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 In addition to its roots in psychology, the notion 
of self-awareness has been used in computing in 
a variety of different domains such as autonomic 
computing, organic computing, adaptive systems, 
and self-organizing systems, often with different, 
implicitly given definitions and objectives. Thus, a 
complete survey with all relevant work is impossible 
in the limited space of this article and a consistent 
treatment of this concept across all domains is a 
challenge. Consequently, our survey is incomplete 
in that it does not cover all interesting work. Rather 
it tries to

•	 explain the motivation of researchers and their 
interest in this topic,

•	 show its benefits,
•	 provide a paradigmatic reference frame that 

relates to all key ingredients of self-awareness,
•	 give a cursory historical account, and a rep-

resentational and fair exposition of the concepts 
of self-awareness in the various domains with sys-
tems on chip as the main focus.

First, we briefly introduce self-
awareness and provide a reference 
definition of the term. Then, in “Benefits 
in Systems on Chip,” we list benefits 
and motivate why researchers have so 
extensively studied and used the con-
cept. In “Self-Awareness Paradigm,” we 
introduce a paradigmatic architecture 
of a self-aware system (Figure 1) which, 

in our opinion, is complete in the sense that it con-
tains all crucial elements of self-awareness. Since in 
the literature the term self-awareness is often used 
to encompass only parts, frequently different parts, 
of the elements in our paradigmatic architecture, it 
serves as reference to which previous work can be 
easily related. In “Related Research Directions,” we 
discuss the main domains where self-awareness has 
been more or less extensively used, namely, auto-
nomic computing, self-adaptive systems organic 
computing, and control theory. In a way, the first 
three sections can be considered an introduction to 
our main topic, self-awareness in SoCs. This lengthy 
introduction is necessary because of the diverse use 
of the concept in various domains, but we hope to 
provide a solid basis and understanding for the dis-
cussion of work on on-chip self-awareness and to 
appreciate the use and utility of the involved con-
cepts. Finally, in “Challenges,” we list and briefly 
discuss the most important challenges of further 
research in this field.

What is self-awareness?
When engineers contemplate a concept they 

instinctively ask how it can be made useful and the 

Editor’s note:
Self-awareness is desirable feature of emerging computing systems. It 
helps systems to understand, manage, and report on their own system  
behavior. This paper presents an overview centered around the paradigm 
of self-awareness in computing systems.

—Partha Pratim Pande, Washington State University

Nikil Dutt and Amir M. Rahmani
University of California at Irvine
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desire to fully understand all the details and implica-
tions seem to be less important than to find a way to 
utilize it for a practical end. This has been the fate of 
self-awareness as a subject of study  in the context 
of computing during the last 20 years. The pyramid 
of self-* properties (Figure 2), originally proposed 
in the IBM initiative on autonomic computing in 
2003 [1], [2], illustrates this point. Motivated by the 
objective to make software systems more flexible, 
and truly self-adaptive researchers have identified 

self-configuration, self-healing, and other self-* fea-
tures as essential properties with self-awareness and 
context-awareness located at the primitive level.

Although adaptive systems with no self-awareness 
exist, it has been argued that a sophisticated self-
model is a prerequisite for sensible adaptive behav-
ior when the environment and the system itself are 
sufficiently complex and there exists a causal rela-
tion between self-* properties and high quality in 
complex software systems [3].

Figure 1. Paradigmatic architecture of a self-aware system. “S” nodes are sensors 
and “A” nodes are actuators. A proper assessment of the self and the environment 
(self-monitoring and environmental-monitoring) are the basis for active goal  
management and effective decision making. The desirability scale is the currency 
of assessment. All assessments that are considered “good” or “bad” are mapped 
onto this scale. This allows the comparison of otherwise unrelated properties, e.g., 
the quality of a signal and the load-level of the battery. Machine learning algorithms 
are useful for all activities. Both monitoring functions can continuously improve 
to identify the normality and categorize aberrations. Goal management can learn 
to dynamically prioritize subgoals in a way to optimize the accomplishments for 
high-level goals. The decision making can optimize its algorithm based on the  
effect of its decisions on the system’s performance. The execution engine can 
learn to generate control commands for the best possible effect. Note that many 
connections are not drawn for the sake of clarity.
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As a consequence of this goal oriented approach 
in the study of self-awareness in computing sys-
tems, the research agenda has been dominated by 
a quest for utility. While this approach leads more 
directly to applicable results, it also makes a deeper 
understanding of the concepts appear less desira-
ble. As an example, we quote fully a definition of 
self-awareness offered by Kounev [4] in 2011 and 
also in a modified form more recently in 2015 by 
Kounev et al. [5]:

Self-awareness, in this context, is defined by the 
combination of three properties that IT systems and 
services should possess:

1)	 Self-reflective: i) Aware of their software archi-
tecture, execution environment, and the hard-
ware infrastructure on which they are running,  
ii) aware of their operational goals in terms of 
QoS requirements, service-level agreements 
(SLAs) and cost- and energy-efficiency targets, 
and iii) aware of dynamic changes in the above 
during operation.

2)	 Self-predictive: Able to predict the effect of 
dynamic changes (e.g., changing service work-
loads or QoS requirements) as well as predict 
the effect of possible adaptation actions (e.g., 
changing service deployment and/or resource  
allocations).

3)	 Self-adaptive: Proactively adapting as the envi-
ronment evolves in order to ensure that their QoS 
requirements and respective SLAs are continu-
ously satisfied while at the same time operating 
costs and energy-efficiency are optimized.

It is an excellent definition, which we will 
use as reference in this survey. However, there 
are two interesting observations to note. First, 
self-awareness has moved up in prominence. It 
has been at the bottom of the self-* pyramid in 
2001 (Figure 2) as a supporting feature for more 
advanced adaptive behavior. In the 2011 definition, 
the term is used to encompass all relevant self-* 
properties including self-adaptiveness. In a way the 
pyramid has been turned upside down because the 
community has realized that self-awareness is not 
a simple collection of state variables that describe 
the state of the system (item 1 in the above defi-
nition), but it has also to include the operational 
goals of the system and it has to properly reflect 
the effects of its own actions and of environmen-
tal changes on these state variables. Essentially, it 
has to include a complete, even though abstracted, 
model of the static and dynamic system properties. 
Once the dynamic properties are also properly 
represented, a prediction, perhaps by simulation, 
of the system and its interaction with the environ-
ment becomes possible and it is self-predictive 
according to item 2 in Kounev’s definition. Based 
on this capacity of prediction, it can proactively 
adapt its own actions earlier than it would oth-
erwise be possible (item 3). Hence, rather than 
being a simple elementary property to be used by 
a self-adapting system controller, self-awareness, 
once fully accomplished, makes proactive, adap-
tive behavior almost straight forward.

The second point to note about the defini-
tion is that it is purely utilitarian in that it does 
not try to capture the essence of the rich concept 
of self-awareness. It assumes that self-awareness 
as defined, i.e., self-reflective + self-predictive + 
self-adaptive, is useful for accomplishing the QoS 
requirements and the service-level agreements of 
the system, and thus, it should be implemented. It 
does not address the question, why it deserves to be 
a separate concept and what it adds to self-reflective, 
self-predictive, and self-adaptive. Although we have 
no definite answer to these questions, it may well 
worth to ponder them in order to identify additional 
aspects that are essential for self-awareness but not 
yet fully accounted for in the state of the art. There 
is some indication that learning, keeping track of his-
tory, and dynamic goal management are such essen-
tial aspects. For instance, Chandra et al. [6] argue 
that a system has to acquire a substantial part of the 

Figure 2. The hierarchy of self-* properties, first 
proposed in 2001 but cited here from Salehie and 
Tahvildari [2] in 2009.
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self-model during operation by some kind of learn-
ing process to be considered self-aware. Externally 
built and implanted knowledge does not suffice. 
However, their argument is not of principal nature 
but claims that it will be very difficult to develop a 
sufficiently accurate self-model without a dynamic 
tuning and optimization process. While this may be 
debatable, it illustrates the complexity of the con-
cept even if the only concern is its usefulness in an 
engineering endeavor.

As we discuss in “Related Research Directions,” 
autonomic computing is not the only branch of 
research that has struggled with the concept of 
self-awareness. Organic computing, bioinspired 
computing, and self-organization are other prom-
inent lines of research that have approached the 
topic from different angles and contributed with 
specific insights and solutions. Before we discuss 
them in the above-mentioned section, we summa-
rize the potential benefits (“Benefits in Systems on 
Chip”) and sketch a self-aware computing para-
digm in “Self-Awareness Paradigm” that serves as 
a reference and reflects to some degree all major 
proposals for self-aware systems and architectures.

Benefits in systems on chip
Researchers of self-awareness generally argue 

that it allows a system to deal better with complex-
ity. The complexity comes from the system itself (its 
structure and its state space), from the environment, 
and from the exceedingly diverse goals and objec-
tives it has to meet.

Hardware state assessment and manage-
ment. Self-awareness in hardware systems often 
facilitates the management of temperature [7], 
power/energy [7]–[9], and real-time performance 
[9]–[11]. Also, aging effects are addressed with 
increasingly complex models to assess the progress 
of aging and select counter measures [12].

Resource allocation. Given often the high 
number of processor, memory, and interconnect 
resources available, resource allocation is a common 
target of self-aware enabled management schemes 
in both hardware and software. Task allocation and 
MPSoC configuration with higher energy efficiency 
based on cross-layer self-awareness on chip is pro-
posed by Sarma and Dutt [13]. Because the approach 
extends across individual components (cores, 

routers) and layers (HW, NoC, OS middleware, and 
application), local assessments have to be integrated 
into a comprehensive system-level assessment. Based 
on a large number of sensors and comprehensive 
self-assessment of the system load balancing, task 
allocation, scheduling, and migration for MPSoCs 
result in significant improvements [14], [15].

In the SElf-awarE Computing (SEEC) frame-
work, dynamic adaptation through a smart inter-
face between platform and application is achieved 
[9], [16]. The application registers its performance 
goals and the platform is responsible for meeting 
those goals by continuously monitoring the sys-
tem’s performance and appropriately adjusting the 
resource allocation.

An appropriate self-model allows to allocate 
scarce communication resources efficiently. Happe 
and Trammel-Keller [17] use flexible protocol stacks 
to allow for dynamic rearrangements and optimi-
zation of the communication protocols based on 
needs, requirements, and constraints.

In general, IT systems meeting quality of service 
requirements and service-level agreements under 
energy-cost constraints is a tremendously complex 
task [4]. This challenge has driven the field of auto-
nomic computing during the last two decades and 
with the growing size and complexity of the appli-
cations and the IT systems, the self-models and the 
self-awareness concepts have grown in complexity 
and sophistication as well [1], [5].

Reaction to changes in the environment. 
Many systems that interact with the physical 
environment by means of sensors and actuators 
have to adapt to changing conditions. Adaptive 
systems, as for example surveyed by Krupitzer et 
al. [18] and further elaborated in “Self-Adaptive 
Systems,” have been studied in various applica-
tions. By providing a comprehensive assessment 
of the state of the system and its environment, 
self-awareness offers a solid foundation for adap-
tation decisions and consequently can increase 
the quality of adaption. Indeed, we expect a direct 
dependence of the quality of adaption on the qual-
ity of self-assessment.

In summary, we conclude that self-awareness 
leads to more sensible behavior based on more 
detailed and often more explicit representation 
of the system’s goals, its own state (available 
resources, faults, etc.), and the environment. 
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Moreover, it leads to more efficiency due to better 
and adequate usage of resources. It can be used to 
detect aberrations of the system’s behavior (faults, 
aging, malicious attacks, design errors, etc.) and of 
the environment. However, many of these poten-
tial benefits are only superficially studied and it 
remains to be seen what solutions can be found 
and how effective they are.

Self-awareness paradigm
Figure 1 shows a paradigmatic architecture of a 

self-aware system that allows to cover and relate most 
of the systems proposed in the literature. However, 
this is not the only or the best way to illustrate the 
structure of self-awareness. Being a loosely defined 
umbrella concept, there are many options regarding 
what to include and what to exclude, what to high-
light and what to deemphasize, and what to make 
explicit and what to make implicit. Other researchers 
have made different choices, e.g., Lewis et al.  [19], 
presumably due to different preferences in their 
research. For us, attention, goal management, and a 
central desirability scale are key elements not found 
in other architectures of self-awareness. Hence, we 

use Figure 1 as a basis of discussion in this article 
but in the absence of either theoretical arguments or 
empirical evidence that clearly favors one architec-
ture over another, we suggest to pragmatically use 
whatever is more suitable in a given context.

Kounev’s [4] definition cited above in “What is 
Self-Awareness?” is represented in this figure as fol-
lows. The self-reflective part is located in (i) the static 
self-model, (ii) the goal management and goal hier-
archy, and (iii)  the dynamic self-model. The self-
predictive part is located in the dynamic self-model, 
and the self-adaptive part is located in the decision 
making, the goal management, and the goal hierar-
chy. More recently, Kounev et al. [5] have revised this 
notion and have formulated the following definition.

Self-aware computing systems are computing sys-
tems that:

•	 learn models capturing knowledge about them-
selves and their environment (such as their 
structure, design, state, possible actions, and  
run-time behavior) on an ongoing basis

•	 reason using the models (for example, predict, 
analyze, consider, and plan) enabling them to act 

based on their knowledge and 
reasoning (for example, ex-
plore, explain, report, suggest, 
self-adapt, or impact their envi-
ronment) in accordance with 
higher-level goals, which may 
also be subject to change.

Item 1 can be found in the 
green learning boxes of Fig-
ure 1 and item 2 in the boxes 
dynamic self-model, goal man-
agement, and decision making.

A self-awareness refer-
ence architecture has been 
proposed by Lewis et al. [19] 
as shown in Figure 3. All its 
important elements can be 
mapped to the paradigmatic 
architecture of Figure 1 but a 
few points are worth noting.

Meta self-awareness refers 
to the ability to be aware of 
and reason about its own self-
awareness. It allows to con-
trol and dynamically change 

Figure 3. Reference architecture for self-aware computing systems  
proposed by Lewis et al. [19].
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the level of self-awareness and thus the resources 
expended on the self-awareness processes them-
selves. In some situations, or perhaps most of the 
time, it is unnecessary to keep these processes active 
because other tasks have higher priority. In Figure 1, 
this is not made explicit but can be considered part 
of the goal management strategy and decision pro-
cedure. We have chosen to keep it implicit because 
meta self-awareness is a rather specialized feature 
and expected to be present in only few, high-end self-
aware systems.

Similarly, time awareness is made explicit in 
Figure 3 and refers to the capability to explicitly 
reason about the state changes of the system and 
its environment over time. In the paradigmatic 
sketch of Figure 1 this is not explicit but the means 
for it are provided by keeping track of the history, 
by representing dynamic changes, and by the goals 
and decision routines. In the same way, stimulus 
awareness, interaction awareness, and goal aware-
ness refer to abilities to reason about specific 
aspects of the system. They are not made explicit 
in Figure 1, but may be included as part of specific 
goals, decision procedures, and the dynamic inter-
nal models.

Figure 3 distinguishes between private and pub-
lic self-awareness. Public aspects can be inspected 
from the outside like physical size, battery load level, 
and initiated actions. Private aspects are not directly 
visible outside and may refer to internal sensors, 
counters, and registers. Both are part of the static 
self-model in Figure 1 but not distinguished.

On the other hand, Figure 3 does not make 
explicit history mechanisms, the distinction between 
self-model and environment models, attention, desir-
ability, goal management, and the various places 
where learning contributes to continuous tuning 
and optimization.

In Figure 1, the processes of self-monitoring and 
environment-monitoring are fairly separated and 
only their results are only combined for decision 
making. In contrast, Figure 3 treats both as one inte-
grated process. We consider awareness to be the 
result of a hierarchical process where in the first-
level data from individual sensors are preprocessed 
and filtered individually after which more and more 
sensory information is gradually fused to establish 
increasingly abstract concepts. The integration 
of information from internal and external sensors 
occurs in most cases rather late in the hierarchy. 

Thus, it is justified to represent the processes responsi-
ble for self- and environment-monitoring as separate 
activities. However, they may exchange information 
at every step and for some systems a more integrated 
solution may be preferable as depicted in Figure 3. 
In fact, complete isolation and complete integra-
tion of these two processes should be considered 
as extreme points in a continuous design space 
with practical solutions will almost always fall some-
where in between.

Dutt et al. [20]–[22] have listed relevant features in 
self-aware systems and have defined them as follows:

•	 Semantic interpretation includes an appropri-
ate abstraction of the primary input data and a 
disambiguation of possible interpretations.

•	 Desirability scale provides a uniform good-
ness-scale for the assessment of all observed 
properties.

•	 Semantic attribution maps properties into the 
desirability scale suggesting how good or bad an 
observation is for the system.

•	 History of a property: Awareness of a property 
implies awareness of its change over time.

•	 Goals provide the context in which interpreta-
tion and semantic attribution is meaningful.

•	 The purpose of a smart embedded systems is to 
achieve all its goals.

•	 Expectation on environment: The system 
expects a specific environment and detects 
if the environment deviates significantly from 
expectations.

•	 Expectation on subject: Similarly, the sys-
tem’s own state and condition are continuously 
assessed to detect deviations, degradation, per-
formance, and malfunctions.

•	 Inspection engine: Continuously monitoring 
and assessing the situation requires a specific 
machinery that integrates all observations into a 
single, consistent world.

All these processes can be identified in Figure 1.  
Semantic interpretation and attribution are not 
shown in the figure and are performed in the moni-
toring blocks and influenced by the goals and their 
priorities. A dynamically changing goal hierarchy 
will also modify the semantic attribution and atten-
tion. The inspection engine is not explicit in Figure 1, 
but is part of the self-monitoring block with the help 
of several other blocks. An interesting point in this 



14 IEEE Design&Test

Tutorial

list of features is the emphasis on data abstraction 
and the semantic interpretation in the context of 
goals and an application. The importance of these 
processes has been elaborated by Taherinejad et al. 
[23] and they are part of the self and environmental 
monitoring tasks in Figure 1.

Related research directions
Autonomic computing

After the formulation of its vision in 2003 [1], 
the field has quickly grown and flourished. In 
a keynote at the International Conference on 
Autonomic Computing, Jeff Kephart [24] counted 
overall 8000 papers published, 200 patents issued, 
and 200 conferences soliciting papers on the topic 
of autonomic computing. Since then, the field 
has continued to be active but has diversified 
and overlapped with control, machine learning, 
cloud computing, and web services. A main fea-
ture in much of the work on autonomic comput-
ing is a variation of the MAPE-K control loop [25] 
that illustrates the monitor-analyze-plan-execute 
cycle and is based on knowledge, which often 
means some kind of model, as shown in Figure 4. 
Interestingly, the generality of this model has not 
increased, but in many approaches the models 
have been customized for a more specific purpose 
like resource management or maintaining a spe-
cific QoS level. An example of work against this 
trend is the approach of Sanz et al. [26], which pro-
poses a secondary control loop on top of the inner 
control loop resembling an explicit self-model. 
This outer loop is derived from the design time 
model but used during operation.

However, most of the work in the field has 
adopted less general and more specialized 
self-models. Even today, central themes are still 
self-adaptation, self-optimization, self-configura-
tion, and self-healing [27], [28], but in industrial 
practice its original vision has not fully material-
ized. There, trigger-based approaches are still dom-
inant [29], [30], which means that triggering rules 
fire when a metric such as resource utilization or 
load imbalance exceeds a threshold value. In aca-
demia, a number of systems with model-based per-
formance and resource management have been 
developed to assure quality of service levels, for 
instance DiVA [31], MADAM [32], MUSIC [33], 
and SASSY [34]. They typically use formalisms like 
Petri nets [35], queuing networks [34], stochastic 
process algebras [36], statistical regression [37], 
or kriging models [38] for performance modeling. 
However, from our perspective, their self-models 
are limited because they all do not take the soft-
ware architecture and the execution environment 
of the system into a detailed account. A survey from 
Becker et al. [39] confirms this impression. Hence, 
these systems have limited self-awareness. On the 
other hand, approaches that do take the software 
system and execution environment into account 
are mostly used at design time and not part of the 
system during operation [40].

It seems that the more sophisticated aspects of 
the autonomic computing vision has had limited 
impact and practical solutions based on traditional 
performance models, and heuristic rule-based 
approaches have so far been sufficient to address 
the industry’s need. This can on one hand be attrib-
uted to the conservative instinct of managers that 
prefer practically well proven and understood solu-
tions and, on the other hand, to the availability of 
inexpensive computing, memory, and communica-
tion resources that provide little incentives to find 
the most optimal or efficient solution. We have still 
limited understanding of the implications at the 
system level when advanced techniques from the 
machine learning, the control theory, and optimiza-
tion domains are integrated with complex models. 
This has also been concluded by Kounev et al. [5] at 
the 2015 Dagstuhl Seminar:

Another finding was that much work remains 
to be done at the system level. In particular, 
while there has been considerable success 
in using machine learning and feedback 

Figure 4. MAPE-K Loop illustrating a  
monitor-analyze-plan-execute cycle based 
on Knowledge [25].
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control techniques to create adaptive auto-
nomic elements, few authors have success-
fully built autonomic computing systems 
containing a variety of interacting adaptive 
elements. Several authors have observed 
that interactions among multiple machine 
learners or feedback loops can produce 
interesting unanticipated and sometimes 
destructive emergent behaviors; such phe-
nomena are well known in the multiagent 
systems realm as well, but insufficiently 
understood from a theoretical and practical 
perspective.

Self-adaptive systems
Work on self-adaptive systems naturally 

emphasize the task of adaptation and considers 
self-awareness properties only so far as they help 
to accomplish adaptation. It turns out that for more 
sophisticated adaptation models of the system and its 
environment become crucial, leading to model-based 
approaches [18]. Typically, three types of models are 
distinguished: system models to represent the system 
state, goal models to represent policies and rules, and 
environmental models to capture the context [18], 
[41]. Most work on model-based self-adaptation has 
been reported for general software systems. Based 
on the Software Engineering Institute’s notion of 
software product lines [42], a number of approaches 
model different system features as a basis for select-
ing dynamically the most appropriate configuration 
in a particular situation (see [32], [33], [43]–[46]; 
more examples are discussed in the surveys by 
Huebscher and McCann [41] and by Krupitzer et al. 
[18]). However, it should be noted that a model of 
different software configurations does not constitute 
self-awareness. Self-awareness, as we understand the 
term in this survey, is based on a process of dynam-
ically, if not continuously, acquiring data about the 
system itself and its environment to infer the current 
state and condition. Thus, most work on self-adaptive 
software systems do not cover self-awareness as 
defined in “What is Self-Awareness?” and “Self-
Awareness Paradigm” above, even when using vari-
ous models of the system extensively.

Work on self-adaptive resource constrained 
cyber-physical systems is more limited but comes 
closer to our notion of self-awareness. For the 
domain of smart cities and buildings, Gürgen 
et al. [47] propose a self-aware cyber-physical 

architecture that manages the data collection from 
sensors, the analysis, the planning, and the adapta-
tion of the controlled object (e.g., a building). Smart 
camera networks have to deal with quickly chang-
ing, diverse, and complex environments. Esterle et 
al. [10] argue that fixed configurations are infea-
sible and the benefits of self-awareness are due to 
its coordinating effect on a distributed assessment 
and decision making, flexible rearrangements of 
the network under performance, cost, and real-time 
constraints. In both examples, important features of 
self-awareness are included but aspects like learn-
ing, goal management, attention, and a central 
desirability scale are only rudimentary present or 
not at all.

Organic computing
In the early 2000s, the increasing complexity of 

computing systems led people to conclude that unex-
pected emergent behavior is unavoidable once a cer-
tain complexity has been reached. Consequently, the 
design of desired and the control of undesired emer-
gent behavior were identified as main challenges. In 
2005, Schmeck [48] formulated the vision of Organic 
Computing as a response to the threatening view of 
being surrounded by interacting and self-organizing 
systems, which may become unmanageable, showing 
undesired emergent behavior. In the following years, 
the paradigm of Organic Computing was explored in 
a series of research projects, and in 2011, this work 
has been nicely summarized in the book Organic 
Computing, edited by Müller-Schloer et al. [49]. 
Kramer et al. [50] proposed a two level monitoring 
approach to self-awareness. The low-level monitoring 
is based on counting events such as cache misses, 
fault occurrences, or performance counters. In prin-
ciple, any event that can be counted can be subject 
to this mechanism. The monitor can be programmed 
during operation to associate any type of event with 
event-IDs allowing for flexibility with respect to the 
kind of events under observation. High-level moni-
toring uses the event counts for state classification to 
reflect relevant information about the systems perfor-
mance and state. Since event grouping and limited 
event abstraction is possible, the resulting system can 
be considered rudimentarily self-aware. In a similar 
spirit, learning classifier systems [51] and eXtended 
Classifier Systems (XCS) [52] have been used to 
assess a systems state as a base for decision making 
such as load management and task allocation [53]. 
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The decisions are coded in rules. A rule consists of a 
condition, an action, and a predicted reward value. If 
the condition of a rule matches, i.e., if the system is in 
the state described by the classifier, and the expected 
reward is sufficiently high, the action part of the rule is 
triggered. The rules are optimized by heuristics such 
as genetic algorithms and reinforcement learning. In 
the DodOrg project, these and other ideas have been 
integrated to provide self-awareness in a many-core 
architecture, which in turn is used for power and ther-
mal management [54].

In summary, the organic computing community 
has developed a number of innovative approaches 
to monitoring, adaptation, self-organization, distrib-
uted control, and particularly contributed to a better 
understanding of phenomena of emergent behaviors 
such as emergent control [55]. However, similar to 
the autonomic computing endeavors, it has focused 
more on the decide and act parts of the observe-
decide-act (ODA) cycle. For instance, Kramer 
et al. [50] have observed that in order to enable 
required self-organization capabilities, a monitoring 
infrastructure has to provide self-awareness, but have 
not well defined what is meant with self-awareness 
and have used a rather limited and static scope of 
the concept. Interesting aspects of awareness such 
as abstraction, attention, awareness of the historic 
changes in its own behavior and in the environment 
have been hardly touched upon.

Control theory
All the problems mentioned in “Benefits 

in Systems on Chip” have been successfully 
addressed without the explicit label of self-aware-
ness. Numerous algorithms for scheduling and task 
allocation have been developed and deployed in 
real, demanding large scale systems and tempera-
ture and power managers are routinely built into 
each and every chip on the market. For instance, 
on-chip dynamic power management [55], [56] 
has been accomplished by control loops like more 
or less complex proportional, differential, integral 
(PID) controllers, where measured or estimated 
temperature, current flows, and energy levels in 
batteries are used to tune voltage, frequency, and 
application load in order to meet given constraints 
and optimization objectives. Power management is 
a case in point how exceedingly complex internal 
models have been used as the problems become 
increasingly challenging and sophisticated over 

time. In simple processors of the 1980s and 1990s 
hardcoded and simple algorithmic solutions have 
dominated [56], while recent many-core SoCs 
operating at the edge of thermal stability require 
advanced power management based on detailed 
information reflecting the state and objectives of 
the hardware and the applications [55]. In many 
core heterogeneous SoCs with several applications 
concurrently sharing the platform the application 
behavior regarding the computational load, mem-
ory access, and communication can vary over 
orders of magnitude in short time periods and are 
often highly unpredictable. P. Bogdan and col-
leagues have shown how accurate, statistical mod-
eling of workload can significantly improve the 
efficacy power management [57]–[59].

There have also been efforts to hierarchically 
manage complex many-core systems by leveraging 
different structures of feedback control loops. For 
instance, in [60], a number of nested feedback con-
trol loops with different knobs and actuation epochs 
have been hierarchically deployed for power man-
agement with the objective of maximizing the per-
formance while respecting the thermal design power 
budget. A centralized power management approach 
with the same objective is presented in [61], which 
considers both communication and computation 
characteristics of many-core systems in the power 
management policy. In a similar fashion, in [62], 
a coordinated power management approach with 
multiple scopes of actuation (virtual machine, clus-
ter, server, and core) is presented to cap the power 
consumption of the system and balance the utiliza-
tion of the blades. Even though these approaches 
have proved to be effective to manage complexity, 
they focus on a single objective which is the main 
reason why they use several simple single-input sin-
gle-output PID controllers to form a larger manager 
for the respective problem at hand, which is often 
maximizing performance under a power cap [63].

There have been recently some contributions to 
leverage more advanced control theory approaches 
such as linear-quadratic-Gaussian controller [64] to 
implement multiple input, multiple output (MIMO) 
formal control for maximizing resource efficiency. 
For instance, in [65], Pothukuchi et al. utilize a 
MIMO controller to track throughput (billions of 
instructions committed per second) and power 
consumption for an out-of-order single-core proces-
sor in a coordinated manner. Even though MIMO 
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controllers have the advantage of tracking different 
references with different priorities, they cannot effi-
ciently be applied to complex systems as obtaining 
state-space models for complex systems is impracti-
cal, if not infeasible.

In general, tracking a single or multiple refer-
ence values, which is also called regulatory con-
trol, is the main application of control theory. As 
can be observed from the aforementioned exam-
ples, this property is essentially useful for problems 
where minimizing the tracking error of a parameter 
is the main goal. For instance, providing a certain 
quality of service (e.g., frame rate) for a real-time 
application, capping power consumption of a sys-
tem, or controlling the thermal behavior of the chip 
are among popular use-cases for control theory. 
However, effects of actuations that cannot be mod-
eled using difference functions (e.g., task migration) 
or problems that need optimization (e.g., minimize 
an objective function under constraints) cannot 
be properly addressed using classic control theory.  
From another perspective, thanks to the feed-
back-based structure, control theory-based 
approaches are the best fit for problems such as 
disturbance rejection (e.g., disturbance due to work-
load variations when applying dynamic voltage and 
frequency scaling to control power) or handling 
noise/uncertainty in measurements (e.g., noisy sen-
sors and virtual sensing), however, it is ineffective to 
adapt or react to anomalies (e.g., faults), surprises, 
or radical changes in high-level goals.

In summary, control theory provides guarantees, 
has the ability to learn from feedback, and has the lux-
ury of formal reasoning and methodology. However, 
restrictions such as the difficulty to obtain control 
theoretic models (e.g., transfer functions) in the form 
of difference equation and lack of a straightforward 
process to specify reference values limits its efficacy 
to be solely used for managing complex computing 
systems. On the other hand, while this approach 
works for a limited set of parameters and objectives, it 
does not scale well when the complexity of modeling 
the system dynamics increases. Modeling complex-
ity escalates with the number of control inputs (i.e., 
knobs), measured outputs (i.e., sensors), and subsys-
tems (e.g., cores) in multi- and many-core systems. 
On top of that, heterogeneity of subsystems (e.g., in 
big.LITTLE style processors) makes the system mode-
ling/identification even more complex. For instance, 
when aging effects, hard and soft real-time constraints, 

and transient and permanent faults have to be con-
sidered in addition to temperature limits and battery 
life time, and tuning knobs are available at circuit, 
architecture, operating system, and application level, 
the control loops become too complex to be used. 
It should be noted that the first step to design a con-
trol-theoretic approach is to have an accurate-enough 
model in hand.

Self-awareness offers the promise to be a scal-
able heuristic in that it can integrate any number 
of parameters and still provide workable solutions 
in real time and with sufficient quality. As in con-
trol theory, the set points need to be specified by a 
higher entity, and the integration of self-awareness 
with control theory can provide a layer of cognition 
for controllers to coordinate them toward the cur-
rent goal of the system. So far this claim is still largely 
a promise but recent work and also the articles in 
this special issue show encouraging progress.

Self-awareness on chip
Features of self-awareness have found their way 

in many SoC resource management solutions. The 
vast majority follow a classic control loop approach, 
opportunistically extending and customizing them 
in ad-hoc ways as needed. In the following, we dis-
cuss four examples that stand out in that they have 
self-awareness built into their architectures from the 
very start.

ASoC. The autonomic SoC platform (ASoC) [66], 
[67] is based on the organic computing paradigm 
and aimed at many-core architectures. Functional 
processing units, which are traditional cores, accel-
erators, memories, and other functional hardware 
units, are monitored and controlled by units in a par-
allel layer, called the autonomic layer. For each core 
or similar components in the functional layer, there 
is a corresponding element in the autonomic layer, 
named the autonomic element, that consists of a mon-
itor, an evaluator, an actuator, and a communicator, 
as illustrated in Figure 5. For instance, the autonomic 
element may monitor the load level in the functional 
element and update the frequency accordingly. The 
communicators allow the autonomic elements to 
communicate with each other. Since each functional 
element is shadowed by an autonomic element, we 
have a distributed control system.

The evaluators are rule based. Each rule consists 
of a matching pattern, an action, and a reward value. 
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The patterns match the monitored values and deter-
mine which rule can apply in a given situation. For 
example, a pattern could encode “too high load.” 
The action encodes the change of frequency and 
the reward value estimates how much the action 
will improve the situation. This reward value is 
then updated based on the actual improvement as 
observed by the monitor.

ASoC exhibits some of the features of our par-
adigmatic architecture in Figure 1. There are 
self-monitoring, decision making, and execution 
components. Learning is present in a limited form. 
The desirability scale and the goals are implicitly 
coded in the rules. Attention, environmental mon-
itoring, goal management, and the more sophis-
ticated elements of self-monitoring, such as the 
assessment of the reliability of the measured data, 
are missing. However, it is conceivable to extend 

the ASoC architecture to include those elements of 
self-awareness as well.

SEEC. Hoffmann and coworkers at MIT have 
developed SEEC [68], a general framework for self-
aware computing using an ODA paradigm. The 
system cyclically monitors key features, applies a 
control and decision algorithm, and deploys appro-
priate actions to adapt to changes in the environ-
ment and its own state. It is based on the heartbeats 
API library [69], which defines a cyclic event called 
a heartbeat. Through API functions, the application 
can register rate and latency performance goals in 
terms of the heartbeat period. Hence, the heart-
beats API is a standardized means to monitor the 
performance of an application. The SEEC control-
ler adapts and optimizes the system’s behavior, for 
instance, by allocating and scheduling resources 
appropriately. The approach has been evaluated in 
several applications for performance optimization 
[68], power management [70], [71], and managing 
multiple objectives [9]. Also, the concept of knobs 
has been introduced [71] to expose steering facili-
ties such as processor speed or power modes. SEEC 
allows to adopt different decision making strategies 
and algorithms that have been studied extensively 
[72], [73].

Relating the self-awareness features of SEEC to 
the paradigmatic architecture of Figure 1, we note 
that the monitoring-deciding-execution loop is thor-
oughly elaborated in SEEC while learning, history, 
and attention mechanisms are not emphasized or 
not used at all. An interesting aspect of SEEC is that 
the goal formulation and management is assigned to 
the application. The SEEC platform provides knobs, 
control algorithms, and measurements to the appli-
cation, which in turn is responsible to formulate and 
adjust its goals. Similarly, the desirability scale, as it 
is related to and dependent on goals, is not part of 
the SEEC framework.

HAMSoC. With hierarchical agent monitoring 
SoC (HAMSoC), Guang et al. [74], [75] have pro-
posed a four-level hierarchical control structure, 
as illustrated in Figure 6. Each cell agent monitors 
and controls a core, an accelerator, or another func-
tional hardware block, which is similar to the func-
tional elements and autonomic elements in ASoC. 
Cell agents have only local knowledge but are in 
turn monitored and steered by cluster agents, which 

Figure 6. The four-level control structure in  
HAMSoC [8].

Figure 5. ASoC has two layers: a functional 
layer consisting of cores and the like,  
and an autonomic layer that controls  
the functional elements via a monitor- 
evaluator-actuator loop [67].
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pursue optimizations for each respective local clus-
ter. The platform agent is responsible for the entire 
SoC platform and can pursue platform-global opti-
mizations. It interacts with the application agent 
that provides application specific goals and require-
ments, based on the heartbeat concept of SEEC [69]. 
In contrast to ASoC, which has only one level of con-
trollers communicating with each other, HAMSoC 
proposes a hierarchy of controllers that each is host 
to different objectives from the local to the applica-
tion level, as exemplified in a power and resource 
management scenario [76].

Even though the HAMSoC framework of hier-
archical control has the potential to accommodate 
most of the self-awareness properties of our paradig-
matic architecture of Figure 1, it has not been fully 
elaborated and exploited. The HAMSoC controller 
hierarchy would be an appealing match to a hierar-
chical goal management system. However, neither 
goal management nor attention, history, or learning 
mechanisms have been explored.

CPSoC. Cyber Physical SoC (CPSoC) [77] is a  
self-aware embedded system paradigm that enhances 
traditional MPSoCs with a sensor-actuator-rich 
platform deploying a closed loop paradigm 
emulating large-scale 
cyber-physical systems, 
enhanced with smartness 
through adaptivity and 
limited self-awareness [78]. 
CPSoC was developed pri-
marily in the context of 
managing and exploiting 
hardware variability using 
the under-designed and 
opportunistic computing 
paradigm [79].

The high-level system 
architecture of CPSoC is 
shown in Figure 7. The 
middle of this figure shows 
various levels of abstrac-
tion for the CPSoC platform, 
from the lowest (device/
circuit level) layering up 
to the highest (application 
level). At each abstrac-
tion level, the CPSoC plat-
form gathers information 

(through sensor fusion) using virtual and physical 
sensors, and in turn actuates (through actuator 
fusion) via virtual and physical actuators. The CPSoC 
architecture supports two classes of feedback loops: 
adaptive control (red box in Figure 7) and self-aware 
supervisory management that generates supervisory 
policies (tan box in Figure 7). These feedback loops 
are embedded within the adaptive, reflective mid-
dleware that orchestrates cross-layer sensing and 
actuation.

Figure 8 shows a more detailed view of the 
CPSoC architecture. On the top right of the figure is 
a template of an individual CPSoC computational 
Core, comprised of the computational units, mem-
ories, interfaces, and the on-chip sensing and actu-
ations (OCSA) block that allows ubiquitous sensing 
and actuation at the CPSoC-Core level. These CPSoC 
Cores are tiled into a (homogeneous or heteroge-
neous) CPSoC computational fabric (lower right 
of Figure 8), using a network-on-chip (NoC) inter-
connect. Note that each router box in the NoC is 
also equipped with a sensing-and-actuation block 
(colored green) that enables monitoring and actu-
ation at each NoC router. The left side of Figure 8 
expands the abstraction layers of Figure 7, showing 
the CPSoC tiled hardware fabric at the lowest layer, 

Figure 7. Cross-layer virtual sensing and actuation at different layers of 
CPSoC [88].
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and the applications executing on this platform at 

the highest layer. The adaptive, reflective middle-

ware layer (yellow box on the left side of Figure 8) 

orchestrates the distributed sensing and actuation 

approach, where each component and core can 

make local decisions to manage the fabric.

The CPSoC architecture achieves self-awareness 

through three key ideas: 

•	 Cross-layer virtual and physical sensing &  
actuation. CPSoCs are sensor-actuator-rich 

MPSoCs that include several on-chip physical sen-

sors (e.g., for aging, oxide breakdown, leakage, 

reliability, and temperature) on the lower three 

layers as shown by the OCSA block and the intro-

spective sensing units in Figure 8. Virtual sensing 

and actuation [80] is accomplished across the 

abstraction stack. For instance, virtual actuations 

such as application duty cycling and checkpoint-

ing are software/hardware interventions that can 

predictively influence system design objectives. 

Virtual actuation can be combined with physical 

actuation mechanisms commonly adopted in 
modern chips [81]. 

•	 Simple and self-aware adaptations. Two key 
attributes of the self-aware CPSoC are adap-
tation of each layer and multiple cooperative 
ODA loops. As an example, the unification of 
an adaptive computing platform (with com-
bined dynamic voltage and frequency scaling, 
adaptive body biasing, and other actuation 
means) along with a bandwidth adaptive NoC 
offers extra dimensions of control and solu-
tions in comparison with traditional MPSoC 
architecture. 

•	 Predictive models and on-line learning. 
Predictive modeling and on-line learning abil-
ities enhance self-modeling abilities in the  
CPSoC paradigm. The system behavior and 
states can be built using on-line or off-line lin-
ear or nonlinear models in time or frequency 
domains [82]. CPSoC’s predictive and learning 
abilities improve autonomy for managing sys-
tem resources and assisting proactive resource  
utilization [77].

Figure 8. CPSoC architecture with adaptive Core, NoC, and the ODA Loop as  
Middleware [88].
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While CPSoC is a good initial exemplar for a self-
aware SoC platform, it handles to a limited extent the 
self-awareness shown in the paradigmatic architec-
ture of Figure 1. The monitoring-deciding-execution 
loop is intrinsically part of CPSoC, coupled with 
some limited learning and history mechanisms. 
Attention mechanisms have not been considered 
in CPSoC, and the goal hierarchy and goal man-
agement is in a very primitive form. The desira-
bility scale is implicitly encoded within the goals, 
and has not been explicitly modeled within CPSoC. 
Furthermore, the self-awareness models in CPSoC 
did not consider malicious attacks, functional 
design errors, and nonfunctional aberrations, and 
show a lot of room for growth in its self-awareness 
capabilities. Thanks to its modular cross-layer archi-
tecture, CPSoC has the potentials to cope with the 
discussed limitation by providing access to a rich 
set of cross-layer virtual and physical sensors and 
actuators, and the capacity to become self-aware in 
all respects.

Challenges
The term self-awareness encompasses a host of 

concepts and techniques that together offer great 
promises to tackle the design, maintenance, and 
operation of complex, heterogeneous systems that 
are supposed to be adaptive, autonomous, highly 
efficient, and always sensible. Even though a sig-
nificant effort has already been spent in exploring 
this promise, the more intricate challenges still lie 
ahead. So far we have focused on picking low hang-
ing fruits by incrementally extending existing archi-
tectures and methodologies. However, the research 
community will make faster progress when we do 
not exclusively focus on incremental development 
where each additional feature has to be thoroughly 
and quantitatively justified by the added value it 
gives. As this survey shows, self-awareness encom-
passes a host of concepts and techniques that 
together facilitate a comprehensive understanding 
of the system’s state and its situation in the world. 
Picking out individual elements may only result in 
small gains or none at all. Thus, we recommend to 
take a step back, try to comprehensively understand 
self-awareness, what it is, what it consists of, what it is 
good for, and, based on this understanding, realize 
it as a whole in cyber-physical computing systems. 
This approach would be inspired and informed 
by the widespread presence of self-awareness in 

animals given that survival of an expensive feature 
under relentless evolutionary pressure is a strong 
evidence for its benefit. A case in point is the main-
tenance of a history. It has hardly been studied in 
self-aware computing systems and, consequently, 
there is no strong experimental evidence for its ben-
efits. We still believe it is indispensable for compre-
hensive self-assessment based on its importance in 
psychology [83], [84], and the intuitive argument 
that a comprehensive understanding of the cur-
rent situation includes the sequence of events and 
states that historically led to the current situation. 
Moreover, historical data is required for future learn-
ing that involves a reassessment of past situations. 
Thus, including it in research on self-aware comput-
ing systems is justified by the expectation that it will 
turn out to be beneficial.

Apart from considerations of research strategy, 
we identify five urgent technical challenges that 
have to be addressed in order to fully honor the 
promise of self-awareness: learning, formulation 
of goals, scalability, ensuring correctness, and an 
appropriate design methodology.

Learning. For truly self-aware systems, contin-
uous, dynamic learning is indispensable. A major 
reason for the amazing feats of animals and plants 
is the relentless learning that goes on all levels 
from the subcellular organelles to the individual 
and the community. As Figure 1 indicates, learning 
is an integral part of many components and func-
tions. Hence, it must be integrated in the sensor and 
monitoring nodes, in the attention mechanism, the 
decision making, the goal management, the execu-
tion and actuation, and in virtually every part of the 
system. Learning is only possible when feedback 
signals are available. Thus, the system must be 
pervaded by information flows providing feedback 
to all the learning elements. Many of our machine 
learning algorithms are not sufficiently efficient 
and optimized for the requirements of on-chip 
learning. Hence, we need both adapted machine 
learning algorithms and a system architecture that 
lends itself to continuous, pervasive learning, and 
optimization.

Formulation of goals. We need to be able to 
formulate quantitative goals for the design and the 
operation phases and we need to study the involved 
tradeoffs. The traditional metrics of performance, 
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power, energy, cost, and fault tolerance are well 
understood. But quantitative metrics for adaptability, 
resilience, autonomy, self-assessment, and situation 
assessment do not exist and are controversial or are 
limited in scope. However, we need to quantify these 
properties to explore the tradeoff space spanned by 
the traditional and the self-awareness metrics. This 
has to be done for the design phase, but also and 
even more challenging, for the operation of the sys-
tem since the system itself has to understand and 
decide on these tradeoffs in real time. Research on 
goal formulation and management has been done 
in the context of artificial agents [85]–[87], which 
mainly focus on providing the capability to nom-
inate top-level goals and managing the nominated 
goals by prioritizing them. However, SoC’s require-
ments and restrictions necessitate customized, 
light-weight, and minimally conflicting approaches 
which consider the priority, significance, objectives, 
and requirements of each application, while holisti-
cally coupling the overlapping and/or contradicting 
objectives of different applications to satisfy the sys-
tem constraints.

Scalable self-awareness. Most applications do 
not require and cannot afford all features of a full 
blown self-aware system. To apply self-awareness to 
a wide range of systems, from resource constrained 
sensor nodes to multiprocessor platforms, designers 
should be able to easily select the level of capabilities. 
To this end, a design space exploration method has to 
provide the means to trade-off functions and resources 
in a well-defined self-awareness design space.

Ensuring correctness. Validating a fixed, 
well defined functionality has been proven diffi-
cult enough due to the vast state spaces involved. 
Validating an adaptive system that, by definition, 
changes its behavior in ways unpredictable at 
design time seems to be hopeless. Still, if we can-
not guarantee that certain bad behavior can never 
happen, the appeal of self-aware and autonomous 
systems will be limited to tiny application domains. 
Interestingly, self-awareness may be part of the solu-
tion because it can comprise a safety monitor that 
checks for and prohibits all unsafe and bad behav-
ior. For this to work, the space of unsafe and bad 
behavior has to be specifiable in unambiguous and 
efficient terms leaving the system to freely explore 
the vast, unlimited space of safe and good behavior.

Design methodology. Traditional design meth-
odologies rely on the assumption that we can spec-
ify, validate, and test the desired and acceptable 
behavior of the system. When we allow the adap-
tive, autonomous system to explore behavior that 
has not been specified at design time, this assump-
tion breaks down. Hence, we have to consider alter-
native methodologies. For instance, the designers 
could use a general purpose, self-aware, autono-
mous machine, that in principle can meet a broad 
range of goals in any environment. Then the design-
ers “fill” the system with a specific set of goals for 
a specific application and leave it to the system to 
find ways to accomplish these goals. Although this 
vision seems remote, we will be forced to contem-
plate such options as the pain of designing more 
and more adaptive systems with traditional method-
ologies grows.

While these challenges seem formidable, 
researchers can draw from a range of disciplines 
with long history and large knowledge. Hence, given 
the state of the art, as summarized in this survey, we 
can certainly be confident that the development of 
fully self-aware SoCs is within the reach of the com-
munity in the coming years. � 
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