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Key Points:

e [eaf wax biomarkers were studied in soils and rivers from the Andes to the Amazon.
e FElevation trend found in C and H isotopic compositions of plant wax in soils.

e Plant wax in river-suspended sediments approximated uniform spatial integration.

e (Carbon isotopic composition of n-alkanes differentiated with depth in soil and river.

e Petrogenic inputs of n-alkanes discerned by CPI and dual isotopic analyses.
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Abstract

Tropical montane regions tend to have high rates of precipitation, biological production, erosion,
and sediment export, which together move material off the landscape and toward sedimentary
deposits downstream. Plant wax biomarkers can be used to investigate sourcing of organic matter
and are often used as proxies to reconstruct past climate and environment in sedimentary
deposits. To understand how plant waxes are sourced within a wet, tropical montane catchment,
we measure the stable C and H isotope composition (6'"°C and dD) of n-alkanes and n-alkanoic
acids in soils along an elevation transect and from sediments within the Madre de Dios River
network along the eastern flank of the Peruvian Andes, draining an area of 75,400 km? and 6 km
of elevation. Soils yield systematic trends in plant wax 6'°C (+1.75 and +1.31%o km™', for the Cao
n-alkanes and Cso n-alkanoic acids respectively in the mineral horizon) and 0D values (—10 and -
12%o0 km™', respectively) across a 3.5 km elevation transect, which approximates trends
previously reported from canopy leaves, though we find offsets between §'°C values in plants
and soils. River suspended sediments generally follow soil isotopic gradients defined by
catchment elevations (613C: +1.03 and +0.99%0 km ! and 6D: —10 to —7%o kmfl, for the Cyg n-
alkanes and Cs n-alkanoic acids respectively) in the wet season, with a lowering in the dry
season that is less well-constrained. In a few river suspended sediments, petrogenic contributions
and depth-sorting influence the n-alkane §'°C signal. Our dual isotope, dual compound class and
seasonal sampling approach reveals no Andean-dominance in plant wax export, and instead that
the sourcing of plant waxes in this very wet, forested catchment approximates that expected for
spatial integration of the upstream catchment, thus with a lowland dominance on areal basis,
guiding paleoenvironmental reconstructions in tropical montane regions. The dual isotope

approach provides cross-check on the altitudinal signals and can resolve ambiguity such as might



be associated with vegetation change or aridity in paleoclimate records. Further, the altitude
effect encoded within plant waxes presents a novel dual-isotope biomarker approach to

paleoaltimetry.



1. Introduction

The transport of organic carbon (OC) by large river systems is a crucial component of the Earth’s
carbon cycle. Rivers erode and transport plant, soil and rock-derived (petrogenic) OC across the
landscape, and that which survives degradation may be deposited in sedimentary basins. Among
the world’s river systems, the Amazon River is the largest in terms of drainage area (6.4 million
km?) and discharge (200,000 m® s ™) (Meybeck and Ragu, 2012), and its export of particulate
organic carbon (POC; ¢. 11.6 Tg yr ' to the Atlantic) represents c. 6% of the global riverine POC
input to the oceans (Beusen et al., 2005; Galy et al., 2015; Richey et al., 1990). Understanding
the sourcing, degradation, and transport of POC in the Amazon fluvial system is thus significant
in budgeting the global carbon cycle, and has been extensively studied in both the lowland
mainstreams and Andean head waters (e.g., Bouchez et al., 2014; Clark et al., 2013; Hedges et al.,
2000; Townsend-Small et al., 2005; Townsend-Small et al., 2008). The Andes Mountains
represent just 11% of the Amazon River catchment area, but may account for 90% of rock-debris
exported from the Amazon River to the Atlantic Ocean (Meade et al., 1985). While globally,
biospheric OC export generally scales with sediment load (Galy et al., 2015), POC carried by the
lowland Amazon River is thought to be dominantly sourced from lowland forests implying a
near-complete degradation of Andean-derived POC in transit or swamping by more extensive
lowland contributions (Mayorga et al., 2005). The biospheric OC represents carbon fixed from
the atmosphere, and if it escapes oxidation in transit (Cole et al., 2007; Hedges and Oades, 1997)
and is sequestered in ocean sediments for up to 10° yrs, it represents a long-term sink of
atmospheric CO; (France-Lanord and Derry, 1997; Galy et al., 2007). In contrast, if biospheric
carbon decomposes in soils (Koven et al., 2017) or in transit (Richey et al., 2002), CO, is

returned to the atmosphere relatively rapidly, on decade-century timescales, related to the age of



carbon in soils (Trumbore, 1993) and in rivers (Clark et al., 2013; Townsend-Small et al., 2007).
Sourcing and degradation processes within the catchment need to be understood to determine
which regions contribute to marine repositories both for carbon budget and paleoclimate
applications. Yet, many prior source-to-sink carbon cycle studies are based upon bulk POC,
which is a complex mixture of components with diverse age, residence time, degradation

potentials and geochemical signatures that can be difficult to tease apart (Mayorga et al., 2005).

Biological marker molecules, or biomarkers, not only derive from a specific class of organism
but also carry signatures of environment. These biomarkers can be variously used to investigate
sourcing and track molecules in transit, and they are often used as proxies to reconstruct past
climate and environment, which is predicated on understanding sourcing. Biomarkers provide
tracers for specific components of terrestrial OC cycling and thus provide a clearer view of
sourcing and fluvial integration processes than bulk OC. For example, lignin (Aufdenkampe et
al., 2007; Go#i et al., 2000), terpenoids (Giri et al., 2015; Medeiros et al., 2012) and plant wax
biomarkers (Freymond et al., 2018; Galy et al., 2011; Haggi et al., 2016; Hemingway et al., 2016;
Hoftmann et al., 2016; Tao et al., 2015) have been used in riverine systems to trace biogenic OC
derived from vascular plant biomass. In addition, biomarkers for microbial activity have been
used to trace bacterial and archaeal components of terrestrial biospheric OC production exported

by rivers (Hanna et al., 2016; Hemingway et al., 2017; Kim et al., 2012; Wagner et al., 2014).

Plant wax hydrogen (6Dyax) and carbon isotope compositions (513Cwax) reflect environmental and
ecological conditions and thus may be able to reveal sourcing within a catchment, provided it is
characterized by a gradient in environmental conditions. The carbon isotopic signatures of plant
waxes in river sediment has been used to trace the evolving character of suspended sediment OC

between mountain-front tributaries and the river mouth, based on the contrast between C; upland
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vegetation and C4 lowland vegetation (Galy et al., 2011), between river and estuary (Medeiros et
al., 2012) and between C; forest and petrogenic sources (Haggi et al., 2016). Sourcing has also
been differentiated based on hydrogen isotopes in precipitation that vary spatially within
catchments, including with elevation (Galy et al., 2011; Haggi et al., 2016; Hoffmann et al., 2016;
Ponton et al., 2014). A few studies are beginning to combine information from different
compound classes as erosion and preservation pathways may differ between compounds, for
example with diterpenoids (derived from conifers) being over contributed relative to
triterpenoids (derived from angiosperms; Giri et al., 2015) or with n-alkanoic acids and »n-
alcohols having a more rapid response to changes in runoff and thus more local input relative to
n-alkanes (Hemingway et al., 2016). Studies of river suspended sediment using radiocarbon have
demonstrated the potential for pre-aged carbon to contribute to the n-alkane load (including rock-
derived sources, that are radiocarbon dead), whereas the radiocarbon ages for the n-alkanoic
acids suggest considerably less (but not negligible) influence from soil storage (Galy and
Eglinton, 2011; Kusch et al., 2010; Tao et al., 2015). However, despite the complementary
information provided by different isotope systems and biomarker compounds, few fluvial studies
have combined information from C and H isotopes (Galy et al., 2011; Héggi et al., 2016), and
fewer have compared n-alkane and n-alkanoic acid compound classes (Hemingway et al., 2016)

or C and H isotope systems in multiple compound classes (Chikaraishi et al., 2005).

In a series of biomarker studies along the eastern flank of the Andes in Peru, the authors of this
paper and other collaborators have shown that biomarkers record aspects of environment and that
these properties may tag biospheric carbon in fluvial transit. The altitude effect in the isotopic
composition of precipitation has been demonstrated locally in precipitation, plant waters, and

plant wax n-alkanes and n-alkanoic acids in the canopy leaves of the modern forest (Feakins et



al., 2016a). Similarly, the dD value of plant wax Cys n-alkanoic acids transported by rivers in the
Madre de Dios River network records the altitude effect in soils in the same catchment (Ponton
et al., 2014). Lignin biomarkers trace soil degradation and erosion processes represented in river
sediments (Feng et al., 2016), and also signal that soil-river is the dominant pathway for most
organic carbon including plant waxes (rather than direct input of plant leaves or leaf wax
aerosols into the river). More recently it has been shown that plant leaf (Asner et al., 2014) and
plant leaf wax n-alkane and n-alkanoic acids (Wu et al., 2017) are '*C-enriched with altitude.
This pattern in bulk leaves has also been seen in other wet tropical montane forests (Asner and
Martin, 2016; Korner et al., 1988), but can be complicated elsewhere by the stronger control
exerted by aridity as shown in bulk leaves and leaf wax n-alkanes (Diefendorf et al., 2010), and
in tropical lowlands, there can be a significant contribution from species using the C4 pathway
(Galy et al., 2011; Higgi et al., 2016; Hemingway et al., 2016). The utility of 6> Cyax as an
altitudinal sourcing tracer has not yet been demonstrated in upland soils and river exported

sediments, although plant-based evidence indicates potential (Wu et al., 2017).

Here, we present a dual isotope (C and H) and a dual compound class (n-alkanes and n-alkanoic
acid) study of soils and river sediments in the Madre de Dios River basin. We hypothesize that
the trends seen in plants for D-depletion (Feakins et al., 2016a) and '*C-enrichment with altitude
both in bulk leaves (Asner et al., 2014) and leaf wax n-alkanes and n-alkanoic acids (Wu et al.,
2017) from canopy leaves, will be imprinted into the soils and allow us to track inputs to the
river. We seek to test whether both n-alkanes and n-alkanoic acids in soils equally record the
canopy vegetation trends reported for oD (Feakins et al., 2016a) and & 3C (Wu et al., 2017), or
whether the post-mortem biogeochemical processes differ between the two leaf wax compound

classes within soil storage. Further, we seek to describe how those signals are represented in



river suspended sediments. We take a detailed elevation sampling approach to the soils and river
network, with new analyses of the same sample set reported in prior studies of n-alkanoic acid
oD (Ponton et al., 2014) and lignin (Feng et al., 2016) from the region. Through these
observations we gather information about biogeochemical processes from plant-to-soil-to-river,
in a large tropical montane river system. This dual isotope approach complements prior work on
another large tropical river network, the Congo River basin (Hemingway et al., 2016), which has
a lowland catchment. We seek to contribute to understanding the processes of sedimentary
integration identified by the community as major gaps in knowledge in several recent review
papers for both plant wax hydrogen (Sachse et al., 2012) and carbon isotopes (Diefendorf and
Freimuth, 2017). The ultimate goals of this dual isotope, dual compound class and soil-to-river
approach are to 1) better understand processes along source-to-sink pathways in the plant wax
component of the carbon cycle (Clark et al., 2017; Galy et al., 2015), 2) aid interpretations of
sedimentary records from rivers draining large, tropical montane watersheds (Bendle et al., 2010;
Freeman and Colarusso, 2001; Hein et al., 2017); and 3) understand the signatures of elevation
encoded in plant waxes in soils towards paleoaltimetry applications including a familiar
hydrogen isotope approach (Kar et al., 2016; Polissar et al., 2009; Zhuang et al., 2015) here

combined with carbon isotopes showing potential for dual-isotope plant wax paleoaltimetry.

2. Materials and Methods

2.1. Study area

Our study area is in the Cusco and Madre de Dios regions of Pertl, from the mountainous terrain
along the eastern flank of the Andes to the extensive Amazon lowland floodplain (Fig. 1a). The
South American Low Level Jet brings atmospheric moisture westward, and together with the

steep topography along the eastern flank of the Andes, drives high mean annual precipitation



(MAP; 1.5 — 5 m yr'') in the study region (Killeen et al., 2007). High MAP supports lush tropical
forests, with highly-biodiverse tropical rain forests in the lowlands transitioning into tropical
montane cloud forests at ¢. 1.5 km above sea level (asl), where precipitation peaks (Halladay et
al., 2012). Above the tree line at c. 3.5 km asl, vegetation is dominated by puna grassland and
shrubland. The catchment is drained by the Madre de Dios River which feeds into the Madeira

River, a major Amazon tributary.

2.2. Field methods

2.2.1. Soil samples

Soil samples were previously collected from 14 well-studied forest plots along the elevation
transect spanning 194 — 3644 m asl (Fig. 1a, b). All sites are covered with tropical rain forests or
montane cloud forests, except the uppermost site (TC), just above the tree line and dominated by
puna grassland. Subsamples were taken from five soil pits (40 x 40 cm) distributed
systematically across each 1 ha plot and homogenized. Samples were taken from the soil organic
(O) and mineral (M) horizon, differentiated by color, where the top 10 cm from each horizon was
sampled. If the O horizon was less than 10 cm thick (O-horizon thickness ranges from 0.7 — 22.8
cm and generally increases with elevation; Table 1), then the entire O horizon was sampled.
These soil samples were previously analyzed for the 6D value of the C,g n-alkanoic acid from the
M horizon only (Ponton et al., 2014) and for bulk organic carbon content (OC%) and lignin
biomarker distribution, for both O and M horizon (Feng et al., 2016). Here we add &' 3C for the n-
alkanes and n-alkanoic acids in both horizons, 6D for the n-alkanes in both horizons, and 6D

values for the n-alkanoic acids in the O horizon, complementing the M horizon data from Ponton

et al. (2014) that we reanalyze here for analytical consistency (Appendix A).



2.2.2. River suspended sediment samples

River water samples were previously collected from the Kosiipata and Madre de Dios River
main stem and major tributaries during March (wet season) and August (dry season) 2013 (Fig.
1). We followed the river downstream with samples collected at point locations across a range of
elevations (c. 180 — 2280 masl) but representing contributions from the catchment above the
sampling point. For example, at Wayqecha, our highest river sampling point (2271 masl), the
river drains a catchment size of c. 50 km” with elevation that extends up to 3933 masl (mean
catchment elevation = 3203 m asl). Here, the Kosiiipata River was turbulent and well-mixed,
carrying a high sediment load in the wet season but very little in the dry season (63 and 6 g L' at
WAY and SP in the wet season, vs. 0.03g L' at SP in the dry season). In these mountain streams,
suspended sediment sampling was performed from the river bank using a 10 L bucket. At lower
elevations where the Madre de Dios River was navigable, suspended sediment samples were
collected from the middle of the river, where the velocities are the fastest, accessed by a small
boat, repeatedly returning to the same location in the river (tracked by Global Positioning System)
and sampling surface water samples using a 10 L bucket. We collected depth profiles in the
lowland river with the same river navigation methods and using specially-designed 10 L
horizontal isokinetic depth-sampler with a fin for orientation and a pneumatic trap door closure
mechanism. At our lowest river sampling point near Puerto Maldonado (CMD35; 180 m asl), the
mainstem drains a catchment size of ¢. 75,000 km” with elevation that extends up to 6062 m asl
(mean catchment elevation = 1178 m asl), after the confluence with the Inambari River (#44, in
Fig 1a) which drains the very highest regions. Within the river network, there is therefore

considerable heterogeneity in catchment hypsometry, only partially reflected in the catchment
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mean elevation reported in addition to sampling elevation and distance along river channel

(calculated as km upstream from Puerto Maldonado).

At each river sampling location, large volumes of river water (60—180 L) were collected in 10 L
increments; 100% of the sample was transferred into wine bags with a liner of ethylene vinyl
alcohol (EVOH). Bags were transported and stored in the dark prior to filtering. Water samples
were filtered within 12 hrs at 0.2 um on polyethersulfone (PES) filters (90 and 147 mm diameter)
using pressurized filtration units, similar to Galy et al. (2011). Filters containing the particulate
organic matter (POM) were stored in Whirlpak bags under cool conditions during the 2-week
fieldwork in remote areas until transport back to the laboratory for refrigeration. The dissolved
fraction (<0.2 um) was not analyzed in this study. In the laboratory, the POM was rinsed off the
filter with milliQ water and subsequently freeze-dried using a Virtis 2k unit. Dry samples were
disaggregated and material coarser than 1 mm was removed using a sieve. Coarse material was
infrequently recovered and comprised occasional leaf and wood debris. The organic matter
content of the sieved suspended sediments (0.2—1000 pum) constitutes the POM. These are the
same river suspended sediment samples collected, extracted, and purified as reported in Ponton
et al. (2014), where oD values of C,g n-alkanoic acids only were presented. Those samples are
reanalyzed here for dual compound class (n-alkane and n-alkanoic acid) quantification and for
dual C and H isotopic composition analysis on both compound classes. We also add results from
depth profile samples, representing some of the only compound-specific stable isotope data

reported to date from river depth profiles.

2.3. Laboratory methods

2.3.1. Lipid extraction and compound identification
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Total lipid extracts (TLE) were extracted from freeze-dried and homogenized samples with 9:1
v/v dichloromethane (DCM) to methanol (MeOH) using an Accelerated Solvent Extraction
system (ASE 350, Dionex), at 100°C and 1500 psi for 2 cycles of 15 mins. TLE were then
separated by column chromatography through LC-NH; gel into a neutral (containing n-alkanes)
and acid (containing n-alkanoic acids) fraction, eluted by 2:1 v/v DCM to isopropanol and 4%
formic acid in diethyl ether respectively. The neutral fraction was eluted through silica gel using
hexane, DCM, and methanol, with the hexane fraction containing the n-alkanes. The acid
fraction was methylated using MeOH of known C and H stable isotopic compositions in HCI
(19:1 v/v) at 70°C for 12 h. The product was then diluted with milliQ water and partitioned in
hexane, which was then further separated by column chromatography through 5% water-
deactivated silica gel, using hexane and DCM respectively. DCM elutes the fatty acid methyl
esters (FAMESs). The fractions that contained the n-alkanes and FAMEs were blown dry with N,
gas and dissolved in hexane ready for compound identification and quantification using gas
chromatography (Agilent 6890) coupled with mass-selective detector (Agilent 5973) and flame
ionization detection (GC-MS/FID). The instrument was equipped with a Rxi-5 ms column (30 m
x 0.25 mm, film thickness 0.25 um) with column flow split between MS and FID. Absolute
abundance was calculated using a calibration curve of an in-house standard mixture of n-alkanes
and n-alkanoic acids and their peak area response on the FID, with the same analytical conditions
between standard and sample. For those samples where an unresolved complex mixture was
found during GC-MS analysis of the n-alkane fraction, the n-alkanes were isolated by urea-

adduction prior to isotopic analyses.

We report the concentration of individual homologues and the sum of the C,3-33 n-alkanes (3 alk)

and the Cp,.3, n-alkanoic acids (Yacid) on a pg g ' sediment and pg g' OC basis (Aalk and
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Aacid), summing compounds likely to be mostly plant wax derived based on both reported plant
wax distributions (Feakins et al., 2016b) as well as the consistency of the isotopic composition of
these homologues in the sedimentary samples studied here. We also calculate the average chain
length (ACL) and carbon preference index (CPI) of n-alkanes and n-alkanoic acids using the

following equations:

ACL=2(mx[C,])/Z[Cy] (eq. 1)
and
CPI=2[C,) ([Cha]* [Chr1]) (eq. 2)

where 7 indicates the chain length, n = 23 — 33 for n-alkanes and n = 22 — 32 for n-alkanoic acids.
We also report the modal chain length (Cp.x). These data are compared to sediment load, OC
concentrations, lignin biomarkers and specific surface area (SSA) previously reported in Feng et

al. (2016).
2.3.2. Compound-specific isotopic analysis

Carbon and hydrogen isotopic compositions of individual compounds were measured using gas
chromatography — isotopic ratio mass spectrometry (GC-IRMS; Thermo Scientific Trace gas
chromatograph connected to a Delta V Plus mass spectrometer, via an Isolink combustion
furnace at 1000°C for 6'°C measurement, and an Isolink pyrolysis furnace at 1400°C for 6D
measurement). We checked the linearity in isotopic determination across a range of peak
amplitude (1 — 10 V) daily, and only the measurements from compounds with peak amplitudes
within the range of linearity were accepted. 6"°C values were normalized to the Vienna Pee Dee

Belemnite (VPDB) standard, and 6D values were normalized to the Vienna Standard Mean
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Ocean Water/Standard Light Antarctic Precipitation (VSMOW/SLAP) standard, by comparing
with an external standard, the A3-mix (supplied by A. Schimmelmann, Indiana University),
containing 15 n-alkane compounds (C1¢ — C30) with "°C and D values spanning —33.3 to
—28.6%o, and —9 to —254%o respectively, with RMS uncertainties better than 0.2 and 5%o,
representing the dominant component of analytical uncertainty. We correct measured n-alkanoic
acid methyl esters by mass balance for the added methyl group (6"°C —25.45 + 0.37%o,
determined offline by combustion of methanol, and 6D —198.3 + 3.9%., determined by
methylation of a phthalic acid standard supplied by A. Schimmelmann) (Lee et al., 2017) to

report the 5'°C and oD values of n-alkanoic acids.
2.3.3. Catchment hypsometry

We delineated the Madre de Dios River network and catchments of river sediment samples (Fig.
la) in ArcGIS using 3 arc-second (c. 90 m) resolution Shuttle Radar Topography Mission
(SRTM) digital elevation model (DEM; Fig. 1b) (Jarvis et al., 2008). River profile and elevation
distributions were then determined from the delineated catchments. These data were used to

identify the catchment mean elevation of individual river suspended sediment samples.
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3. Results

3.1. Concentrations of organic carbon and plant wax biomarkers in soils

Plant wax biomarker concentrations vary by two orders of magnitude in sampled soils. We find
the expected distributions of n-alkane and n-alkanoic acid homologues indicative of plant wax
sources and report the concentrations for individual homologues (Appendix A). We sum the
homologues to report total compound class concentrations. In the O horizon, ) alk range from 2
— 144 (median = 22.5) ug g ' and Yacid range from 14 — 290 (median = 109) ug g . In the M

horizon, Yalk values range from 3 — 24 (median = 11) ug g and Yacid from 12 — 422 (median =

THugg .

The } alk is less abundant than ) acid and both decrease in concentration between the O and the
M horizon at each site. We find no systematic change in ) acid /> alk between the O and M
horizons on a site-by-site basis or along the elevation profile, suggesting no uniform difference

in net changes in inputs and preservation.

Considering plant wax as-a proportion of soil organic matter (Aalk = ) alk/OC) accounts for part
of the variability in plant wax concentrations. OC varies by an order of magnitude from 4.3% to
38.8% in the O horizon (OC < 10% at TP3, TP4, SP1) and 1.9% to 13.0% in the M horizon (OC >
10% at WAY) as reported in Feng et al. (2016). We find Aalk ranges from 56 — 889 (median =
122) ug g' OC, and Aacid ranges from 154 — 1330 (median = 723) ug g ' OC in the O-horizon.
Aalk ranges from 116 — 320 (median = 181) ug g ' OC, and Aacid ranges from 384 — 5485
(median = 1140) ug g ' OC in the M-horizon (Appendix A). Overall plant wax concentrations
vary by an order of magnitude more than bulk soil organic matter concentrations. Some higher

elevation sites have higher concentrations of plant waxes (one site TU4 has exceptionally high
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concentrations). However, the altitudinal trend is small compared to the scatter between sites,
soils being notoriously heterogeneous. Vertically within soils we find a decrease in n-alkane and
n-alkanoic acid concentration between O and M horizons, but n-alkanes and n-alkanoic acids

represent an increasing (but still trace) component of organic matter in deeper layers of soil.
3.2. Altitude effect in plant wax 6"C and 6D in soils

We measured 0'°C and D values of odd chain length n-alkanes (C,7 — Csi) and even chain
length n-alkanoic acids (C,, — Csy) in soils across the elevation transect (as homologue
abundances allow). All plant wax homologues in both O and M horizons show the same trends:
an increase in 0'°C and a decrease in 6D values with increasing elevation (except the Ca7 n-
alkanes which are present in low concentrations; Appendix A). We focus on Cy9 n-alkanes
(6]3C29alk) and C;q n-alkanoic acids (513C30acid) as they are the most abundant long-chain
compounds in each class, both in soils (this study, Appendix A) and canopy leaves (Feakins et al.,
2016a; Feakins et al., 2016b). 513C29a1k increases with elevation in soil O and M horizons (+1.37
and +1.75%o km’ respectively) with gradients similar to canopy leaves within uncertainties (Wu
et al., 2017), but with-a c. +2%o increase from leaves to soil (Fig. 2a). 513C30acid also increases
with elevation (+1.06 and +1.31%o km ' in O and M horizons respectively; Fig. 2b). In canopy
leaves (Fig 2b), the elevation relation was not statistically significant given the small number of
forest plots sampled for 513C30md analyses (Wu et al., 2017), but site mean plant values are
similar to soils (Fig 3b). Comparing the two soil horizons, we find a c. +1%o increase on average
from O to M horizon in both Cy9 n-alkane and Csy n-alkanoic acid (Fig. 2a, b). This O to M
offset is not apparent in the lowest elevation sites (TP3 and TP4), but the O horizon at these two
sites is very thin (0.7 — 2.5 cm; Table 1), and the samples collected show relatively low OC%

(4.3 — 9.3%), thus not meeting the typical >10% criterion for an O horizon (Feng et al., 2016).
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0Daoai decreases with elevation in soil O and M horizons (—13.2 and —9.7%o km ' respectively)
with shallower but similar gradients (within the large uncertainties) to canopy leaves (—16.4%o
kmﬁl; Fig. 2¢) and with similar absolute values. dD3g,ciq in both horizons show the same trend
with similar slopes (~10.1 and —11.8%o km ' for O and M horizon respectively; Fig. 2d). In
contrast to 0'°C, we do not observe systematic isotopic offsets in 4D values between plant and
soil, or between O and M horizons in either compound classes (Fig. 2¢, d) although for the
highest altitude plant site, the site mean plant 6D,o,x value is more negative than soils, which has
the effect of steepening the apparent plant slope, although this is not well defined by 5 sites
resulting in a large uncertainty (Fig. 2¢). Overall, the trend with altitude is the major finding for

both isotopes and compound classes for the catchment scale interpretations (Fig. 2).
3.3. Altitude effect in plant wax 6" °C and 5D in surface river suspended sediments

We measured 6'°C and D values of odd chain length n-alkanes (C,7 — Cs;) and even chain
length n-alkanoic acids (Cp4 — Csp; as homologue concentrations allow) in river suspended
sediment collected across the elevation transect (Appendix A). We note that molecular
abundance distributions of both compound classes, and the isotopic similarities across dominant
homologues, are consistent with those found in soils (Appendix A). All plant wax homologues
show the same trends: an increase in 0"°C and a decrease in JD values with increasing elevation
(except the C,7 n-alkane, which is more 13C—enriche:d, Appendix A). Here we focus on Cyg n-
alkanes (513C29a1k) and C; n-alkanoic acids (513Cgoacid) as they are the most abundant long-chain
compounds in each class in rivers and soils, as well as in canopy leaves as noted above (Feakins
et al., 2016a; Feakins et al., 2016b). In the wet season 513C values increase with elevation in
rivers for both 513C2931k (+1.01%o0 km_l; Fig. 3a) and 513C30acid (+0.96 %o km_l; Fig. 3b). We find
very little Andean export in the dry season, i.e. sediment loads of OC and X, and 2,4 are lower
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in the Andean rivers during the dry season relative to the wet season and relative to the
downstream reaches (Table 2). Following this, 6"°C values increase less with sampling elevation
in the dry season, but the trend is not sufficiently described given the small sample size (n < 7)
available. Availability of dry-season suspended sediments was limited in the upland, because
even very large samples (>300 L of river water at the uppermost sampling point) did not yield

sufficient plant wax for isotopic analyses.
3.3.1. River depth profiles

Sediment settling within river channels leads to higher sediment loads at depth, with significant
effects in the rivers studied here, which range up to 12 m deep (Fig. 4a). OC concentrations tend
to decline with depth, however there is a ‘woody undercurrent’ of visible coarse plant debris just
above the peak in sediment load within some deep channels (Fig. 4b, Feng et al., 2016). OC
variations largely control n-alkane concentrations, with A, varying by less than a factor of two
in most depth profiles, apart from high A, in the surface and deepest samples of one profile
(CMD 25, Fig. 4c). We do not have robust quantification data for the n-alkanoic acids; however
they are more abundant than the n-alkanes. The finer sediments in the upper water column have
higher specific surface area (SSA; Fig. 4e; Feng et al., 2016). CPI, varies between location and
depth, but tends to decrease toward the surface, suggesting transport of more degraded n-alkanes
in association with fine grains with high SSA (Fig. 4f), such as those from the weathered soils.
This 1s consistent with evidence of in-river depth differentiation in 513Ca1k values (Fig. 4f): the
upper samples are consistent with degraded M horizons, whereas the deep samples are '*C-
depleted and this might reflect the ‘woody undercurrent’ with overprinting of some larger,
fresher material from plants and from the O horizon. We find essentially no sorting of

5 Cs0acia (Fig. 4g), Dacia (Fig. 4h), or 6Dy (Fig. 4i) consistent with an absence of offset
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between soil O and M horizons. For 8 Cay, it appears that the differential effects between O and
M horizon also complicates assessment of sediment sourcing in rivers, whereas 0"°C values of
the n-alkanoic acids and the oD values of both compound classes provide elevation markers

immune to these effects.
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4. Discussion

4.1. Altitude effect in soils

The sensitivity of plant wax d'°C values in soils to elevation (Fig. 2a, b) provides new evidence
that carbon isotopes may be useful as an elevation proxy in paleosols and for sedimentary
sourcing studies. This study confirms that the slope of canopy plant wax 6"°C values with
altitude (Wu et al., 2017) is robustly captured in soils here. The major caveat with this approach
is that aridity is a larger factor in carbon isotope fractionations relative to elevation effects
(Diefendorf et al., 2010) and this can confound an altitude effect; for example a prior application
of plant wax §"°C in soils on Mt. Gongga, China, found the patterns to be dominated by aridity
(Wei and Jia, 2009). However, in the very wet region of the Madre de Dios, the altitude
sensitivity encoded in soils provides a robust signal that can be used for our catchment sourcing

questions.

The altitude effect in hydrogen isotopes in precipitation has been established in plant wax (Bai et
al., 2011) and applied for paleoaltimetry (Polissar et al., 2009). Such an elevation effect has
already been reported for plant wax JD in the tree canopy (Feakins et al., 2016a) and soils
(Ponton et al., 2014) in the Madre de Dios. This study extends those findings, confirming the
presence of the altitude effect in dual plant wax compound classes in soils, i.e. that it is robust to
the early diagenesis changes between leaf and soil. Thus, we find both compound classes and

both isotope systems have potential for ‘tagging’ the elevation of origin.

Overall, the altitude trends seen in prior tree canopy surveys (Feakins et al., 2016a; Wu et al.,
2017) are found to be reproduced in tree canopy and in soil O and M horizons for §'°C of n-

alkanoic acids and 6D values of both n-alkanoic acids and n-alkanes here (Fig. 2). But, while the
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carbon isotopic trend in the canopy is indeed transferred to soils, there is a >2%o '*C-enrichment
in n-alkanes in soils relative to leaves (considered separately below). Considering the greater
plant wax stock in soils relative to tree canopy, the multi-centennial age of most river-exported
plant wax (Galy and Eglinton, 2011; Kusch et al., 2010) and the coherence between soils and
river samples (considered later), the soils, especially the M horizon, probably represent the major
source of plant wax to the river. Thus, we find the soil-based calibrations most relevant for

interpretation of catchment sourcing.
4.1.1. Offset in n-alkane 6"°C values between canopy and soils

What may explain the offset in 6"°C values (Fig. 2a) between tree canopy n-alkanes and soils and
between O and M horizon in the Andes? First, the Suess effect (anthropogenic alteration of the
5"C of CO, in the atmosphere due to the combustion of fossil fuels) has lowered the §"°C of the
atmosphere between c. —6.4%o in 1750 AD (Friedli et al., 1986) to —8.3%o in 2013, when samples
were collected — amounting to a lowering of —1.9%o. Today’s atmosphere is the substrate for
modern plant leaves, whereas the OC in soil was fixed from an atmosphere with higher §'°C.
Plant wax in the O horizon likely integrates several recent decades, and since 1960 there has
been a 1%o lowering of the atmospheric 6"°C (Friedli et al., 1986) and thus we might expect up to
a —1%o offset of the O horizon from canopy leaves based on the Suess effect alone. Plant wax in
M horizons may be much older, perhaps integrating several centuries, including (but likely not
exclusively) preindustrial and thus we might expect up to a —2%o offset between the canopy and
the M horizon. However additional factors still must be invoked to explain the offsets as not all

soil O and M horizon carbon dates from prior to 1960 and 1750 respectively.
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Degradation processes may account for part of the offset between the canopy, O horizon and M
horizon. Indeed this magnitude of effect is possible with >2%o increase in n-alkane 0"°C values
reported elsewhere between fresh leaves and leaf litter (Nguyen Tu et al., 2004). Degradation
gradients exist along the elevation transect in the Madre de Dios; for example, the O horizon is
thinner and has a lower OC content at the lowest elevation site, in addition to local variations
associated with waterlogging. Fungal communities have been shown to add n-alkanes at depth
(Marseille et al., 1999) and could carry a distinct carbon isotopic signature, though fractionations

are unknown.

Other inputs to soils should be considered. Understory plant wax contributions to soils are
unlikely to drive the offset as productivity is lower than that of the canopy and "*C-depleted
values due to respired carbon would be expected, counter to the observed offset. Root wax
contributions to soils are possible, as agricultural studies have reported that root derived lipids
may be better preserved than leaf lipids in soils and may be *C-enriched (Rasse et al., 2005;
Wiesenberg et al., 2004). Root wax inputs were not characterized as part of this study, and we
note that root species identification in a mixed rainforest is difficult, in contrast to crop
monoculture. Fine root productivity increases with altitude in this region (Girardin et al., 2013),
so root wax inputs may be greater at higher altitudes, and this could contribute to the different
slopes of 6"°C for the O and M horizon (Fig. 2 a, b). However, fresh root production would be
unlikely to explain the offset as the Suess effect would act counter to the direction of offset

observed.

Generally, plant wax concentrations reveal an increase in A, and A,ciq by about a factor of two
between the O and the M horizon, which likely reflects the slower rates of loss relative to other
compounds in soils such as cellulose (Kdgel-Knabner and Amelung, 2013; Schmidt et al., 2011)
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and explains the importance of waxes as geological biomarkers (Eglinton and Eglinton, 2008). A
couple of studies have indicated that there can be deep soil additions of n-alkanes from fungi
(Marseille et al., 1999) and of n-alkanoic acids from roots (Wiesenberg et al., 2004), although it
is not clear how widespread such inputs are, and how much this may confound the “leaf” wax
environmental interpretation. How inputs and preservation vary between compound classes

merits further study.
4.2. The river-transported signal of plant wax 6"°C and 6D

During the wet season, plant wax 6"°C and D values in both compound classes in river
suspended sediments (surface water) correlate with mean catchment elevation (blue symbols and
regression, p < 0.001; Fig. 3), following similar patterns as found in soils (both soil O and M
regression envelopes shown for comparison; Fig. 3). A previous study of 6D values of Cyg n-
alkanoic acids in the same samples used the median catchment elevation as the central estimate
of the skewed hypsometric distribution (Ponton et al., 2014). Here we analyzed the river data
with both the median and the mean catchment elevation (Appendix A), and we find catchment
mean elevation best represents the catchment sourcing (higher R” by 0.11 - 0.25), which implies
averaging of all altitudes uniformly. This general interpretation applies to both n-alkanes and n-
alkanoic acids and both hydrogen and carbon isotopic composition in our wet season dataset (Fig.
3). Altogether, our broader suite of measurements (dual isotope, dual compound class) supports
the earlier suggestion that plant waxes in the Madre de Dios system record the isotopic gradients

defined by their catchment elevations.

In order to explore differences from the soil-predicted regression based on catchment

hypsometry represented by the catchment mean elevation (i.e. uniform integration case), we
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calculate the offset for individual river samples from the soil regression (Appendix A). In most
cases the discrepancies between measured values and those predicted for uniform integration are
neither large nor consistent between compound class or isotope system, for example at CICRA
(821 m catchment mean elevation), we find a high altitude bias in the dD30aciq Only. Overall, we
do not find a systematic bias from the uniform catchment integration case, except at the

mountain front location, where there are seasonal effects, considered next.

During the dry season, sediment loads were low, especially at the Andean sites, limiting potential
for plant wax analyses despite very large volume sampling, i.e. it was obvious in the field that
the signal exported during the dry season has more of a lowland bias than the wet season uniform
catchment integration case. Overall, the restricted elevation range and small number of the dry
season plant wax isotopic data indicate non-significant relationships with catchment elevation
(Fig. 3). Given the scatter in the dry season elevation trend, we compare the isotopic composition
at point locations across seasons. At the mountain front location (MLC, 450 m asl, 2006 m
catchment mean elevation), we observe seasonal differences, with the dry season offset from the
wet by —1.5%o (6" C30acid), +26%0 (6D30acia), and —3%o ("> Caoan), with insufficient dry season
sample for dDyo, determination resulting in no comparison (Appendix A). The seasonal offsets
include some inconsistency between proxies, but each indicate lowering of the locus of erosion
by c. 1-2 km relative to the uniform catchment integration found in the wet season at this site
(MLC wet season values were within uncertainty of soil-regression predicted values). At other
locations where we have data in both seasons, the differences are not larger than analytical

uncertainties.

Our two-season sampling approach demonstrates that the wet season accounts for most upland
erosion within the catchment: the river is visibly turbid with sediments and plant wax Xalk
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concentrations are 49 and 10.2 ug L' at WAY and SP. In the dry season upland transport is
reduced (Zalk was not measurable at WAY and were just 0.1ug L' at SP) and thus the locus of
wax sourcing lowers. We find that when Andean erosion peaks in the wet season, catchment
integration approximates uniform integration at all elevations (Fig. 3). During the dry season,
Andean export diminishes, and this results in a pronounced seasonality in sourcing at the
mountain-front location, corroborating the finding of Ponton et al., (2014), now with dual
isotopes and compound classes. At the floodplain locations, catchment hypsometry is so skewed
to the lowlands on an areal basis that the seasonal variation in Andean export is barely
perceptible. Thus, we establish that there is no Andean bias in plant wax sourcing, even in the

wet season, in contrast to the clastic flux carried by the river.

Analysis of biomarker distributions (Appendix A) reveals differences in degradation:
downstream we observe lower CPI consistent with more weathering of n-alkanes during storage
and remobilization in the floodplain for the n-alkanes overall (p < 0.01) and especially in the wet
season (p < 0.001). No such degradation trend is observed in the n-alkanoic acids. Other plant
biomarkers, lignins, similarly show degradation and soil storage prior to fluvial export in this
system (Feng et al., 2016). Both n-alkanes and n-alkanoic acids show a slight tendency to
increased chain length in the lowlands, similar to patterns reported for plants in the catchment
suggesting the river sediment composition reflects incorporation of a lowland signal in the

floodplain.
4.3. Dual isotope analysis

If we examine soil data in dual isotope space (Fig. 5), we observe the general inverse relationship

expected from the altitudinal relationships in each isotope system, and that river samples mostly
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fall on or near the dual-isotope relationship described in the transect of soil plots (Fig. 5). We
note one outlier among the river samples that does not fit with the soil or river samples in dual
isotope space (CMD 31; Fig. 5). The n-alkanes derived from CMD 31, a mainstem, lowland
sample, deviate from other soil and river samples in dual isotope space, with more >C-
enrichment than expected based on the oD value. In addition, CMD 31 has a low CPI. n-Alkanes
in plants and most sediments have a high CPI, whereas low CPI is generally indicative of
thermal alteration and as such is indicative of petrogenic sources. Petrogenic inputs tend to drive
BC-enriched values which could account for the isotopic deviation here (CMD 31 is an outlier
on both Fig. 3 and 5). However, this sample was from the main stem of the Madre de Dios and
no influence was detected at the next station downstream station; thus this outlier was not
volumetrically relevant for sourcing in this catchment. Petrogenic inputs have been documented
elsewhere in sedimentary n-alkanes (Haggi et al., 2016; Pearson and Eglinton, 2000), and hence
many studies have favored n-alkanoic acids for fluvial sourcing (Galy et al., 2011; Kusch et al.,
2010) and paleoenvironmental reconstruction (Feakins et al., 2013; Niedermeyer et al., 2014;
Tierney et al., 2008). Nevertheless, alkanes have value for fluvial sourcing (Hemingway et al.,
2016) and have been widely applied for paleoenvironmental reconstructions (Freeman and
Colarusso, 2001; Pagani et al., 2006; Schefuss et al., 2011; Schefuss et al., 2003). Dual isotope
analysis is demonstrated here as useful validation between two ‘altimeters’, here confirming
strong agreement overall, as well as isolating a sample with petrogenic influence (confirming the
primary evidence from that sample’s low CPI). Although not applicable in this forested, very wet
catchment, we suggest the dual isotope approach would also be well-suited to identify and
diagnose potential causes of divergence from the altitude relation in other catchments, such as

inputs from a lowland C4 savanna. In other climates, aridity could also cause the altitude effect to
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be disrupted, potentially leading to both a '>C- and D-enrichment (of different magnitudes);

again the dual approach can provide more information than a single-isotope based system.

Other river n-alkane data display minor deviations from the soil relationship in dual isotope
space, with a tendency to *C- and/or D-depleted values for n-alkanes. These offsets are not
consistent with a bias in spatial integration as each isotope has opposing implications (**C-
depleted would imply lower elevation, while D-depleted would imply higher elevation).
Generally high CPI allows us to discount a petrogenic source in most samples, although the CPI
systematically declines (p < 0.01) toward the lowland and is more scattered in the lower
elevations and between tributaries (Appendix A); thus stored input from different environments
or times may explain some of the scatter. Depletion of both isotopes in the same molecules may
be explained if: a) the range of sources in the catchment have not been completely represented by
the transect of soil samples, e.g. if a lens of ancient substrate is exported from a river bank
(Householder et al., 2012; Rigsby et al., 2009), b) analytical uncertainties contribute to ‘scatter’
in the river samples around the regression envelope of uncertainties (with overall hydrogen
isotope analytical uncertainties on the order of 5%o, and carbon on the order of 0.2%o) or ¢) point
sampling of the river does not fully represent the full transport load of the river (despite
contrasting two seasons, we have not accomplished sampling of detailed seasonality
(Hemingway et al., 2016; Tao et al., 2015), extreme flood hydrographs (Freymond et al., 2018),

or interannual variability).
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4.4. Implications for geological and geochemical applications

4.4.1. Understanding plant wax sedimentary integration

Where plant wax biomarker reconstructions are derived from large catchments with high
elevation, questions have been raised about the source area represented in the downstream
sedimentary deposits as well as the temporal components of erosion, storage and sedimentary
sourcing (e.g., Hein et al., 2017). These questions have been summarized as “the nature of
sedimentary integration” (Diefendorf and Freimuth, 2017; Sachse et al., 2012) with state of
knowledge ranked as low (1 out of 5). Several studies have ventured to answer these questions,
tracking plant wax molecules through catchments, including in the Amazon River, the largest
river drainage network in the world. From an elevation transect in the wet, forested, mountain
sector of the Madre de Dios, Pert, an earlier study reported the oD values of plant wax n-
alkanoic acids showing spatial averaging (Ponton et al., 2014). That finding is corroborated here,
and further we find similar patterns of plant wax integration using both 6'°C and D, analyzed in
both the n-alkanoic acids and n-alkanes. In the lowland Amazon River network, Higgi et al.
(2016) identified signals from the western basin as well as each of the tributaries contributing to
the mainstem of the Amazon River, confirming the concept of spatial integration much further

downstream for the n-alkanes.

If uniform spatial integration is a reasonable approximation for plant wax sourcing, in many
catchments that means a lowland-dominated record based on areal extent, for example c. 90% of
the Amazon Basin is lowland. River floodplains further appear to reset the transported plant wax
signal to lowland values, not only because of additive inputs from greater lowland areal extent,
but also because of degradation of the upland material in transit across floodplains (Galy et al.,

2011; Haggi et al., 2016) or estuaries (Medeiros et al., 2012). Here, we find the concentrations of
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plant wax n-alkanes in river suspended sediments (X, and A.k, Appendix A) remain relatively
constant downstream despite increased catchment area, indicating degradation and replacement,
rather than accumulation. Evidence for floodplain replacement also comes from the Ganges-
Brahmaputra River network, where Galy et al. (2011) analyzed the §"°C and 5D values of plant
wax n-alkanoic acids in suspended sediment, finding differences between mountain-front

tributaries, but ultimately showing a lowland signal upon export to the ocean.

Although steep terrain enables sedimentary erosion, the aforementioned studies have shown that
such regions are unlikely to dominate plant wax sedimentary records, except when sampling in
proximal locations. At mountain-front locations, there may be time-variable inputs associated
with changing flow induced by storms and seasonal climate regimes (Clark et al., 2013), and by
low frequency, large magnitude landslide events (Clark et al., 2016). For example, in the
mountain-front river sampling of the Madre de Dios, seasonal Andean export and episodic storm

inputs perturb the river suspended plant wax signal (Ponton et al., 2014).

While the Madre de Dios catchment is fully forested, other catchments include regions with
sparse vegetation that yield little plant wax, e.g. the Tibetan portion of the Arun River catchment
in Nepal (Hoffmann et al., 2016). Such regions are underrepresented in the exported plant wax
signal relative to their spatial extent. However, various studies reveal that it is the soil stocks of
plant waxes and not modern plant wax productivity that is critical to determining uneven
contributions. From this Madre de Dios transect, n-alkane productivity in modern forests
(Feakins et al., 2016a), together with n-alkane concentrations and &' 3C signals in soils and rivers
(this study) and analogous data for lignin (Feng et al., 2016), indicate that soil stocks are the
major source of plant biomarkers to rivers (i.e. plant-to-soil-to-river), rather than direct from

plant-to-river. Other studies find that this soil-to-river pathway is accentuated for those rivers
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that travel through regions with abundant stored sedimentary material. The Yellow River drains
the loess plateau, and Tao et al. (2015) used compound-specific radiocarbon to establish that a
large fraction of the exported plant wax was eroded from storage with an age of ~1000 years for
the n-alkanoic acids and >26,000 years for the n-alkanes, in the extreme case of the loess storage.
Some lowland tropical basins (including the Congo and Amazon) contain vast swamp areas, and
these regions may at times be sinks or sources that contribute to the exported biomarker signal
(Hemingway et al., 2016; Wagner et al., 2014). As river meanders migrate, they erode
sedimentary deposits, likely remobilizing older plant wax (Torres et al., 2017), such as from
Holocene peats (Householder et al., 2012) and Pleistocene age river terraces (Rigsby et al., 2009)

in the Madre de Dios River basin.

We summarize these observations of plant waxes in transit in this and varied modern systems in
Fig. 6 with a view to interpreting plant wax studies of paleoclimate and paleoenvironment.
Broadly, uniform spatial averaging is a fair approximation for plant wax sourcing in many
environments. Mountain lakes will necessarily receive a local signal. Mountain-front
sedimentary deposits may record a variable signal, but lowlands will dominate the exported
signal in most catchments because of their areal basis and ability to degrade upland organic
matter and replace with lowland organic matter inputs, as well as their proximity to sedimentary
sinks. Uniform averaging can be disrupted if a river erodes thick sedimentary sources that
effectively ‘over contribute’. Conversely, when the river erodes land that may be barren (or have
low amounts) of vegetation and soil those areas may ‘under contribute’ based on their areal

extent.

A contribution from this study is that both carbon and hydrogen isotopes can reveal remarkably

consistent stories about catchment sourcing, in both the alkane and alkanoic acid compound
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classes. One interpretation could then be that either isotope system or compound class can be
used to track sourcing. However, single isotope approaches in other settings may find that one or
other of the isotope systems may be biased. For example, lowland aridity may shift the carbon
isotopic composition to more positive values such that the altitude trend is diminished, or may
shift the values at high elevation, such that the trend is accentuated. Or, lowland vegetation may
include C,4 grasses, and this would counteract the altitude trend. Alternatively, hydroclimate
changes can alter the pattern of precipitation isotopes. In such cases the direction of divergence
between the two isotope systems may reveal the explanation. In submarine fans, containing
ancient river-transported sediments, several studies have shown that the dual isotope approach
can be insightful about climate and vegetation (Hein et al., 2017; Schefuss et al., 2011; Schefuss
et al., 2005). Although spatial patterns may remain obscure from single marine core
reconstructions, the purpose of catchment sourcing studies is to reveal the source region
integrated in river-transported sediments, even though sourcing may change over time. A
powerful solution can be the study of multiple sedimentary deposits across catchments, to reveal
the spatial distribution of changes on the landscape, e.g. the combination of terrestrial (Siwaliks)
and marine (Bengal Fan) records (Freeman and Colarusso, 2001), or the comparison of the
nested catchments of the Congo Fan (Schefuss et al., 2005) and Lake Tanganyika records

(Tierney et al., 2008), reported in Sachse et al. (2012).
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4.4.2. Potential for dual isotope plant wax paleoaltimetry

Reconstructing the past elevation of landscapes is of interest for understanding tectonic processes
(Garzione, 2008), climate dynamics (Molnar et al., 2010) and biological evolution (Antonelli et
al., 2009; Hoorn et al., 2010). Many proxies for paleoelevation make use of the stable isotope
gradient in meteoric water with elevation, as recorded in the §'*O value of carbonates (Blisniuk
and Stern, 2005; Rowley, 2007). More recently, it has been noticed that plant wax organic matter
archives the altitudinal gradient in the 6D value of meteoric waters in soils (Bai et al., 2011; Jia
et al., 2008; Luo et al., 2011; Ponton et al., 2014) and based on such observations, the ODax
value has been used as a paleoaltimetry proxy on the Tibetan Plateau, on the Andean Altiplano
and in the New Zealand Alps (Kar et al., 2016; Polissar et al., 2009; Zhuang et al., 2014; Zhuang
et al., 2015). Our results provide additional evidence to support the use of hydrogen isotopes in
plant wax as a paleoaltimetry proxy in ancient soils and fluvial deposits; further we introduce the

concept of dual C and H isotopes in the same plant wax molecules for paleoaltimetry.

Altitude effects empirically determined in both the hydrogen and carbon isotopic composition of
the forest canopy (Feakins et al., 2016a; Wu et al., 2017) are transferred to soils (Fig. 2) and to
river sediments (Fig. 3), in two compound classes of leaf wax biomarkers (n-alkanes and #-
alkanoic acids). In theory river sediments carry altitudinal information, although these would
reconstruct the catchment integrated elevation rather than being an in sifu estimate, making
paleosols the simpler case. Based on the relationship observed in soil M horizons (the major
stock) across the elevation transect in the Madre de Dios basin (Fig. 2), we predict the isotopic
signal that would be anticipated in paleosol samples with uplift from 2 to 4 km asl, together with
uncertainties solely from the M horizon soil regression with elevation (Table 1). We also

illustrate the elevation of all soil data (including O and M horizons) in dual isotope space,
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illustrating the power to differentiate sites separated in elevation by 0.5-1 km but no finer (Fig. 7),

which provides a guide to paleoaltimetry potential.

Additional uncertainties exist, beyond that captured in the modern soil survey. For plant wax oD
the principal uncertainty is usually the choice of the appropriate net fractionation factor between
source water and plant wax needed to evaluate the isotopic composition of past precipitation. Net
fractionations vary between plant type and climatic regime, but the largest shift in the net
fractionation is typically seen when transitioning to grasslands which have larger D/H
fractionations than other lifeforms. A second concern surrounds aridity. Although plants can
regulate water loss by their stomata, net carbon and hydrogen fractionations are generally smaller
in drier environments than wet environments (Diefendorf et al., 2010; Feakins and Sessions,
2010; Sachse et al., 2012; Wei and Jia, 2009). Both plant type and climatic change likely
accompany uplift, and such changes would alter the response in the plant wax archive from that

seen in this forested, very wet altitude transect today.

Overall, the major concern with stable isotope approaches to paleoaltimetry is that uplift often
engenders drying, such as is the case in the Andean Altiplano or Tibetan Plateau, and this drying
affects stable isotope based altimetry as recorded in carbonates (Rowley and Garzione, 2007).
The plant wax proxy should be less sensitive to aridity as transpiration losses from plants are
restricted unlike evaporative losses affecting carbonates. Further the plant wax archive is
uniquely suited to monitor for the confounding effect of aridity, because of the ability to measure
both stable C and H isotopes in the same molecule. We find a negative correlation between 6D

and &°C values across the elevation transect in the ever-wet scenario studied here (Fig. 4),

whereas drying would be expected to lead to a positive correlation between D and 6°C. The
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combination of plant wax carbon and hydrogen isotopic analyses in the same molecules therefore
provides a check on hydrological changes that may compromise either altimeter. Thus, for
paleoaltimetry applications of the plant wax paleoprecipitation proxy, we recommend dual
analysis of C and H, spanning time in an ancient deposit, or ideally a series of deposits across a
topographic feature, to discriminate between a past scenario with a) high 6> Cyay and low 6Dy
that would be interpreted as higher elevation than modern or b) high &>Cyay and high 6Dyay that
would be interpreted as drier than modern. Past vegetation change would ideally be also
monitored (e.g., using plant wax chain length distributions, pollen or macrofossil analyses), and
we suggest such concerns about plant type bias would be greater in soils or different facies than
in broadly integrated deposits that average plant inputs. In this way we hope that the dual-isotope
information from plant waxes can usefully add additional monitoring and diagnostic power to
efforts at paleoaltimetry with oDy.x. This dual isotope plant wax proxy may be a welcome
addition to the available toolkit for paleoaltimetry including carbonate and other secondary
mineral archives of precipitation oxygen isotopes (Poage and Chamberlain, 2002), clumped
isotope estimates of temperature (Huntington et al., 2010), and microbial proxies for temperature
(Peterse et al., 2009), each may variously find application in different sedimentary archives and
contribute to multi-proxy efforts to robustly determine paleoelevation in the Andes and

elsewhere.
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Conclusions

This study takes a dual compound class and dual isotope approach to survey plant waxes in soils
and river sediments in a transect across the eastern flank of the Andes in a forested, steep, very
wet, tropical mountain watershed. We observe elevation trends in both C and H isotopes and n-
alkane and n-alkanoic acid compound classes stored in soils and transported in fluvial suspended
sediments. The altitudinal trend in the C and H isotopic composition of plant wax hydrocarbons
represents a powerful diagnostic tool for tracking elevation in catchment sourcing studies, and

offers potential for paleoaltimetry.

In river transported sediments, we test whether sedimentary integration is uniform or whether
steep regions with high sedimentary erosion rates lead to bias in the plant wax sedimentary
record. In our field collection we find plant wax concentrations and suspended sediment
concentrations are very low in the dry season in the upper reaches, and that most of the erosion
occurs in the wet season. Comparing the empirical regression from the transect of soil plots to
the river exported signal based on the catchment mean elevation, the slope of the regression is
shallower in the rivers implying that the upland sources are under-represented, but this is not
robust to the uncertainty on the regression and the implications are in any case erased by the
expansive lowlands where uniform spatial integration is a good approximation. Uplands are
never over-represented, but their export occurs primarily during the more erosive wet season,
and in the dry season the locus of erosion reduces by at least 1 km at the mountain front station,
with less seasonality seen further downstream. Within deep rivers, we observe modest depth
differentiation for the carbon isotopic composition of the n-alkanes with more degraded
components derived from weathered soils in the upper water column, but no depth differentiation

for the other isotopes studied here.
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We introduce the concept of a dual isotope approach for plant wax studies as a diagnostic tool to
discern source characteristics other than elevation signals in some river samples. The strong
elevation signal in this study is confirmed through this approach and indicates the power in
combining dual compound classes and dual isotopes to analyze source-to-sink processes for plant
wax biomarkers. Overall, the large lowland area of many river catchments means that upland
sources of plant wax will become negligible in many distal archives, and the lowland floodplains

are thus important for the replacement of the fluvially-exported plant wax component.
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Figure and Table Captions

Fig. 1. Shaded relief map showing soil and river sampling locations in (a) the Madre de Dios
River network and (b) the Kosiiipata River which drains into the Madre de Dios River. River
sample code prefix (wet season: CMD; dry season: MMD) is omitted on map. River sample
codes are differentiated into wet (blue) or dry (red) season samples, mainstem (Kosiiipata River
and Madre de Dios river; no underline) or tributary samples (underlined), or stormflow samples
(parentheses). Soil sample codes are in brown. Digital elevation model is derived from the 3 arc-

second (approx. 90 m) Shuttle Radar Topography Mission (SRTM) data (Jarvis et al., 2008).

Fig. 2. Soil isotopic gradients showing (a) 5"°C Cao n-alkane, (b) 6"°C Csq n-alkanoic acid, (c) oD
Cy9 n-alkane and (d) oD C;¢ n-alkanoic acid in soil O (violet) and M (orange) horizons, as well as
canopy leaf site-means (green; 6 °C Wu et al.; 2017, dD Feakins et al., 2016), showing 1o
uncertainties (error bars), ordinary least squares (OLS) linear regressions (lines; all with
p<0.0001) with regression uncertainties (1o: shading). No regression plotted for canopy leaves in
b or d because the relationship is not significant, but this is thought to be a type II error, due to
the insufficient number of sites along the transect (n = 5). Insets show the relationship between
soil O and M horizons. Note that soil O horizon samples at sites TP3 and TP4 contain <10% OC
(open squares, included in the regression).

Fig. 3. River data (wet season: blue circle; dry season: red diamond) showing 6"C (top) and oD
(bottom) of Cy9 n-alkane (left) and Csy n-alkanoic acid (right) from river suspended sediments
(error bars: 1o uncertainties) from main stem (solid symbol) and tributary (open symbol). OLS
linear regressions (blue lines) are shown for wet season samples with regression uncertainties (1o:
shading). CMD 16 and 31 are outliers, with low CPI evidence for petrogenic contamination
(crosses, not included in regression). Regressions for dry season samples are not significant
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(dashed line; p > 0.05). Also showing data from depth profile samples (grey, not included in the

regression).

Fig. 4. Properties of bulk sediment and plant wax biomarkers in the depth profiles of the Madre
de Dios River: (a) sediment load, (b) organic carbon content (OC%), (¢) OC-normalized total n-
alkane abundance (A,i), (d) carbon preference index of C,7.33 n-alkanes (CPL,y), () specific

surface area (SSA), (f) 6 Caoaik, (&) 0 C30acias (h) MD30acid, (1) MDa2oatk.

Fig. 5. Comparison of 6D and ¢'°C values of (a) Cy9 n-alkane and (b) Csg n-alkanoic acid for
river suspended sediments in wet (blue circles) and dry (red diamonds) seasons, as well as the
depth profile samples (grey). OLS linear regressions are shown for the river wet season and soil
O (violet) and M (orange) horizons (individual data of soil is shown in Fig. 6) with 1o regression
uncertainties (shading). CMD 31 is an outlier, with low CPI evidence for petroleum

contamination.

Fig. 6. Synthesis of plant wax sedimentary integration studies (Galy et al., 2011; Haggi et al.,

2016; Hemingway et al., 2016; Hoffmann et al., 2016; Ponton et al., 2014; Tao et al., 2015).

Fig. 7. Comparison of 6D and '°C values of (a) Cp9 n-alkanes and (b) Cs, n-alkanoic acids in
both the soil O and M horizon samples (undifferentiated). Symbol colors correspond to sampling
elevation (see legend). Orthogonal distance regressions (black lines) are shown with 1o

regression uncertainties (grey shading).

Table 1. Predicting paleoaltimetry using a dual isotope plant wax approach in paleosols.
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Table 1. Predicting paleoaltimetry using a dual isotope plant wax approach in paleosols.

Proxy Elevatign response Predicted ghange after Uncertainty bas.ed on the
(%o km™) +2 km uplift (%o) modern regression (km)*

513C29alk (soil M) +1.75+0.19 +35+04 0.2

5C300cia soil vy +1.31 £0.21 +1.6+04 0.3

0 D29k (soil M) —10+2 —20+4 0.3

6 D30acid (soil M) —12+2 —24+4 0.3

* Additional uncertainties from aridity and plant type change may be constrained by dual isotope
analyses, pollen information on plant communities, or other environmental evidence. These
effects have the potential to confound estimates of elevation to the order of 2 or 20%,, for &°C or
oD respectively, equivalent to 2 km.
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