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Abstract—This paper deals with challenges and possible solu-
tions for incorporating self-awareness principles in EDA design
flows for autonomous systems. We present a holistic approach
that enables self-awareness across the software/hardware stack,
from systems-on-chip to systems-of-systems (autonomous car)
contexts. We use the Information Processing Factory (IPF)
metaphor as an exemplar to show how self-awareness can be
achieved across multiple abstraction levels, and discuss new
research challenges. The IPF approach represents a paradigm
shift in platform design by envisioning the move towards a
consequent platform-centric design in which the combination of
self-organizing learning and formal reactive methods guarantee
the applicability of such cyber-physical systems in safety-critical
and high-availability applications.

I. INTRODUCTION

In 2001, IBM declared the hardware/software complexity
of networked IT (information technology) systems as the
grand challenge for continued progress in this industry for
the coming decades [1]. IBMs Autonomic Computing initia-
tive was inspired by the way nature deals with complexity
which is dominantly founded on the principle of emergent
self-organization and self-awareness: a hierarchy of system
constituents following few, simple rules which manifest a
sophisticated system behavior through hidden causalities. The
goal of Autonomic Computing was to integrate such self-
x functions (where x stands for -control, -management, -
organization, -healing, etc.) into I'T equipment in order to attain
higher degrees of autonomy in complex system operation.

Like IT systems, emerging Cyber-Physical Systems (CPS)
and the Internet of Things (IoT) application domains exhibit
a several-orders-of-magnitude increase in complexity, both
in the number of devices, as well as in their dynamic and
unpredictable interactions. Applying autonomy in this context
demands a radically new strategy to conquer and control this
runaway complexity. Towards this end, this paper focuses
on novel EDA design methodologies enabling the adop-
tion of self-awareness and self-organization paradigms into
autonomous Multi-Processor System-on-Chip (MPSoC) plat-
forms deployed in CPS and loT applications. This approach
exploits self-awareness principles in order to conquer com-
plexity, achieve predictability and strengthen the robustness
of system design. It represents a conceptual shift in platform
design as exemplified by our Information Processing Factory

978-3-9819263-0-9/DATE18/©)2018 EDAA

(IPF) paradigm [2], with robust and independent platform
operation capabilities focusing on futuristic platform-centric
design, rather than the traditional focus on semiconductor
devices and software technology.

To set the context, consider the trend towards highly au-
tomated driving, where performance requirements demand
the use of highly complex manycore and massively paral-
lel processors for critical applications. This includes signal
processing, machine learning and automatic control with a
rapidly growing set of data representing the vehicle state
and its surroundings, other traffic participants and a global
traffic context that must be processed in the vehicle or in
the cloud. Traditional safety-critical systems in vehicles were
much simpler and could be backed by simple monitoring
functions to achieve fail-safe function behavior. Error scenar-
ios in automated driving are far more complex when fail-
safe requirements are upgraded to fail-operational behavior,
because operation has to continue even under failure. This is
especially true in SAE J3016 level-3 (and above) of automated
driving, where the human driver is temporarily or permanently
unavailable as a fail-over option. For highly automated driving,
monitoring is not only required to enable fault detection and
avoidance, but also to enforce operational boundaries on the
system. An upcoming standard called Road Vehicles - Safety
of the Intended Functionality (SOTIF) ISO/WD PAS 21448,
provides guidance to address safety violations by a fault-
free system due to unintended behaviors or technological
limitations. As a consequence, automated driving increases
diagnostic and monitoring requirements enabling early fault
detection and failure avoidance, just as envisioned by the IPF
approach described in this paper.

The key methodological innovation is a new approach to
control platform dynamics at runtime by combining self-
organizing machine learning techniques with formal reactive
control methods providing platform worst-case real-time and
safety guarantees, as embodied in our IPF paradigm [2],
instead of using a single, static, operating point determined
at design time. The authors are involved in parallel projects
targeting self-aware vehicles for autonomous driving which
will provide use cases for IPF research.
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II. RELATED WORK

Biologically-inspired mechanisms are at the roots of several
research initiatives of which we summarize a short list in
the sequel. Even though this list is by no means complete,
it captures the most relevant related work in the context of
this paper.

The DFG SPP1183 “Organic Computing* initiative [3], [4]
has been most instrumental for developing and advancing self-
organizing systems engineering in Germany. One key aspect
of self-organizing systems is trust, raising the question of
how to trust a system that changes all the time and reacts
autonomously and potentially in unforeseeable ways due to
emergent behaviors [5]. This question was addressed in the
DFG Research Unit OC-Trust for the related case of Organic
Computing. OC-Trust addressed trust, trustworthiness, and
trust management as main challenges.

A similar observer/controller-based approach controlling
emergent behavior is adopted in the EU-FP7 EPiCS (Engineer-
ing Proprioception in Computing Systems) project. It exploits
self-awareness and self-expression in the compute platform,
middleware software, distributed network infrastructure as
well as application programs [6].

Self-expression describes the ability to autonomously adapt
the system behavior under changing conditions. Both Or-
ganic and Proprioceptive Computing define general principles
which need be applied in the proposed IPF, however certain
methods are needed to reach the necessary robustness. More
importantly, our IPF approach requires to provision hard real-
time guarantees for critical tasks in the presence of changing
platform properties which cannot be directly observed, calling
for controlled system adaptation.

Within the EPSRC project entitled “Bio-Inspired Adaptive
Architectures and Systems®, a group from the University of
York investigates the benefits of self-optimization to grace-
fully improve power-efficiency and performance of many-
core systems [7]. These systems are thus able to cope with
permanent and transient faults and continually seek to attain
a more optimal system configuration by using a set of online
optimization mechanisms on spare processing cores. Another
work in self-aware architectures was contributed by Ipek and
Martinez [8] where artificial neural network machine learning
techniques were used to predict system performance as a
function of resource allocation decisions at runtime. Similar to
the other discussed projects, these two groups do not consider
critical or mixed-critical applications.

The SEIf-AwarE Computing (SEEC) framework at MIT [9],
[10] attempts to reduce the programming burden of MPSoCs
with a self-aware programming model. Applications explicitly
specify system goals (for power and performance) and a
unified decision engine attempts to adapt algorithms, software
and hardware to optimally meet the set goals. A central
concept of SEEC is the Observe-Decide-Act control cycle
which is executed in cyclic time intervals in which a certain
amount of application-specific work has to be accomplished.
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SEEC uses on-chip self-monitoring to guarantee predictable
behavior on power-aware systems [11].

III. OPERATION POINT MANAGEMENT FOR
MIXED-CRITICALITY APPLICATIONS

A primary objective of the IPF paradigm is to demonstrate
the feasibility of a hybrid (real-time predictive control com-
bined with self-aware machine learning) approach to oper-
ate complex MPSoC-based hardware and software layers of
CPS (and systems-of-systems) on platforms with dynamically
changing platform properties and externally imposed mixed
criticality workloads. Both platform uncertainties and sys-
tem dynamics represent huge challenges to reach guarantees.
Platform uncertainty arises from variability in semiconductor
production and long term aging effects and from imprecise
models used at design time. Application uncertainty can have
different sources such as lack of application knowledge due to
missing data or system complexity, or lack of trust. System dy-
namics can arise from platform dynamics, such as temperature
variation, from short term computational workload dynamics,
or from longer term application software change and evolution.

Platform control needs to consider input parameters such as,
e.g., required computational workload, maximum temperature,
or circuit delay to control output parameters, such as admitted
load, load distribution, on-chip message routing, task schedul-
ing parameters, supply voltage, clock frequency etc.

The platform has a state characterized by parameter values.
The set of these state parameters forms the Operating Point
(OP). The notion of an MPSoC operating point, its observa-
tion, control, and its successive adaptation are central aspects
of this approach. A CPU core OP is, e.g., characterized by the
task (set) mapped to a particular core, the scheduling policy
as well as the core supply voltage and frequency (or DVFS
policy with multiple V44 and clock frequencies). The MPSoC
or platform OP is the aggregate of all individual CPU, memory,
accelerator and I/O unit OPs including their interaction.

Fig. 1 provides an abstract notion of the platform OP and
permitted system variations depicting a two (out of the in
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Fig. 1: Current operation point (COP) and its controllable deviation
space
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Fig. 2: Transition between control points for sake of system optimization

general n-) dimensional parameter space. The Current OP
(COP) is the result of system optimizations to ensure the
system will work correctly and efficiently. Minor changes
around this COP will not defeat system efficiency if the system
is robust enough. Larger OP changes due to changed state pa-
rameters (workload, frequency) will reduce system efficiency
but are still acceptable up to a (maximum) dashed boundary
beyond which the system will no more be controllable and/or
crucial guarantees will be violated. Thus, Fig. 1 outlines
the classical design where all possible behaviors may only
lead to OPs in the dashed bounds. It should be clear that
considering system dynamics and uncertainties will require
large dashed bounds, resulting in an over-dimensioned design.
No real-world system would be developed with such a strategy.
Instead, the dashed boundary would be optimized (tightened)
to the actual demands as shown in the shaded region of Fig. 1.

While in current design practice the abstract concept of an
OP is not explicitly formulated, it is an underlying principle of
critical systems design: the design must have enough “safety
margin“ to provide guarantees even under deviations from
normal operating conditions. This requirement not only applies
at design time, but prevails throughout the system lifetime.
Ensuring this margin is an important task of maintenance
which would replace or repair system parts or reconfigure
the software if the margins are compromised. With increasing
system variability and lifetime, relying on maintenance and
updates alone is no option anymore, because this would be
too inflexible and costly.

The IPF project investigates reducing maintenance needs
by self-adaptation to save cost and extend a system’s lifetime.
Maintenance will still be necessary if self-adaptation is not
possible anymore, e.g. in case of component failure. In critical
system design, self-adaptation must consider the required mar-
gins. Unfortunately, available margins are not easily observ-
able in a system under operation but must indirectly be derived
from system operation and measurement. Therefore traditional
self-diagnosis is not sufficient. For that purpose, an online
system model with COP is needed, together with a strategy
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to incrementally adapt the COP to conserve the margins. This
model must be continuously updated avoiding modeling errors,
e.g., by methods from system identification [12]. Developing
such an incremental process will be one of the core challenges
of this US/German IPF collaboration. Once introduced, such
a process can also be used to improve the efficiency of mixed
criticality systems.

In order to quantify the quality of a given OP and to com-
pare performance characteristics between different OPs, we
investigate weighted, multi-objective cost functions (OPcost).
The general idea being: the lower the average frequency and
supply voltage of MPSoC modules, the closer the actual CPU
core utilization, task execution time and timing slack are to
currently set targets for utilization, execution time and slack
(i.e., margin). Hence a particular COP is more effective when
the cost metric OPcost of a platform is lowered. The OPcost
metric shall also be used to initiate and assess OP changes,
i.e., transitions from a COP to a Next Operation Point (NOP).

Fig. 2 suggests that system control shall assess and explore
the OPcost-based platform state update for the NOP separated
for critical tasks (CT) and non-critical, best effort tasks (BE).
NOP adoptions for BE tasks may be attained by means of
periodic or threshold-triggered rule-table actions of either
hardware or software-based machine learning (ML) entities.
Applying an ML action anyway results in a change of MPSoC
operation parameters and, thus, in adopting a new NOP. Such
a change in the operating point for BE tasks (which, per
definition, cannot violate a critical system-level requirement
as BE tasks are“best effort) may however improve/increase
the stability regions for critical tasks (see bigger dark blue
circles on the right of Fig. 2). This would open new system
optimization opportunities for critical tasks. Controlled tran-
sitions between COP(CT) and NOP(CT) must be safe by all
means. Of course we must avoid by all means threats to the
real-time and safety critical system functions, if the transition
is too fast or leads to a NOP outside the controllable state.

Fig. 2 again illustrates the anticipated effect. Using machine
learning-based analysis and applied actions make the platform
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move to a new NOP for best effort tasks. System control
and reactive resource management will assess NOP’ (Next
Operation Point Candidates) for critical tasks and, if the
predictions proved to be safe, the NOP’(CT) candidate will
be adopted as NOP(CT). In general, we need to investigate
mechanisms to ensure constructive emergent behaviors within
deterministically bounded operation corridors at MPSoC hard-
ware/software levels. Thus, a solution must be found that
still guarantees timing and safety under possible prediction
errors. If the update and optimization steps are small enough,
the system stays in an efficient state and keeps the required
guarantees at all times.

IV. INFORMATION PROCESSING FACTORY

We use the metaphor of an Information Processing Factory
(IPF) to draw similarities between microelectronics systems
and factories [2] as follows: in a factory, all the components
must adapt to the current workload. This includes logistics
of supplies such as material, energy, water and waste, the
manufacturing equipment, the transport, the control and in-
frastructure (such as heating, air-conditioning, illumination).
This adaptation cannot be done offline and must instead be
done in real time without interrupting the baseline operations.
Future microelectronic systems (e.g., MPSoCs) should operate
in a similar manner. Parallel to the baseline operation of
the system, a platform operation layer (POL) is continuously
monitoring and controlling the performance and health status
of the system. This layer monitors the system using a network
of on-chip infrastructure that senses cross-layer metrics such
as temperature, aging, energy, performance, reliability, and se-
curity and accordingly orchestrates the operations of different
system components such as application, storage, I/O and even
non-electronic functions (e.g. micromechanics, microfluidics,
etc.). In performing this orchestration, the POL will consider
both the current status (COP) as well as prediction of future
states including the expected evolution of the platform (i.e.
NOP as well as NOP’(CT) candidates in Fig. 2).

This IPF analogy implies that clusters of component-
specific, uncorrelated control occurrences are unable to cope
with the complexity coordinating the operations of large scale
systems with multi-criteria objective functions. Similarly, a
centralized controller model is also inadequate in this case be-
cause it cannot scale. Our goal is to demonstrate that a hybrid
hierarchical approach, sporting as much modularity as possible
and as much centralized as necessary, is a much more effective
means of achieving the desired goal while maintaining cost
efficiency, low overhead, and scalability. To be more specific,
the IPF design flow envisions a multi-layer control system
conceptually described in Figure 3. Information provided by
Sensor (S) is gathered and merged into self-organization,
self-awareness (SO/SA) control processing instances across
different hardware/software abstraction layers comprising an
MPSOC-based CPS system. These SO/SA instances generate
actuation directives affecting the MPSoC system components
at same or lower levels of abstraction. SO/SA instances will be
endowed with well-defined degrees of autonomy to optimize
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Fig. 3: Multi-Layer SO/SA stack

metrics such as performance, power, and reliability within
its own scope of operation. The coordination among these
SO/SA instances can be established through awareness of the
actuation-to-implication causalities triggered by an action (for
example, the impact of frequency scaling or task scheduling
on power consumption and performance).

The SO/SA paradigm is not limited in scope to optimization
of CPS operational parameters/metrics. In fact, self- and
group-awareness can also enable higher level tasks such as
self-protection of both the MPSoC and the overall CPS system.
It must be noted, however, that empowering multiple SO/SA
entities with some or complete autonomy may lead to differing
or even contradictory control decisions. Such cases must
be strictly avoided especially in safety-critical systems. One
possible way to achieve that is to reject NOP’(CT) candidates
that would put critical tasks at risk. Our goal is to demonstrate
that self-awareness of implications among concurrent SO/SA
instances can indeed prevent such situations from occurring.

The following subsections A-D will reveal in conjunction
with Fig. 3 the major constituents of such a SO/SA hierarchy
at different hardware/software abstraction levels and how we
anticipate their inter-working.

A. Application

The Cognitive Runtime Management project from UC
Irvine focuses on two layers: (1) the application/ecosystem
layer where a wireless system is presented as an example of
an application-aware cognitive power management employing
a Q-learning based paradigm to optimize power management
policy for a target application performance level (e.g. Bit error
rate), and (2) the application monitoring and checking layer,
comprised of a hardware-accelerated non-uniforin verification
architecture (NUVA), optimized to monitor a rich set of user-
defined properties (or properties automatically extracted using
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specification mining) defined in an expressive specification
language (such as parameterized automata) [13].

To manage the power, performance and reliability in a
complex system such as the mobile device (or base station),
there are several point techniques, each dealing with one or
more knobs and having a limited scope as shown in Fig. 4.

Some techniques may focus on the modem while others on
the source codec (e.g., video, gaming). Other techniques may
apply inside the processor (e.g., cache power management)
while others may exploit the mobile-basestation protocols, the
network protocols, or the client-server interaction at the appli-
cation level. The SO/SA paradigm described in Fig. 3 allows
each of these techniques to run with some degree of autonomy
while the interdependencies between them is managed through
high level monitoring and actuation-to-implication awareness.

B. Deterministic On-Chip Interconnect Resource Management

TU Braunschweig has a long history of contributions to
systems self-organization. Most recently, Networks-on-Chip
(NoCs) for mixed criticality systems [14] using active re-
source management including error detection and correction
mechanisms [15] have been developed. The results shall be
combined with an in-field monitoring, safety analysis and self-
configuration framework that was developed as a contribution
to a larger DFG Research Group in self-aware vehicles [16].
Both results will be combined in IPE. TU Braunschweig is
developing algorithms to analyze the margin of critical tasks
and proposes incremental NOP changes as shown in Fig. 1
and 2. These functions will be located in the OS / middleware
layer of Fig. 3. The NoC and its resource management requires
specific hardware functions on the MPSoC architecture layer
where monitoring functions will be installed, as well. On
the Applications layer, use cases for autonomous driving will
be implemented which are currently developed in the DFG
research group.

C. Self-awareness at the Middleware Software and Applica-
tion Layer

The CPSoC (Cyber Physical System on Chip) project from
UC Irvine [17] is an exemplar sensor-rich many-core com-
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puting platform that intrinsically couples on-chip and cross-
layer physical and virtual sensing and actuation applied across
different layers of the hardware/software system stack to
adaptively achieve desired objectives and Quality-of-Service
(QoS). The CPSoC project came out of the NSF Variability
Expedition project [18]. The CPSoC platform takes advantage
of an Adaptive-Reflective Middleware which sits between
applications and the operating system kernel. The middleware
implements closed-loop resource management policies and
embeds hierarchical system models that use sensory data to
predict how the system state may change given new actuation
actions. The middleware offers scalable and autonomous re-
source management by leveraging formal supervisory control
theory combining the strengths of classical control theory
with state-of-the-art heuristic approaches to efficiently achieve
changing run-time goals [19]. It also provides robustness and
stability guarantees to the power management unit by using
an adaptive control theoretic technique called Gain Scheduling
which decomposes the entire nonlinear operating region of
the DVFS controller into linear sub-regions and adaptively
switches between static linear feedback controllers designed
for each operating sub-region [20].

D. Self-Awareness at the MPSoC Hardware Layer

The ASoC (Autonomic System on Chip) project (TU
Miinchen and University of Tiibingen) [21] [22] within the
DFG SPP1183“Organic Computing” investigated the applica-
tion of hardware and software reinforcement machine learn-
ing techniques (learning classifier systems) [23] on homoge-
neous multicore processors for optimizing workload balancing,
power consumption and resilience against intermittent core
failures. Self-organized RISC core behavior was accomplished
through hardware-centric reinforcement-based learning classi-
fier tables (LCTs) [24].

In this context, a key challenge is to extend the
reinforcement-based machine learning control towards mixed-
criticality applications, including hard real-time constraints.
Towards this goal, we anticipate the interworking of LCT-
based control with predictable reactive resource control as
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described in Section IV-B. Furthermore, the combination of
LCT with Cyber Physical SoC (CPSoC) leads towards a
hierarchical learning environment with goal-oriented supervi-
sory control properties and allows the online generation of
new LCT evaluation rules on the device at runtime. With
respect to Fig. 3 this will be the establishment of connections
between MPSoC Architecture and OS/Middleware layers. An
interesting problem here is to investigate the relation between
the learning layers and the influences they can have on each
other. A possible scenario for this case would be that each
layer learns and acts on its own without any collaboration with
the other layer. The more challenging, yet more promising
approach, is to find suitable collaboration models between the
layers. In context of the IPF project this open problem will
also be addressed by investigating a top down approach, in
which the Middleware layer in Fig. 1 sends information to
the hardware layer, as well as a collaborative approach, in
which both layers are actively in connection with each other
and share information, hence acting toward the best operating
point possible for the whole system stack.

V. CONCLUSION

The existing dilemma in developing and adopting design
methodologies for autonomous systems is that including all
possible uncertainties and dynamics of a processing platform
and its operational environment already at design time is
either impossible or leads to unacceptable overengineered
designs. On the other hand, strictly limiting the allowed
design space to design-time decision making, will constrain
the possible applications and their dynamics, error handling
options, flexibility and life time of a system. Thus, in order
to conquer the complexity of future MPSoCs and Cyber-
Physical Systems, several challenges must be embraced, such
as change management of the running application portfolio
as well as dynamic runtime reconfiguration of the computing,
interconnect and memory resources.

A promising approach to tackle system complexity in gen-
eral is the use of self-awareness which is defined as the
ability (of a computing system) to recognize its own state,
possible actions and the result of these actions on itself and
its environment. The IPF paradigm described in this paper
presented an approach that exploits self-awareness in order
to solve the dilemma by introducing a hybrid hierarchical
approach across multiple hardware/software abstraction layers,
which is highly scalable and modular and can be incorporated
in different applications. Moreover the combination of self-
organizing learning and formal reactive methods will guar-
antee the use of such systems in safety-critical and high-
availability applications like autonomous driving.
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