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Editor’s note:

Self-awareness is desirable feature of emerging computing systems. It
helps systems to understand, manage, and report on their own system
behavior. This paper presents an overview centered around the paradigm

of self-awareness in computing systems.

—~Partha Pratim Pande, Washington State University

Il IN ADDITION TO its roots in psychology, the notion
of self-awareness has been used in computing in
a variety of different domains such as autonomic
computing, organic computing, adaptive systems,
and self-organizing systems, often with different,
implicitly given definitions and objectives. Thus, a
complete survey with all relevant work is impossible
in the limited space of this article and a consistent
treatment of this concept across all domains is a
challenge. Consequently, our survey is incomplete
in that it does not cover all interesting work. Rather
it tries to

explain the motivation of researchers and their
interest in this topic,

show its benefits,

provide a paradigmatic reference frame that
relates to all key ingredients of self-awareness,
give a cursory historical account, and a rep-
resentational and fair exposition of the concepts
of self-awareness in the various domains with sys-
tems on chip as the main focus.
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First, we briefly introduce self-
awareness and provide a reference
definition of the term. Then, in “Benefits
in Systems on Chip,” we list benefits
and motivate why researchers have so
extensively studied and used the con-
cept. In “Self-Awareness Paradigm,” we
introduce a paradigmatic architecture
of a self-aware system (Figure 1) which,
in our opinion, is complete in the sense that it con-
tains all crucial elements of self-awareness. Since in
the literature the term self-awareness is often used
to encompass only parts, frequently different parts,
of the elements in our paradigmatic architecture, it
serves as reference to which previous work can be
easily related. In “Related Research Directions,” we
discuss the main domains where self-awareness has
been more or less extensively used, namely, auto-
nomic computing, self-adaptive systems organic
computing, and control theory. In a way, the first
three sections can be considered an introduction to
our main topic, self-awareness in SoCs. This lengthy
introduction is necessary because of the diverse use
of the concept in various domains, but we hope to
provide a solid basis and understanding for the dis-
cussion of work on on-chip self-awareness and to
appreciate the use and utility of the involved con-
cepts. Finally, in “Challenges,” we list and briefly
discuss the most important challenges of further
research in this field.

What is self-awareness?

When engineers contemplate a concept they
instinctively ask how it can be made useful and the
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Figure 1. Paradigmatic architecture of a self-aware system. “S” nodes are sensors
and “A” nodes are actuators. A proper assessment of the self and the environment
(self-monitoring and environmental-monitoring) are the basis for active goal
management and effective decision making. The desirability scale is the currency
of assessment. All assessments that are considered “good” or “bad” are mapped
onto this scale. This allows the comparison of otherwise unrelated properties, e.g.,
the quality of a signal and the load-level of the battery. Machine learning algorithms
are useful for all activities. Both monitoring functions can continuously improve

to identify the normality and categorize aberrations. Goal management can learn
to dynamically prioritize subgoals in a way to optimize the accomplishments for
high-level goals. The decision making can optimize its algorithm based on the
effect of its decisions on the system’s performance. The execution engine can
learn to generate control commands for the best possible effect. Note that many
connections are not drawn for the sake of clarity.

desire to fully understand all the details and implica-
tions seem to be less important than to find a way to
utilize it for a practical end. This has been the fate of
self-awareness as a subject of study in the context
of computing during the last 20 years. The pyramid
of self-* properties (Figure 2), originally proposed
in the IBM initiative on autonomic computing in
2003 [1], [2], illustrates this point. Motivated by the
objective to make software systems more flexible,
and truly self-adaptive researchers have identified
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self-configuration, self-healing, and other self-* fea-
tures as essential properties with self-awareness and
context-awareness located at the primitive level.

Although adaptive systems with no self-awareness
exist, it has been argued that a sophisticated self-
model is a prerequisite for sensible adaptive behav-
ior when the environment and the system itself are
sufficiently complex and there exists a causal rela-
tion between self-* properties and high quality in
complex software systems [3].
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Figure 2. The hierarchy of self-* properties, first
proposed in 2001 but cited here from Salehie and
Tahvildari [2] in 2009.

As a consequence of this goal oriented approach
in the study of self-awareness in computing sys-
tems, the research agenda has been dominated by
a quest for utility. While this approach leads more
directly to applicable results, it also makes a deeper
understanding of the concepts appear less desira-
ble. As an example, we quote fully a definition of
self-awareness offered by Kounev [4] in 2011 and
also in a modified form more recently in 2015 by
Kounev et al. [5]:

Self-awareness, in this context, is defined by the
combination of three properties that IT systems and
services should possess:

1) Selfreflective: i) Aware of their software archi-
tecture, execution environment, and the hard-
ware infrastructure on which they are running,
ii) aware of their operational goals in terms of
QoS requirements, service-level agreements
(SLAs) and cost- and energy-efficiency targets,
and iii) aware of dynamic changes in the above
during operation.

2) Selfpredictive: Able to predict the effect of
dynamic changes (e.g., changing service work-
loads or QoS requirements) as well as predict
the effect of possible adaptation actions (e.g.,
changing service deployment and/or resource
allocations).

3) Self-adaptive: Proactively adapting as the envi-
ronment evolves in order to ensure that their QoS
requirements and respective SLAs are continu-
ously satisfied while at the same time operating
costs and energy-efficiency are optimized.
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It is an excellent definition, which we will
use as reference in this survey. However, there
are two interesting observations to note. First,
self-awareness has moved up in prominence. It
has been at the bottom of the self-* pyramid in
2001 (Figure 2) as a supporting feature for more
advanced adaptive behavior. In the 2011 definition,
the term is used to encompass all relevant self-*
properties including self-adaptiveness. In a way the
pyramid has been turned upside down because the
community has realized that self-awareness is not
a simple collection of state variables that describe
the state of the system (item 1 in the above defi-
nition), but it has also to include the operational
goals of the system and it has to properly reflect
the effects of its own actions and of environmen-
tal changes on these state variables. Essentially, it
has to include a complete, even though abstracted,
model of the static and dynamic system properties.
Once the dynamic properties are also properly
represented, a prediction, perhaps by simulation,
of the system and its interaction with the environ-
ment becomes possible and it is self-predictive
according to item 2 in Kounev’s definition. Based
on this capacity of prediction, it can proactively
adapt its own actions earlier than it would oth-
erwise be possible (item 3). Hence, rather than
being a simple elementary property to be used by
a self-adapting system controller, self-awareness,
once fully accomplished, makes proactive, adap-
tive behavior almost straight forward.

The second point to note about the defini-
tion is that it is purely utilitarian in that it does
not try to capture the essence of the rich concept
of self-awareness. It assumes that self-awareness
as defined, i.e., selfreflective + self-predictive +
self-adaptive, is useful for accomplishing the QoS
requirements and the service-level agreements of
the system, and thus, it should be implemented. It
does not address the question, why it deserves to be
a separate concept and what it adds to self-reflective,
self-predictive, and self-adaptive. Although we have
no definite answer to these questions, it may well
worth to ponder them in order to identify additional
aspects that are essential for self-awareness but not
yet fully accounted for in the state of the art. There
is some indication that learning, keeping track of his-
tory, and dynamic goal management are such essen-
tial aspects. For instance, Chandra et al. [6] argue
that a system has to acquire a substantial part of the
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self-model during operation by some kind of learn-
ing process to be considered self-aware. Externally
built and implanted knowledge does not suffice.
However, their argument is not of principal nature
but claims that it will be very difficult to develop a
sufficiently accurate self-model without a dynamic
tuning and optimization process. While this may be
debatable, it illustrates the complexity of the con-
cept even if the only concern is its usefulness in an
engineering endeavor.

Aswe discuss in “Related Research Directions,”
autonomic computing is not the only branch of
research that has struggled with the concept of
self-awareness. Organic computing, bioinspired
computing, and self-organization are other prom-
inent lines of research that have approached the
topic from different angles and contributed with
specific insights and solutions. Before we discuss
them in the above-mentioned section, we summa-
rize the potential benefits (“Benefits in Systems on
Chip”) and sketch a self-aware computing para-
digm in “Self-Awareness Paradigm” that serves as
a reference and reflects to some degree all major
proposals for self-aware systems and architectures.

Benefits in systems on chip

Researchers of self-awareness generally argue
that it allows a system to deal better with complex-
ity. The complexity comes from the system itself (its
structure and its state space), from the environment,
and from the exceedingly diverse goals and objec-
tives it has to meet.

Hardware state assessment and manage-
ment. Self-awareness in hardware systems often
facilitates the management of temperature [7],
power/energy [7]-[9], and real-time performance
[9]-[11]. Also, aging effects are addressed with
increasingly complex models to assess the progress
of aging and select counter measures [12].

Resource allocation. Given often the high
number of processor, memory, and interconnect
resources available, resource allocation is a common
target of self-aware enabled management schemes
in both hardware and software. Task allocation and
MPSoC configuration with higher energy efficiency
based on cross-layer self-awareness on chip is pro-
posed by Sarma and Dutt [13]. Because the approach
extends across individual components (cores,
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routers) and layers (HW, NoC, OS middleware, and
application), local assessments have to be integrated
into a comprehensive system-level assessment. Based
on a large number of sensors and comprehensive
self-assessment of the system load balancing, task
allocation, scheduling, and migration for MPSoCs
result in significant improvements [14], [15].

In the SElf-awarE Computing (SEEC) frame-
work, dynamic adaptation through a smart inter-
face between platform and application is achieved
[9], [16]. The application registers its performance
goals and the platform is responsible for meeting
those goals by continuously monitoring the sys-
tem’s performance and appropriately adjusting the
resource allocation.

An appropriate self-model allows to allocate
scarce communication resources efficiently. Happe
and Trammel-Keller [17] use flexible protocol stacks
to allow for dynamic rearrangements and optimi-
zation of the communication protocols based on
needs, requirements, and constraints.

In general, IT systems meeting quality of service
requirements and service-level agreements under
energy-cost constraints is a tremendously complex
task [4]. This challenge has driven the field of auto-
nomic computing during the last two decades and
with the growing size and complexity of the appli-
cations and the IT systems, the self-models and the
self-awareness concepts have grown in complexity
and sophistication as well [1], [5].

Reaction to changes in the environment.
Many systems that interact with the physical
environment by means of sensors and actuators
have to adapt to changing conditions. Adaptive
systems, as for example surveyed by Krupitzer et
al. [18] and further elaborated in “Self-Adaptive
Systems,” have been studied in various applica-
tions. By providing a comprehensive assessment
of the state of the system and its environment,
self-awareness offers a solid foundation for adap-
tation decisions and consequently can increase
the quality of adaption. Indeed, we expect a direct
dependence of the quality of adaption on the qual-
ity of self-assessment.

In summary, we conclude that self-awareness
leads to more sensible behavior based on more
detailed and often more explicit representation
of the system’s goals, its own state (available
resources, faults, etc.), and the environment.
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Moreover, it leads to more efficiency due to better
and adequate usage of resources. It can be used to
detect aberrations of the system’s behavior (faults,
aging, malicious attacks, design errors, etc.) and of
the environment. However, many of these poten-
tial benefits are only superficially studied and it
remains to be seen what solutions can be found
and how effective they are.

Self-awareness paradigm

Figure 1 shows a paradigmatic architecture of a
self-aware system that allows to cover and relate most
of the systems proposed in the literature. However,
this is not the only or the best way to illustrate the
structure of self-awareness. Being a loosely defined
umbrella concept, there are many options regarding
what to include and what to exclude, what to high-
light and what to deemphasize, and what to make
explicit and what to make implicit. Other researchers
have made different choices, e.g., Lewis et al. [19],
presumably due to different preferences in their
research. For us, attention, goal management, and a
central desirability scale are key elements not found
in other architectures of self-awareness. Hence, we

use Figure 1 as a basis of discussion in this article
but in the absence of either theoretical arguments or
empirical evidence that clearly favors one architec-
ture over another, we suggest to pragmatically use
whatever is more suitable in a given context.

Kounev’s [4] definition cited above in “What is
Self-Awareness?” is represented in this figure as fol-
lows. The self-reflective part is located in (i) the static
self-model, (ii) the goal management and goal hier-
archy, and (iii) the dynamic self-model. The self
predictive part is located in the dynamic self-model,
and the self-adaptive part is located in the decision
making, the goal management, and the goal hierar-
chy. More recently, Kounev et al. [5] have revised this
notion and have formulated the following definition.

Self-aware computing systems are computing sys-
tems that:

learn models capturing knowledge about them-

selves and their environment (such as their

structure, design, state, possible actions, and

run-time behavior) on an ongoing basis

reason using the models (for example, predict,

analyze, consider,and plan) enabling them to act
based on their knowledge and
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reasoning (for example, ex-
plore, explain, report, suggest,
self-adapt, or impact their envi-
ronment) in accordance with
higherlevel goals, which may
also be subject to change.

Item 1 can be found in the
green learning boxes of Fig-
ure 1 and item 2 in the boxes
dynamic self-model, goal man-
agement, and decision making.

A self-awareness refer-
ence architecture has been
proposed by Lewis et al. [19]
as shown in Figure 3. All its
important elements can be
mapped to the paradigmatic
architecture of Figure 1 but a

Physical

A

few points are worth noting.
Meta self-awareness refers
to the ability to be aware of

Figure 3. Reference architecture for self-aware computing systems

proposed by Lewis et al. [19].
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and reason about its own self-
awareness. It allows to con-
trol and dynamically change
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the level of self-awareness and thus the resources
expended on the self-awareness processes them-
selves. In some situations, or perhaps most of the
time, it is unnecessary to keep these processes active
because other tasks have higher priority. In Figure 1,
this is not made explicit but can be considered part
of the goal management strategy and decision pro-
cedure. We have chosen to keep it implicit because
meta self-awareness is a rather specialized feature
and expected to be present in only few, high-end self-
aware systems.

Similarly, time awareness is made explicit in
Figure 3 and refers to the capability to explicitly
reason about the state changes of the system and
its environment over time. In the paradigmatic
sketch of Figure 1 this is not explicit but the means
for it are provided by keeping track of the history,
by representing dynamic changes, and by the goals
and decision routines. In the same way, stimulus
awareness, interaction awareness, and goal aware-
ness refer to abilities to reason about specific
aspects of the system. They are not made explicit
in Figure 1, but may be included as part of specific
goals, decision procedures, and the dynamic inter-
nal models.

Figure 3 distinguishes between private and pub-
lic self-awareness. Public aspects can be inspected
from the outside like physical size, battery load level,
and initiated actions. Private aspects are not directly
visible outside and may refer to internal sensors,
counters, and registers. Both are part of the static
self-model in Figure 1 but not distinguished.

On the other hand, Figure 3 does not make
explicit history mechanisms, the distinction between
self-model and environment models, attention, desir-
ability, goal management, and the various places
where learning contributes to continuous tuning
and optimization.

In Figure 1, the processes of self-monitoring and
environment-monitoring are fairly separated and
only their results are only combined for decision
making. In contrast, Figure 3 treats both as one inte-
grated process. We consider awareness to be the
result of a hierarchical process where in the first-
level data from individual sensors are preprocessed
and filtered individually after which more and more
sensory information is gradually fused to establish
increasingly abstract concepts. The integration
of information from internal and external sensors
occurs in most cases rather late in the hierarchy.
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Thus, itis justified to represent the processes responsi-
ble for self- and environment-monitoring as separate
activities. However, they may exchange information
at every step and for some systems a more integrated
solution may be preferable as depicted in Figure 3.
In fact, complete isolation and complete integra-
tion of these two processes should be considered
as extreme points in a continuous design space
with practical solutions will almost always fall some-
where in between.

Dutt et al. [20]-[22] have listed relevant features in
self-aware systems and have defined them as follows:

Semantic interpretation includes an appropri-
ate abstraction of the primary input data and a
disambiguation of possible interpretations.
Desirability scale provides a uniform good-
ness-scale for the assessment of all observed
properties.

Semantic attribution maps properties into the
desirability scale suggesting how good or bad an
observation is for the system.

History of a property: Awareness of a property
implies awareness of its change over time.
Goals provide the context in which interpreta-
tion and semantic attribution is meaningful.

The purpose of a smart embedded systems is to
achieve all its goals.

Expectation on environment: The system
expects a specific environment and detects
if the environment deviates significantly from
expectations.

Expectation on subject: Similarly, the sys-
tem’s own state and condition are continuously
assessed to detect deviations, degradation, per-
formance, and malfunctions.

Inspection engine: Continuously monitoring
and assessing the situation requires a specific
machinery that integrates all observations into a
single, consistent world.

All these processes can be identified in Figure 1.
Semantic interpretation and attribution are not
shown in the figure and are performed in the moni-
toring blocks and influenced by the goals and their
priorities. A dynamically changing goal hierarchy
will also modify the semantic attribution and atten-
tion. The inspection engine is not explicit in Figure 1,
but is part of the self-monitoring block with the help
of several other blocks. An interesting point in this
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list of features is the emphasis on data abstraction
and the semantic interpretation in the context of
goals and an application. The importance of these
processes has been elaborated by Taherinejad et al.
[23] and they are part of the self and environmental
monitoring tasks in Figure 1.

Related research directions

Autonomic computing

After the formulation of its vision in 2003 [1],
the field has quickly grown and flourished. In
a keynote at the International Conference on
Autonomic Computing, Jeff Kephart [24] counted
overall 8000 papers published, 200 patents issued,
and 200 conferences soliciting papers on the topic
of autonomic computing. Since then, the field
has continued to be active but has diversified
and overlapped with control, machine learning,
cloud computing, and web services. A main fea-
ture in much of the work on autonomic comput-
ing is a variation of the MAPE-K control loop [25]
that illustrates the monitor-analyze-plan-execute
cycle and is based on knowledge, which often
means some kind of model, as shown in Figure 4.
Interestingly, the generality of this model has not
increased, but in many approaches the models
have been customized for a more specific purpose
like resource management or maintaining a spe-
cific QoS level. An example of work against this
trend is the approach of Sanz et al. [26], which pro-
poses a secondary control loop on top of the inner
control loop resembling an explicit self-model.
This outer loop is derived from the design time
model but used during operation.

Plan

Analyze

Knowledge

Monitor Execute

\ /

Figure 4. MAPE-K Loop illustrating a
monitor-analyze-plan-execute cycle based
on Knowledge [25].

However, most of the work in the field has
adopted less general and more specialized
self-models. Even today, central themes are still
self-adaptation, self-optimization, self-configura-
tion, and self-healing [27], [28], but in industrial
practice its original vision has not fully material-
ized. There, trigger-based approaches are still dom-
inant [29], [30], which means that triggering rules
fire when a metric such as resource utilization or
load imbalance exceeds a threshold value. In aca-
demia, a number of systems with model-based per-
formance and resource management have been
developed to assure quality of service levels, for
instance DiVA [31], MADAM [32], MUSIC ([33],
and SASSY [34]. They typically use formalisms like
Petri nets [35], queuing networks [34], stochastic
process algebras [36], statistical regression [37],
or kriging models [38] for performance modeling.
However, from our perspective, their self-models
are limited because they all do not take the soft-
ware architecture and the execution environment
of the system into a detailed account. A survey from
Becker et al. [39] confirms this impression. Hence,
these systems have limited self-awareness. On the
other hand, approaches that do take the software
system and execution environment into account
are mostly used at design time and not part of the
system during operation [40].

It seems that the more sophisticated aspects of
the autonomic computing vision has had limited
impact and practical solutions based on traditional
performance models, and heuristic rule-based
approaches have so far been sufficient to address
the industry’s need. This can on one hand be attrib-
uted to the conservative instinct of managers that
prefer practically well proven and understood solu-
tions and, on the other hand, to the availability of
inexpensive computing, memory, and communica-
tion resources that provide little incentives to find
the most optimal or efficient solution. We have still
limited understanding of the implications at the
system level when advanced techniques from the
machine learning, the control theory, and optimiza-
tion domains are integrated with complex models.
This has also been concluded by Kounev et al. [5] at
the 2015 Dagstuhl Seminar:

Another finding was that much work remains
to be done at the system level. In particular,
while there has been considerable success
in using machine learning and feedback
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control techniques to create adaptive auto-
nomic elements, few authors have success-
fully built autonomic computing systems
containing a variety of interacting adaptive
elements. Several authors have observed
that interactions among multiple machine
learners or feedback loops can produce
interesting unanticipated and sometimes
destructive emergent behaviors; such phe-
nomena are well known in the multiagent
systems realm as well, but insufficiently
understood from a theoretical and practical
perspective.

Self-adaptive systems

Work on self-adaptive systems naturally
emphasize the task of adaptation and considers
self-awareness properties only so far as they help
to accomplish adaptation. It turns out that for more
sophisticated adaptation models of the system and its
environment become crucial, leading to model-based
approaches [18]. Typically, three types of models are
distinguished: system models to represent the system
state, goal models to represent policies and rules, and
environmental models to capture the context [18],
[41]. Most work on model-based self-adaptation has
been reported for general software systems. Based
on the Software Engineering Institute’s notion of
software product lines [42], a number of approaches
model different system features as a basis for select-
ing dynamically the most appropriate configuration
in a particular situation (see [32], [33], [43]-[46];
more examples are discussed in the surveys by
Huebscher and McCann [41] and by Krupitzer et al.
[18]). However, it should be noted that a model of
different software configurations does not constitute
self-awareness. Self-awareness, as we understand the
term in this survey, is based on a process of dynam-
ically, if not continuously, acquiring data about the
system itself and its environment to infer the current
state and condition. Thus, most work on self-adaptive
software systems do not cover self-awareness as
defined in “What is Self-Awareness?” and “Self-
Awareness Paradigm” above, even when using vari-
ous models of the system extensively.

Work on self-adaptive resource constrained
cyber-physical systems is more limited but comes
closer to our notion of self-awareness. For the
domain of smart cities and buildings, Giirgen
et al. [47] propose a self-aware cyber-physical
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architecture that manages the data collection from
sensors, the analysis, the planning, and the adapta-
tion of the controlled object (e.g., a building). Smart
camera networks have to deal with quickly chang-
ing, diverse, and complex environments. Esterle et
al. [10] argue that fixed configurations are infea-
sible and the benefits of self-awareness are due to
its coordinating effect on a distributed assessment
and decision making, flexible rearrangements of
the network under performance, cost, and real-time
constraints. In both examples, important features of
self-awareness are included but aspects like learn-
ing, goal management, attention, and a central
desirability scale are only rudimentary present or
not at all.

Organic computing

In the early 2000s, the increasing complexity of
computing systems led people to conclude that unex-
pected emergent behavior is unavoidable once a cer-
tain complexity has been reached. Consequently, the
design of desired and the control of undesired emer-
gent behavior were identified as main challenges. In
2005, Schmeck [48] formulated the vision of Organic
Computing as a response to the threatening view of
being surrounded by interacting and self-organizing
systems, which may become unmanageable, showing
undesired emergent behavior. In the following years,
the paradigm of Organic Computing was explored in
a series of research projects, and in 2011, this work
has been nicely summarized in the book Organic
Computing, edited by Miller-Schloer et al. [49].
Kramer et al. [50] proposed a two level monitoring
approach to self-awareness. The low-level monitoring
is based on counting events such as cache misses,
fault occurrences, or performance counters. In prin-
ciple, any event that can be counted can be subject
to this mechanism. The monitor can be programmed
during operation to associate any type of event with
event-IDs allowing for flexibility with respect to the
kind of events under observation. High-level moni-
toring uses the event counts for state classification to
reflect relevant information about the systems perfor-
mance and state. Since event grouping and limited
event abstraction is possible, the resulting system can
be considered rudimentarily self-aware. In a similar
spirit, learning classifier systems [51] and eXtended
Classifier Systems (XCS) [52] have been used to
assess a systems state as a base for decision making
such as load management and task allocation [53].
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The decisions are coded in rules. A rule consists of a
condition, an action, and a predicted reward value. If
the condition of a rule matches, i.e., if the system is in
the state described by the classifier, and the expected
reward is sufficiently high, the action part of the rule is
triggered. The rules are optimized by heuristics such
as genetic algorithms and reinforcement learning. In
the DodOrg project, these and other ideas have been
integrated to provide self-awareness in a many-core
architecture, which in turn is used for power and ther-
mal management [54].

In summary, the organic computing community
has developed a number of innovative approaches
to monitoring, adaptation, self-organization, distrib-
uted control, and particularly contributed to a better
understanding of phenomena of emergent behaviors
such as emergent control [55]. However, similar to
the autonomic computing endeavors, it has focused
more on the decide and act parts of the observe-
decide-act (ODA) cycle. For instance, Kramer
et al. [50] have observed that in order to enable
required self-organization capabilities, a monitoring
infrastructure has to provide self-awareness, but have
not well defined what is meant with self-awareness
and have used a rather limited and static scope of
the concept. Interesting aspects of awareness such
as abstraction, attention, awareness of the historic
changes in its own behavior and in the environment
have been hardly touched upon.

Control theory

All the problems mentioned in “Benefits
in Systems on Chip” have been successfully
addressed without the explicit label of self-aware-
ness. Numerous algorithms for scheduling and task
allocation have been developed and deployed in
real, demanding large scale systems and tempera-
ture and power managers are routinely built into
each and every chip on the market. For instance,
on-chip dynamic power management [55], [56]
has been accomplished by control loops like more
or less complex proportional, differential, integral
(PID) controllers, where measured or estimated
temperature, current flows, and energy levels in
batteries are used to tune voltage, frequency, and
application load in order to meet given constraints
and optimization objectives. Power management is
a case in point how exceedingly complex internal
models have been used as the problems become
increasingly challenging and sophisticated over

time. In simple processors of the 1980s and 1990s
hardcoded and simple algorithmic solutions have
dominated [56], while recent many-core SoCs
operating at the edge of thermal stability require
advanced power management based on detailed
information reflecting the state and objectives of
the hardware and the applications [55]. In many
core heterogeneous SoCs with several applications
concurrently sharing the platform the application
behavior regarding the computational load, mem-
ory access, and communication can vary over
orders of magnitude in short time periods and are
often highly unpredictable. P. Bogdan and col-
leagues have shown how accurate, statistical mod-
eling of workload can significantly improve the
efficacy power management [57]-[59].

There have also been efforts to hierarchically
manage complex many-core systems by leveraging
different structures of feedback control loops. For
instance, in [60], a number of nested feedback con-
trol loops with different knobs and actuation epochs
have been hierarchically deployed for power man-
agement with the objective of maximizing the per-
formance while respecting the thermal design power
budget. A centralized power management approach
with the same objective is presented in [61], which
considers both communication and computation
characteristics of many-core systems in the power
management policy. In a similar fashion, in [62],
a coordinated power management approach with
multiple scopes of actuation (virtual machine, clus-
ter, server, and core) is presented to cap the power
consumption of the system and balance the utiliza-
tion of the blades. Even though these approaches
have proved to be effective to manage complexity,
they focus on a single objective which is the main
reason why they use several simple single-input sin-
gle-output PID controllers to form a larger manager
for the respective problem at hand, which is often
maximizing performance under a power cap [63].

There have been recently some contributions to
leverage more advanced control theory approaches
such as linear-quadratic-Gaussian controller [64] to
implement multiple input, multiple output (MIMO)
formal control for maximizing resource efficiency.
For instance, in [65], Pothukuchi et al. utilize a
MIMO controller to track throughput (billions of
instructions committed per second) and power
consumption for an out-of-order single-core proces-
sor in a coordinated manner. Even though MIMO
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controllers have the advantage of tracking different
references with different priorities, they cannot effi-
ciently be applied to complex systems as obtaining
state-space models for complex systems is impracti-
cal, if not infeasible.

In general, tracking a single or multiple refer-
ence values, which is also called regulatory con-
trol, is the main application of control theory. As
can be observed from the aforementioned exam-
ples, this property is essentially useful for problems
where minimizing the tracking error of a parameter
is the main goal. For instance, providing a certain
quality of service (e.g., frame rate) for a realtime
application, capping power consumption of a sys-
tem, or controlling the thermal behavior of the chip
are among popular use-cases for control theory.
However, effects of actuations that cannot be mod-
eled using difference functions (e.g., task migration)
or problems that need optimization (e.g., minimize
an objective function under constraints) cannot
be properly addressed using classic control theory.
From another perspective, thanks to the feed-
back-based  structure, control theory-based
approaches are the best fit for problems such as
disturbance rejection (e.g., disturbance due to work-
load variations when applying dynamic voltage and
frequency scaling to control power) or handling
noise/uncertainty in measurements (e.g., noisy sen-
sors and virtual sensing), however, it is ineffective to
adapt or react to anomalies (e.g., faults), surprises,
or radical changes in high-level goals.

In summary, control theory provides guarantees,
has the ability to learn from feedback, and has the lux-
ury of formal reasoning and methodology. However,
restrictions such as the difficulty to obtain control
theoretic models (e.g., transfer functions) in the form
of difference equation and lack of a straightforward
process to specify reference values limits its efficacy
to be solely used for managing complex computing
systems. On the other hand, while this approach
works for a limited set of parameters and objectives, it
does not scale well when the complexity of modeling
the system dynamics increases. Modeling complex-
ity escalates with the number of control inputs (i.e.,
knobs), measured outputs (i.e., sensors), and subsys-
tems (e.g., cores) in multi- and many-core systems.
On top of that, heterogeneity of subsystems (e.g., in
big.LITTLE style processors) makes the system mode-
ling/identification even more complex. For instance,
when aging effects, hard and soft real-time constraints,
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and transient and permanent faults have to be con-
sidered in addition to temperature limits and battery
life time, and tuning knobs are available at circuit,
architecture, operating system, and application level,
the control loops become too complex to be used.
It should be noted that the first step to design a con-
trol-theoretic approach is to have an accurate-enough
model in hand.

Self-awareness offers the promise to be a scal-
able heuristic in that it can integrate any number
of parameters and still provide workable solutions
in real time and with sufficient quality. As in con-
trol theory, the set points need to be specified by a
higher entity, and the integration of self-awareness
with control theory can provide a layer of cognition
for controllers to coordinate them toward the cur-
rent goal of the system. So far this claim is still largely
a promise but recent work and also the articles in
this special issue show encouraging progress.

Self-awareness on chip

Features of self-awareness have found their way
in many SoC resource management solutions. The
vast majority follow a classic control loop approach,
opportunistically extending and customizing them
in ad-hoc ways as needed. In the following, we dis-
cuss four examples that stand out in that they have
self-awareness built into their architectures from the
very start.

ASoC. The autonomic SoC platform (ASoC) [66],
[67] is based on the organic computing paradigm
and aimed at many-core architectures. Functional
processing units, which are traditional cores, accel-
erators, memories, and other functional hardware
units, are monitored and controlled by units in a par-
allel layer, called the autonomic layer. For each core
or similar components in the functional layer, there
is a corresponding element in the autonomic layer,
named the autonomic element, that consists of a mon-
itor, an evaluator, an actuator, and a communicator,
as illustrated in Figure 5. For instance, the autonomic
element may monitor the load level in the functional
element and update the frequency accordingly. The
communicators allow the autonomic elements to
communicate with each other. Since each functional
element is shadowed by an autonomic element, we
have a distributed control system.

The evaluators are rule based. Each rule consists
of a matching pattern, an action, and a reward value.
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Figure 5. ASoC has two layers: a functional
layer consisting of cores and the like,

and an autonomic layer that controls

the functional elements via a monitor-
evaluator-actuator loop [67].

The patterns match the monitored values and deter-
mine which rule can apply in a given situation. For
example, a pattern could encode “too high load.”
The action encodes the change of frequency and
the reward value estimates how much the action
will improve the situation. This reward value is
then updated based on the actual improvement as
observed by the monitor.

ASoC exhibits some of the features of our par-
adigmatic architecture in Figure 1. There are
self-monitoring, decision making, and execution
components. Learning is present in a limited form.
The desirability scale and the goals are implicitly
coded in the rules. Attention, environmental mon-
itoring, goal management, and the more sophis-
ticated elements of self-monitoring, such as the
assessment of the reliability of the measured data,
are missing. However, it is conceivable to extend

Cluster
Agent

Application
Agent

Platform
Agent

Cell
Agent Q

Figure 6. The four-level control structure in
HAMSoC [8].
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the ASoC architecture to include those elements of
self-awareness as well.

SEEC. Hoffmann and coworkers at MIT have
developed SEEC [68], a general framework for self-
aware computing using an ODA paradigm. The
system cyclically monitors key features, applies a
control and decision algorithm, and deploys appro-
priate actions to adapt to changes in the environ-
ment and its own state. It is based on the heartbeats
API library [69], which defines a cyclic event called
a heartbeat. Through API functions, the application
can register rate and latency performance goals in
terms of the heartbeat period. Hence, the heart-
beats API is a standardized means to monitor the
performance of an application. The SEEC control-
ler adapts and optimizes the system’s behavior, for
instance, by allocating and scheduling resources
appropriately. The approach has been evaluated in
several applications for performance optimization
[68], power management [70], [71], and managing
multiple objectives [9]. Also, the concept of knobs
has been introduced [71] to expose steering facili-
ties such as processor speed or power modes. SEEC
allows to adopt different decision making strategies
and algorithms that have been studied extensively
[72], [73].

Relating the self-awareness features of SEEC to
the paradigmatic architecture of Figure 1, we note
that the monitoring-deciding-execution loop is thor-
oughly elaborated in SEEC while learning, history,
and attention mechanisms are not emphasized or
not used at all. An interesting aspect of SEEC is that
the goal formulation and management is assigned to
the application. The SEEC platform provides knobs,
control algorithms, and measurements to the appli-
cation, which in turn is responsible to formulate and
adjust its goals. Similarly, the desirability scale, as it
is related to and dependent on goals, is not part of
the SEEC framework.

HAMSoC. With hierarchical agent monitoring
SoC (HAMSoC), Guang et al. [74], [75] have pro-
posed a four-level hierarchical control structure,
as illustrated in Figure 6. Each cell agent monitors
and controls a core, an accelerator, or another func-
tional hardware block, which is similar to the func-
tional elements and autonomic elements in ASoC.
Cell agents have only local knowledge but are in
turn monitored and steered by cluster agents, which
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pursue optimizations for each respective local clus-
ter. The platform agent is responsible for the entire
SoC platform and can pursue platform-global opti-
mizations. It interacts with the application agent
that provides application specific goals and require-
ments, based on the heartbeat concept of SEEC [69].
In contrast to ASoC, which has only one level of con-
trollers communicating with each other, HAMSoC
proposes a hierarchy of controllers that each is host
to different objectives from the local to the applica-
tion level, as exemplified in a power and resource
management scenario [76].

Even though the HAMSoC framework of hier-
archical control has the potential to accommodate
most of the self-awareness properties of our paradig-
matic architecture of Figure 1, it has not been fully
elaborated and exploited. The HAMSoC controller
hierarchy would be an appealing match to a hierar-
chical goal management system. However, neither
goal management nor attention, history, or learning
mechanisms have been explored.

CPSoC. Cyber Physical SoC (CPSoC) [77] is a
self-aware embedded system paradigm that enhances
traditional MPSoCs with a sensor-actuator-rich
platform deploying a closed loop paradigm
emulating large-scale

(through sensor fusion) using virtual and physical
sensors, and in turn actuates (through actuator
fusion) via virtual and physical actuators. The CPSoC
architecture supports two classes of feedback loops:
adaptive control (red box in Figure 7) and self-aware
supervisory management that generates supervisory
policies (tan box in Figure 7). These feedback loops
are embedded within the adaptive, reflective mid-
dleware that orchestrates crosslayer sensing and
actuation.

Figure 8 shows a more detailed view of the
CPSoC architecture. On the top right of the figure is
a template of an individual CPSoC computational
Core, comprised of the computational units, mem-
ories, interfaces, and the on-chip sensing and actu-
ations (OCSA) block that allows ubiquitous sensing
and actuation at the CPSoC-Core level. These CPSoC
Cores are tiled into a (homogeneous or heteroge-
neous) CPSoC computational fabric (lower right
of Figure 8), using a network-on-chip (NoC) inter-
connect. Note that each router box in the NoC is
also equipped with a sensing-and-actuation block
(colored green) that enables monitoring and actu-
ation at each NoC router. The left side of Figure 8
expands the abstraction layers of Figure 7, showing
the CPSoC tiled hardware fabric at the lowest layer,

cyber-physical systems,
enhanced with smartness
through adaptivity
limited self-awareness [78].
CPSoC was developed pri-
marily in the context of
managing and exploiting
hardware variability using
the under-designed and
opportunistic  computing

and

paradigm [79].

The high-level system
architecture of CPSoC is
shown in Figure 7. The
middle of this figure shows
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Figure 7. Cross-layer virtual sensing and actuation at different layers of
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and the applications executing on this platform at
the highest layer. The adaptive, reflective middle-
ware layer (yellow box on the left side of Figure 8)
orchestrates the distributed sensing and actuation
approach, where each component and core can
make local decisions to manage the fabric.

The CPSoC architecture achieves self-awareness
through three key ideas:

Cross-layer virtual and physical sensing &
actuation. CPSoCs are sensor-actuatorrich
MPSoCs that include several on-chip physical sen-
sors (e.g., for aging, oxide breakdown, leakage,
reliability, and temperature) on the lower three
layers as shown by the OCSA block and the intro-
spective sensing units in Figure 8. Virtual sensing
and actuation [80] is accomplished across the
abstraction stack. For instance, virtual actuations
such as application duty cycling and checkpoint-
ing are software/hardware interventions that can
predictively influence system design objectives.
Virtual actuation can be combined with physical

actuation mechanisms commonly adopted in
modern chips [81].

Simple and self-aware adaptations. Two key
attributes of the self-aware CPSoC are adap-
tation of each layer and multiple cooperative
ODA loops. As an example, the unification of
an adaptive computing platform (with com-
bined dynamic voltage and frequency scaling,
adaptive body biasing, and other actuation
means) along with a bandwidth adaptive NoC
offers extra dimensions of control and solu-
tions in comparison with traditional MPSoC
architecture.

Predictive models and on-line learning.
Predictive modeling and on-line learning abil-
ities enhance self-modeling abilities in the
CPSoC paradigm. The system behavior and
states can be built using on-line or off-line lin-
ear or nonlinear models in time or frequency
domains [82]. CPSoC’s predictive and learning
abilities improve autonomy for managing sys-
tem resources and assisting proactive resource
utilization [77].
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Figure 8. CPSoC architecture with adaptive Core, NoC, and the ODA Loop as

Middleware [88].
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While CPSoC is a good initial exemplar for a self-
aware SoC platform, it handles to a limited extent the
self-awareness shown in the paradigmatic architec-
ture of Figure 1. The monitoring-deciding-execution
loop is intrinsically part of CPSoC, coupled with
some limited learning and history mechanisms.
Attention mechanisms have not been considered
in CPSoC, and the goal hierarchy and goal man-
agement is in a very primitive form. The desira-
bility scale is implicitly encoded within the goals,
and has not been explicitly modeled within CPSoC.
Furthermore, the self-awareness models in CPSoC
did not consider malicious attacks, functional
design errors, and nonfunctional aberrations, and
show a lot of room for growth in its self-awareness
capabilities. Thanks to its modular cross-layer archi-
tecture, CPSoC has the potentials to cope with the
discussed limitation by providing access to a rich
set of cross-layer virtual and physical sensors and
actuators, and the capacity to become self-aware in
all respects.

Challenges

The term self-awareness encompasses a host of
concepts and techniques that together offer great
promises to tackle the design, maintenance, and
operation of complex, heterogeneous systems that
are supposed to be adaptive, autonomous, highly
efficient, and always sensible. Even though a sig-
nificant effort has already been spent in exploring
this promise, the more intricate challenges still lie
ahead. So far we have focused on picking low hang-
ing fruits by incrementally extending existing archi-
tectures and methodologies. However, the research
community will make faster progress when we do
not exclusively focus on incremental development
where each additional feature has to be thoroughly
and quantitatively justified by the added value it
gives. As this survey shows, self-awareness encom-
passes a host of concepts and techniques that
together facilitate a comprehensive understanding
of the system’s state and its situation in the world.
Picking out individual elements may only result in
small gains or none at all. Thus, we recommend to
take a step back, try to comprehensively understand
self-awareness, what it is, what it consists of, what it is
good for, and, based on this understanding, realize
it as a whole in cyber-physical computing systems.
This approach would be inspired and informed
by the widespread presence of self-awareness in
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animals given that survival of an expensive feature
under relentless evolutionary pressure is a strong
evidence for its benefit. A case in point is the main-
tenance of a history. It has hardly been studied in
self-aware computing systems and, consequently,
there is no strong experimental evidence for its ben-
efits. We still believe it is indispensable for compre-
hensive self-assessment based on its importance in
psychology [83], [84], and the intuitive argument
that a comprehensive understanding of the cur-
rent situation includes the sequence of events and
states that historically led to the current situation.
Moreover, historical data is required for future learn-
ing that involves a reassessment of past situations.
Thus, including it in research on self-aware comput-
ing systems is justified by the expectation that it will
turn out to be beneficial.

Apart from considerations of research strategy,
we identify five urgent technical challenges that
have to be addressed in order to fully honor the
promise of self-awareness: learning, formulation
of goals, scalability, ensuring correctness, and an
appropriate design methodology.

Learning. For truly self-aware systems, contin-
uous, dynamic learning is indispensable. A major
reason for the amazing feats of animals and plants
is the relentless learning that goes on all levels
from the subcellular organelles to the individual
and the community. As Figure 1 indicates, learning
is an integral part of many components and func-
tions. Hence, it must be integrated in the sensor and
monitoring nodes, in the attention mechanism, the
decision making, the goal management, the execu-
tion and actuation, and in virtually every part of the
system. Learning is only possible when feedback
signals are available. Thus, the system must be
pervaded by information flows providing feedback
to all the learning elements. Many of our machine
learning algorithms are not sufficiently efficient
and optimized for the requirements of on-chip
learning. Hence, we need both adapted machine
learning algorithms and a system architecture that
lends itself to continuous, pervasive learning, and
optimization.

Formulation of goals. We need to be able to
formulate quantitative goals for the design and the
operation phases and we need to study the involved
tradeoffs. The traditional metrics of performance,
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power, energy, cost, and fault tolerance are well
understood. But quantitative metrics for adaptability,
resilience, autonomy, self-assessment, and situation
assessment do not exist and are controversial or are
limited in scope. However, we need to quantify these
propetties to explore the tradeoff space spanned by
the traditional and the self-awareness metrics. This
has to be done for the design phase, but also and
even more challenging, for the operation of the sys-
tem since the system itself has to understand and
decide on these tradeoffs in real time. Research on
goal formulation and management has been done
in the context of artificial agents [85]-[87], which
mainly focus on providing the capability to nom-
inate top-level goals and managing the nominated
goals by prioritizing them. However, SoC’s require-
ments and restrictions necessitate customized,
light-weight, and minimally conflicting approaches
which consider the priority, significance, objectives,
and requirements of each application, while holisti-
cally coupling the overlapping and/or contradicting
objectives of different applications to satisfy the sys-
tem constraints.

Scalable self-awareness. Most applications do
not require and cannot afford all features of a full
blown self-aware system. To apply self-awareness to
a wide range of systems, from resource constrained
sensor nodes to multiprocessor platforms, designers
should be able to easily select the level of capabilities.
To this end, a design space exploration method has to
provide the means to trade-off functions and resources
in a well-defined self-awareness design space.

Ensuring correctness. Validating a fixed,
well defined functionality has been proven diffi-
cult enough due to the vast state spaces involved.
Validating an adaptive system that, by definition,
changes its behavior in ways unpredictable at
design time seems to be hopeless. Still, if we can-
not guarantee that certain bad behavior can never
happen, the appeal of self-aware and autonomous
systems will be limited to tiny application domains.
Interestingly, self-awareness may be part of the solu-
tion because it can comprise a safety monitor that
checks for and prohibits all unsafe and bad behav-
ior. For this to work, the space of unsafe and bad
behavior has to be specifiable in unambiguous and
efficient terms leaving the system to freely explore
the vast, unlimited space of safe and good behavior.

Design methodology. Traditional design meth-
odologies rely on the assumption that we can spec-
ify, validate, and test the desired and acceptable
behavior of the system. When we allow the adap-
tive, autonomous system to explore behavior that
has not been specified at design time, this assump-
tion breaks down. Hence, we have to consider alter-
native methodologies. For instance, the designers
could use a general purpose, self-aware, autono-
mous machine, that in principle can meet a broad
range of goals in any environment. Then the design-
ers “fill” the system with a specific set of goals for
a specific application and leave it to the system to
find ways to accomplish these goals. Although this
vision seems remote, we will be forced to contem-
plate such options as the pain of designing more
and more adaptive systems with traditional method-
ologies grows.

WHILE THESE CHALLENGES seem formidable,
researchers can draw from a range of disciplines
with long history and large knowledge. Hence, given
the state of the art, as summarized in this survey, we
can certainly be confident that the development of
fully self-aware SoCs is within the reach of the com-
munity in the coming years. [
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