
SPECTR: Formal Supervisory Control and Coordination
for Many-core Systems Resource Management

Amir M. Rahmani†‡* Bryan Donyanavard†* Tiago Mück†* Kasra Moazzemi†* Axel Jantsch‡

Onur Mutlu§ Nikil Dutt†

†University of California, Irvine, USA ‡TU Wien, Austria §ETH Zurich, Switzerland

Abstract

Resource management strategies for many-core systems need to

enable sharing of resources such as power, processing cores, and

memory bandwidthwhile coordinating the priority and signiicance

of system- and application-level objectives at runtime in a scalable

and robust manner. State-of-the-art approaches use heuristics or

machine learning for resource management, but unfortunately lack

formalism in providing robustness against unexpected corner cases.

While recent eforts deploy classical control-theoretic approaches

with some guarantees and formalism, they lack scalability and

autonomy to meet changing runtime goals.

We present SPECTR, a new resource management approach for

many-core systems that leverages formal supervisory control the-

ory (SCT) to combine the strengths of classical control theory with

state-of-the-art heuristic approaches to eiciently meet changing

runtime goals. SPECTR is a scalable and robust control architecture

and a systematic design low for hierarchical control of many-core

systems. SPECTR leverages SCT techniques such as gain sched-

uling to allow autonomy for individual controllers. It facilitates

automatic synthesis of the high-level supervisory controller and

its property veriication.

We implement SPECTR on an Exynos platform containingARM’s

big.LITTLE-based heterogeneousmulti-processor (HMP) and demon-

strate that SPECTR’s use of SCT is key to managing multiple in-

teracting resources (e.g., chip power and processing cores) in the

presence of competing objectives (e.g., satisfying QoS vs. power

capping). The principles of SPECTR are easily applicable to any

resource type and objective as long as the management problem

can be modeled using dynamical systems theory (e.g., diference

equations), discrete-event dynamic systems, or fuzzy dynamics.

ACM Reference Format:

AmirM. Rahmani†‡* BryanDonyanavard†* TiagoMück†* KasraMoazzemi†*

Axel Jantsch‡ Onur Mutlu§ Nikil Dutt† . 2018. SPECTR: Formal Supervi-

sory Control and Coordination for Many-core Systems Resource Manage-

ment. In ASPLOS ’18: Architectural Support for Programming Languages and

Operating Systems, March 24ś28, 2018, Williamsburg, VA, USA. ACM, New

York, NY, USA, 15 pages. htps://doi.org/10.1145/3173162.3173199

* These authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or
a fee. Request permissions from permissions@acm.org.

ASPLOS ’18, March 24ś28, 2018, Williamsburg, VA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4911-6/18/03. . . $15.00
htps://doi.org/10.1145/3173162.3173199

1 Introduction

Runtime resource management for many-core systems is increas-

ingly challenging due to the complex interaction of: i) integrating

hundreds of (heterogeneous) cores and uncore components on a

single chip, ii) limited amount of system resources (e.g., power,

cores, interconnects), iii) diverse workload characteristics with con-

licting constraints and demands, and iv) increasing pressure on

shared system resources from data-intensive workloads.

In this context, autonomy is crucial: multiple system goals vary-

ing over time need to be adaptively managed and objectives holisti-

cally coordinated. As a result, designers face a large space of conig-

uration parameters that often are controlled by a limited number

of actuation knobs, which in turn generate a very large number

of cross-layer actuation conigurations. For instance, Zhang and

Hofman [93] show that for an 8-core Intel Xeon processor, com-

bining only a handful of actuation knobs (such as clock frequency

and Hyperthreading levels) generates over 1000 diferent actuation

conigurations; they use binary search to eiciently explore the

coniguration space for achieving a single goal: cap the Thermal

Design Power (TDP) while maximizing performance. Searching

the coniguration space is common practice in many similar single-

goal, heuristic-based, runtime resource management approaches

[10, 11, 69, 82, 86].While there is a large body of literature on ad-hoc

resource management approaches for processors using heuristics

and thresholds [15, 17, 24, 46], rules [18, 44], solvers [34, 65], and

predictive models [7, 19ś21], there is a lack of formalism in provid-

ing guarantees for resource management of complex many-core

systems. We ind that prior art focuses primarily on performance,

reliability, and adaptivity (learning from feedback), with relatively

little research on the following critical questions:

1. Robustness: How can we provide guarantees and perform

robustness analysis?

2. Formalism:What formalisms facilitate reasoning about and

synthesis of resource management strategies?

3. Eiciency: How can we design lightweight, yet responsive

controllers?

4. Coordination:How do we control and coordinate (possibly

conlicting) actuations while tracking multiple objectives

simultaneously (e.g., frame rate and chip power)?

5. Scalability:How canwe properly design control hierarchies

to manage large and complex systems?

6. Autonomy: How can controllers automatically respond to

abrupt runtime changes in objectives (e.g., changing the

priority of objectives)?

Table 1 shows the coverage of existing on-chip resource manage-

ment approaches in handling these key issues. Some machine learn-

ing based and heuristic approaches (e.g., [7, 21, 24, 32] in Rows A

and B) focus on eiciency (3) and coordination (4), but fail to

address other attributes such as formalism in providing robustness

Session 2B: Performance Management ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

169

Table 1. Major on-chip resource management approaches and the

key questions they address (∗ = partially addressed)

Methods 1.
R
ob
u
st
n
es
s

2.
Fo
rm

al
is
m

3.
E
i
ci
en
cy

4.
C
oo
rd
in
at
io
n

5.
Sc
al
ab
il
it
y

6.
A
u
to
n
om

y

A Machine learning [7, 21, 32] ✓ ✓ ✓

B Estimation/Model based
✓ ✓

heuristics [15, 17, 19, 24, 46]

C SISO Control Theory [40, 55, 56, 70, 71] ✓ ✓ ✓ ∗

D MIMO Control Theory [66, 67] ✓ ✓ ✓ ✓

E Supervisory Control Theory [SPECTR] ✓ ✓ ✓ ✓ ✓ ✓

against unexpected corner cases. Single-Input-Single-Output (SISO)

control theoretic approaches (e.g., [56] in Row C) provide means to

address robustness (1), formalism (2), and eiciency (3), while

lacking the ability to concurrently coordinate and control multiple

objectives in a non-conlicting manner. Although multiple SISOs

have been used in nested loops to achieve scalability in simple

control problems [40, 55], they sufer from scalability issues in com-

plex resource management problems for many-core systems where

coordination of multiple actuators is necessary. Recently-proposed

Multiple-Input-Multiple-Output (MIMO) control [66, 67] (Row D)

enables coordination (4), addressing attributes (1) to (4). For exam-

ple, such control is able to simultaneously and robustly track (i.e.,

meet) the reference (i.e., target) power consumption and instruc-

tions per second (IPS) on a single-core processor. However, MIMO

control lacks scalability (5) for heterogeneous multi-processing

(HMP) architectures due to 1) the exponential growth in computa-

tional complexity with increasing numbers of inputs and outputs,

and 2) the diiculty of performing Dynamic System Model iden-

tiication for large systems. Furthermore, both SISO and MIMO

controllers lack autonomy (6), which enables rapid responses to

abrupt runtime changes: while SISO is a single objective controller,

MIMO deploys a design-time-conigured Tracking Error Cost ma-

trix that captures the priority of tracking each output; and both

are unable to adapt to runtime changes. Autonomous operation of

such classic controllers requires an external entity to coordinate

their set-points and schedule their gains dynamically.1

Our goal is to address all six key challenges in HMP resource

management. To this end, we propose SPECTR, a scalable (5) and

autonomous (6) approach based on Supervisory Control Theory

(SCT) [73, 84]. SPECTR provides formal and systematic supervision

of classical MIMO/SISO controllers, thereby holistically addressing

all six key attributes (Row E in Table 1). SCT uses modular decom-

position of control problems to manage their complexity. SCT is

widely used for higher-level control of complex systems such as

communication and transportation networks, computer databases,

and manufacturing systems in order to achieve higher performance

and predictable operation [73]. SCT’s application scope is wider

than classical control theory, since supervisory controllers have

the ability to integrate logic (i.e., discrete-event dynamic system)

with continuous/discrete dynamics (i.e., diferential/diference

equations) in the control of complex systems [49]. Therefore, SCT is

suitable for any resource management problem (such as managing

power, thermal, QoS, and interconnects) that can be modeled using

logic and discrete system dynamics.

1 Set-points are reference values tracked by a controller to reach a particular target (e.g.,
a desired frame rate), and gains are internal controller parameters (e.g., the coeicients
of the proportional, integral and derivative (PID) terms in a PID controller) [36].

SPECTR enables dynamic management of multiple shared many-

core system resources in a coordinated and autonomous fashion by

enforcing higher-level objectives using the formal SCT approach

for global resource management at the highest level, with the local

resource allocators formulated as traditional control problems (e.g.,

PID-based SISO [36], LQG-based MIMO [75]). To our knowledge,

SPECTR is the irst attempt to leverage SCT in the on-chip resource

management domain to achieve both scalability and autonomy.

We implement SPECTR on an ODROID-XU3 platform [35] which

contains an ARM big.LITTLE based Exynos 5422 Octa-core SoC that

has heterogeneous multi-processing cores.2 We show experimental

results to demonstrate the efectiveness of SPECTR in orchestrating

multiple low-level classic controllers using SCT techniques such as

gain scheduling, precompensation, and reference regulation. Our

experiments compare SPECTR’s ability to meet quality of service

(QoS) references (i.e., targets) while operating under a power budget

against two alternative resource-management techniques adapted

from state-of-the-art solutions [66, 93]. The resource managers

control both the operating frequency (DVFS) and the number of

active cores in an HMP. We evaluate the diferent resource man-

agers on their accuracy and autonomy when managing a system

under varying conditions with diferent goals. Our results show

that SPECTR not only matches or surpasses the performance of the

best state-of-the-art techniques in all cases, but also uniquely and

eiciently adapts to both workload variation and dynamic system

requirements.

Key contributions of this paper are:

• Scalability: We quantify the scalability deiciency of clas-

sical control-theoretic approaches in managing resources

of complex many-core systems. We do so by analyzing the

challenges of building models (i.e., system identiication) for

such controllers. We present the beneits of SCT in managing

the complexity of control problems for HMPs, primarily via

modular decomposition.

• Autonomy: We show that lack of resource management

autonomy in response to changing system goals can either

endanger the safety of the system or under-utilize shared

resources. We deploy the idea of gain scheduling from SCT

to achieve autonomy through dynamic goal management by

updating the policy (i.e., parameters) of low-level controllers

according to high-level goal(s).

• Experimental Case Study:We demonstrate the efective-

ness of SPECTR via real system implementation on the

Exynos platform, showing SPECTR’s accuracy in maintain-

ing QoS and responsiveness to dynamic power constraints

for workloads with unpredictable background task interfer-

ence.

• Systematic Design Flow: We present a systematic design

low for HMP architects to ease the task of hierarchical SCT

design and veriication, simplifying the development of re-

source managers with autonomy and scalability while pre-

serving the other beneicial properties of control theory such

as formalism, robustness analysis, and eiciency.

2 In the remainder of this work, we refer to this as the Exynos platform.

Session 2B: Performance Management ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

170

2 Motivation

We motivate the need for supervisory control of multiple low-level

controllers (e.g., MIMOs) to provide autonomy and scalability in

resource management.

2.1 Autonomy: Managing Dynamic System-Wide Goals

Controllers may behave non-optimally, or even detrimentally, in

meeting a shared goal without knowledge of the presence or be-

havior of seemingly orthogonal controllers [7, 13, 24, 25, 72, 86].

Consider theMIMO controller in Figure 1 that controls a single-core

system with two control inputs (u(t)) and interdependent measured

outputs (y(t)) [66]. The controller tracks two objectives (frames

per second, or FPS, and power consumption) by controlling two

actuators (operating frequency and cache size). We implement the

MIMO using a Linear Quadratic Gaussian (LQG) controller [75]

similarly to [66]:

x(t + 1) = A × x(t) + B × u(t) (1)

y(t) = C × x(t) + D × u(t) (2)

where x is the system state, y is the measured output vector, and u

is the control input vector.3

Controller System

Freq

Cache Size

FPS

Power

+

+_

_

R
e
fe

re
n
c
e
 V

a
lu

e
s

(u)

(x)

(y)

Actuators
(Control Inputs)

Sensors
(Measured Outputs)

Figure 1. Basic 2×2 MIMO for single-core system. Clock frequency

and cache size are used as control inputs. FPS and power are mea-

sured outputs that are compared with reference (i.e., target) values.

LQG control allows us to specify 1) the relative sensitivity of a

system to control inputs, and 2) the relative priority of measured

outputs. This is done using 1) a weighted Tracking Error Cost matrix

(Q) and 2) a Control Efort Cost matrix (R). The weights are speciied

during the design of the controller. While this is convenient for

achieving a ixed goal, it can be problematic for goals that change

over time (e.g., minimizing power consumption before a predicted

thermal emergency).

The controller must choose an appropriate trade-of when we

cannot achieve both desirable performance and power concurrently.

Unfortunately, classical MIMOs ix control weights at design time,

and thus cannot perform runtime tradeofs that require changing

output priorities. Even with constant reference values, i.e., desired

output values, unpredictable disturbances (e.g., changing workload

and operating conditions) may cause the reference values to become

unachievable. It is also plausible for the reference values themselves

to change dynamically at runtime with system state and operating

conditions (e.g., a thermal event).

Let us now consider a more complex scenario: a multi-threaded

application running on Linux, executing on a mobile processor,

where the system needs to track both the performance (FPS) and

power simultaneously. Figure 2 shows the 2 × 2 MIMO model for

3We interchangeably use the terms (measured output and sensor), as well as the terms
(control input and actuator), as shown in Figure 1.

CPU Cluster

Clock Frequency

Active Cores

FPS

Power

Figure 2. 2 × 2 MIMO model for a quad-core ARM cluster.

this system with operating frequency and the number of active

cores as control inputs, and FPS and power as measured outputs.

Both the FPS and power reference values are trackable individ-

ually, but not jointly. We implement and compare two diferent

MIMO controllers in Linux to show the efect of competing objec-

tives. One controller prioritizes FPS, and the other prioritizes power.

Figure 3 shows the power and performance (in FPS) achieved by

each MIMO controller using typical reference values for a mobile

device: 60 FPS and 5 Watts. The application is x264, and the mobile

processor consists of an ARM Cortex-A15 quad-core cluster. Each

MIMO controller is designed with a diferent Q matrix to prioritize

either FPS or power: Figure 3a’s controller favors FPS over power

by a ratio of 30:1 (i.e., only 1% deviation from the FPS reference is

acceptable for a 30% deviation from the power reference), while

Figure 3b uses a ratio of 1:30. We observe that neither controller is

able to manage changing system goals. Thus, there is a need for a

supervisor to autonomously orchestrate the system while consid-

ering the signiicance of competing objectives, user requirements,

and operating conditions.

The use of supervisory control presents at least three additional

advantages over conventional controllers. First, fully-distributed

MIMO or SISO controllers cannot address system-wide goals such

as power capping. Second, conventional controllers cannot model

actuation efects that require system-wide perspective, such as

task migration. Third, classical control theory cannot address prob-

lems requiring optimization (e.g., minimizing an objective function)

alone [49, 66].

2.2 Scalability Issue 1: System Identiication Complexity

Using a single MIMO controller for coordinated management of a

large system comprised of several parallel subsystems (e.g., multi-

core systems) is often not possible. The irst step in controller design

is to construct the dynamic system model by using either analytical

models or black-box system identiication methods. Constructing

analytical models for complex structures such as processors is very

challenging [36, 67] and is often performed for simple irst-order

SISO systems. Quantifying the efect of frequency scaling on mea-

sured power consumption is one example [55]. It is more practical

to use statistical or black-box methods based on System Identiica-

tion Theory [52, 53] for isolating the deterministic and stochastic

(a) FPS-oriented controller. (b) Power-oriented controller.

Figure 3. x264 running on a quad-core cluster controlled by 2 × 2

MIMOs with diferent output priorities.

Session 2B: Performance Management ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

171

components of the system and building the model for complex sys-

tems. An Uncertainty Factor is added to the model and Robustness

Analysis [75] is performed to guarantee that the controller will

correctly work with this level of uncertainty.

Each control input should have an impact on all measured out-

puts to properly identify a target system. This is not always the

case in multi-core systems. Figure 4 (left) shows a 4 × 4 MIMO for

a generic multi-core system. Actuators 1 and 4 afect the entire

system, while Actuators 2 and 3 are limited to diferent speciic

subsystems. Similarly, Sensors 1 and 4 measure system-wide met-

rics, while Sensors 2 and 3 measure metrics at the subsystem level.

This is problematic in designing a MIMO, because we must identify

the system as a black box without any knowledge of subsystems.

Multi-core systems often contain actuators and sensors with vary-

ing granularity in this manner. For example, consider the Exynos

platform [30] that contains eight cores divided into two clusters:

DVFS frequency settings and power sensors are applied at the

cluster level, while performance counters are deployed per-core,

which requires a 10 × 10 MIMO (Figure 4, right). An HMP has

the additional property of incorporating non-uniform cores, which

means system-wide actuators can have greatly diferent efects on

subsystems.

The number of inputs and their subsystem scope has a signiicant

impact on the diiculty of identifying an accurate system model.

Figure 5 shows the modeled vs. observed system behavior of the

power output for two MIMOs: the left plot is for a 2 × 2 controller

(system in Figure 2) with per-cluster inputs and outputs; the right

plot is for a 10 × 10 controller (system in Figure 4), showing sig-

niicant deviation in accuracy. Section 5.2 quantiies and discusses

system scalability in detail. We conclude that a single MIMO for

controlling a multi-core system is not practical; instead, we propose

using multiple coordinated MIMOs to control a multi-core platform.

2.3 Scalability Issue 2: Unmanageable State Space

Prior MIMO controller coordination in computer systems [66] is

limited to small, simple systems, such as a single-core processor,

and does not scale well. The complexity of a MIMO controller grows

exponentially with the number of inputs and outputs due to the

size of the state space.

During the design of an LQG controller, we must generate coef-

icient matrices A, B, C , D (Equations 1,2) in order to characterize

the system [75]. Whenever the controller is invoked, the matrix

multiplication operations in Equations 1 and 2 are executed. The

largest of these matrices is A, whose dimensions are determined by

#inputs + order and #outputs + order . In a discrete controller, the

order of a controller model determines how observed output history

is stored in the model, and directly impacts both the controller size

Little cluster

Idle cycles

Frequency

FPS

Power

4

Big cluster

Idle cycles

Frequency

FPS

Power

4

4

4

Sub-System 1

Sub-System 2

System
Actuator 1

Actuator 2

Actuator 3

Actuator 4

Sensor 1

Sensor 2

Sensor 3

Sensor 4

System for 4 X 4 MIMO System for 10 X 10 MIMO

Figure 4. System for 4 × 4 (left) and 10 × 10 (right) MIMOs. The

10 × 10 has 8 per-core idle cycle insertion + 2 per-cluster frequency

inputs, and 8 per-core FPS + 2 per-cluster power outputs.

0 50 100

Time

-2

0

2

N
o
rm

a
liz

e
d
 P

o
w

e
r

Power output of 2x2 MIMO model

Predicted model for 2x2 system

Measured output for 2x2 system

10 20 30 40

Time

-0.5

0

0.5

N
o
rm

a
liz

e
d
 P

o
w

e
r

Cluster power of 10x10 multicluster MIMO model

Predicted model for 10x10 system

Measured output for 10x10 system

Figure 5. The accuracy of identiied system models for a 2 × 2

MIMO (Figure 2) compared to a 10 × 10 MIMO (Figure 4). Shown

is a single cluster-wide measured output for power, normalized

around mean values.

and complexity. For a 2× 2 MIMO, these matrices are up to 4× 4 for

a second-order model. An LQG controller’s order must be larger

than its number of outputs to work eiciently [36].

The coeicient matrices grow as we increase the order of the

model. For instance, consider the fourth-ordermodel used by Pothukuchi

et al. [66], resulting in amaximummatrix size 6×6. Assume a fourth-

order model for the remainder of this example. If we add one more

actuator (e.g., reorder bufer size) to the control system inputs, the

matrices grow to 7 × 6 for just a single-core processor [66]. Now,

if we use the same technique to design a single MIMO for a multi-

core processor, the size of the controller will grow to unmanageable

sizes, complicating the controller design through system identiica-

tion, and impacting the size and computational complexity of the

controller implementation. To manage the same objectives for a

dual-core system, our 2 × 2 MIMO would turn into a 4 × 4 MIMO

(duplicate control inputs and measured outputs for each core). This

would require matrices of size 8 × 8, and even larger for a multi-

cluster HMP (Figure 4). Figure 6 shows the number of operations

required each time the LQG controller in Equation 1 is invoked for

diferent numbers of cores and orders. The number of multiply and

add operations required for matrix multiplication grows exponen-

tially along with the number of cores (i.e., number of inputs and

outputs). The order becomes insigniicant once #cores >> order .

Designing a single controller for runtime management of a many-

core processor is therefore infeasible.

By deploying multiple MIMOs to manage a multi-core platform,

we risk the same pitfalls as any uncoordinated management scheme.

We must therefore provide coordination of the MIMOs. In order to

10 20 30 40 50 60 70
102

103

104

105

106

107

108

109

Cores

#
O
p
er
at
io
n
s

2nd order

4th order

8th order

Figure 6. The total number of multiply-add operations required

for matrix multiplication of a MIMO for diferent orders and core

counts (input/output sizes).

Session 2B: Performance Management ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

172

preserve the beneits of MIMO control, we choose to deploy a local

SISO/MIMO for each subsystem to manage identical objectives.

This local SISO/MIMO is designed for its speciic subsystem (e.g.,

core or cluster). This does not solve the issue of actuators and sen-

sors applied and observed at diferent granularities in the platform.

To manage hierarchy and system-wide inputs and outputs, we need

either a supervisor on top of our local controllers, or a nested con-

troller approach. A nested controller is not scalable, and is unable

to manage the multiple modes of operation we may encounter due

to conlicting objectives [66]. Therefore, we propose a system-wide

supervisor to coordinate and control objectives within and between

each local controller.

3 Background on Supervisory Control Theory

Supervisory control utilizes modular decomposition to mitigate

the complexity of control problems, enabling automatic control of

many individual controllers or control loops. Supervisory control

theory (SCT) [73] beneits from formal synthesis methods to deine

principal control properties for controllability and observability.

The emphasis on formal methods in addition to modularity leads

to hierarchical consistency and non-conlicting properties.

3.1 Scalability via Supervisory Control

SCT solves complex synthesis problems by breaking them into

small-scale sub-problems, known as modular synthesis. The results

of modular synthesis characterize the conditions under which de-

composition is efective. In particular, results identify whether a

valid decomposition exists. A decomposition is valid if the solutions

to sub-problems combine to solve the original problem, and the

resulting composite supervisors are non-blocking and minimally re-

strictive. Decomposition also adds robustness to the design because

nonlinearities in the supervisor do not directly afect the system

dynamics.

Figure 7 illustrates how a supervisory control structure can hi-

erarchically manage control loops. As shown in the igure, super-

vision is vertically decomposed into tasks performed at diferent

levels of abstraction [84]. The supervisory controller is designed

to control the high-level plant model Phi , which represents an ab-

straction of the system. The plant is the pre-existing system that

does not (without the aid of a controller or a supervisor) meet the

given speciications. Information channel Infhi provides informa-

tion about the updates in the high-level model to the supervisory

controller, and the supervisory controller uses the Conhi channel to

control this model. However, due to the fact that Phi is an abstract

model, the controlling channel Conhi is only a virtual channel. In

other words, the control decisions of the supervisory controller

will be implemented by controlling the low-level controller(s) Clo

Inflo

Conlo

Comhi_lo

Infhi

Conhi

Inflo_hi

Supervisory

Controller (Chi)

High-level

Plant Model (Phi)

Low-level

Controller (Clo)
Plant (Plo)

Figure 7. Scalability via Supervisory Control Structure.

through commands transmitted via the communication channel

Comhi_lo. Consequently, the low-level controller(s) Clo can control

one or multiple subsystems using the Conlo channel and gather

information via the observation channel Inflo. The changes in the

low-level plant Plo can trigger updates in the state of the high-level

model Phi through the information channel Inflo_hi. These updates

would relect the results of low-level controller Clo’s controlling ac-

tions. The scheme of Figure 7 describes the division of supervision

into high-level management and low-level operational supervision.

Virtual control exercised via the Conhi high-level control channel

can be implemented via Comhi_lo to adaptively coordinate the low-

level controllers, for example by adjusting their operating modes

according to the system goal. The important requirement of this

hierarchical control scheme is control consistency and hierarchi-

cal consistency between the high-level model and the low-level

plant, as deined in the standard Ramadge-Wonham control mecha-

nism [84]. For a detailed description of SCT, we refer the reader to

[5, 73, 74, 84].

3.2 Autonomy via Supervisory Control

Supervisory controllers are preferable to adaptive (self-tuning) con-

trollers for complex system control due to their ability to integrate

logic with continuous dynamics. Speciically, supervisory con-

trol has two key properties: i) rapid adaptation in response to abrupt

changes in management policy [37], and ii) low computational

complexity by computing control parameters for diferent policies

ofline. New policies and their corresponding parameters can be

added to the supervisor on demand (e.g., by upgrading the irmware

or OS), rendering online learning-based self-tuning methods, e.g.,

least-squares estimation [3], unnecessary.

Figure 8 depicts the two mechanisms that enable SCT-based man-

agement via low-level controllers: gain scheduling and dynamic

references. Gain scheduling is a nonlinear control technique that

uses a set of linear controllers predesigned for diferent operating

regions. Gain scheduling enables the appropriate linear controller

based on runtime observations [51]. Scheduling is implemented by

switching between sets of control parameters, i.e.,A1→A2, B1→B2,

C1→C2, andD1→D2 in Equations 1 and 2. In this case, the controller

gains are the values of the control parameters A, B,C , and D. Gains

are useful to change objectives at runtime in response to abrupt

and sudden changes in management policy. In LQG controllers,

this is done by changing priorities of outputs using the Q and R

matrices (Section 2.1). This is what we call the Hierarchical Control

structure, in which local controllers solve speciied tasks while the

higher-level supervisory controller coordinates the global objective

Supervisory Controller

Plant

Gains 1
Controller

Gains N

User/Application level policies

System
variables

Control
inputs

Measured outputs

Selected Gains

Ref
+_

Figure 8. Autonomy via gain scheduling in SCT.

Session 2B: Performance Management ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

173

function. In this structure, the supervisory controller receives infor-

mation from the plant (e.g., the presence of a thermal emergency)

or the user/application (e.g., new QoS reference value), and steers

the system towards the desired policy using its design logic and

high-level model. Thanks to its top-level perspective, the supervisor

can update reference values for each low-level controller to either

optimize for a certain goal (e.g., getting to the optimum energy-

eicient point) or manage resource allocation (e.g., allocating power

budget to diferent cores).

4 SPECTR: On-chip Resource Management

We present SPECTR’s supervisory control architecture (Section 4.1),

describe an experimental case study demonstrating the design and

veriication of SPECTR on the Exynos HMP platform (Section 4.2),

and outline SPECTR’s control synthesis process (Section 4.3).

4.1 Hierarchical System Architecture

Figure 9 depicts a high-level view of SPECTR for many-core sys-

tem resource management. Either the user or the system software

may specify Variable Goals and Policies. The Supervisory Controller

aims to meet system goals by managing the low-level controllers.

High-level decisions are made based on the feedback given by the

High-level Plant Model, which provides an abstraction of the en-

tire system. Various types of Classic Controllers, such as PID or

state-space controllers, can be used to implement each low-level

controller based on the target of each subsystem. The lexibility

to incorporate any pre-veriied of-the-shelf controllers without

the need for system-wide veriication is essential for the modular-

ity of this approach. The supervisor provides parameters such as

output references or gain values to each low-level controller dur-

ing runtime according to the system policy. Low-level controller

subsystems update the high-level model to maintain global system

state, and potentially trigger the supervisory controller to take

action. The high-level model can be designed in various fashions

(e.g., rule-based or estimator-based [74][37][61]) to track the sys-

tem state and provide the supervisor with guidelines. We illustrate

the steps for designing a supervisory controller using the following

experimental case study in which SCT is deployed on a real HMP

platform, and we then outline the entire design low from modeling

of the high-level plant to generating the supervisory controller.

Classic

Controller 1

Classic

Controller 2

Classic

Controller N

P
h

y
s

ic
a

l
 P

la
n

t

Con_lo1

Inf_lo1

Refs1

Con_lo2

Inf_lo2

Con_los

Inf_los

In
f_

lo
_
h

i

High-level Plant
Model

Con_hi

Inf_hi

L
e

a
f

C
o

n
tr

o
ll
e

rs

S
y
s

te
m

 e
v

e
n

ts

Selected

Gains1 Refs2 Refss

Selected

Gains2

Selected

Gainss

Supervisory

Controller

Sub-plant 1 Sub-plant 2 Sub-plant N

Variable Goals and PoliciesUser inputs

SPECTR

Figure 9. SPECTR overview.

4.2 Experimental Case Study

Figure 10 shows an overview of our experimental setup. We target

the Exynos platform [35], which contains an HMP with two quad-

core clusters: the Big core cluster provides high-performance out-

of-order cores, while the Little core cluster provides low-power

in-order cores. Memory is shared across all cores, so application

threads can transparently execute on any core in any cluster. We

consider a typical mobile scenario in which a single foreground

application (theQoS application) is running concurrentlywithmany

background applications (the Non-QoS applications). This mimics

a typical mobile use-case in which gaming or media processing is

performed in the foreground in conjunction with background email

or social media syncs.

Figure 10. SPECTR implementation on the Exynos HMP with two

heterogeneous quad-core clusters. Representing a typical mobile

scenario with a single foreground application running concurrently

with many background applications.

The system goals are twofold: i) meet the QoS requirement of

the foreground application while minimizing its energy consump-

tion; and ii) ensure the total system power always remains below

the Thermal Design Power (TDP).

The subsystems are the two heterogeneous quad-core (Big and

Little) clusters. Each cluster has two actuators: one actuator to

set the operating frequency (Fnext) and associated voltage of the

cluster; and one to set the number of active cores (ACnext) on the

cluster. We measure the power consumption (Pcurr) of each cluster,

and simultaneously monitor the QoS performance (QoScurr) of the

designated application to compare it to the required QoS (QoSref).
4

Supervisory control commands guide the low-levelMIMO con-

trollers in Figure 10 to determine the number of active cores and

the core operating frequency within each cluster.

Supervisory control minimizes the system-wide power con-

sumption while maintaining QoS. In our scenario, the QoS appli-

cation runs only on the Big cluster, and the supervisor determines

whether and how to adjust the cluster’s power budget based on

QoS measurements.

Gain scheduling is used to switch the priority objective of the

low-level controllers. We deine two sets of gains for this case-study:

1) QoS-based gains are tuned to ensure that the QoS application can

meet the performance reference value, and 2) Power-based gains are

tuned to limit the power consumption while possibly sacriicing

4 The Exynos platform provides only per-cluster power sensors and DVFS; hence our
use of cluster-level sensors and actuators.

Session 2B: Performance Management ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

174

some performance if the system is exceeding the power budget

threshold.

4.3 Supervisor Synthesis Process

The supervisory controller is responsible for coordinating the

low-level controllers shown in Figure 10. The supervisory control

synthesis, illustrated on Figure 11, follows ive steps [5]:

1. Develop high-level Plant Model (P) as a discrete-event dy-

namic system.

2. Develop Intended Behavior Speciication of the plant (SP) (i.e.,

desired control behavior).

3. Perform Synthesis of the Supervisor (S) from the plant model

and behavioral speciications.

4. Perform Nonblocking Property Checks to remove any logi-

cal/blocking conlicts.

5. Perform Controllability Property Checks to ensure that the

supervisor meets controllability properties.

In Sections 4.3.1-4.3.3, we discuss each step of modeling, specii-

cation, synthesis and veriication of the supervisory controller. All

steps are automated by the Supremica SCT tool-set [1]. For ease

of visualization, we show the automaton generated by Supremica

in each step. We integrate the two goals described in Section 4.2

for the system in Figure 10. We ensure autonomy of the system to

meet the QoS requirements while the total power remains within

the deined boundaries by using gain scheduling.

4.3.1 Plant Model

Any physical plant G can be described using an ininite number of

attributes, while the plant model P can capture only a inite number

of attributes. Therefore, we begin by capturing the platform’s most

relevant characteristics (power consumption and QoS in our study)

to build a plant model. Given the formal underpinnings of SCT, we

exploit automata theory [41] to automatically generate the plant

model from simpler models of its constituent subsystems (i.e., sub-

plants).

Now, consider an automaton A deined as a 5-tuple

A = ⟨QA, ΣA,δA, iA,MA⟩, where QA is the set of states, ΣA is the

set of events consumed by A, δA : QA × ΣA → QA is the state

transition function, iA is the initial state andMA is the set of inal

states. The synchronous composition of two automata A and B, A||B,

is then deined as [58]:

A ∥ B = ⟨QA ×QB , ΣA ∪ ΣB , δ, iA · iB , MA ×MB ⟩, with

QA ×QB = {qA · qB |qA ∈ Qa, qB ∈ QB }

δ (qA · qB , e) =




δA(qA, e) · δB (qB , e) if δA(qA, e) and δB (qB , e)deined
δA(qA, e) · qB ifδA(qA, e) deined and e < ΣB
qA · δB (qB , e) if e < ΣA and δB (qB , e) deined
undeined otherwise

Synchronous composition (operator ||) synchronizes the operations

of two automata such that common events are synchronized but

SSPP

Verified

Synthesized

Supervisor

(SVerified)

Plant

Model

Intended

Behavior

Specification

Synthesis

Nonblocking

Property

Checks

Controllability

Property

Checks

1 2 3 4 5

Figure 11. Synthesis process for a Supervisory Controller

private events are not afected by the other automaton. This pre-

serves the main characteristics of each automaton while including

their interactions that afect the whole plant.

Figure 12a shows two simple examples for the Big cluster au-

tomata (examplifying two of many possible ways to deine our

systems control solution). In states S1 and S2 of the top automaton,

we prioritize QoS: the power reference is updated to meet the QoS

reference in a power-eicient manner. Upon detection of a power

budget violation, a critical signal is generated. The signal results

in a transition to the SwitchGains state where power-driven gains

replace the performance-driven gains. This updates the low-level

controller’s priority objective from QoS to power. The supervisor

also has the opportunity to enforce a reduced power reference have

depending on the severity of the situation (S0 in bottom automa-

ton of Figure 12a). Once the power of the Big cluster returns to

a safe region, gains are switched back to prioritize QoS. We can

make suitable plant models in a similar manner for the Little clus-

ter and its interaction with the whole system. Figure 12b shows

the synchronous composition of the two Big cluster plant models

and speciies all possible interactions for these two automata. In

this model, all states are accessible and all events are accepted.5

However, such complete freedom might not be desirable for the

system. We now describe the speciication that restricts this model

to it the intended behaviour of the system.

4.3.2 Intended Behavior Speciication

While the plant model sets the physical boundaries for all possible

actions, the speciication deines the accepted (i.e., ideal) and forbid-

den states through restrictions on the behavior of the plant model.

These restrictions are then transformed into a formal description

for the synthesis process.

Figure 12c shows a sample speciication for the Big cluster in our

case study. The plant model shown in Figure 12b has no limitations

on exceeding the power budget; our speciication prevents exceed-

ing the power budget for no more than three control intervals (i.e.,

Threshold state is a forbidden state6). Similarly, we can limit the

chip power consumption using a speciication that restricts the sum

of the power budgets of both clusters to be below a safe threshold

deined by thermal design power (TDP). In our case study, we use

a three-band (i.e., uncapping threshold, capping target and above

capping threshold) algorithm similar to [90] for making power cap-

ping decisions. While we are below the irst threshold (uncapping

threshold), controllers focus on meeting their QoS requirements.

When we exceed this threshold, gain scheduling ensures that we

remain in the capping target region.

4.3.3 Synthesis

Once we have a plant model and a formal speciication of intended

behavior, a synthesis algorithm is guaranteed to generate a cor-

rect controller [27]. Hence, a correct plant P and speciication SP
are crucial to synthesize a supervisory controller S such that the

closed-loop system fulills the speciication SP . Figure 12d shows

an example supervisor that was automatically synthesized for the

Exynos platform using the Supremica tool, given as input the plant

model and the intended behavioral speciication capturing desired

outcomes and restricting undesired behavior (e.g., Figure 12c). Note

5Accepted states are shown with solid dark circles.
6A red cross identiies a forbidden state.

Session 2B: Performance Management ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

175

Switchgains

S0

S2

S1

SwitchGains

decreaseCriticalPower

controlPower

decreaseBigPower

QoSmet

critical

powerSafeQoSNotMet

powerSafeQoSMet

increaseBigPower

QoSnotMet1

safePower

critical

(a) Models for Big cluster:

Top: QoS management,

Bottom: Power Capping.

S2.SwitchGains

S1.SwitchGains

SwitchGains.S0

S1.S0

SwitchGains

S2.S0

controlPower

QoSnotMet

critical

increaseBigPower

powerSafeQoSNotMet

QoSmet

decreaseCriticalPower

decreaseCriticalPower

QoSnotMet

decreaseBigPower

critical

controlPower
powerSafeQoSMet

decreaseBigPower

critical

powerSafeQoSMet

critical

decreaseCriticalPower

safePower

controlPower

QoSmet

powerSafeQoSNotMet

safePower

safePower

increaseBigPower

(b) Automatically generated

Big cluster plant P using

the || operator on two

models described in Fig. 12a.

Threshold

SwitchGains

UnderCapping

AboveCapping

bellowTarget

switchQoS

decreaseCriticalPower

maintain

safePower

switchPower

aboveTarget

critical

(c) Example of intended

behavior Speciication SP .

Red cross indicates

forbidden state.

S7

S2

S4

Stable
S5

S0

SwitchGains

P0

P1

S3

S6

S1

increaseLittlePower

increaseBigPower

powerSafeQoSNotMet2

critical

powerSafeQoSMet2

QoSmet

powerSafeQoSMet1

critical

decreaseBigPower
increaseBigPower

powerSafeQoSNotMet2

QoSmet
critical

powerSafeQoSMet2

QoSmet

powerSafeQoSMet1

powerSafeQoSMet2

critical

powerSafeQoSMet1 powerSafeQoSNotMet1

QoSmet

decreaseLittlePower

QoSmet

powerSafeQoSNotMet1

decreaseCriticalPower2

decreaseCriticalPower1

safePower

powerSafeQoSNotMet2

QoSnotMet

QoSnotMet

safePowercritical

increaseLittlePower

powerSafeQoSNotMet1

safeEval
controlPower

QoSnotMet

increaseLittlePower

QoSnotMet

QoSmet

decreaseBigPower

QoSnotMet

QoSnotMet
Power capping

Gain scheduling

Ideal state

(d) Synthesized supervisor S generated

from plant model and speciication using

the Supremica tool [1]. Checked for non-

blocking and controllability properties.

Figure 12. Supervisor Synthesis Process. Figures 12b and 12d are automatically generated by the SCT tool, and the state details are not

important.

that the models built for plant P and the intended behavior specii-

cation SP are design artifacts, and only the inal synthesized and

veriied supervisor Sver if ied is implemented in the system. We

now describe the veriication of additional properties for ensuring

correctness of the entire supervisory controller.

4.3.4 Non-blocking and Controllability Property Checks

We must ensure that the synthesized supervisor is both

non-blocking and controllable. The non-blocking property guar-

antees that some accepted states (e.g., the ideal state shown in Figure

12d) can always be reached, so that at least one of the tasks can al-

ways be completed. On the other hand, the controllability property

guarantees that the supervisor can always keep the plant within

the boundaries set by the speciication. In our example, there is one

accepted (i.e., ideal) state that satisies the QoS requirement while

maintaining the power consumption under the limit. The SCT tool

ensures that in the generated supervisor (Figure 12d) there is a path

to this accepted state from every other valid state. In addition, the

plant model is pruned by the speciication to make it adhere to de-

sired behavior. The closed-loop system will never reach a state such

that an uncontrollable event causes it to violate the speciication.

These two properties are provided by two diferent algorithms: the

trimming algorithm [27] provides the non-blocking property, and

the extension algorithm [37] provides the controllability property.

However, these two algorithms interfere with each other, with trim-

ming possibly impairing controllability, and vice versa. Therefore,

the two algorithms must be run successively and iteratively, until

they return the same result.

Uncontrollable states. The search for the largest controllable

sub-automaton of the speciication begins with identifying the

uncontrollable states. Subsequently, any state that reaches an un-

controllable state via an uncontrollable event is identiied. This

forms the basis for the algorithms that construct a controller given

a speciication and a plant.

Non-blocking. The supervisory controller is non-blocking if

the closed-loop system is always able to reach some marked state

(i.e., Ideal state shown in Figure 12d). In order to ind a lean non-

blocking supervisor, we must ind the set of accessible states. It is

desirable to ind the largest possible sub-automaton that has this

property.

5 Experimental Evaluation

We compare SPECTR with three alternative resource managers.

The irst two managers use two uncoordinated 2×2 MIMOs, one

for each cluster: MM-Pow uses power-oriented gains, and MM-Perf

uses performance-oriented gains. These ixed MIMO controllers

act as representatives of a state-of-the-art solution, as presented in

[66], one prioritizing power and the other prioritizing performance.

The third manager consists of a single full-system controller (FS):

a system-wide 4×2 MIMO with individual control inputs for each

cluster. FS uses power-oriented gains and its measured outputs

are chip power and QoS. This single system-wide MIMO acts as

a representative for [93], maximizing performance under a power

cap.

We analyze an execution scenario that consists of three diferent

phases of execution:

1. Safe Phase: In this phase, only the QoS application executes

(with an achievable QoS reference within the TDP). The goal

is to meet QoS and minimize power consumption.

2. Emergency Phase: In this phase, the QoS reference remains

the same as that in the Safe Phase while the power envelope

is reduced (emulating a thermal emergency). The goal is to

adapt to the change in reference power while maintaining

QoS (if possible).

3. Workload Disturbance Phase: In this phase, the power en-

velope returns to TDP and background tasks are added (to

induce interference from other tasks). The goal is to meet the

QoS reference value without exceeding the power envelope.

This execution scenario with three diferent phases allows us to

evaluate how SPECTR compares with state-of-the-art resource man-

agers when facing workload variation and system-wide changes in

state (e.g., thermal emergency) and goals.

Evaluated resource manager conigurations. We generate

stable low-level controllers for each resource manager using the

Session 2B: Performance Management ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

176

Matlab System Identiication Toolbox [59].7 We use the Control

Efort Cost matrix (R) to prioritize changing clock frequency over

number of cores at a ratio of 2:1, as frequency is a iner-grained

and lower-overhead actuator than core count. We generate train-

ing data by executing an in-house microbenchmark and vary-

ing control inputs in the format of a staircase test (i.e., a sine

wave), both with single-input variation and all-input variation. The

micro-benchmark consists of a sequence of independent multiply-

accumulate operations performed over both sequentially and ran-

domly accessed memory locations, thus yielding various levels of

instruction-level and memory-level parallelism. The range of exer-

cised behavior resembles or exceeds the variation we expect to see

in typical mobile workloads, which is the target application domain

of our case studies.

Experimental setup.We perform our evaluations on the ARM

big.LITTLE [2] based Exynos SoC (ODROID-XU3 board [35]) as

described in our case study (Figure 10). We implement a Linux

userspace daemon process that invokes the low-level controllers ev-

ery 50ms . When evaluating SPECTR, the daemon invokes the super-

visor every 100ms . We use ARM’s Performance Monitor Unit (PMU)

and per-cluster power sensors for the performance and power mea-

surements required by the resource managers. The userspace dae-

mon also implements the Heartbeats API [39] monitor to measure

QoS. By periodically issuing heartbeats, the application informs

the system about its current performance. The user provides a

performance reference value using the Heartbeats API.

To evaluate the resource managers, we use the following bench-

marks from the PARSEC benchmark suite [6] as QoS applications

(i.e., the applications that issue heartbeats to the controller): x264,

bodytrack, canneal, and streamcluster. The selected applica-

tions consist of the most CPU-bound along with the most cache-

bound PARSEC benchmarks, providing varied responses to change

in resource allocation. Speedups from 3.2X (streamcluster) to

4.5X (x264) are observed with the maximum resource allocation

values compared to the minimum. We also use one of four machine-

learning workloads as our QoS application: k-means, KNN, least

squares, and linear regression. These four workloads provide

a wide range of data-intensive use cases. For all experiments, each

QoS application uses four threads. The background (non-QoS) tasks

used in the third execution phase are single-threaded microbench-

marks, and have no runtime restrictions, i.e., the Linux scheduler

can freely migrate them between and within clusters.

5.1 Comparison of Resource Managers

For brevity, we focus our discussion on the x264 benchmark results.

Other results are summarized at the end of this section. We use

heartbeats to measure the frames per second (FPS) as our QoS

metric. Figure 13 shows the measured FPS and power for x264with

respect to their reference values over the course of execution for

all of the resource management controllers.

5.1.1 x264 Benchmark

To show the energy eiciency of SPECTR, we study the Safe Phase.

The Safe Phase consists of the irst 5 seconds of execution during

which only the QoS application executes on the Big cluster. In this

phase, all controllers are able to achieve the FPS reference value

7 We generate the models with a stability focus. All systems are stable according to
Robust Stability Analysis. We use Uncertainty Guardbands of 50% for QoS and 30% for
power, as in [66].

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

20
30
40
50
60
70
80
90

FP
S

Measured FPS
Reference FPS

(a)MM-Pow FPS

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Po
w

er
 (W

)

Ref. phase 1

Ref. phase 2

Ref. phase 3

Measured Power
Reference Power

(b) MM-Pow Power

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

20
30
40
50
60
70
80
90

FP
S

Measured FPS
Reference FPS

(c) MM-Perf FPS

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Po
w

er
 (W

)

Ref. phase 1

Ref. phase 2

Ref. phase 3

Measured Power
Reference Power

(d) MM-Perf Power

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

20
30
40
50
60
70
80
90

FP
S

Measured FPS
Reference FPS

(e) FS FPS

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Po
w

er
 (W

)

Ref. phase 1

Ref. phase 2

Ref. phase 3

Measured Power
Reference Power

(f) FS Power

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

20
30
40
50
60
70
80
90

FP
S

Measured FPS
Reference FPS

(g) SPECTR FPS

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

Po
w

er
 (W

)

Ref. phase 1

Ref. phase 2

Ref. phase 3

Measured Power
Reference Power

(h) SPECTR Power

Figure 13. Measured FPS and Power of all four resource managers

for three Phases of 5 seconds each, for the x264 benchmark.

within the power envelope. Figures 14a and 14b show the aver-

age steady-state error (%) of QoS and power respectively for each

resource manager in Phase 1. Steady-state error is used to deine

accuracy in feedback control systems [36]. Steady-state error values

are calculated as re f erence −measured output . Negative values

indicate that the power/QoS exceeds the reference value, positive

values indicate power savings or failure to meet QoS. We make two

key observations. First, both MM-Perf and SPECTR reduce power

consumption by 25% (Fig. 14b) while maintaining FPS within 10%

(Fig. 14a) of the reference value. The MM-Perf controller operates

eiciently because the reference FPS value is achievable within

the TDP threshold. The SPECTR controller similarly operates ef-

iciently: it is able to recognize that the FPS is achievable within

TDP and, as a result, lower the reference power. Second, the FS and

MM-Pow controllers unnecessarily exceed the reference FPS value

and, as a result, consume excessive power. This is because these con-

trollers prioritize meeting the power reference value, consuming

the entire available power budget to maximize performance.

To show SPECTR’s ability to adapt to a sudden change in oper-

ating constraints, we study the Emergency Phase. The Emergency

Phase of execution emulates a thermal emergency, during which,

the TDP is lowered to ensure that the system operates in a safe

state. This occurs during the second 5-second period of execution

in Figure 13. We observe that all controllers are able to react to

the change in power reference value and maintain QoS. However,

compared to the other controllers, FS has a sluggish reaction (Fig-

ure 13f) to the change in power reference, despite the fact that it

Session 2B: Performance Management ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

177

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

−50
−40
−30
−20
−10

0
10
20
30
40

Qo
S

st
ea

dy
-s

ta
te

 e
rro

r (
%

)

FS MM-Perf MM-Pow SPECTR

(a) QoS steady-state error in Phase 1.

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

−50
−40
−30
−20
−10

0
10
20
30
40

Po
we

r s
te

ad
y-

st
at

e
er

ro
r (

%
)

(b) Power steady-state error in Phase 1.

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

−50
−40
−30
−20
−10

0
10
20
30
40

Qo
S

st
ea

dy
-s

ta
te

 e
rro

r (
%

)

(c) QoS steady-state error in Phase 2.

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

−50
−40
−30
−20
−10

0
10
20
30
40

Po
we

r s
te

ad
y-

st
at

e
er

ro
r (

%
)

(d) Power steady-state error in Phase 2.

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

−50
−40
−30
−20
−10

0
10
20
30
40

Qo
S

st
ea

dy
-s

ta
te

 e
rro

r (
%

)

(e) QoS steady-state error in Phase 3.

btrack
canneal

kMeans knn lesq lr
scluster x264

Benchmark

−50
−40
−30
−20
−10

0
10
20
30
40

Po
we

r s
te

ad
y-

st
at

e
er

ro
r (

%
)

(f) Power steady-state error in Phase 3.

Figure 14. Steady-state error for all benchmarks, grouped by phase. A negative value indicates the amount of power/QoS exceeding the

reference value (bad), a positive value indicates the amount of power saved (good) or QoS degradation (bad).

is designed to prioritize tracking the power output. Settling time

is a property used to quantify responsiveness of feedback control

systems [36]. Settling time is the time it takes to reach suiciently

close to the steady-state value after the reference values are set.

The average settling time for the power output of FS is 2.07 sec-

onds, while SPECTR has an average settling time of 1.28 seconds.

The larger size of the state-space (x(t) matrix in Equation 1 and 2)

and the higher number of control inputs in the 4×2 FS compared

to those of 2×2 controllers in SPECTR is the reason for the slow

settling time of FS. This is also the reason why SISO controllers are

generally faster that MIMOs [36].

To show SPECTR’s ability to adapt to workload disturbance and

changing system goals, we study the Workload Disturbance Phase.

The Workload Disturbance Phase occurs in seconds 10-15 of execu-

tion in Figure 13. In this phase, 1) the QoS reference value and the

power envelope return to the same values as in Phase 1, and 2) we

introduce disturbance in the form of background tasks. As a result

of the workload disturbance, the QoS reference is not achievable

within the TDP. We make two observations regarding the steady-

state error in Figures 14e and 14f. First, SPECTR behaves similarly to

MM-Pow, even though in Phase 1 it behaved similarly to MM-Perf.

The SPECTR supervisor is able to recognize the change in execution

scenario and constraints, and adapt its priorities appropriately. In

this case, SPECTR achieves much higher FPS than all controllers

except MM-Perf (Fig. 14e), while obeying the TDP limit (Fig. 14f).

Second, both FS and MM-Pow operate at the TDP limit, but achieve

a signiicantly lower FPS than the reference value. MM-Perf comes

within ~5% of the reference FPS (Fig. 14e) while exceeding the TDP

by more than 30% (Fig. 14f), which is undesirable.

5.1.2 Other Benchmarks

Weperform the same experiments for PARSEC benchmarks bodytrack,

canneal, streamcluster, as well as machine-learning benchmarks

k-means, KNN, least squares, and linear regression. For these

workloads, we use the generic heartbeat rate (HB) directly as the

QoS metric, as FPS is not an appropriate metric. Figures 14a, 14c,

and 14e show the average steady-state error (%) of QoS for Phases

Session 2B: Performance Management ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

178

1, 2, and 3 respectively. Figures 14b, 14d, and 14f show the average

steady-state error (%) of power for Phases 1, 2, and 3 respectively.

We summarize the observations for the additional experiments with

respect to x264 for the three phases. In the Safe Phase, the behavior

of bodytrack, streamcluster, k-means, KNN, least squares, and

linear regression is similar to that of x264 (Figures 14a and 14b).

canneal follows the same pattern with respect to power as all other

benchmarks (Fig. 14b). canneal’s QoS steady-state error is the only

diference in behavior we observe in Phase 1. None of the managers

are able to meet the QoS reference value for canneal in Phase 1

(Fig. 14a). This is due to the fact that the phase of canneal captured

in the experiment primarily consists of serialized input process-

ing, so the number of idle cores has reduced afect on QoS. In the

Emergency Phase, our observations from x264 hold for nearly all

benchmarks regarding response to change in power reference value,

achieving less than 10% power steady-state error (Fig. 14d). The

only exceptions are canneal and k-means: the MM-Perf manager

is unable to react to change in TDP for canneal and k-means. The

MM-Perf manager lacks a supervisory coordinator and prioritizes

performance, and was unable to ind a coniguration for canneal

and k-means that satisied the QoS reference value within TDP.

In the Workload Disturbance Phase, SPECTR, FS, and MM-Pow

all achieve near-reference power (Fig. 14f). As expected, MM-Perf

violates the TDP in all cases, but always achieves the highest QoS

(Fig. 14e).

We conclude that SPECTR is efective at (1) eiciently meeting

multiple system objectives when it is possible to do so, (2) appro-

priately balancing multiple conlicting objectives, and (3) quickly

responding to sudden and unpredictable changes in constraints due

to workload or system state.

5.2 Scalability Evaluation

To evaluate the scalability of SPECTR with respect to single or

nested MIMO solutions, we compare the identiied models for con-

trolled systems of diferent sizes. After an estimated system dy-

namics is produced using system identiication techniques, it is

cross-validated using diferent data sets. The common practice is to

assess the model by analyzing residual auto-correlation [67]. Resid-

ual is the stochastic component (e.g., disturbance, noise, etc.) of the

system output, which is not supposed to be included in the model.

When validating the model, the model output is compared to noisy

system outputs. Therefore we expect the residual to be pure noise.

To verify this, the residual is analyzed for correlation. If there is no

correlation between the residual and itself or any inputs, the model

is accurate enough. Conidence can be used to specify a range. A

conidence level is the probability with which the true output will

fall into a range called a conidence interval. The conidence interval

provides a range of values that is likely to contain the population

parameter of interest [64]. A conidence level of 99% results in a

conidence interval that spans three standard deviations. In our

case, a higher conidence level means more conidence in where

the true output will lie, and a model output within the conidence

interval indicates that the deterministic component of the model

output will be near the true output.

Figure 15 compares the autocorrelation of residuals for instruc-

tions per second (IPS) and power of three systems: 1) 2×2 Big cluster

MIMO used in SPECTR, 2) 4×2 MM-Pow, and 3) 10×10 controller

that represents a large system (Figure 4). The 2×2 controller for

the Little cluster shows similar behavior to the 2×2 controller for

-20 -10 0 10 20

Samples

-0.1

0

0.1

C
o

n
fi
d

e
n

c
e

Autocorrelation of residuals for Big IPS

Confidence interval Sample model

(a) 2×2 system model for

the Big cluster controller of

SPECTR, total IPS output.

-20 -10 0 10 20

Samples

-0.04

-0.02

0

0.02

0.04

C
o
n
fi
d
e
n
c
e

Autocorrelation of residuals for Big Power

Confidence interval Sample model

(b) 2×2 system model for

the Big cluster controller of

SPECTR, total power output.

-20 -10 0 10 20

Samples

-0.1

0

0.1

0.2

C
o
n
fi
d
e
n
c
e

Autocorrelation of residuals for IPS

Confidence interval Sample model

(c) 4×2 system model for the

FS controller, total IPS output.

-20 -10 0 10 20

Samples

-0.05

0

0.05

0.1

C
o
n
fi
d
e
n
c
e

Autocorrelation of residuals for Power

Confidence interval Sample model

(d) 4×2 system model for the

FS controller, total power out-

put.

-20 -10 0 10 20
Samples

-0.2

0

0.2

0.4

C
o
n
fi
d
e
n
c
e

Autocorrelation of residuals for IPS

Confdence interval Sample model

(e) 10×10 system model for a

large-system controller (e.g.,

Fig. 4), single-core IPS output.

-20 -10 0 10 20
Samples

-0.1

0

0.1

0.2

C
o
n
fi
d
e
n
c
e

Autocorrelation of residuals for Big Power

Confidence interval Sample model

(f) 10×10 system model for a

large-system controller (e.g.,

Fig. 4), Big cluster power out-

put.

Figure 15. Autocorrelation of residuals for identiied system mod-

els of diferent sized MIMO controllers. We show a single perfor-

mance and power output for each modeled system across multiple

sample inputs.

the Big cluster in Figure 15a. MM-Perf controller shows similar

behavior to MM-Pow in Figure 15c.

The two main properties desired while checking the autocorre-

lation of residuals are for the controller to: 1) stay inside the coni-

dence interval, and 2) avoid sharp peaks and drops. While the 2×2

controller stays within the conidence interval for IPS and power

(Figure 15a,15b), the 4×2 controller exhibits sharp peaks that violate

the conidence interval for multiple sample inputs (Figure 15c,15d).

The controller for the large 10×10 system has diiculty staying

within the conidence interval, especially for IPS (Figure 15e,15f).

Controllers for large MIMO systems with more complex behavior

are not only slower in terms of settling time, but also often infea-

sible to design due to the lack of a suiciently accurate system

dynamics model.

We conclude that SPECTR supports scalability for resource man-

agement that classical controllers do not. Classical controllers can-

not accurately model large systems. SPECTR solves this issue by

deploying many simple controllers for decomposed subsystems,

and coordinating them with a high-level supervisor.

5.3 Overhead Evaluation

To show the overhead of the low-level MIMO controllers, we study

their execution time. We measure the MIMO controller execution

time to be 2.5ms , on average, over 30 seconds. The MIMO controller

is invoked every 50ms resulting in a 5% overhead, which is expe-

rienced by all evaluated controllers. We measure the runtime of

Session 2B: Performance Management ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

179

the supervisor to be 30µs , which is negligible even with respect

to the MIMO controller execution time. The supervisor is invoked

less frequently than the MIMO controllers (2× the period in our

case), executes in parallel to the workload and MIMO controllers,

and simply evaluates the system state in order to determine if the

MIMO controller gains need changing. State changes that result

in interventions on the low-level controllers occur only due to

system-wide changes in the state (e.g., thermal emergency) or goals

(e.g., change in performance reference value or execution mode),

which are infrequent. When the supervisor needs to change the

MIMO gains, it simply points the coeicient matrices to a diferent

set of stored values. In our case study, we have two sets of gains

(QoS and power oriented) that are generated when the controllers

are designed and stored during system initialization. Changing the

coeicient arrays at runtime takes efect immediately, and has no

additional overhead.

To show the overhead of SPECTR’s supervisory controller, we

compare the total execution time of identical workloads with and

without SPECTR. With respect to the preemption overhead due

to globally managing resources, Linux’s HMP scheduler typically

maps SCT threads to a core on the low-power Little cluster. There-

fore, the SCT threads are executed without preempting the QoS

application, which always executes on the Big cluster. We verify

the overall impact of the control system overhead by running the

benchmarks on two diferent systems: i) a vanilla Linux setup8

and ii) vanilla Linux with SPECTR running in the background. For

(ii), SPECTR controllers perform all the required computations but

do not change the system knobs (thus only the SPECTR overhead

afects the system). When comparing the QoS of the applications

across multiple runs, we verify a negligible average diference of

0.1% between the two systems.

We conclude that the beneits of SPECTR come at a negligible

performance overhead.

6 Systematic Design Flow of SPECTR

Figure 16 presents SPECTR’s design low to streamline the pro-

cess for HMP architects to build supervisory controllers for new

platforms and resource types.

The top part of Figure 16 illustrates the design process of the

Supervisory Controller. In Step 1, we need to deine the high-level

goals (e.g., power capping, QoS) for coordination and resource

management for the entire system. In Step 2, we create a plant

model for our system to generate the supervisory controller. For

small systems, this can be done in a single step by describing all

possible variations of the system, but more complex systems can

be modeled via the modular decomposition of the system. This

enables speciication of each subsystem as an individual sub-plant

in a formal manner, with individual sub-plants combined later to

automatically generate the full plant model. These sub-plants can be

also broken down into smaller elements for ease of modeling. This

step is crucial because the scope of sensors and actuators have to

be determined to ensure that i) the system is properly identiiable

and ii) subsystem controllers, to be designed in later steps, are

lightweight. The former condition is satisied if the coeicient of

determination, also known as R2, is greater or equal than 80% [36]

(a rule of thumb in control theory), while the latter can be examined

8 Ubuntu 16.04.2 LTS and Linux kernel 3.10.105 (https://dn.odroid.com/5422/ODROID-
XU3/Ubuntu/).

by considering the number of control inputs, number of measured

outputs, and the order of the model. In Step 3, we describe the

desired system behavior using a speciication that restricts the plant

model. Preventing the system from exceeding its power budget can

be an example of a speciication. The supervisory synthesis process

in the third step checks the sanity of the supervisory controller

based on sub-plant models and the veriied speciication. SCT tools

use a formal methodology to analyze properties of the discrete-

event system and also generate the supervisor. In Step 4, we ensure

that the whole system behaves according to the given speciication.

In this work, we use the Supremica tool [1] to synthesize and verify

the supervisory controller.

The bottom part of Figure 16 illustrates the design process of

the low-level (i.e., leaf) controllers. Each individual subsystem can

have a diferent number of control inputs and measured outputs.

Various types of controllers (e.g., SISO, MIMO) can be used for

leaf controllers. In this work, we focus on the design of a MIMO

controller for each leaf controller. In Step 5, during the low-level

controller design, after deining each subsystem’s inputs and out-

puts, we gather experimental data to perform black-box system

identiication [53][26] to extract the dynamics of the system (e.g.,

state-space model, transfer function). Any system identiication

toolbox, such as the ones available in MATLAB [59] or GNU Octave

[22], can be used for this purpose. MATLAB System Identiication

toolbox also recommends a suitable order for the system. In Step 6,

we specify priorities associated with each <goal, condition> pair by

feedingMATLAB’s Control System toolbox with the relative weight

of inputs and outputs that are represented by Q and R matrices. For

instance, designers can emphasize the relative importance of total

power over IPS of one core as a <goal, condition> pair. Similarly,

other <goal, condition> pairs prioritizing diferent objectives can

deined and added.

In Step 7, usingMATLAB, we generate a set of MIMO controllers

for each <goal, condition> pair where gains of each controller are

stored in the subsystem controllers to be used for gain scheduling

at run-time. The goal of Step 8 is to ensure that the controller is

stable for all the uncertainties whose maximum sustained impact is

bounded by a designer-speciied margin. Finally, in Step 9, Matlab’s

Simulink tool can be used as a hybrid simulation environment to

integrate and verify the full-ledged control system. If the overall

response of the system is acceptable, we generate the target code

for implementation and veriication on the real platform. Other-

wise, as low-level controllers are already veriied, we go back to

the supervisory control design and update the speciication of the

supervisor in order to enhance the overall control behavior.

7 Related Work

To the best of our knowledge, there has been no prior work in

applying SCT to handle the scalability and autonomy issues facing

resource managers for (heterogeneous) multi-core systems. We

believe SPECTR is the irst efort in exploiting SCT to provide

scalability and autonomy for on-chip HMP resource management.

Resource management approaches in the literature can be clas-

siied into ive main classes: Optimization [29, 31, 34, 57, 65, 81,

83], Machine Learning [7, 16, 21, 32, 43], Model-based Heuris-

tics [4, 7, 9, 12, 13, 15, 17, 19ś21, 23, 24, 46, 54, 62, 78ś80, 87ś

89, 92, 93], Rule-based Heuristics [18, 28, 44], and Control Theory

[25, 33, 38, 40, 47, 48, 55, 56, 60, 63, 68, 70, 71, 76, 91]. Pothukuchi

Session 2B: Performance Management ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

180

Initial

Describe the
desired
behavior

Decompose
the plant

Model each
sub-plant

Supremica

Define
goals

Input & output
Goal analysis

Matlab
Verify

Robustness

System
test

Simulink
(Functional
verification)

Implementation
Identify the

minimal
subsystems

Subsystem
model

System
identification

per subsystem

R
2
<80%

Supervisory

controller

design

Low-Level

controller

design






Process for each subsystem

S
te

p
 2

S
te

p
 3

Step 4

S
te

p
 9

S
te

p
 6

S
te

p
 5

Step 7 Step 8

S
te

p
 1



Plant (P)

Set of specifications (SP)

Initial Supervisor

(S)

Supervisor (Sverified)

Formal
verification

MIMO Controller 1

MIMO Controller 2

MIMO Controller N

[Q,R]N

[Q,R]1

Figure 16. SPECTR design low. Low-level controller design process is repeated for every subsystem.

et al. [66] discuss the shortcomings of ad-hoc and heuristic-based

approaches in addressing some of the attributes, such as lack of

guarantees, and the need for exhaustive training and close-to-reality

models. In addition, there have been eforts to enable coordinated

management in computer systems in various ways [7, 10, 11, 13ś

15, 21, 23, 24, 45, 50, 69, 77, 82, 85, 86, 90]. They coordinate and

control multiple goals and actuators in a non-conlicting manner by

adding an ad-hoc component to a controller or hierarchical loops.

Pothukuchi and Torrellas [67] present guidelines for designing

formal MIMO controllers that tune processor architectural parame-

ters to enhance coordination, and demonstrate coordinated man-

agement of multiple goals for unicore processors [66]. However,

MIMO control lacks scalability and autonomy in handling com-

plex control problems. The concept of SCT has been used in many

ields [8, 27, 42].

8 Conclusion

We develop SPECTR, a hierarchical supervisory control mechanism

for resource management in heterogeneous many-core systems.

SPECTR combines the strengths of classic control theory with

state-of-the-art heuristic approaches to eiciently manage com-

plex systems with multiple goals in a hierarchical manner. SPECTR

leverages formal Supervisory Control Theoretic techniques, such

as gain scheduling, to achieve autonomy for individual distributed

controllers and scalability for the entire system, while satisfying

higher-level system goals. We demonstrate the efectiveness of

SPECTR via a real system implementation on the Exynos platform

that consists of a heterogeneous multi-core processor. Our eval-

uations show that SPECTR successfully coordinates conlicting

objectives to achieve eicient execution of a dynamic QoS work-

load within a power budget, while state-of-the-art alternatives are

unable to do so. We conclude that SPECTR is a promising approach

to handle the complexity and scalability of managing the resources

of emerging heterogeneous many-core systems in the face of dy-

namically changing runtime goals such as QoS requirements, power

budgets, and thermal limits.

Acknowledgments

We acknowledge inancial support from the following: NSF Grant

CCF-1704859; and the Marie Curie Actions of the European Union’s

H2020 Programme.

References
[1] K. Akesson, M. Fabian, H. Flordal, and R. Malik, łSupremica - An integrated

environment for veriication, synthesis and simulation of discrete event systems,ž
inWODES 2006.

[2] ARM, łbig.LITTLE Technology: The Future of Mobile,ž Tech. Rep., 2013. [Online].
Available: https://www.arm.com/iles/pdf/big_LITTLE_Technology_the_Futue_
of_Mobile.pdf

[3] K. J. Astrom and B. Wittenmark, Adaptive Control. Addison-Wesley, 1995.
[4] A. Bartolini, M. Cacciari, A. Tilli, and L. Benini, łA distributed and self-

calibrating model-predictive controller for energy and thermal management
of high-performance multicores,ž in DATE, 2011.

[5] M. W. Bertil A. Brandin and B. Benhabib, łDiscrete Event System Supervisory
Control Applied to the Management of Manufacturing Workcells,ž in Computer-
Aided Production Engineering, C. Venkatesh and J.A. McGeough, eds. (Amsterdam:
Elsevier), 1991.

[6] C. Bienia, łBenchmarking modern multiprocessors,ž Ph.D. dissertation, Princeton
University, 2011.

[7] R. Bitirgen, E. Ipek, and J. F. Martinez, łCoordinated Management of Multiple
Interacting Resources in Chip Multiprocessors: A Machine Learning Approach,ž
in MICRO, 2008.

[8] J. Buerger and M. Cannon, łNonlinear MPC for supervisory control of hybrid
electric vehicles,ž in ECC, 2016.

[9] K. K. Chang, A. G. Yağlıkçı, S. Ghose, A. Agrawal, N. Chatterjee, A. Kashyap,
D. Lee, M. O’Connor, H. Hassan, and O. Mutlu, łUnderstanding Reduced-Voltage
Operation in Modern DRAM Devices: Experimental Characterization, Analysis,
and Mechanisms,ž Proc. ACM Meas. Anal. Comput. Syst., 2017.

[10] S. Choi and D. Yeung, łLearning-Based SMT Processor Resource Distribution via
Hill-Climbing,ž in ISCA, 2006.

[11] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, łPack & Cap: Adaptive
DVFS and Thread Packing Under Power Caps,ž in MICRO, 2011.

[12] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi, łApplication-
to-core mapping policies to reduce memory system interference in multi-core
systems,ž in HPCA, 2013.

[13] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, łApplication-aware prioritization
mechanisms for on-chip networks,ž in MICRO, 2009.

[14] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, łAéRgia: Exploiting Packet
Latency Slack in On-chip Networks,ž in ISCA, 2010.

[15] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, łMemory power
management via dynamic voltage/frequency scaling,ž in ICAC, 2011.

[16] C. Delimitrou and C. Kozyrakis, łQuasar: Resource-eicient and QoS-aware
Cluster Management,ž in ASPLOS, 2014.

Session 2B: Performance Management ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

181

[17] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini, łCoScale:
Coordinating CPU and Memory System DVFS in Server Systems,ž in MICRO,
2012.

[18] A. S. Dhodapkar and J. E. Smith, łManaging Multi-coniguration Hardware via
Dynamic Working Set Analysis,ž in ISCA, 2002.

[19] B. Donyanavard, T. Mück, S. Sarma, and N. Dutt, łSparta: Runtime task allocation
for energy eicient heterogeneous many-cores,ž in CODES, 2016.

[20] C. Dubach, T.M. Jones, and E. V. Bonilla, łDynamicMicroarchitectural Adaptation
Using Machine Learning,ž in TACO, 2013.

[21] C. Dubach, T. M. Jones, E. V. Bonilla, and M. F. P. O’Boyle, łA Predictive Model
for Dynamic Microarchitectural Adaptivity Control,ž in MICRO, 2010.

[22] J. Eaton, D. Bateman, S. Hauberg, and R. Wehbring, GNU Octave version 3.8.1 man-
ual: a high-level interactive language for numerical computations. CreateSpace
Independent Publishing Platform, 2014.

[23] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, łPrefetch-aware shared-resource
management for multi-core systems,ž in ISCA, 2011.

[24] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, łFairness via source throttling: A
conigurable and high-performance fairness substrate for multi-core memory
systems,ž in ASPLOS, 2010.

[25] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt, łCoordinated Control of Multiple
Prefetchers in Multi-core Systems,ž in MICRO, 2009.

[26] L. P. Eric Walter, Identiication of Parametric Models from experimental results.
Springer, 1997.

[27] M. Fabian and A. Hellgren, Desco Ð a Tool for Education and Control of Discrete
Event Systems. Springer, 2000.

[28] S. Fan, S. M. Zahedi, and B. C. Lee, łThe Computational Sprinting Game,ž in
ASPLOS, 2016.

[29] X. Fu, K. Kabir, and X. Wang, łCache-Aware Utilization Control for Energy
Eiciency in Multi-Core Real-Time Systems,ž in ECRTS, 2011.

[30] P. Greenhalgh, łBig. little processing with arm cortex-a15 & cortex-a7,ž in ARM
White paper, 2011.

[31] U. Gupta, R. Ayoub, M. Kishinevsky, D. Kadjo, N. Soundararajan, U. Tursun, and
U. Ogras, łDynamic Power Budgeting for Mobile Systems Running Graphics
Workloads,ž in TMSCS, 2017.

[32] U. Gupta, J. Campbell, U. Y. Ogras, R. Ayoub, M. Kishinevsky, F. Paterna, and
S. Gumussoy, łAdaptive performance prediction for integrated GPUs,ž in ICCAD,
2016.

[33] M. H. Haghbayan, A. Miele, A. M. Rahmani, P. Liljeberg, and H. Tenhunen,
łPerformance/Reliability-Aware Resource Management for Many-Cores in Dark
Silicon Era,ž IEEE Transactions on Computers, 2017.

[34] V. Hanumaiah, D. Desai, B. Gaudette, C.-J. Wu, and S. Vrudhula, łSTEAM: A
Smart Temperature and Energy Aware Multicore Controller,ž in TECS, 2014.

[35] Hardkernel, łODROID-XU,ž Tech. Rep. [Online]. Available: http://www.
hardkernel.com/main/main.php

[36] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback Control of Com-
puting Systems. John Wiley & Sons, 2004.

[37] J. P. Hespanha, łTutorial on supervisory control,ž in Lecture Notes for the workshop
Control using Logic and Switching for the 40th Conference on Decision and Control,
2011.

[38] H. Hofmann, łCoadapt: Predictable behavior for accuracy-aware applications
running on power-aware systems,ž in ECRTS, 2014.

[39] H. Hofmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agarwal, łA gener-
alized software framework for accurate and eicient management of performance
goals,ž in EMSOFT, 2013.

[40] H. Hofmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard,
łDynamic Knobs for Responsive Power-aware Computing,ž in ASPLOS, 2011.

[41] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[42] Q. Hui, W. Qiao, and C. Peng, łNeuromorphic-computing-based feedback control:
A cognitive supervisory control framework,ž in CDC, 2016.

[43] E. Ipek, O. Mutlu, J. F. Martínez, and R. Caruana, łSelf-Optimizing Memory
Controllers: A Reinforcement Learning Approach,ž in ISCA, 2008.

[44] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi, łAn Anal-
ysis of Eicient Multi-Core Global Power Management Policies: Maximizing
Performance for a Given Power Budget,ž in MICRO, 2006.

[45] P. Juang, Q. Wu, L.-S. Peh, M. Martonosi, and D. W. Clark, łCoordinated, dis-
tributed, formal energy management of chip multiprocessors,ž in ISLPED, 2005.

[46] H. Jung, P. Rong, and M. Pedram, łStochastic modeling of a thermally-managed
multi-core system,ž in DAC, 2008.

[47] D. Kadjo, R. Ayoub, M. Kishinevsky, and P. V. Gratz, łA Control-theoretic Ap-
proach for Energy Eicient CPU-GPU Subsystem in Mobile Platforms,ž in DAC,
2015.

[48] A. Kanduri, M. H. Haghbayan, A. M. Rahmani, P. Liljeberg, A. Jantsch, N. Dutt,
andH. Tenhunen, łApproximation knob: Power Cappingmeets energy eiciency,ž
in ICCAD, 2016.

[49] C. Karamanolis, M. Karlsson, and X. Zhu, łDesigning Controllable Computer
Systems,ž in HoTOS, 2005.

[50] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt, łDRAM-aware last-
level cache writeback: Reducing write-caused interference in memory systems,ž
UT Austin, Tech. Rep., 2010.

[51] D. Leith and W. Leithead, łSurvey of gain-scheduling analysis and design,ž in
International Journal of Control, 2000.

[52] L. Ljung, łBlack-box models from input-output measurements,ž in I2MTC, 2001.
[53] L. Ljung, System Identiication: Theory for the User. Prentice Hall PTR, 1999.
[54] D. Lo, T. Song, and G. E. Suh, łPrediction-guided Performance-energy Trade-of

for Interactive Applications,ž in MICRO, 2015.
[55] K. Ma, X. Li, M. Chen, and X. Wang, łScalable power control for many-core

architectures running multi-threaded applications,ž in ISCA, 2011.
[56] M. Maggio, H. Hofmann, M. D. Santambrogio, A. Agarwal, and A. Leva, łCon-

trolling software applications via resource allocation within the heartbeats frame-
work,ž in CDC, 2010.

[57] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Esmaeilzadeh, łTo-
wards Statistical Guarantees in Controlling Quality Tradeofs for Approximate
Acceleration,ž in ISCA, 2016.

[58] F. Maraninchi, łOperational and Compositional Semantics of Synchronous Au-
tomaton Compositions ,ž in CONCUR, 1992, aug.

[59] MathWorks, łSystem Identiication Toolbox,ž Tech. Rep., 2017. [Online].
Available: https://www.mathworks.com/products/sysid.html

[60] A. K. Mishra, S. Srikantaiah, M. Kandemir, and C. R. Das, łCPM in CMPs: Coordi-
nated Power Management in Chip-Multiprocessors,ž in SC, 2010.

[61] S. Morse, Control using logic-based switching. Springer, 1997.
[62] T. S. Muthukaruppan, A. Pathania, and T. Mitra, łPrice Theory Based Power

Management for Heterogeneous Multi-cores,ž in ASPLOS, 2014.
[63] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and S. Vishin,

łHierarchical Power Management for Asymmetric Multi-core in Dark Silicon Era,ž
in DAC, 2013.

[64] NIST, łEngineering Statistics Handbook,ž Tech. Rep. [Online]. Available:
http://www.itl.nist.gov/div898/handbook/index.htm

[65] P. Petrica, A. M. Izraelevitz, D. H. Albonesi, and C. A. Shoemaker, łFlicker: A
Dynamically Adaptive Architecture for Power Limited Multicore Systems,ž in
ISCA, 2013.

[66] R. P. Pothukuchi, A. Ansari, P. Voulgaris, and J. Torrellas, łUsing Multiple Input,
Multiple Output Formal Control to Maximize Resource Eiciency in Architec-
tures,ž in ISCA, 2016.

[67] R. P. Pothukuchi and J. Torrellas, łA Guide to Design MIMO Controllers for
Architectures,ž in http://iacoma.cs.uiuc.edu/iacoma-papers/mimoTR.pdf.

[68] Q. Wu, P. Juang, M. Martonosi, D. W. Clark, łFormal Online Methods for Volt-
age/Frequency Control in Multiple Clock Domain Microprocessors,ž in ASPLOS,
2004.

[69] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, łNo "Power"
Struggles: Coordinated Multi-level Power Management for the Data Center,ž in
ISCA, 2008.

[70] A. M. Rahmani, M. H. Haghbayan, A. Kanduri, A. Y. Weldezion, P. Liljeberg,
J. Plosila, A. Jantsch, and H. Tenhunen, łDynamic power management for many-
core platforms in the dark silicon era: A multi-objective control approach,ž in
ISLPED, 2015.

[71] A. M. Rahmani, M. H. Haghbayan, A. Miele, P. Liljeberg, A. Jantsch, and H. Ten-
hunen, łReliability-Aware Runtime Power Management for Many-Core Systems
in the Dark Silicon Era,ž in TVLSI, 2017.

[72] A. M. Rahmani, A. Jantsch, and N. Dutt, łHDGM: Hierarchical Dynamic Goal
Management for Many-Core Resource Allocation,ž in ESL, 2017.

[73] P. J. Ramadge and W. M. Wonham, łThe control of discrete event systems,ž in
Proceedings of the IEEE, 1989.

[74] M. H. Safanov, Focusing on the knowable: Controller invalidation and learning.
Springer, 1997.

[75] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and
Design. John Wiley & Sons, 2005.

[76] S. Srikantaiah, M. Kandemir, and Q. Wang, łSHARP control: Controlled shared
cache management in chip multiprocessors,ž in MICRO, 2009.

[77] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K. John, łThe virtual write
queue: Coordinating dram and last-level cache policies,ž in ISCA, 2010.

[78] B. Su, J. Gu, L. Shen, W. Huang, J. L. Greathouse, and Z. Wang, łPPEP: On-
line Performance, Power, and Energy Prediction Framework and DVFS Space
Exploration,ž in MICRO, 2014.

[79] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu, łMise: Providing per-
formance predictability and improving fairness in shared main memory systems,ž
in HPCA, 2013.

[80] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu, łThe Application
Slowdown Model: Quantifying and Controlling the Impact of Inter-application
Interference at Shared Caches and Main Memory,ž in MICRO, 2015.

[81] X. Sui, A. Lenharth, D. S. Fussell, and K. Pingali, łProactive Control of Approxi-
mate Programs,ž in ASPLOS, 2016.

[82] P. Tembey, A. Gavrilovska, and K. Schwan, łA Case for Coordinated Resource
Management in Heterogeneous Multicore Platforms,ž in ISCA, 2012.

[83] R. Teodorescu and J. Torrellas, łVariation-Aware Application Scheduling and
Power Management for Chip Multiprocessors,ž in ISCA, 2008.

[84] J. Thistle, łSupervisory control of discrete event systems,ž in Mathematical and
Computer Modelling, 1996.

[85] V. Vardhan, W. Yuan, A. F. Harris, S. V. Adve, R. Kravets, K. Nahrstedt, D. Sachs,
and D. Jones, łGRACE-2: integrating ine-grained application adaptation with

Session 2B: Performance Management ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

182

global adaptation for saving energy,ž in IJES, 2009.
[86] A. Vega, A. Buyuktosunoglu, H. Hanson, P. Bose, and S. Ramani, łCrank It Up or

Dial It Down: Coordinated Multiprocessor Frequency and Folding Control,ž in
ISCA, 2013.

[87] X. Wang and J. F. Martínez, łReBudget: Trading Of Eiciency vs. Fairness in
Market-Based Multicore Resource Allocation via Runtime Budget Reassignment,ž
in ASPLOS, 2016.

[88] X. Wang, K. Ma, and Y. Wang, łAdaptive Power Control with Online Model
Estimation for Chip Multiprocessors,ž in TPDS, 2011.

[89] Y. Wang, K. Ma, and X. Wang, łTemperature-constrained Power Control for Chip
Multiprocessors with Online Model Estimation,ž in ISCA, 2009.

[90] Q. Wu, Q. Deng, L. Ganesh, C.-H. Hsu, Y. Jin, S. Kumar, B. Li, J. Meza, and Y. J.
Song, łDynamo: Facebook’s Data Center-Wide Power Management System,ž in
ISCA, 2016.

[91] Q. Wu, P. Juang, M. Martonosi, L.-S. Peh, and D. W. Clark, łFormal control
techniques for power-performance management, 2005,ž in IEEE Micro, 2005.

[92] K. Yan, X. Zhang, J. Tan, and X. Fu, łRedeining QoS and customizing the power
management policy to satisfy individual mobile users,ž in MICRO, 2016.

[93] H. Zhang and H. Hofmann, łMaximizing Performance Under a Power Cap: A
Comparison of Hardware, Software, and Hybrid Techniques,ž in ASPLOS, 2016.

Session 2B: Performance Management ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA

183

