

Production of leaf wax *n*-alkanes across a tropical forest elevation transect

Sarah J. Feakins^{a*}, Tom Peters^a, Mong Sin Wu^a, Alexander Shenkin^b, Norma Salinas^{b,1}, Cécile Girardin^b, Lisa P. Bentley^b, Benjamin Blonder^b, Brian J. Enquist^c, Roberta E. Martin^d, Gregory P. Asner^d, Yadvinder Malhi^b

^a Department of Earth Sciences, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA 90089, USA

^b Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford, OX1 3QY, UK.

^c Department of Ecology and Evolutionary Biology, University of Arizona, AZ 85721, USA.

^d Department of Global Ecology, Carnegie Institution for Science, 260 Panama St, CA 94305, Stanford, USA.

Submitted to *Organic Geochemistry*

*Corresponding author: Sarah J. Feakins, email: feakins@usc.edu, phone: 213 740 7168

¹ Permanent address: Sección Química, Pontificia Universidad Católica del Perú, Peru.

17
18 Author Contribution Statement
19 S.J.F designed and led the leaf wax study; Y.M. designed and led the CHAMBASA field
20 campaign; Y.M., B.J.E., G.P.A., L.P.B., N.S. and A.S. planned the fieldwork; L.P.B., N.S. and
21 A.S., conducted the fieldwork; R.E.M. led taxonomic classifications; C.D. contributed
22 productivity data. T.P. conducted the leaf wax laboratory work and data analysis and M.S.W.
23 contributed; S.J.F. conducted the data analysis, graphing and wrote the manuscript. All authors
24 contributed to discussions.

25 **Abstract:** Waxy molecules form the boundary layer of the living leaf and contribute molecular
26 fossils to soils, lake and marine sediments. Cataloguing the variations in leaf wax traits between
27 species and across environmental gradients may contribute to the understanding of plant
28 functional processes in modern ecosystems, as well as to the calibration efforts supporting
29 reconstructions of past ecosystems and environments from the sedimentary archives of leaf wax
30 biomarkers. Towards these goals, we survey leaf wax *n*-alkanes in trees from the lowland
31 tropical rainforest (TR) and montane cloud forest (TMCF) of Peru. Leaf wax molecular
32 abundances were quantified via gas chromatography flame ionization detection (GC-FID) for
33 635 individuals, 152 species, 99 genera and 51 families across 9 forest plots spanning 0.2–3.6
34 km elevation. We find the expected molecular abundances distributions, for example the *n*-
35 alkane component of plant leaf waxes is dominated by long chain, odd numbered *n*-alkanes,
36 especially C₂₉ and C₃₁. New observations include a tendency to increasing total alkane
37 concentrations at higher elevations. We propose that the well-known leaf economic strategy to
38 increase leaf mass per unit area with elevation, yields a theoretical basis for understanding the
39 observed increase in leaf wax *n*-alkane abundance with elevation: we infer an increased
40 investment in foliar defense in response to environmental pressures thought to include cloud
41 immersion and declining temperature. Furthermore, we combine measurements of *n*-alkane
42 concentration with estimates of forest productivity to provide new ways to quantify ecosystem-
43 scale forest alkane productivity. We introduce a new concept of *n*-alkane net primary
44 productivity (NPP_{alk}; the product of alkane concentration and leaf NPP) and find that alkane
45 productivity estimates ranges from 300–5000 g C ha⁻¹ yr⁻¹ associated with ecological and
46 environmental changes across the elevation profile.

47 **Keywords:** Amazon; Andes; CHAMBAZA; leaf wax; Peru; NPP

49 **1. Introduction**

50 Terrestrial plants leaves are covered with waxes, comprised of mixtures of long-chain
51 hydrocarbons, including *n*-alkanes, *n*-alkanols, aldehydes, fatty acids, and wax esters, with the *n*-
52 alkanes commonly dominating the mixture (Eglinton & Hamilton, 1967). Wax components are
53 synthesized early in leaf ontogeny (Jetter and Schaffer, 2001) and likely not substantively
54 regenerated during the lifespan of the leaf (Kahmen et al., 2013a; Tipple et al., 2013), although
55 replacement following erosion of surface waxes has been demonstrated (Jetter and Schaffer,
56 2001). The epicuticular and intracuticular waxes on plant leaves serve to protect the plant from
57 desiccation, from pathogen and fungal attack, as well as altering leaf wettability and runoff
58 (Koch et al., 2009). This protective role may extend to other functions, including protection from
59 UV radiation (Shepherd & Griffiths, 2006). Many of these functions of leaf waxes would be
60 expected to vary across elevation gradients, which carry environmental gradients in temperature,
61 precipitation, insolation and biotic stressors.

62 The molecular abundance distribution of leaf waxes varies between species (Diefendorf et al.,
63 2011). Of the long chain *n*-alkanes, with the molecular formula C_nH_{2n+2} , where n typically is 21
64 to 35, typically one or two chain lengths are dominant or co-dominant and distributions have a
65 strong odd-over-even preference resulting from chain elongation by acetate units followed by
66 decarboxylation (Eglinton and Hamilton, 1967). Discrete applications where *n*-alkane
67 distributions are diagnostic may be the exception rather than the rule, for example, *Sphagnum* in
68 peat bogs dominantly make C_{23} (Bingham et al., 2010), whereas *Juniperus virginiana*
69 dominantly makes C_{35} (Tipple and Pagani, 2013) but these are rarely dominant in other species.
70 Some studies have suggested that chain length distributions of *n*-alkanes can discern shifts in

71 vegetation communities such as forest-grassland transitions in the high Andes (Jansen et al.,
72 2010) or grassland-succulent plant transitions in southern Africa (Carr et al., 2010). Variations in
73 molecular abundance distributions have also been suggested to be responses to temperature or
74 aridity at the time of leaf production in *J. virginiana* (Tipple and Pagani, 2013) or aridity in
75 *Acacia* and *Eucalyptus* (Hoffmann et al., 2013). Studies of atmospheric dust (Kawamura et al.,
76 2003) and marine sediments (Castaneda et al., 2009) provide supporting evidence for these
77 suggested relationships between chain length and temperature or aridity. However, the variety of
78 molecular distributions between species appears to confound the search for globally consistent
79 environmental responses in leaf wax molecular abundance distributions (Bush and McInerney,
80 2013). A diversity of molecular abundance distributions might therefore be expected to be
81 greatest in regions of high phylogenetic diversity (Ter Steege et al., 2010) and functional
82 diversity (Silman, 2014), such as biodiverse tropical rainforests.

83 **1.1. Tropical plant leaf wax studies**

84 Very little direct work on living plants has been done to date in lowland tropical ecosystems in
85 terms of characterizing leaf wax composition (Vogts et al., 2009; Garcin et al., 2014; Graham et
86 al., 2014). Those studies focused on carbon isotopic variations as well as molecular abundance
87 distributions of a few species in central Africa and central America. Across a forest-grassland
88 transition in Cameroon the varying proportions of wax production in different chain lengths were
89 shown to impact the overall isotopic signature contributed to sediments, with the C₄ grass types
90 contributing C₃₃ *n*-alkanes, whereas C₃ trees and shrubs dominating the C₂₉ and C₃₁ *n*-alkanes
91 (Garcin et al., 2014). Whether the varied concentration of waxes on the leaves of different
92 species may bias the sedimentary signal is an important question to investigate further.

93 In the Andes, plant leaf waxes have been studied in living plants in the tropical montane forests
94 and *páramo* (alpine tundra, mostly grasses) in the Ecuadorian Andes (Jansen et al., 2006). In
95 almost all plants sampled, the C₂₉ and C₃₁ were found to be the dominant *n*-alkanes with the
96 expected odd over even chain length preference (Jansen et al., 2006; Jansen and Nierop, 2009).
97 The ratio of C₂₉:C₃₁ *n*-alkanes has been suggested as an indicator of the forest-*páramo* transition
98 in the Ecuadorian Andes, with paleoenvironmental reconstructions using this as well as other
99 aspects of molecular abundance distribution and pollen (Jansen et al., 2010; Jansen et al., 2013).
100 The absolute concentrations have been found to vary greatly between species and plant types
101 with concentrations of the C₂₉ *n*-alkane ranging between negligible and up to 1600 µg g⁻¹.
102 However, in those Andean studies, plant sampling extended no lower than 3.5 km, leaving the
103 western Amazon unstudied.

104 **1.2. Elevation transect**

105 The western Amazon contains some of the highest plant species diversity in the world (Ter
106 Steege et al., 2010). This high biodiversity adjacent to the Andes may not be unrelated: the uplift
107 of the Andes dramatically altered landscape and climate, and may have contributed to species
108 diversification (Hoorn et al., 2010). The Eastern Cordilleran uplift began with the “Incaic pulse”
109 of uplift of the central Peruvian Andes during the Eocene and this phase of uplift was complete
110 by 40 Ma (Noble et al., 1979). A fully-forested elevation transect across the eastern flank of the
111 Andes has been sampled by a series of plots that allow, amongst other things, the study of tree
112 species diversity (Silman, 2011), forest productivity (Girardin et al., 2014a; Huacara Huasco et
113 al., 2014; Malhi et al., 2014), and the effects of environmental variables on plant traits (Malhi et
114 al., 2010; Asner et al., 2014a; Asner et al., 2014b; Girardin et al., 2014b). This transect of forest
115 plots has recently been used to study plant water and leaf wax hydrogen isotopic compositions,

116 with plants found to encode the isotopic composition of meteoric water in the leaf wax *n*-alkane
117 and *n*-alkanoic acids (Feakins et al., 2016).

118 From this same network of forest plots, we analyze a large set of leaf samples, in total sampling
119 639 individual trees of which 158 species from nine sites, greatly expanding the available
120 catalogue of leaf wax *n*-alkane abundance information on tropical trees. This study yields new
121 insights into the patterns of individual and community *n*-alkane abundance and molecular
122 composition to reveal landscape and ecosystem-scale assessments of tropical forest leaf wax *n*-
123 alkane production.

124 **1.3. Geological relevance**

125 These leaf wax *n*-alkanes are of geological interest as they are notably resilient tracers of past
126 plant production. Leaf waxes, abraded by wind, water or insects, or carried on senescent leaves
127 into leaf litter and soils, may be stored, or eroded and transported further to lake and ocean
128 sediments (Hemingway et al., 2016). In the high Ecuadorian Andes (>3.5 km), *n*-alkane storage
129 times in soils has been estimated to span several millennia (Jansen and Nierop, 2009). Some
130 fraction of those leaf waxes may be remineralized by microbial activity, but the waxes are the
131 more recalcitrant of the many biochemicals produced by plants and thus their proportion in
132 sedimentary organic matter increases as other more labile compounds such as carbohydrates and
133 cellulose degrade (Hedges and Oades, 1997). Of the leaf waxes, *n*-alkanes are commonly used in
134 palaeoenvironmental studies, including records that extend back over at least 55 Ma into the
135 hyperthermal conditions of the Paleocene-Eocene Thermal Maximum (Pagani et al., 2006;
136 Handley et al., 2012; Krishnan et al., 2015). Plant leaf waxes may therefore have the potential to
137 inform on the long-term evolution of the Amazon rainforest (Hoorn et al., 2010), in suitable
138 sedimentary archives.

139 Leaf waxes have been studied in soils, as well as in fluvial sediments exported by the Kosñipata
140 and Madre de Dios rivers draining the eastern flank of the Andes down to the Amazonian
141 lowlands, with their hydrogen isotopic composition tracing their elevation or origin and
142 downstream integration across the catchment and informing on modern transport and storage
143 processes (Ponton *et al.*, 2014). Elsewhere the molecular abundance distributions of leaf waxes
144 have been studied in soils to reconstruct the forest-*páramo* transition at high elevation in the
145 Ecuadorian Andes over millennia (Jansen *et al.*, 2010; Jansen *et al.*, 2013). The same molecules
146 have been studied in the surface sediments of lakes, and their hydrogen isotopic compositions
147 used to discern spatial variations in aridity (Polissar and Freeman, 2010). Hydrogen isotopic
148 compositions have been used to reconstruct past changes in hydroclimate across the last glacial
149 and the Holocene with a record spanning 12,000 years from Lake Titicaca, Peru/Bolivia
150 (Fornace *et al.*, 2014), as well as in a smaller lake setting, where ecological changes in the
151 vegetation community superseded the hydroclimate signal (Fornace *et al.*, 2016). Prior marine
152 sediment reconstructions using leaf waxes around South America include reconstructions for the
153 late Pleistocene from the Cariaco Basin off Venezuela (Hughen *et al.*, 2004). As leaf waxes may
154 be preserved in the geological deposits for millions of years (Hedges & Oades, 1997) there is
155 potential for future work on Neogene and older leaf waxes within continental drilling in the
156 Amazon basin (Baker *et al.*, 2015) and for reconstruction from marine sediments of the Amazon
157 Fan as well. The goal of better understand the significance of the leaf wax legacy of ancient
158 ecosystems in tropical paleoenvironmental sedimentary records motivates studies of living
159 forests across environmental gradients.

160 **2. Materials and Methods**

161 **2.1. Study site**

162 This study included 9 plots (Fig. 1; Table 1) that belong to a group of permanent 1-ha plots
163 operated by the Andes Biodiversity Ecosystems Research Group (ABERG,
164 <http://www.andesconservation.org>) and that are part of the ForestPlots
165 (<https://www.forestplots.net/>) and Global Ecosystems Monitoring Network (GEM;
166 <http://gem.tropicalforests.ox.ac.uk/projects/aberg>) networks. Five montane plots are located in
167 the Kosñipata Valley in the province of Paucartambo, in the department of Cusco, Peru, two are
168 sub-montane plots located in the Pantiacolla front range of the Andes and two lowland plots are
169 located in Tambopata, in the department of Madre de Dios, Peru (Malhi *et al.* 2010). All plots are
170 located in areas that have relatively homogeneous soil substrates and stand structure, and which
171 have minimal evidence of human disturbance (Girardin *et al.* 2014a). The sites are placed to
172 sample across the profile, and to characterize the full range of forest and climate. The highest site
173 is located just below the treeline transition to *puna* (grassland); two sites bracket the cloud-base
174 and two lowland sites test influence of proximity to the river (Fig 1). The lowland plots were
175 established in the early 1980s, and the montane ones between 2003 and 2013, with all stems ≥ 10
176 cm diameter at breast height tagged and identified to species-level, and plots have been annually
177 measured for carbon allocation and cycling following standard the GEM Network protocol
178 (Marthews *et al.*, 2014). As such, net primary productivity estimates (Girardin *et al.* 2010) and
179 comprehensive descriptions of the carbon cycle exist for many of these plots (Girardin *et al.*
180 2014b; Huaraca Huasco *et al.*, 2014; Malhi *et al.*, 2014; Malhi *et al.*, 2015). Mean annual air
181 temperature spans 9–24.4°C and precipitation spans 1560–5302 mm y⁻¹ along the gradient (Table
182 1).

183 **2.2. Field sampling**

184 From April – November 2013, plant traits were measured in all plots as part of the CHAMBASA
185 project. Based on the most recently available census and diameter data, a sampling protocol was
186 adopted wherein species were sampled that maximally contributed to plot basal area (a proxy for
187 plot biomass or crown area). Within each species, 3–5 individual trees were chosen for sampling
188 (5 trees in upland sites and 3 trees in lowland sites). If 3 trees were not available in the chosen
189 plot, additional individuals of the same species from an area immediately surrounding the plot
190 were sampled. Using advanced tree climbing techniques, leaves samples from one fully, sunlit
191 canopy branch (of at least 1 cm diameter), were taken from each tree. Some companion shade
192 leaves were selected for other projects. From each branch, measurements were taken of 5 leaves
193 from simple-leaved species, or 5 individual leaflets from compound-leaved species (both referred
194 to as ‘leaf’ below) for trait measurements. In the case of compound leaves, the entire compound
195 leaf was also collected for whole-leaf area calculations. Leaves were chosen with minimal
196 damage (i.e. herbivory). Leaves were placed in coolers from the field plot to the field lab for
197 drying, at low temperatures (ca. 50 °C), and thereafter stored in paper envelopes prior to lipid
198 analysis. The sample set for *n*-alkane quantification includes 639 individual samples distributed
199 across 9 forest plots, including 158 species from 105 genera and 55 families.

200 **2.3. Lipid extraction**

201 The dried leaves were cut using solvent-cleaned scissors and leaf waxes were subsequently
202 extracted by immersion in dichloromethane (DCM)/methanol (MeOH) 9:1 v/v with agitation
203 using a Pasteur pipette, with extraction repeated x3. The total lipid extract was separated into two
204 fractions using column chromatography (5 cm x 4 mm Pasteur pipette, 5% water-deactivated
205 silica gel, 100-200 mesh), eluting first with hexane (alkanes fraction), followed by DCM, and
206 MeOH (remainder). Only the alkane fraction was analyzed here.

207 **2.4. *n*-Alkane identification and quantification**

208 The alkane fraction was analyzed by an Agilent Technologies® gas chromatograph connected to
209 a mass spectrometer and flame ionization detector (GC-FID/MS) to identify (by MS) and
210 quantify (by FID) the *n*-alkanes. Peak areas by FID were manually integrated to quantify *n*-
211 alkanes in the range of C₂₁ to C₃₅ carbon chain length, relative to daily analysis of the external
212 standard and in-house mixture of *n*-alkanes of known abundance. We report the abundances for
213 each chain length and also report the modal chain length (C_{max}). We calculate the average chain
214 length (ACL), which is the weighted average accounting for concentration (C_n) of each
215 compound (n) computed as:

216
$$\text{ACL} = \sum (C_n \times n) / \sum C_n \quad (1)$$

217 where n = 27 to 33.

218 The *n*-alkanes were summed as:

219
$$\Sigma \text{alk} = \sum_i^n [C_n] \quad (2)$$

220 where n = *n*-alkanes from C₂₁ to C₃₅. This sum of *n*-alkanes can be considered as concentration
221 relative to per unit dry leaf mass reported in units of $\mu\text{g g}^{-1}$ or per unit leaf lamina area reported
222 in units of $\mu\text{g cm}^{-2}$. In order to consider the C fixation, alkane concentration can be converted
223 from units of $\mu\text{g g}^{-1}$ (dry leaf tissue) into $\mu\text{g g}^{-1}$ C, by accounting for the molar fractions of C in
224 both alkanes and dry bulk leaf tissue. The molar fraction of C is 0.8529 for the C₂₉ *n*-alkane, the
225 dominant chain length and within error the result is insensitive to the choice of chain length,
226 making it unnecessary to account for variations in molecular distribution. For leaf biomass
227 (~50% C), we used the measured C content of leaf biomass on a per species basis. Each of these
228 ways of evaluating the alkane concentration is used for calculations and comparisons here.

229 We calculated the Carbon Preference Index (CPI) as:

230
$$\text{CPI} = 2 \sum C_n / (\sum C_{n-1} + \sum C_{n-1}) \quad (3)$$

231 where $n = 27-33$. For comparison purposes, we also calculated the ratio of two common chain
232 lengths, C_{29}/C_{31} , as this index has been reported elsewhere in the Andes (Jansen and Nierop,
233 2009).

234 **2.5. Community averages**

235 We analyzed the distribution of leaf wax traits for individuals and calculated medians and
236 unweighted means of all sampled individuals at each forest plot. Means are influenced by
237 outliers and this results in biased central estimates when data distributions are highly skewed,
238 where medians are more appropriate measures of the central tendency. The numbers of
239 individuals and species sampled, as well as the proportion of the forest represented by the
240 sampled species, inform on the representation achieved by our sampling.

241 Leaf wax traits for individuals were also averaged at the species level within each forest plot, and
242 we computed weighted-means that account for the proportional contribution of each species,
243 based on estimates of biomass. To estimate biomass, we used tree trunk diameter at breast height
244 from the year with the most recent census data. While census year ranges between 2009 to 2014,
245 it is not expected to bias analyses since plots are old growth and have not experienced major
246 disturbance (e.g. landslide, fire, deforestation) during that time. We weight on the basis of the
247 total basal area of each sampled species within the forest plot. For ACL, CPI and 29/31, the
248 community-weighting accounts for variations in both species' basal area and alkane
249 concentrations. The weighted means (cwm) and the weighted standard deviations (σ_w) for each
250 trait at the plot level were estimated using:

251 $cwm = \sum C_i^n w_i x_i / \sum C_i^n w_i$ (4)

252 $\sigma_w = \sqrt{(\sum_i^n (w_i x cwm)^2 / \sum_i^n w_i)}$ (5)

253 where x_i is the value and w_i is the weight for the i^{th} species. Means and standard deviations
254 throughout are estimated from the sample set and not determined for the full population, but the
255 σ symbol is used in keeping with convention in the organic geochemical literature. Note that this
256 species weighting approach accounts for interspecies variations and contributions, but does not
257 propagate intraspecific variations (working shown in **Appendix A**).

258 We report the median, unweighted and community-weighted means for each forest plot to
259 identify the central tendency and the uncertainties on our estimates, as each approach carries
260 known and unknown inaccuracies. For example, medians and unweighted means do not account
261 for biomass, however weighted means and unweighted means of small numbers of samples carry
262 the unquantified uncertainty of small samples of the species they average, particularly where
263 distributions are skewed. The comparison between central estimates thus provides a more
264 comprehensive measure of uncertainties than provided by the standard errors of the mean.

265 **2.6. Alkane productivity at the plot-level**

266 Average production of alkanes as a fraction of leaf biomass on a stoichiometric basis can be
267 connected with NPP_{leaf} estimates for each plot (Girardin *et al.*, 2014a; Huaraca Huasco *et al.*,
268 2014; Malhi *et al.*, 2014) to generate estimates of the Net Primary Productivity of leaf wax *n*-
269 alkanes (NPP_{alk}), a term newly coined here, where:

270 $NPP_{\text{alk}} = \sum_{\text{alk}} x NPP_{\text{leaf}}$ (6)

271 Where Σ_{alk} refers to the *n*-alkane concentration per site in $\mu\text{g g}^{-1}$ C (variously using the median,
272 unweighted mean of individuals or community-weighted mean of species), and NPP_{leaf} is the leaf
273 net primary productivity in $\text{Mg C ha}^{-1} \text{ yr}^{-1}$. NPP_{alk} is determined for each site and reported in
274 units of $\text{g C ha}^{-1} \text{ yr}^{-1}$ with propagated uncertainties. We report the numbers of samples and
275 species collected as well as the proportion of forest community represented by those species, to
276 describe how much of the forest has been characterized as well as the limits of that sampling that
277 contribute to uncertainty.

278 **3. Results**

279 **3.1. Molecular abundance distribution of *n*-alkanes**

280 We found *n*-alkanes in the range of C_{21} to C_{35} , and the abundance of those homologs was
281 determined for 552 individual tree samples, species averages and site averages (Appendix A),
282 revealing considerable variability in molecular abundance distributions. To illustrate average
283 molecular abundance distributions, we summarize the mean of the relative molecular abundance
284 distributions of all individuals 552 individuals (Fig. 2). C_{29} and C_{31} are the dominant homologs
285 across all sites with abundances ranging from 20 to 430 $\mu\text{g g}^{-1}$ (*n*-alkane homolog abundance per
286 unit mass of dry leaf). C_{27} alkanes are present at low abundances at the lowland sites, but are
287 more abundant at higher elevations, albeit with lower maxima than C_{29} and C_{31} . Most other odd
288 chain length *n*-alkane homologs (i.e. C_{21} to C_{25} , and C_{33} to C_{35}) and all even chain length
289 homologs are of low abundance throughout ($< 30 \mu\text{g g}^{-1}$).

290 The putative Andean forest marker, that of $\text{C}_{29}/\text{C}_{31}$ ranges from <1 up to 128 (Fig. 3a), with most
291 individuals having ratios <10 , and high ratios found in just a few species: *Weinmannia bangii*,
292 *Hedyosmum goudotianum* and *H. cuatrecasanum*. We also report the widely used CPI metric,

293 often used in sedimentary applications as a test of plant source (CPI > 4) versus an indicator of
294 diagenesis (CPI < 4). In this large tropical forest survey, we find CPI to be highly variable
295 between individuals and species ranging between 1 and 53, with an overall mean of 31 ($\sigma = 9$,
296 range 1-53, n = 552; **Fig 3b**). Notably, 80 individual plants, or 15% of the tropical trees sampled,
297 yield CPI < 4.

298 3.1.1. Data not included in our survey

299 Of the 639 measured samples, 54 individuals were excluded from further calculations, because
300 of chromatographic issues, typically, the non-determination of even chain *n*-alkanes. In those
301 samples where even chain *n*-alkanes could not be identified or quantified, this was due to the
302 presence of other compounds, suspected to be esters at the same point in the chromatogram. An
303 additional 29 samples are reported as additional data that were collected outside of the
304 CHAMBASA tree canopy survey, mostly understory collections at cloud forest site ESP-01, as
305 well as some lianas (vine-like growth forms). These additional data (82 individuals) are reported
306 separately in Appendix A, but are not analyzed further as part of the canopy survey effort here.

307 **3.2. Average Chain Length**

308 The ‘fingerprint’ of molecular abundance distribution (**Fig. 1**) is commonly summarized by the
309 average chain length (ACL). ACL is highly variable ranging from 27.2 to 32.6 overall (**Fig. 4**),
310 with up to 2 to 5 units of range between individuals at any site. Interspecies variability appears to
311 capture much of this range, although the range of intraspecies variability and small number of
312 samples of each species means that the species mean values are not well-defined. The
313 unweighted mean ACL of all individuals at each site displays a one-unit tendency to longer chain
314 lengths at the lower elevations. Linear regression of ACL data with site mean annual air

315 temperature (MAAT) yields $ACL = 0.07 \cdot MAAT + 28$ (for individual data $r^2 = 0.19$; $p < 0.05$;
316 for site mean values $r^2 = 0.90$; $p < 0.05$).

317 **3.3. Alkane concentrations**

318 Alkane concentrations (Σalk) varies from 1 to 5225 $\mu\text{g g}^{-1}$ dry leaf mass (**Fig. 5a**). For clarity,
319 we emphasize that wax is a very small component of the leaf, accounting for just 1.12% ($1\sigma =$
320 0.05%, $n = 552$) on average, from a minimum of 0.0001% to no higher than 5.2% on a leaf mass
321 basis. On a stoichiometric basis, Σalk ranges from 2 to 9766 $\mu\text{g g}^{-1}$ C (**Fig. 5b**). While leaf wax
322 concentration data are commonly reported in concentration units as above, leaf waxes are not
323 dispersed through the leaf but deposited as a layer on the leaf surface, and as with other surficial
324 leaf traits, may be better considered on an area basis. Here, individual Σalk values spans a range
325 of 0.01 to 81 $\mu\text{g cm}^{-2}$ on a leaf area basis (**Fig. 5c**).

326 The alkane concentrations of individual data are highly skewed, and the distributions of
327 individual data and central estimates are displayed in violin plots (**Fig. 6**). Intraspecies variability
328 is high and thus species mean values are not well-determined from small sample sizes (3-5
329 individuals of a species). Examples of species with high alkane concentrations per unit area
330 include *Clethra cuneata* (Clethraceae) and *Myrsine coriaceae* (Primulaceae), and examples of
331 the many species with low concentrations include *Guatteria glauca* (Annonaceae) and *Elaeagia*
332 *mariae* (Rubiaceae). Despite the variability in alkane concentrations between individuals, a
333 significant transition occurs between the TR (lower alkane concentrations) and TMCF (higher
334 alkane concentrations) between 1.5 and 1.7 km (**Fig. 6b**; with mean values being significantly
335 different by Student's t test), corresponding to the transition from sub-montane forest to Tropical
336 Montane Cloud Forest. Above 1.7 km, maximum values for a few individuals and mean values

337 remain high, but distributions and median values reveal that Σ alk of most individuals drop in the
338 highest elevations again (**Fig. 6b**). But, pulled by the high Σ alk of some individuals of dominant
339 species, community-weighted mean values increase further with elevation. We therefore observe
340 a divergence between total alkane concentration estimates from forest plots central estimates
341 with elevation within the TMCF median (decreasing), mean (plateau) and community weighted
342 mean (increase) (**Fig. 7b**). For skewed data distributions the median is advised, however as
343 trends are dependent upon statistical choices, at the highest sites, particularly ACJ-01,
344 uncertainties are revealed by the comparison between central estimates.

345 **3.4. Forest plot alkane productivity**

346 In order to assess productivity, we combine observations that *n*-alkane concentrations tend to
347 increase across the profile (**Fig. 8a**), with observations that NPP_{leaf} decreases with elevation
348 (Girardin *et al.*, 2014a; Huaraca Huasco *et al.*, 2014; Malhi *et al.*, 2014; Table 2, **Fig. 8b**). The
349 product of these two measures, by Eqn. 6, yields NPP_{alk} estimates (**Fig. 8c**). NPP_{alk} plot-level
350 ranges from 321 to 3029 g ha⁻¹ yr⁻¹ based on median alkane concentrations; 552 to 3394 g ha⁻¹
351 yr⁻¹ based on the unweighted mean alkane concentrations and 595 to 5123 g ha⁻¹ yr⁻¹, using the
352 community-weighted approach. For the lowland tropical rainforest, distal from the river (TAM-
353 05) we estimate NPP_{alk} to be 1098-1513 g ha⁻¹ yr⁻¹ depending on estimation method, we see
354 lower productivity closer to the river (TAM-06; 686-1199 g ha⁻¹ yr⁻¹). From low alkane
355 productivity in sub-montane forests at 0.6 km (PAN-02; 340-944 g ha⁻¹ yr⁻¹), we find a robust
356 increase in NPP_{alk} with elevation to 2.7km (TRU-04; 2553-3394 g ha⁻¹ yr⁻¹). TMCF plots (3
357 sites) between 1.7 and 2.7 km have notably higher alkane production rates at approximately
358 double or triple those of the lowland and sub-montane plots (**Fig. 8c**), and this corresponds to an

359 increase in the proportion of NPP_{leaf} diverted to alkane production from 0.02% to 0.13% across
360 the profile.

361 We find divergent estimates for the upper plot (ACJ-01) depending on statistical methods
362 chosen. The median provides the lower bound estimate and indicates a low productivity at the
363 highest site ($513 \text{ g ha}^{-1} \text{ yr}^{-1}$), which is similar to that of the low productivity sites in the sub-
364 montane forests. While some species, including the co-dominant species (*Clethra cuneata* and
365 *Weinmannia fagaroides*), have high alkane concentrations, those concentrations are variable
366 between individuals, thus the weighted standard error likely underestimates uncertainty. We
367 therefore find that our estimates at the highest site, are not robust to statistical choices and we
368 present the range of estimates for this plot, as a measure of uncertainty here.

369 **4. Discussion**

370 **4.1. Molecular abundance distribution of *n*-alkanes**

371 From our tropical tree dataset, we can analyze the patterns of leaf wax *n*-alkane molecular
372 distributions. In any one species, individual odd chain length *n*-alkanes in the range C_{21} to C_{35}
373 may be dominant and distributions vary between species and with species turnover across the
374 transect. The implications are that not all chain lengths can be followed across an environmental
375 gradient and no *n*-alkane is a unique ‘marker’ for a species. The mean molecular abundance
376 distribution (Fig. 2) shows two *n*-alkanes dominate overall: C_{29} and C_{31} . These cosmopolitan
377 molecules may serve as biomarkers in widespread sedimentary applications, whereas other
378 molecules have more limited sources. C_{29} and C_{31} dominance have been observed in other
379 studies of C_3 trees in the rainforests of Cameroon, Africa (Garcin et al., 2014), but this is the first
380 such demonstration from so many species at the warm and wet extremes of global calibration
381 efforts (Sachse et al., 2012) and from the rainforests of Peru. In sedimentary archives, C_{29} and

382 C₃₁ are common analytical targets because of their abundance. For example, C₃₁ was the
383 dominant homolog in marine sediments of Site 1077 receiving input from the Congo rainforest,
384 Africa and the target for C₃ versus C₄ vegetation reconstructions (Schefuss et al., 2003), and C₂₉
385 was the dominant homolog in marine sediments of GeoB 6519-1 used for paleohydrological
386 reconstructions using hydrogen isotopic composition (Schefuss et al., 2005). Our study of
387 Peruvian trees would suggest that both these chain lengths are characteristic of tropical trees. In
388 contrast, the ¹³C-enriched contributions from C₄ grasses may be better detected in the C₃₃ and C₃₅
389 *n*-alkanes, which have been found to be more abundant in African grasses (Garcin et al., 2014).

390 While C₂₉/C₃₁ has been suggested as an Andean forest marker (Jansen et al., 2008), separating
391 high elevation grasslands (<1) from Andean forests (>1) in that study in Ecuador. Here, we find
392 that high values (>10) in a few tree species *Weinmannia bangii*, *Hedyosmum goudotianum* and
393 *H. cuatrecasanum*, whereas most tree species, have ratios <10. Overall site median values range
394 from 0.9 to 3.3 in this forested transect, with values <1 in so many species (especially lowland
395 tree species) that we suggest chain length distributions may not be a secure marker for forest-
396 grassland transitions without additional evidence from pollen (Jansen et al., 2013).

397 In sedimentary applications, CPI is often considered when evaluating plant source, and here we
398 find the expected odd-over-even chain length preference. But, we note that CPI<4 are found in
399 80 individual plants, or 15% of the tropical trees sampled, and thus the use of CPI to diagnose
400 plant sources versus diagenesis or petrogenic sources should acknowledge the diversity of
401 molecular distributions seen in living (tropical) plants. In particular the low CPI in 15% of trees
402 in this study, would suggest caution or further quantification of these effects might be
403 appropriate in mixing model deconvolution efforts separating plant and petrogenic sources
404 (Pearson and Eglinton, 2000).

405 **4.2. Average Chain Length**

406 The average chain length (ACL) of *n*-alkanes tends to increase towards lower elevations (**Fig.**
407 **3a,b**) and this has been hypothesized to be due to higher temperatures. However, the overall 15.4
408 °C temperature increase across 3.3 km results in only a one carbon chain length increase in site
409 mean ACL. We also note substantial variability between individuals (**Fig. 3a**). While the central
410 tendency of ACL is to decrease with elevation (**Fig. 3**), the low temperature sensitivity and high
411 taxonomic variability (**Fig. 3a**) leads us to discount ACL as a proxy for temperature, at least in
412 these TR and TMCF ecosystems, consistent with the conclusions of Bush & McInerney (2015).
413 The response to temperature is not sensitive enough to be compelling for application to
414 paleoenvironmental reconstruction, given the two-to-five times larger variance of ACL within a
415 site, thus ACL is not discussed further here.

416 **4.3. Higher *n*-alkane concentrations on plant leaves with elevation**

417 Our results show that some tree species in the upper elevation TMCF produce more *n*-alkanes
418 than tree species in the sub-montane zones, with a clear increase between 0.6 and 2.7 km. This
419 increase in alkane concentration likely confers certain benefits to the leaf for defense and
420 structure. Although herbivory is a major pressure in tropical forests, herbivory decreases with
421 elevation (Metcalfe et al., 2014) and is therefore unlikely to explain the increase in Σ alk with
422 elevation in the montane zone, but may explain the greater alkane concentrations in the lowland
423 than the sub-montane zone. We note an increase in mean and median *n*-alkane concentrations
424 (**Fig. 5a, b**) between SPD-02 and SPD-01 bracketing the cloud base ca. 1.5 km (Halladay *et al.*,
425 2012a). We hypothesize that frequent fog immersion promotes epiphyll growth, and wax
426 provides a barrier to epiphylls, fungi and other pathogens (Koch et al., 2009). Both sites are in a
427 very wet climatic zone with c. 5 m MAP, and the need to shed precipitation and provide

428 structural support is unlikely to differ substantially between the two sites. The waxy layer on the
429 upper surface of the leaf adds to thickness, also provides protection against freezing temperatures
430 at night at high altitude (Beck, 1994). The maximum Σ alk of some individuals and species
431 continue to rise at higher elevations, although median values drop at the highest site (ACJ-01 at
432 3537 m), after accounting for dominance the community-weighted mean increases. While waxes
433 may also be involved in shielding against UV-B radiation at these highest altitude, where cloud
434 cover and atmosphere thins, we do not find robust evidence for this response (Fig. 5d). While *n*-
435 alkane concentrations may have multiple selective pressures, in this elevation transect, we find
436 the main difference to be between the lowland rainforest and the wet cloud immersion zone and
437 maximum in precipitation amounts within the TMCF and thus infer that the wet zone is the
438 dominant causes of high *n*-alkane concentrations.

439 **4.4. Leaf wax trait diversity in the context of species diversity**

440 Given the high beta diversity (Condit et al., 2002), site-to-site variations in leaf wax traits are
441 accompanied by species replacement. Hence changes in plot-level waxiness are more likely
442 related to species (as well as genus and family) turnover of a phylogenetically conservative trait
443 (Eglinton et al., 1962; Eglinton and Hamilton, 1963), rather than through intra-specific plasticity.
444 While this question cannot be resolved here (without transplanting species for example), this
445 study offers insights from the few species present at more than one site. Out of only 23 species
446 found at more than 1 site, most occur within sites <300 m elevation, a narrow environmental
447 range. Of those species, 11 show decreasing ACL values and 6 show increases in leaf wax
448 concentration with elevation, and only 2 species (i.e. *Caryocar pallidum*, *Clusia elliptica*) show
449 both. Our findings are consistent with the hypothesis that long-term evolutionary responses
450 dominate the selection of leaf wax traits across the environmental gradient, rather than recent

451 selective filtering in response to environment. A particularly strong driver appears to be long-
452 term adaptation to cloud forest or extreme high elevation environments by plant families with
453 waxy leaves. Controlled experiments in the laboratory, or translocation experiments along the
454 elevation profile, could directly test whether leaf wax traits can adjust to the rapid environmental
455 change, or if they are fixed by their taxonomy with slower evolutionary responses.

456 **4.5. Community-weighted averaging of leaf wax traits**

457 Sampling was guided by census data such that sample distribution and the unweighted median
458 and mean of that sample set may be representative of the forest plot population. In the diverse
459 lowland forest plots (<1 km) our sampling of species included species representing 18–49% of
460 plot basal area whereas at upland sites >1000 m the greater dominance meant that we achieved
461 higher rates of representation with 36–73% of species basal area sampled (**Fig. 5, Appendix A**).

462 We further calculate species means and account for the biomass and dominance of those species
463 to achieve community-weighted means. This approach is designed to achieve proportional
464 representation of species-means, however small samples of each species, and high interspecies
465 variability, particularly for a trait with skewed distributions, means that high values can bias both
466 species and plot-means. While we report the community-weighted mean estimate, we find the
467 unweighted median to be the more appropriate choice given the skewness of this plant trait,
468 although the community-weighted mean to be the approach of choice for other traits, such as
469 isotopic compositions of these leaf waxes, that have less skewed distributions (e.g., Feakins et
470 al., 2016).

471 Given large sample sizes of individuals, unweighted central estimates may provide a robust
472 approximation of the central value of the forest plot population (Paine et al., 2015). Community-

473 weighting schemes may better account for the dominance of tree species, particularly in upper
474 TMCF locations where species dominance increases (e.g. *Weinmannia* species), however these
475 species-based weighting schemes are subject to uncertainties introduced by large intraspecific
476 variations in traits. Given the higher intraspecies variability and small samples (typically 3–5
477 individuals of each species), under-sampling of within species variability contributes
478 unquantifiable uncertainty to the community-weighted mean. Comparisons between methods
479 provides a measure of that uncertainty. We find that community-weighting has the largest impact
480 on *n*-alkane concentration at the highest site in the TMCF (**Fig. 4c, d**), where some of the waxier
481 leaves are found, and where fewer species have greater dominance. At this location the
482 community-weighted mean is double that of the unweighted mean, and is many times greater
483 than the median (**Fig. 8b**). With community-representation we find a strong linear increase in on
484 *n*-alkane concentration with elevation, whereas for the unweighted mean, values plateau, or even
485 decrease for the median at the highest site, leaving our estimates highly divergent and uncertain
486 at this altitude (3.7 km).

487 **4.6. A concerted foliar strategy**

488 The increase in *n*-alkane concentrations with elevation can also be considered as part of the
489 overall foliar investment strategy. Increases in LMA with elevation have been linked to the
490 monotonic decline in temperature with elevation as well as limiting nutrients (Poorter *et al.*,
491 2009) and particularly Ca (Asner and Martin, 2016), which may inhibit growth and canopy
492 stature and lead plants to redirect resources into leaves. The benefits of adding to leaf thickness,
493 in addition to the specific protective roles of wax for leaves, could explain why *n*-alkane
494 concentrations increase more steeply (x5) across the profile than LMA (x1.2 to 1.6) (**Fig. 7a**).
495 Thus alkane concentrations appear to be a sensitive ecological recorder of this environmental

gradient. We hypothesize that increased leaf wax concentrations and LMA have shared roots in ‘economic’ investment strategies in leaf construction (Wright *et al.*, 2004), as higher investments in the Andean sites are associated with longer leaf lifespan (Girardin *et al.*, 2014a,b; Huaraca Huasco *et al.*, 2014; Malhi *et al.*, 2014). We find that lowland rainforest sites tightly cluster (**Fig. 8c**) and that TMCF plots have higher and more variable values for both metrics, and there are substantial variations in our estimates depending on the statistical choices made (illustrated). Nevertheless, we find a strong correlation between leaf *n*-alkane concentrations and LMA ($r^2 = 0.78$; $p < 0.05$; **Fig. 7c**), which offers intriguing possibilities to extend theories about drivers of LMA towards understanding controls on *n*-alkane concentrations.

If generalizable, the covariation between LMA and *n*-alkane concentrations (**Fig. 7c**) could be used to predict variations in *n*-alkane concentrations from the many tropical ecosystems with LMA data (Asner and Martin, 2016). However, these predictions would need to be tested given the large variance between individuals observed here, in particular in the highest elevation sites (**Fig. 5**). We caution the observed relationship between *n*-alkane concentration and LMA may not extend beyond angiosperms as plant waxiness varies across phylogeny (Diefendorf *et al.*, 2011). That study found no correlation between wax concentrations on a mass basis and LMA (Diefendorf *et al.*, 2011), based on few species across a wide phylogenetic diversity, and the angiosperms covered a narrow range of LMA compared to that sampled here. Future work could extend studies of leaf wax traits across geographic regions and phylogeny to further understand differences in foliar investment strategies. We note that this elevation transect was fully-forested and we might expect differences in transects with arid climates and sparse high elevation vegetation.

518 4.7. Leaf wax productivity

519 In this study we introduce a new concept of NPP_{alk} , and show that in montane sectors between
520 0.6 and 3.7 km, despite a decline in NPP_{leaf} with elevation, alkane productivity increases with
521 elevation from ca. 300 to 3000 $\text{g C ha}^{-1} \text{yr}^{-1}$ (forest-plot median values, **Table 2**, **Fig. 8**). In
522 terms of ecosystem net carbon fixation, the higher NPP_{alk} and lower NPP_{leaf} in the TMCF
523 suggests higher leaf wax production while overall leaf production declines, resulting in an
524 increase in the proportion of foliar investment being diverted to leaf wax. The higher
525 proportional investment in leaves in TMCF (**Table 2**), necessarily diverts resources from other
526 growth, such as canopy height (**Table 1**). However, as C and H are not limiting elements for
527 plants, waxes may represent a relatively cheap investment in foliar biomass and defense.

528 Additional research on living plants would ideally expand quantification of leaf wax alkane
529 concentrations and productivity in biomes around the world in order to better assess NPP_{alk} in
530 different ecosystems, to test whether these altitudinal gradients are generally present.
531 More generally these data lead us to consider whether leaf wax production may systematically
532 vary across other landscapes and ecosystems, and other studies of wax concentrations across
533 suggest that this may be the case (Garcin et al., 2014; Diefendorf et al., 2015), although currently
534 this cannot be compared on a unit area basis.

535 **4.8. Geological significance**

536 Although NPP_{alk} is a minor fraction of carbon fixation in the living forest (**Table 1**), we suggest
537 that it may be geologically important. The leaf wax alkane component of biomass is
538 exceptionally recalcitrant compared to other plant biochemicals (e.g. cellulose) that dominate
539 living plant tissues. Only a few recalcitrant compounds, and a very small fraction of living forest
540 biomass have the potential to enter longer term carbon storage in the soils, rivers and ocean
541 sediments offshore (Hedges & Oades, 1997). We therefore propose that NPP_{alk} be more widely

542 estimated, as one of the components of biosynthesis that has the potential to be exported to soils
543 and sediments and sequestered for millions of years (e.g., Tipple and Pagani, 2010).

544 NPP_{alk} also has implications for contemporary and palaeoecological research involving the
545 extraction of leaf wax biomarkers from riverine (Ponton et al., 2014) and marine sediments
546 (Hughen et al., 2004). Higher NPP_{alk} production in montane ecosystems would suggest higher
547 inputs into soils and given lower respiration rates and higher C stocks (Clark et al., 2015), this
548 may be compounded leading to higher carbon stocks in soils. Similarly following erosion of soils
549 into rivers, we might then expect over-representation (on an area basis) of mountain ecosystems
550 in downstream sedimentary records, all else being equal. Higher NPP_{alk} in the TMCF versus the
551 rainforest, together with better preservation in soils at colder temperatures and higher erosive
552 potential from steep, Andean slopes lead us to the hypothesis that tropical montane forests may
553 be disproportionately represented in geological archives in contrast to the more productive but less
554 waxy and more rapidly decomposing waxes from the TR. However, there are many additional
555 steps after leaf wax production that determine the final fate of leaf wax produced by a plant.
556 These steps include 1) decomposition in leaf litter and soils, 2) residence time in soils on the
557 landscape, 3) erosion from soils into rivers, 4) preservation during fluvial transport and 5)
558 preservation upon deposition in sedimentary basins. Some of these steps are sensitive to climate,
559 e.g., greater preservation at the cooler temperatures in higher elevation soils and frequency of
560 mass wasting from Andean slopes (Clark et al., 2015); yet others will depend on the degree of
561 association with inorganic erosion via mineral-organic associations in transit that may offer
562 ‘packaging’ (Kleber et al., 2007). Further discussion of these sedimentary processes are beyond
563 the scope of this living-plant centered manuscript. However, we suggest the possibility of
564 varying plant ‘source-strength’ identified in this ecosystem, may need to be factored into studies

565 of catchment sourcing to accurately quantify processes of remineralization versus preservation
566 for catchment carbon cycling considerations. Initial comparisons suggest that the greater
567 production of leaf wax compounds in Andean forests does not lead to overrepresentation
568 downstream (Ponton et al., 2014), thus we infer that processes of degradation during fluvial
569 transport (4) must be substantial. Here, our data add to the source end of the source-to-sink
570 journey of leaf wax molecules in a tropical forest transect.

571 **4.9. Future work: other wax components**

572 In this study, we focused on obtaining a very large sample of leaf wax *n*-alkanes and their
573 molecular abundance distribution. While we did not analyze or quantify other wax components
574 in the full sample set, a subset of the samples reported here were analyzed for their *n*-alkanoic
575 acid and *n*-alkane concentrations, as well as the hydrogen isotopic compositions (Feakins et al.,
576 2016). *n*-Alkanoic acid concentrations were found to be much lower than *n*-alkane
577 concentrations in that study (alkane/acid mean 9 ± 3 , se). Similarly, a study of North American
578 taxa has shown that *n*-alkanes are among the most abundant compounds found in evergreen
579 angiosperm leaf waxes, representing $\sim 2/3$ of waxes, the proportions vary between plant types,
580 with *n*-alkane contributions being much smaller fractions of overall waxes in the deciduous
581 angiosperms and negligible in the gymnosperms (Diefendorf *et al.*, 2011).

582 Regarding plant function of the various wax components, *n*-alkanes are the most hydrophobic of
583 the alkyl lipids due to the non-polar nature of long chain hydrocarbons and may play a key role
584 in water-shedding and defense against cloud forest pressures. It would be valuable to quantify
585 and characterize taxonomic and environmental variations in other wax components, which may
586 play different roles in defense and thus might have different spatial distribution patterns. For
587 example we might terpenoids are involved in insect defense (Giri et al., 2015), and we may

588 hypothesize that these components may decrease with increasing elevation and reduced
589 herbivory pressure.

590 The insights from leaf wax *n*-alkane traits provide a geologically-useful start – these are the
591 components best represented in the molecular fossil record. Although we found ACL had little
592 promise as a palaeothermometer, leaf wax isotopic composition carries important information
593 about hydroclimate (Polissar & Freeman, 2010), and to reconstruct tropical paleoecology and
594 paleoclimate (Schefuss et al., 2003; Schefuss et al., 2005). However other compounds,
595 particularly the *n*-alkanoic acids have been found useful in river catchments (Ponton *et al.*, 2014)
596 and palaeoclimate (Fornace *et al.*, 2014) applications. Further, sedimentary studies have shown
597 differences in compound-classes upon fluvial export (Hemingway et al., 2016). Additional
598 modern plant calibration studies, surveying the other components of wax biochemistry, have the
599 potential to expand our understanding of plant sourcing of sedimentary proxies as well as the
600 tropical forest ecological significance of those wax compositions.

601 **5. Conclusions**

602 In this study we report a large scale study of plant wax *n*-alkane concentrations and molecular
603 abundance distributions in tropical lowland rainforest and TMCF in Peru. Towards higher
604 elevations, plants divert more resources to foliar biomass as a proportion of overall biomass
605 (NPP_{leaf} increases as a proportion of NPP) and within leaf chemistry they divert more of their
606 production to *n*-alkanes. As a result of intensive studies of these forest plots we are able to
607 calculate a new measure of NPP_{alk} . These findings are of ecological significance as plant foliar
608 biochemical allocations may represent adaptations to environment as part of investment and
609 defense strategies. Further testing of these concentration patterns in other elevation gradient
610 would allow for testing of the hypothesized links between temperature and other environmental

611 gradients and the robustness of these patterns to ecosystem community change. These findings
612 are of geological significance as these biochemical leave a legacy that remains far beyond the
613 lifetime of the plant, in soils, rivers and ocean sediments, and they offer molecular clues to past
614 forest production. While alkanes are a small fraction of NPP_{leaf} (<0.23%) these compounds
615 survive post-mortem and contribute to long-term C-sequestration in soils and sediments.
616 Connections to studies of leaf wax concentrations in soils and sediments will allow for
617 characterization of how these production changes translate into sedimentary sequestration.

618 **Acknowledgements**

619 Contributing authors are part of the Andes Biodiversity and Ecosystems Research Group ABERG
620 (andesresearch.org), the Global Ecosystems Monitoring (GEM) network (gem.tropicalforests.ox.ac.uk)
621 and the Amazon Forest Inventory Network RAINFOR (www.rainfor.org) research consortia. The field
622 campaign was funded by grants to YM from the UK Natural Environment Research Council (Grants
623 NE/D01025X/1, NE/D014174/1), with additional support from European Research Council (Belgium)
624 advanced investigator grants GEM-TRAITS (321131) and T-FORCES (291585) as well as the Jackson
625 Foundation to YM and a John D. and Catherine T. MacArthur Foundation grant to GA. GA and the
626 spectranomics team were supported by the endowment of the Carnegie Institution for Science, and by the
627 US National Science Foundation (DEB-1146206), supporting the taxonomic contributions to the
628 project. Carnegie Airborne Observatory data collection, processing and analyses were funded solely by
629 the John D. and Catherine T. MacArthur Foundation. The Carnegie Airborne Observatory is supported by
630 the Avatar Alliance Foundation, John D. and Catherine T. MacArthur Foundation, Andrew Mellon
631 Foundation, David and Lucile Packard Foundation, Mary Anne Nyburg Baker and G. Leonard Baker Jr.,
632 and William R. Hearst III (all USA). Laboratory work at USC was in part supported by the US National
633 Science Foundation (EAR-1227192) and the ACS Petroleum Research Fund (53747-ND2) to SF. In Peru,
634 we thank the Servicio Nacional de Áreas Naturales Protegidas por el Estado (SERNANP) and personnel

635 of Manu and Tambopata National Parks for logistical assistance and permission to work in the protected
636 areas. We also thank the Explorers' Inn and the Pontifical Catholic University of Peru (PUCP), as well as
637 Amazon Conservation Association for use of the Tambopata and Wayqecha Research Stations,
638 respectively. Many researchers were involved in the field, in particular we would like to thank E. Cosio,
639 W. Huaraca-Huasca and J. Huaman for advising on field logistics; tree climbers: C. Costas, D. Chacón,
640 H. Ninatay; field project supervision: T. Boza, M. Raurau; species identification and basal area: W.
641 Farfan, F. Sinca; leaf areas R.M. Castro, G. Rayme, A. Robles, Y. Choque and Y. Valdez. We thank USC
642 undergraduate Jeremy Sunwoo for laboratory assistance. This manuscript was improved with the
643 comments of 3 anonymous reviewers.

644 APPENDIX A. SUPPLEMENTARY DATA

645 Supplementary data associated with this article can be found, in the online version, at
646 <http://dx.doi.org/10.....> The data include interactive Google Earth maps of the sampling locations
647 described in this article.

648 References

649 Asner, G.P., Anderson, C.B., Martin, R.E., Knapp, D.E., Tupayachi, R., Sinca, F. and Malhi, Y.
650 (2014a) Landscape-scale changes in forest structure and functional traits along an Andes-
651 to-Amazon elevation gradient. *Biogeosciences* 11, 843–856.
652 Asner, G.P., Llactayo, W., Tupayachi, R. and Luna, E.R. (2013) Elevated rates of gold mining in
653 the Amazon revealed through high-resolution monitoring. *Proceedings of the National
654 Academy of Sciences*, doi: 10.1073/pnas.1318271110.
655 Asner, G.P., Martin, R.E., Carranza-Jimenez, L., Sinca, F., Tupayachi, R., Anderson, C.B. and
656 Martinez, P. (2014b) Functional and biological diversity of foliar spectra in tree canopies
657 throughout the Andes to Amazon region. *New Phytologist* 204, 127–139.
658 Asner, G.P. and Martin, R.E. (2016) Convergent elevation trends in canopy chemical traits of
659 tropical forests. *Global Change Biology*, doi: 10.1111/gcb.13164.
660 Baker, P.A., Fritz, S.C., Silva, C.G., Rigsby, C.A., Absy, M.L., Almeida, R.P., Caputo, M.,
661 Chiessi, C.M., Cruz, F.W., Dick, C.W., Feakins, S.J., Figueiredo, J., Freeman, K.H.,
662 Hoorn, C., Jaramillo, C., Kern, A.K., Latrubesse, E.M., Ledru, M.P., Marzoli, A., Myrbo,
663 A., Noren, A., Piller, W.E., Ramos, M.I.F., Ribas, C.C., Trnadade, R., West, A.J.,
664 Wahnfried, I. and Willard, D.A. (2015) Trans-Amazon Drilling Project (TADP): origins
665 and evolution of the forests, climate, and hydrology of the South American tropics.
666 *Scientific Drilling* 20, 41–49.
667 Bingham, E.M., McClymont, E.L., Valiranta, M., Mauquoy, D., Roberts, Z., Chambers, F.M.,
668 Pancost, R.D. and Evershed, R.P. (2010) Conservative composition of n-alkane

669 biomarkers in Sphagnum species: implications for palaeoclimate reconstruction in
670 ombrotrophic peat bogs. *Organic Geochemistry* 41, 214–220.

671 Bush, R.T. and McInerney, F.A. (2013) Leaf wax n-alkane distributions in and across modern
672 plants: Implications for paleoecology and chemotaxonomy. *Geochimica et*
673 *Cosmochimica Acta* in press.

674 Carr, A.S., Boom, A. and Chase, B.M. (2010) The potential of plant biomarker evidence derived
675 from rock hyrax middens as an indicator of palaeoenvironmental change. *Paleogeography*
676 *Paleoclimatology Paleoenvironment* 285, 321–330.

677 Castaneda, I.S., Mulitza, S., Schefuss, E., Lopes dos Santos, R.A., Sinninghe Damste, J.S. and
678 Schouten, S. (2009) Wet phases in the Sahara/Sahel region and human migration patterns
679 in North Africa. *Proceedings of the National Academy of Sciences* 106, 20159–20163.

680 Clark, K.E., West, A.J., Hilton, R.G., Asner, G.P., Quesada, C.A., Silman, M.R., Saatchi, S.S.,
681 Farfan-Rios, W., Martin, R.E., Horwath, A.B., Halladay, K., New, M. and Malhi, Y.
682 (2015) Storm-triggered landslides in the Peruvian Andes and implications for
683 topography, carbon cycles, and biodiversity. *Earth Surf. Dynam. Discuss.* 3, 631–688.

684 Condit, R., Pitman, N., Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Nunez, P., Aguilar, S.,
685 Valencia, R., Villa, G., Muller-Landau, H.C., Losos, E. and Hubbell, S.P. (2002) Beta-
686 diversity in tropical forest trees. *Science* 295, 666–669.

687 Diefendorf, A.F., Freeman, K.H., Wing, S.L. and Graham, H.V. (2011) Production of n-alkyl
688 lipids in living plants and implications for the geologic past. *Geochimica et*
689 *Cosmochimica Acta* 75, 7472–7485.

690 Diefendorf, A.F., Leslie, A.B. and Wing, S.L. (2015) Leaf wax composition and carbon isotopes
691 vary among major conifer groups. *Geochimica Et Cosmochimica Acta* 170, 145–156.

692 Eglinton, G., Gonzalez, A.G., Hamilton, R.J. and Raphael, R.A. (1962) Hydrocarbon
693 constituents of the wax coatings of plant leaves: A taxonomic survey. *Phytochemistry* 1,
694 89–102.

695 Eglinton, G. and Hamilton, R.J. (1963) CHAPTER 8 - The Distribution of Alkanes A2 -
696 SWAIN, T, Chemical Plant Taxonomy. Academic Press, pp. 187–217.

697 Eglinton, G. and Hamilton, R.J. (1967) Leaf epicuticular waxes. *Science* 156, 1322–1335.

698 Feakins, S.J., Bentley, L.P., Salinas, N., Shenkin, A., Blonder, B., Goldsmith, G.R., Ponton, C.,
699 Arvin, L.J., Wu, M.S., Peters, T., West, A.J., Martin, R.E., Enquist, B.J., Asner, G.P. and
700 Malhi, Y. (2016) Plant leaf wax biomarkers capture gradients in hydrogen isotopes of
701 precipitation from the Andes and Amazon. *Geochimica et Cosmochimica Acta* 182, 155–
702 172.

703 Fornace, K.L., Hughen, K.A., Shanahan, T.M., Fritz, S.C., Baker, P.A. and Sylva, S.P. (2014) A
704 60,000-year record of hydrologic variability in the Central Andes from the hydrogen
705 isotopic composition of leaf waxes in Lake Titicaca sediments. *Earth and Planetary*
706 *Science Letters* 408, 263–271.

707 Garcin, Y., Schefuß, E., Schwab, V.F., Garreta, V., Gleixner, G., Vincens, A., Todou, G., Séné, O.,
708 Onana, J.-M., Achoundong, G. and Sachse, D. (2014) Reconstructing C3 and C4
709 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from
710 Cameroon, Western Central Africa. *Geochimica et Cosmochimica Acta* 142, 482–500.

711 Girardin, C.A.J., Espejob, J.E.S., Doughty, C.E., Huasco, W.H., Metcalfe, D.B., Durand-Baca,
712 L., Marthews, T.R., Aragao, L., Farfan-Rios, W., Garcia-Cabrera, K., Halladay, K.,
713 Fisher, J.B., Galiano-Cabrera, D.F., Huaraca-Quispe, L.P., Alzamora-Tayne, I., Egiluz-
714 Mora, L., Salinas-Revilla, N., Silman, M.R., Meir, P. and Malhi, Y. (2014a) Productivity

715 and carbon allocation in a tropical montane cloud forest in the Peruvian Andes. *Plant*
716 *Ecology & Diversity* 7, 107–123.

717 Girardin, C.A.J., Farfan-Rios, W., Garcia, K., Feeley, K.J., Jorgensen, P.M., Murakami, A.A.,
718 Perez, L.C., Seidel, R., Paniagua, N., Claros, A.F.F., Maldonado, C., Silman, M., Salinas,
719 N., Reynel, C., Neill, D.A., Serrano, M., Caballero, C.J., Cuadros, M.D.L., Macia, M.J.,
720 Killeen, T.J. and Malhi, Y. (2014b) Spatial patterns of above-ground structure, biomass
721 and composition in a network of six Andean elevation transects. *Plant Ecology &*
722 *Diversity* 7, 161–171.

723 Giri, S.J., Diefendorf, A.F. and Lowell, T.V. (2015) Origin and sedimentary fate of plant-derived
724 terpenoids in a small river catchment and implications for terpenoids as quantitative
725 paleovegetation proxies. *Organic Geochemistry* 82, 22–32.

726 Graham, H.V., Patzkowsky, M.E., Wing, S.L., Parker, G.G., Fogel, M.L. and Freeman, K.H.
727 (2014) Isotopic characteristics of canopies in simulated leaf assemblages. *Geochimica et*
728 *Cosmochimica Acta* 144, 82–95.

729 Handley, L., O'Halloran, A., Pearson, P.N., Hawkins, E., Nicholas, C.J., Schouten, S., McMillan,
730 I.K. and Pancost, R.D. (2012) Changes in the hydrological cycle in tropical East Africa
731 during the Paleocene-Eocene Thermal Maximum. *Paleogeography Paleoclimatology*
732 *Paleoecology* 329, 10–21.

733 Hedges, J.I. and Oades, J.M. (1997) Comparative organic geochemistries of soils and marine
734 sediments. *Organic Geochemistry* 27, 319–361.

735 Hemingway, J.D., Schefuß, E., Dinga, B.J., Prysor, H. and Galy, V.V. (2016) Multiple plant-wax
736 compounds record differential sources and ecosystem structure in large river catchments.
737 *Geochimica et Cosmochimica Acta* 184, 20–40.

738 Hoffmann, B., Kahmen, A., Cernusak, L.A., Arndt, S.K. and Sachse, D. (2013) Abundance and
739 distribution of leaf wax *n*-alkanes in leaves of *Acacia* and *Eucalyptus* trees along a strong
740 humidity gradient in northern Australia. *Organic Geochemistry* 62, 62–67.

741 Hoorn, C., Wesselingh, F.P., ter Steege, H., Bermudez, M.A., Mora, A., Sevink, J., Sanmartin, I.,
742 Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Riff, D., Negri,
743 F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Sarkinen, T. and Antonelli, A. (2010)
744 Amazonia Through Time: Andean Uplift, Climate Change, Landscape Evolution, and
745 Biodiversity. *Science* 330, 927–931.

746 Huacara Huasco, W., Girardin, C.A.J., Doughty, C.E., Metcalfe, D.B., Baca, L.D., Silva-Espejo,
747 J.E., Cabrera, D.G., Aragao, L., Davila, A.R., Marthews, T.R., Huaraca-Quispe, L.P.,
748 Alzamora-Tayne, I., Mora, L.E., Farfan-Rios, W., Cabrera, K.G., Halladay, K., Salinas-
749 Revilla, N., Silman, M.R., Meir, P. and Malhi, Y. (2014) Seasonal production, allocation
750 and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian
751 Andes. *Plant Ecology & Diversity* 7, 125–142.

752 Hughen, K., Eglinton, T., Xu, L. and Makou, M. (2004) Abrupt tropical vegetation response to
753 rapid climate changes. *Science* 304, 1955–1959.

754 Jansen, B., de Boer, E.J., Cleef, A.M., Hooghiemstra, H., Moscol-Olivera, M., Tonneijck, F.H.
755 and Verstraten, J.M. (2013) Reconstruction of late Holocene forest dynamics in northern
756 Ecuador from biomarkers and pollen in soil cores. *Paleogeography Paleoclimatology*
757 *Paleoecology* 386, 607–619.

758 Jansen, B., Haussmann, N.S., Tonneijck, F.H., Verstraten, J.M. and de Voogt, P. (2008)
759 Characteristic straight-chain lipid ratios as a quick method to assess past forest-paramo
760 transitions in the Ecuadorian Andes. *Paleogeogr. Paleoclimatol. Paleoecol.* 262, 129–139.

761 Jansen, B. and Nierop, K.G.J. (2009) Methyl ketones in high altitude Ecuadorian Andosols
762 confirm excellent conservation of plant-specific *n*-alkane patterns. *Organic Geochemistry*
763 40, 61–69.

764 Jansen, B., Nierop, K.G.J., Hageman, J.A., Cleef, A.M. and Verstraten, J.M. (2006) The straight-
765 chain lipid biomarker composition of plant species responsible for the dominant biomass
766 production along two altitudinal transects in the Ecuadorian Andes. *Organic*
767 *Geochemistry* 37, 1514–1536.

768 Jansen, B., van Loon, E.E., Hooghiemstra, H. and Verstraten, J.M. (2010) Improved
769 reconstruction of palaeo-environments through unravelling of preserved vegetation
770 biomarker patterns. *Paleogeography Paleoclimatology Paleoecology* 285, 119–130.

771 Jetter, R. and Schaffer, S. (2001) Chemical composition of the *Prunus laurocerasus* leaf surface.
772 Dynamic changes of the epicuticular wax film during leaf development. *Plant Physiology*
773 126, 1725–1737.

774 Kahmen, A., Schefuss, E. and Sachse, D. (2013a) Leaf water deuterium enrichment shapes leaf
775 wax *n*-alkane delta D values of angiosperm plants I: Experimental evidence and
776 mechanistic insights. *Geochimica Et Cosmochimica Acta* 111, 39–49.

777 Kawamura, K., Ishimura, Y. and Yamazaki, K. (2003) Four years' observations of terrestrial
778 lipid class compounds in marine aerosols from the western North Pacific. *Global*
779 *Biogeochemical Cycles* 17, 1003, doi:10.1029/2001GB001810.

780 Kleber, M., Sollins, P. and Sutton, R. (2007) A conceptual model of organo-mineral interactions
781 in soils: self-assembly of organic molecular fragments into zonal structures on mineral
782 surfaces. *Biogeochemistry* 85, 9–24.

783 Koch, K., Bhushan, B. and Barthlott, W. (2009) Multifunctional surface structures of plants: An
784 inspiration for biomimetics. *Progress in Materials Science* 54, 137–178.

785 Krishnan, S., Pagani, M. and Agnini, C. (2015) Leaf waxes as recorders of paleoclimatic changes
786 during the Paleocene-Eocene Thermal Maximum: Regional expressions from the Belluno
787 Basin. *Organic Geochemistry* 80, 8–17.

788 Malhi, Y., Amezquita, F.F., Doughty, C.E., Silva-Espejo, J.E., Girardin, C.A.J., Metcalfe, D.B.,
789 Aragao, L., Huaraca-Quispe, L.P., Alzamora-Taype, I., Eguiluz-Mora, L., Marthews,
790 T.R., Halladay, K., Quesada, C.A., Robertson, A.L., Fisher, J.B., Zaragoza-Castells, J.,
791 Rojas-Villagra, C.M., Pelaez-Tapia, Y., Salinas, N., Meir, P. and Phillips, O.L. (2014)
792 The productivity, metabolism and carbon cycle of two lowland tropical forest plots in
793 south-western Amazonia, Peru. *Plant Ecology & Diversity* 7, 85–105.

794 Malhi, Y., Silman, M., Salinas, N., Bush, M., Meir, P. and Saatchi, S. (2010) Introduction:
795 Elevation gradients in the tropics: laboratories for ecosystem ecology and global change
796 research. *Global Change Biology* 16, 3171–3175.

797 Metcalfe, D.B., Asner, G.P., Martin, R.E., Silva Espejo, J.E., Huasco, W.H., Farfán Amézquita,
798 F.F., Carranza-Jimenez, L., Galiano Cabrera, D.F., Baca, L.D., Sinca, F., Huaraca
799 Quispe, L.P., Taype, I.A., Mora, L.E., Dávila, A.R., Solórzano, M.M., Puma Vilca, B.L.,
800 Laupa Román, J.M., Guerra Bustios, P.C., Revilla, N.S., Tupayachi, R., Girardin, C.A.J.,
801 Doughty, C.E. and Malhi, Y. (2014) Herbivory makes major contributions to ecosystem
802 carbon and nutrient cycling in tropical forests. *Ecology Letters* 17, 324–332.

803 Noble, D.C., McKee, E.H. and Megard, F. (1979) Early Tertiary “Incaic” tectonism, uplift, and
804 volcanic activity, Andes of central Peru. *Geol. Soc. Am. Bull.* 90, 903–907.

805 Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Damste, J.S.S.
806 and Dickens, G.R. (2006) Arctic hydrology during global warming at the
807 Palaeocene/Eocene thermal maximum. *Nature* 442, 671–675.

808 Paine, C.E.T., Baraloto, C. and Díaz, S. (2015) Optimal strategies for sampling functional traits
809 in species-rich forests. *Functional Ecology* 29, 1325–1331.

810 Pearson, A. and Eglinton, T. (2000) The origin of *n*-alkanes in Santa Monica Basin surface
811 sediment: a model based on compound-specific $\Delta^{14}\text{C}$ and $\delta^{13}\text{C}$ data. *Organic*
812 *Geochemistry* 31, 1103–1116.

813 Polissar, P.J. and Freeman, K.H. (2010) Effects of aridity and vegetation on plant-wax [delta]D
814 in modern lake sediments. *Geochimica et Cosmochimica Acta* 74, 5785–5797.

815 Ponton, C., West, A.J., Feakins, S.J. and Galy, V. (2014) Leaf wax biomarkers in transit record
816 river catchment composition. *Geophysical Research Letters* 41, 6420–6427.

817 Reuter, H.I., Nelson, A. and Jarvis, A. (2007) An evaluation of void filling interpolation
818 methods for SRTM data, *International Journal of Geographic Information Science*.
819 21, 983–1008.

820 Schefuss, E., Schouten, S., Jansen, J.H.F. and Damste, J.S.S. (2003) African vegetation
821 controlled by tropical sea surface temperatures in the mid-Pleistocene period. *Nature* 422,
822 418–421.

823 Schefuss, E., Schouten, S. and Schneider, R. (2005) Climatic controls on central African
824 hydrology during the past 20,000 years. *Nature* 473, 1003–1006.

825 Silman, M.R. (2014) Functional megadiversity. *Proceedings of the National Academy of*
826 *Sciences* 111, 5763–5764.

827 Tippie, B.J., Berke, M.A., Doman, C.E., Khachaturyan, S. and Ehleringer, J.R. (2013) Leaf-wax
828 *n*-alkanes record the plant–water environment at leaf flush. *Proceedings of the National*
829 *Academy of Sciences* 110, 2659–2664.

830 Tippie, B.J. and Pagani, M. (2013) Environmental control on eastern broadleaf forest species'
831 leaf wax distributions and D/H ratios. *Geochimica et Cosmochimica Acta* 111, 64–77.

832 Vogts, A., Moosse, H., Rommerskirchen, F. and Rullkötter, J. (2009) Distribution patterns and
833 stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of
834 African rain forest and savanna C-3 species. *Organic Geochemistry* 40, 1037–1054.

835

836

837

838 **Figure Legends**

839 **Fig. 1:** Location of 9 CHAMBASA forest plots on an elevation transect across the eastern slope
840 of the Andes in southern Peru. Site locations (open circles, site name annotated), vegetation
841 zones, cloud base and river proximity indicated. Elevation profile: grey line (elevation acquired
842 from the Shuttle Radar Topographic Mission (SRTM) 90m Digital Elevation Database 4.1
843 (Reuter et al., 2007), black line (smoothed elevation), grey envelope (topography; $\pm 2\sigma$ elevation
844 from 1km-wide swath perpendicular to transect, re-centered to smoothed elevation). R code
845 available from <https://gist.github.com/ashenkin/7fceb77e78efc33961a8>. For interactive map of
846 study locations see Appendix A.

847

848 **Fig. 2:** *n*-Alkane molecular abundance distribution. Showing the relative molecular abundance
849 distribution of all individuals ($n = 552$) across all 9 sites. Variability not shown, see Appendix A.

850

851 **Fig. 3:** Molecular abundance indices for individual data (black +; $n = 552$) **a)** C_{29}/C_{31} and **b)** CPI.

852

853 **Fig. 4:** Average Chain Length (ACL) showing species means at each site (blue circles; $n = 152$)
854 overlain on individual data (black dot; $n = 552$) with unweighted site mean values (black dash
855 symbol; $n = 9$) and linear regression of site mean values (thick black line), see text.

856

857 **Fig. 5:** Total alkane concentration **a)** per gram dry leaf, **a)** per gram dry leaf on C basis and **c)**
858 per unit area. Showing data for individuals (+).

859

860 **Fig. 6: a)** Total alkane concentration per unit area, showing individuals (black dots), species
861 averages (blue circles) and community weighted mean (green dash symbol). **b)** Violin plot
862 (zoomed in) showing the distribution of individual data (using a Gaussian kernel density
863 function), the median (red line), the mean (thick black line). Also showing community
864 representation: fraction of basal area represented by sampling (pie charts), with number of
865 individuals and species sampled.

866

867 **Fig. 7: a)** Leaf mass per area (LMA) for forest plots, **b)** total alkane concentration per leaf area
868 and **c)** LMA versus Σ alk. Showing median (red triangles), mean (black squares) and standard
869 error of the mean (error bars), and community-weighted mean (cmw; green squares) and
870 weighted standard error (error bars). Data cluster (demarcated by dashed lines) for the tropical
871 lowland rainforest, as distinct from the Tropical Montane Cloud Forest which has higher values
872 and greater variability (note y axis break). Regression is shown for the plot mean values only
873 (black line), $y = 0.14x - 12$ ($R^2 = 0.78$, $p < 0.05$).

874

875 **Fig. 8: a)** Total alkane concentration on a carbon basis, showing median (red triangles), mean
876 (black squares) showing standard error of the mean (error bars), and community-weighted mean
877 values (green squares), showing weighted standard error of the mean (error bars). **b)** NPP_{leaf} for
878 each forest plot, showing standard errors (error bars) and linear regression $y = -0.53x - 3.9$ ($R^2 =$
879 0.67, $p < 0.05$) (Girardin *et al.*, 2014a; Huaraca Huasco *et al.*, 2014; Malhi *et al.*, 2014; and this
880 study), **c)** NPP_{alk} for each forest plot, symbols as in a).

Table 1 Environmental and ecological characteristics of 1 ha forest plots along a tropical montane elevation transect.

CHAMBASA/ RAINFOR site	TAM-06	TAM-05	PAN-02	PAN-03	SPD-02	SPD-01	TRU-04	ESP-01	ACJ-01
Latitude	-12.8385	-12.8309	-12.6495	-12.6383	-13.0491	-13.0475	-13.1055	-13.1751	-13.14689
Longitude	-69.2960	-69.2705	-71.2626	-71.2744	-71.5365	-71.5423	-71.5893	-71.5948	-71.6323
Elevation* (m)	215	223	595	859	1494	1713	2719	2868	3537
Slope* (deg)	2.2	4.5	11.5	13.7	27.1	30.5	21.2	27.3	36.3
Aspect* (deg)	169	186	138	160.5	125	117	118	302	104
MAAT.** (°C)	24.4	24.4	23.5**	21.9**	18.8	17.4	13.5	13.1	9
Precipitation (mm yr ⁻¹)	1900	1900	2366**	2835**	5302	5302	2318	1560	1980
Vegetation height*	28.2	27.5	24.4	18.7	22.8	14.0	15.7	16.9	12.5

*Derived from high-resolution airborne Light Detection and Ranging (LiDAR) data (see Asner et al., 2013 for methodology). **MAAT = mean annual air temperature, derived from observations between 6 Feb 2013 and 7 Jan 2014.

Table 2 Leaf waxes as a component of net primary productivity

Site	Elev. (km)	Alkane concentration ($\mu\text{g g}^{-1}$ C)				NPP ($\text{Mg C ha}^{-1} \text{yr}^{-1}$)				NPP _{alk} ($\text{g C ha}^{-1} \text{yr}^{-1}$)				md NPP _{alk} (%)			
		md	me	se	cwm	md	me	se	NPP _{leaf}	md	me	c.se	cwm	c.wse	of NPP _{leaf}	of NPP	
TAM-06	0.215	185	323	42	170	42	12	0.6	3.7	0.4	686	1199	42	631	31	0.02	0.006
TAM-05	0.223	272	375	42	364	42	15	0.8	4.0	0.3	1098	1513	42	1466	32	0.03	0.007
PAN-02	0.595	96	191	32	267	32	11	0.7	3.5	0.1	340	676	32	944	25	0.01	0.003
PAN-03	0.859	106	182	61	196	61	9	0.6	3.0	0.1	321	552	61	595	39	0.01	0.003
SPD-02	1.494	108	309	54	386	54	13	0.5	4.1	0.2	446	1272	54	1590	40	0.01	0.004
SPD-01	1.713	452	649	69	678	69	8	0.4	2.6	0.2	1188	1706	69	1783	42	0.05	0.014
TRU-04	2.719	1126	1262	156	949	156	8	0.4	2.7	0.0	3029	3394	156	2553	91	0.11	0.037
ESP-01	2.868	834	1250	186	1114	186	8	0.4	2.0	0.2	1635	2449	186	2184	160	0.08	0.021
ACJ-01	3.537	233	1096	266	2327	266	8	0.5	2.2	0.1	513	2413	266	5123	255	0.02	0.006
min.	0	96	182	170	8	2.0					321	552		595	0.01	0.003	
max.	4	1126	1262	2327	15	4.1					3029	3394		5123	0.11	0.037	

md = median, me = mean, cwm = community-weighted mean, se = standard error, wse = weighted standard error, c. wse. = compound standard error of the mean, calculated as sum of squares of wse for alkane concentration and NPP_{leaf}. Site median NPP_{alk} estimate is also reported as a proportion of forest NPP_{leaf} and NPP, alkane production is <<1% because leaf waxes are a small component of forest biomass.

Figure 1

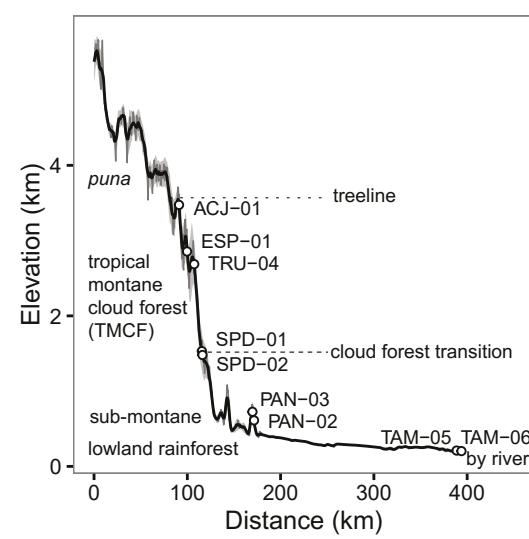


Figure 2

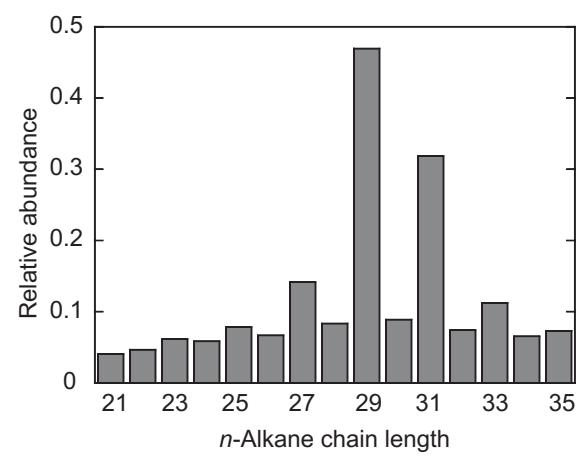


Figure 3

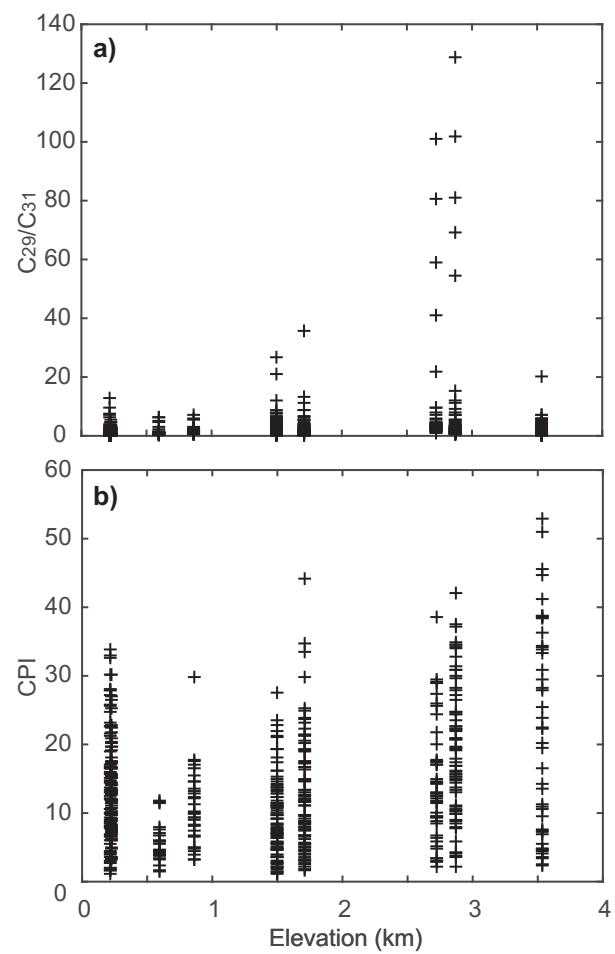
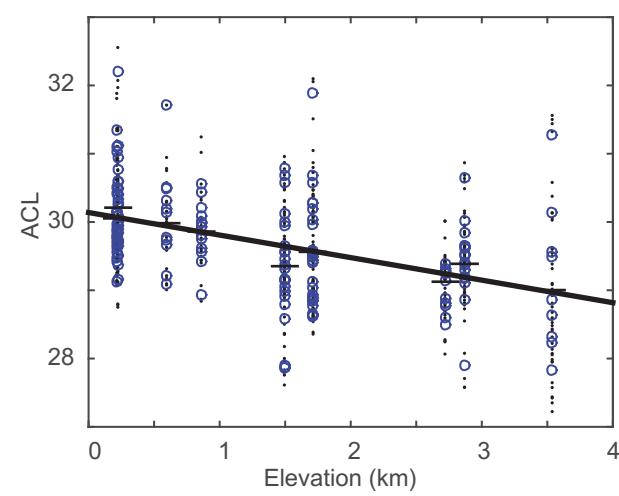
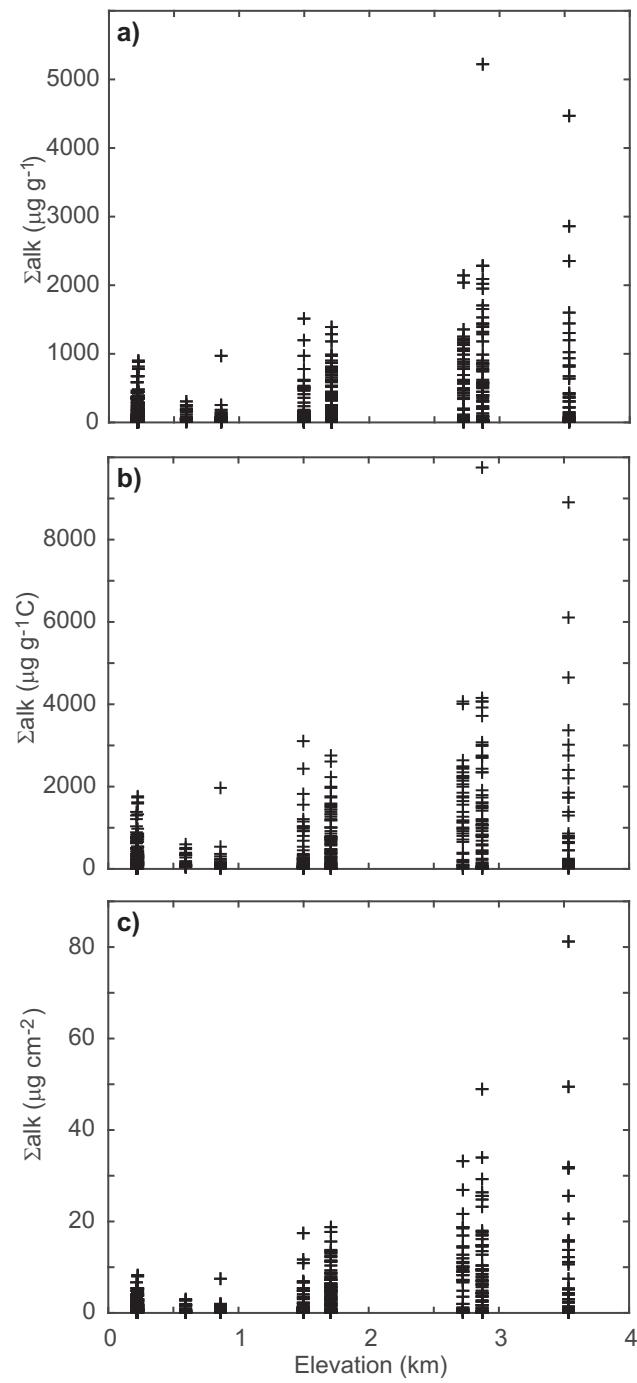




Figure 4

Figure 5

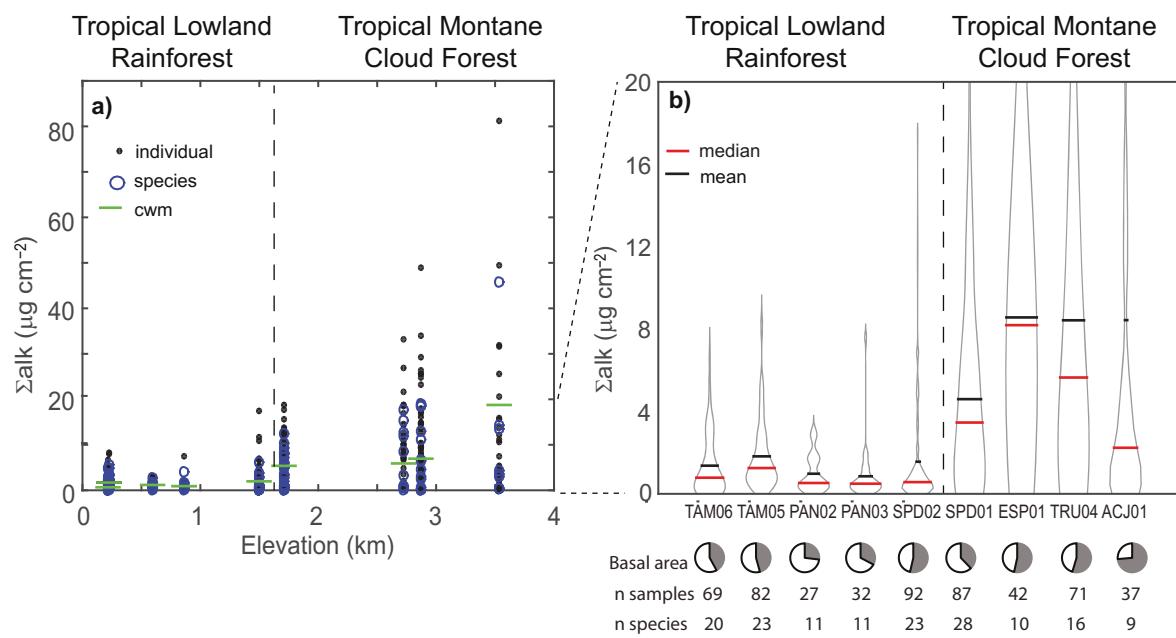

Figure 6

Figure 7

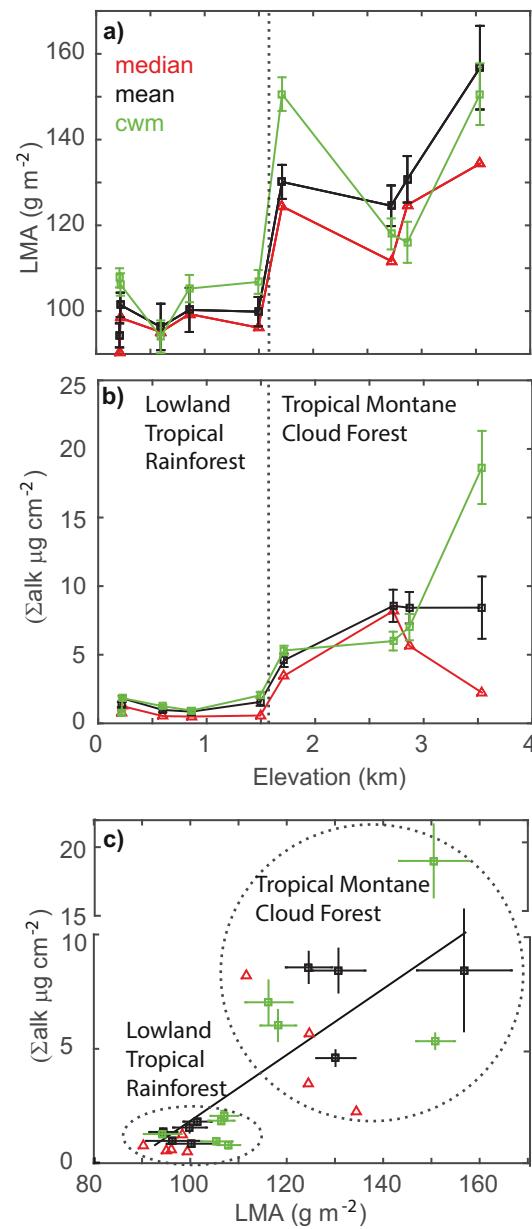
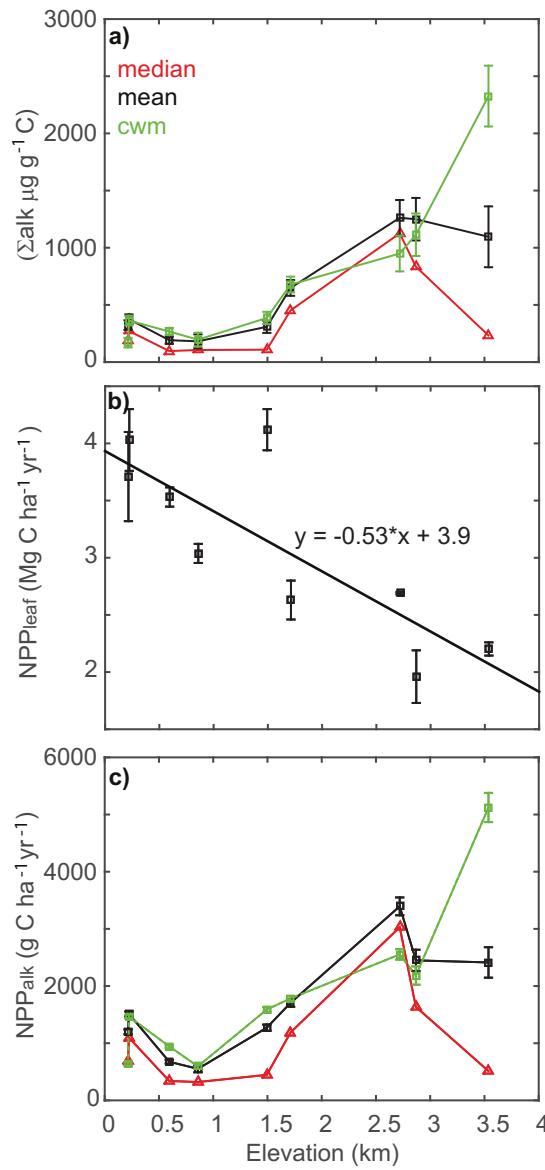



Figure 8

Supplementary Material

[**Click here to download Supplementary Material: Appendix A_alkanes.xls**](#)

Interactive Map file (.kml or .kmz)

[Click here to download Interactive Map file \(.kml or .kmz\): PeruPlantSites_all.kml](#)