside a fluidic channel to create non-uniform
electric fields. Metal electrodes (2D (64, 66) and 3D (67-70)), doped silicon (71), liquid
electrodes (72), carbon electrodes (73), and doped PDMS (74) are among the main
electrode-based DEP microfabrication materials. On the other hand, in iDEP designs,
the electrodes are placed remotely and the non-uniform electric field is created by
spatially dispersed insulating structures inside the microchannels (75). Both DC and AC
electric fields have been used in iDEP. While AC DEP utilizes both spatial variation and

frequency-dependent components of DEP, DC DEP relies only on spatial variation.

In stem cell research, electrode-based DEP using 2D metal electrodes has been the
most widely used technology for characterization (14, 53) and sorting (22, 23, 37, 38, 49,
50, 62, 76). In addition to the conventional planar interdigitated electrode configuration
(14, 37-39, 50, 53, 76), other geometries such as castellated (15, 22, 23, 49),
quadrupole “funnel” (62), and saw-shaped (77) electrode arrays were also used for 2D-
based DEP. In general, glass slides with patterned electrodes were then used as the
substrate for the main separation chamber, most often constructed from
polydimethylsiloxane (PDMS). Some designs also used Teflon (76), glass (23, 37), or
SU-8 (62) for the separation channel. Studies of tumor initiating cells utilized an iDEP
device based on contactless DEP (cDEP). In cDEP, the electrodes (in this case a
conductive liquid) are placed in two side microchannels that are separated from the main
chamber by a thin PDMS layer (61).



As for operation, the majority of characterization and sorting methods have been based
on “trap and release” protocols. However, continuous sorting of stem cells has been also
reported by using arrays of oblique planar interdigitated electrodes (38, 62) as well as
DEP field-flow fractionation (76). As an alternative to 2D electrode-based DEP, afew
groups focused on the use of 3D electrode-based DEP to sort and characterize stem
cells. Wang et al. (78) proposed the use of vertical sidewall electrodes for manipulation
of mouse neural stem cells. This DEP device (68), equilibrates the cells at specific lateral
positions along the width of the microchannel. The 3D DEP-Well chip, developed by
Hoettges et al. (79), has been adopted to characterize different types of stem cells
based on their membrane capacitance (36, 41). In this method, each well's perimeteris
covered by thin rings of evenly spaced electrodes to generate the DEP electric field. By
passing the light through the wells at each different applied electric field frequency, the
light disruption in the well caused by the cells’ behavior (induced movement inresponse

to the electric field) could be measured and used to show cells’ DEP spectra.

In designing and evaluating DEP devices for stem cell sorting, there are key aspects that
should be considered. An ideal DEP device should sort cells at as high throughput as
possible and with high separation efficiency and purity. For clinical applications, optimal
throughput on the order of over 1 million cells/hr would help to eliminate the need for
post-sorting expansion of stem cells (11). Many DEP-based microfluidic sorters, which
are mainly 2D electrode-based designs, still need at least an order of magnitude
improvement in throughput to reach this scale. Although scaling up the dimensions of
electrodes is one possible option for increasing throughput in 2D electrode-based DEP
designs, there exists an upper limit. Using impedance measurements at different
frequencies, Simon et al. showed that increasing the length and width of electrode
arrays results in reduction of electrical impedance of the arrays and consequently
reduced electric field strength (50). Thus, optimizing the electrode array configuration is
required to maintain a sufficiently strong electric field. Another intrinsic limitation
associated with 2D electrode-based designs is separation chamber height. Due to the

exponential decay of the electric field with distance, separation chambers in these

designs did not exceed 100 um in height. In this aspect, 3D electrode-based DEP
designs are advantageous as the electric field strength does not vary across the

microchannel height. However, fabrication complexity and high cost of these designs still

limit their applicability. To address such challenges, a low-cost and high throughput 3D



electrode-based cell sorter has been fabricated with laminate drilled to form electrode-
bearing wells. This device is capable of sorting 150,000 cells/sec, and could be adopted
for stem cell research (80). A key barrier to achieving the maximum possible separation
efficiency and purity is heterogeneity in cell size and membrane capacitance (49, 53).
However, as described above, many stem cell populations include cells of interest that
vary in capacitance. Continued design of DEP devices optimized for use with stem cells

will drive exciting progress in the stem cell field.

The future of label free techniques for stem cells

As one of the most promising label free techniques, DEP is revolutionizing the use of
stem cells for basic and therapeutic purposes. Eventual clinical utility is suggested by the
fact that DEP has been successfully applied to many human stem cell populations. As
cell phenotype can be correlated with inherent properties such as membrane
capacitance and cell size, DEP-based cell analysis platforms can rapidly identify stem
cell populations in research and clinical settings. DEP can be used as a tool for cell
manufacturing processes to remove cells with unfavorable attributes and harvest
beneficial cells prior to transplant. This approach would greatly improve stem cell
transplants by allowing researchers and clinicians to work with uniform populations of
cells. DEP-based techniques for stem cell therapeutics require scaling up from current
devices (as described above), but post-sorting expansion of stem cell populations can
generate clinically relevant numbers of cells (50). Another exciting possibility is a closed
and sterile DEP-based system that could sort/purify cells to be immediately transplanted
back into patients with minimal manipulation. This type of disposable device that does
not involve cell labeling would face fewer regulatory hurdles than more complicated
sorting systems. Cell patterning and sorting capabilities of DEP can be employed to build
tissue organoid systems from human stem cells. These can be used for drug screening
and to understand developmental processes involved in forming human tissues. Similar
approaches could be used for personalized medicine and point of care diagnostics, in
which patient-specific cells could be isolated, analyzed, or built into screening platforms
to assist clinicians in determining the best treatment plan. In summary, the future looks
bright for new and exciting discoveries enabled by the application of label free

technologies such as DEP to stem cells.

Conclusions



In conclusion, label free techniques provide real time continuous monitoring of stem cells
and can identify cells biased to specific cell fates. Cell electrophysiological properties
measured by DEP and impedance sensing, such as whole cell membrane capacitance,
serve as biomarkers of stem cell fate and differentiation. The application of label free
technologies to stem cells has led to novel insights regarding the regulation of stemcell
fate, and continued progress will push forward our understanding of basic stem cell
biology. Development of next generation DEP-based separation devices should focus on
optimizing parameters for stem cell separations that can generate enriched cells for
transplant to treat human injuries and diseases. The increasing number of studies using
technological advances such as DEP for analysis and sorting of stem cells will continue

to drive progress in stem cell science and development of cell-based therapeutics.
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