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Speed planning in a vehicle-following scenario can reduce vehicle fuel consumption even under limited traffic preview and in moderate
penetration of connected autonomous vehicles (CAVs), but could also lead to colder exhaust temperature, and consequently, less
efficient aftertreatment conversion. To investigate this potential trade-off, this paper presents a model predictive controller (MPC) to
optimally plan in an energy-conscious way the optimal speed trajectory for a diesel car following a hypothetical lead vehicle that
drives through the velocity trace of a federal test procedure. Using this energy-conscious optimal speed plan we investigate different
horizons for three objective functions, including minimum acceleration, minimum fuel consumption and minimum power. Then, MPC
results are compared to the trajectories obtained by dynamic programming with full knowledge of the drive cycle. As expected, longer
previews lead to smoother velocity trajectories that reduce the fuel consumption by 11% when power is the objective function, if
the preview is accurate. When the minimum fuel is set as the objective in the MPC, the controller coordinates to operate the engine
at more efficient conditions, which increases the fuel saving to 25%. However, the extra fuel saving is shown to be achieved at the
expense of high vehicle NOx emissions, since the engine operates at low speeds and high loads, where the output NOx emissions are
high, when the aftertreatment catalyst is not hot enough. Finally, it is shown that the minimum power formulation leads to a better

trade-off, where fuel economy can be increased without a large penalty on NOx emissions.

1 INTRODUCTION

Speed planning has high potential for improving the fuel econ-
omy of a connected autonomous vehicle (CAV) by adjusting the
vehicle speed for the given traffic and road conditions. When
speed planning is performed in a car following scenario, traffic
information is transmitted to the CAV through vehicle-to-vehicle
(V2V) or vehicle-to-infrastructure (V2I) communication, and
the CAV can utilize this information to predict its future driv-
ing environment and optimize its speed trajectory to guarantee
safety while improving fuel economy.

Over the past decade, there has been extensive research on
CAV speed planning for better fuel economy. The authors in
[14] summarized and quantified possible energy reduction ben-
efits brought by vehicle connectivity and autonomy, including
reducing air drag loss, smoothing acceleration and deceleration,
avoiding stoppage or powertrain downsizing. An algorithm that
can realize these benefits is not included in [14], however, ex-
amples can be found in [1, 8, 10]. In particular, the effect of
air drag reduction was experimentally studied in [1] and it was
shown that for conventional vehicles, following the front vehi-
cle closely and reducing air drag friction is an effective way to
save fuel. To avoid stopping at traffic lights, traffic signal pre-
diction is used in [8] with deterministic dynamic programming
in a receding horizon manner. The effect of reduced acceleration
and deceleration on improving fuel efficiency was demonstrated
in [10], where the controller was tested on an Advanced Light-
Duty Powertrain and Hybrid Analysis Tool using different drive
cycles.

The effect of engine operation optimization, which is not con-
sidered in the above-mentioned studies, is included in e.g. [2, 4,
12, 5] in addition to reducing trip energy demand as researchers
aim at minimizing fuel consumption under different scenarios.
Specifically, a look-ahead road grade information is used in [2]
to improve fuel efficiency for a heavy-duty vehicle platoon when
traveling uphill and downhill, and initiating the change in veloc-
ity at a specific point in the road, rather than accelerating simul-
taneously with the lead vehicle, is shown to be the most fuel effi-
cient strategy. For a single heavy-duty vehicle, an optimal speed
planning framework with information of road elevation, head-

wind, desired terminal time and traffic is proposed in another
effort, to design a fuel economy optimized trajectory, where the
engine runs on pre-selected most efficient gear levels [4]. A sce-
nario where two succeeding vehicles with following distance
constraints is considered in [12]. In particular, by assuming a
fixed gear level and approximating fuel consumption map with a
convex piecewise linear function, the authors show that this con-
troller outperforms a simple PI distance tracking controller in
saving fuel while satisfying certain distance constraints. In the
study reported in [5], fuel efficiency is optimized for a CAV as it
is following a lead vehicle driving a known trip through dynamic
programming.

Vehicle emissions also depend on the driving style as, e.g.,
a sudden acceleration may create a spike in the engine out
emissions, which will lead to large tailpipe emissions if the af-
tertreatment system is not efficient enough. However, the above-
mentioned studies did not consider the emissions with fuel econ-
omy simultaneously. Hybrid electric vehicles can mitigate the
trade-off between fuel efficiency and tailpipe emissions by man-
aging the torque split ratio between combustion engines and
electric motors to balance fuel consumption and emissions [6,
15]. For conventional vehicles, there could be a severe trade-off
between minimizing the fuel consumption by smoothing accel-
erations and maintaining the aftertreatment to the optimum tem-
perature range. Two single objective optimizations, namely fuel
optimal or emission optimal trajectory assuming perfect knowl-
edge of the whole trip, result in more emissions or fuel con-
sumption compared to the non-optimized trip [5]. Engine raw
emissions can be reduced if high pedal positions are penalized
during real-time speed planning [11], but as aftertreatment tem-
perature drops due to reduced energy and torque demand, the
overall change in tailpipe NOx is hard to predict.

Although integration of the powertrain information into the
speed planning controller is important to realize the advantage of
fuel saving by autonomy and connectivity as suggested in [12], it
is not clear how much benefit can be gained through engine op-
eration point optimization or lost due to the simplification in the
objective function, e.g. from fuel consumption to acceleration
as is used in [10] and [8]. To fill in this gap, this paper investi-
gates the effect of the objective function and prediction horizon



when a model predictive controller is used in a car-following sce-
nario to design the speed trajectory of a CAV with a conventional
diesel engine powertrain. Three different objective functions, in-
cluding minimum acceleration, minimum fuel consumption and
minimum power, are studied for optimization, while constraints
are applied to maintain a reasonable driving distance to ensure
safety and tracking. Emission performance out of the three dif-
ferent objectives under different horizons are also discussed. As
the first contribution of this paper, a detailed analysis of visita-
tion points of the engine is presented to show how the engine
speed and torque distribution changes with selection of the ob-
jective function. As a second novel contribution, it is shown that
despite the noticeable fuel economy advantage, the direct fuel
consumption optimization increases the vehicle NOx emissions;
thus, it does not stand out as the best objective function for speed
planning in the context of this work. Instead, vehicle power op-
timization is observed to create a better balance between fuel
minimization and emissions.

The remaining part of this paper is organized as follows. In
Section 2, a following vehicle model is developed to capture the
longitudinal dynamics, fuel consumption and tailpipe (TP) NOx
emissions. Section 3 defines the speed planning problem as an
optimal control problem, and explains the MPC implementation.
Section 4 shows the simulation results, and discusses about the
effect of optimization objective and prediction horizon on fuel
consumption and emissions performance. Finally, Section 5 con-
cludes the paper.

2 VEHICLE MODEL

2.1 Vehicle longitudinal dynamics

Assuming the vehicle as a point mass, the states of the system
[v, pyen] T, i.e. the vehicle velocity and position or distance from
the starting point, satisfy:

pveh(k + ]-) _ 1 Ts pveh(k) 05T2
[ vk +1) ] = [o 1] { v(k) ] + [ Tss] a(k), (D
in which a is the vehicle acceleration input, and 7% is the sam-
pling time, which is chosen as 0.1s in this paper. Constant accel-
eration is assumed during each sampling period.
To calculate the fuel consumption, the following model is de-
veloped for a MY2013 Ford F-350 Super-duty truck with a 6.7L

diesel engine. The vehicle is subjected to air drag f, rolling
resistance f;, and vehicle driving force fp:

fD = Myena + frr + fair ()
frr = CRMvehg, ifv>0 3)
Jair = 0'5pairAdeU2; 4

with fi; being the rolling resistance, f; the air drag resistance,
M, vehicle mass, Ay the vehicle frontal area, Cy and py the
air drag coefficient and density, and C'r the rolling resistance
coefficient.

Then, the demanded power PWp for driving the vehicle at
each step is calculated as:

PWD(/C) = fD’U. (5)

2.2 Engine model

To simplify the model for optimization, we used data from a
medium duty truck running a federal test procedure (FTP) to
construct an empirical gear level lookup table for each vehicle
speed and acceleration.

Then, the engine speed V., and torque 77, are calculated from v
and fp using the gear shifting logic, and by assuming a constant
drive-line efficiency of 75%. As a result, N (k) and T,(k) are
directly determined by v(k) and a(k) using (6,7):

60

Ne(k) = 21T R

FrGru(k) (6)

fpu(k)

Tak) = 525N () ™
with Fp as the final drive ratio, G as the gear ratio and R,, as
the wheel radius.

Engine outputs including fuel consumption 7,1, NOX emis-
sions 17EngNox, €Xhaust mass flow rate riey, and exhaust up-
stream temperature 7¢, are calculated using lookup tables de-
pending on engine speed and torque calibrated based on engine
dynamometer test data. As an example, Fig. 1 shows the rela-
tive fuel rate at different vehicle speed and acceleration. Valida-
tion results of the engine speed N, torque T, and fuel rate 1l
are shown in Fig. 2. As shown, the modeled engine torque and
fuel rate in Fig. 2-(c),(d) approximates measured data quite well,
except that it predicts higher oscillations during transient condi-
tions. One reason for these oscillations is that the model does
not include the torque converter, which could damp out the en-
gine speed and torque oscillations. Engine speed in Fig. 2-(b) is
mostly captured, but some error occurs because of the mismatch
of the gear level.

Fuel rate

Acceleration [m/s?]

"o 5 10 15 20 25 30
Speed [m/s]
Figure 1: Lookup table for relative fuel rate based on vehicle
speed and acceleration by assuming a fixed gear shifting logic

2.3 Thermal dynamics and emissions model

The aftertreatment system includes a diesel oxidization catalyst
(DOC) and a selective catalytic reduction (SCR) system. A tur-
bine (TB) is located on the downstream of the engine and on the
upstream of the DOC. It is assumed that engine NOx emission is
only reduced in the SCR catalyst once it is emitted out of the en-
gine. As the SCR conversion efficiency is dependent on the cat-
alyst brick temperature, a thermal model for the aftertreatment
system together with the turbine is needed to calculate tailpipe
NOx emissions.

A first order lag is assumed for turbine outlet gas temperature,
T, .18, dynamics:

1
— T 8
1+7s ®)

where the time constant 7 is assumed to be inversely propor-
tional to exhaust mass flow rate reyp.

Due to the similarities in DOC and SCR catalysts’ structures,
the DOC and SCR catalysts are both modeled as thermal masses,
and their gas and brick temperatures are calculated by (9) and
10) [7]:

Tyt =

Mexh C,
anes Dingawy.i + (h1a1)iTh.q

€))

9.4 = mcxhcpq
(h1a1)i + THAS
dTy.;
(1- 61)%@;? = (h1a1)i(Tg.s — Tp.i) — (hea2)i(Th.; — Ta)
(10)
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Figure 2: Validation results for vehicle longitudinal dynamics
and fuel rate

in which ¢ = {DOC, SCR}, Ty, T, are brick temperature and gas
temperature, T, is the ambient temperature. A, Az and p;, are
the frontal area, length and density of the brick, C},4 and C, are
the specific heat capacities of the exhaust gas and monolith, €
is the parameter showing the fraction of the catalyst brick open
cross sectional area, k1 and ho are the heat convection coefficient
from the gas flow to the monoliths, and from the brick surfaces to
the ambient, a; and as, are the corresponding geometric surface
area-to-volume ratios [9].
The input to (9), Tindday,i, is calculated as [5]:
Tindelay . (t)

= Tyin.i(t — A74.) (1D

t
/ rends = L. (12)
ATd i

where T'gin poc = Ty.78, Tgin.scrR = Tg.poc-

Once Tj scr is known, NOx reaction efficiency 7 is deter-
mined by a lookup table [3], and thus the tailpipe NOx emission
mpNox can be modeled as:

mrpNox = 1(Th.SCR)MEng NOx- (13)

Validation results of the SCR temperature are shown in Fig. 3.
An underestimation is shown to happen in Bagl of FTP trajec-
tory, as the effect of the engine post-fuel injection warming up
the aftertreatment system is not included in this thermal model.
After the warm-up phase of Bagl, the SCR catalyst temperature
is predicted with a maximum error of 14% and average error of
4%. This error is deemed sufficiently low, because, for the pur-
pose of this work, the thermal dynamics is used to explore the
temperature variations when speed trajectory changes.

3 MODEL PREDICTIVE CONTROL

We consider the scenario that a CAV is following another con-
nected vehicle, which is driving a federal test procedure. In order
to explore the benefit of connectivity and autonomy, instead of
letting the autonomous vehicle to exactly follow its leader vehi-
cle’s trajectory or track the leader’s position strictly, we pose a
spacing constraint on the following distance to mimic the traffic
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Figure 3: Validation results for the SCR temperature calculated
using aftertreatment thermal dynamics

constraints to avoid rear end collisions and keep the following
distance from being too long to avoid frequent cut-ins from ad-
jacent lanes. Any following trajectories that satisfy this spacing
constraint are considered feasible. Then, the velocity trajectory
of the following vehicle can be optimized to reduce fuel con-
sumption.

Three candidate functions as separate minimization objectives
are chosen, including acceleration, power and fuel consumption.
For each of the three considerations, the cost function at every
step k over a horizon of Np steps is expressed as:

and Table 1 lists the objective functions of each case.

Table 1: Cost functions defined for all optimization scenarios

1 Case Objectlve to | Cost function
minimize
1 | MPC, acceleration | C1(k[j) = a(klj)?
MPC, power Cy(kl7) = |PWp(k|7)]
3 MPCf fuel Cg(k ]) mfuel(k|j>

Braking and tractive power are both penalized. Tractive power
obviously increases fuel consumption. Reduction of braking
power also decreases fuel consumption since traveling the same
distance at the same time with less braking would incur less fric-
tion llosses that do not allow all the kinetic energy to be recuper-
ated '.
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Figure 4: Architecture of the implemented MPC algorithm

In Table 1, a(k|j), PWp(k|j) and mye (k|J) refer to the pre-
dicted value of a, PWp and myg, at step k + 7 while current
step is denoted with k, and Np in (14) is the prediction hori-
zon of the model predictive controller. The prediction horizon
in terms of time is given as Tp = Np - T,. The structure of
the controller is shown in Fig. 4. The controller determines the
optimization variable U, which collects the future inputs in the
vector: U = [a(k|0) a(k|1) a(k|(Np — 1))}T, by min-
imizing the cost function over the prediction horizon Np while

IPenalization of braking power should also be applied even if regenerative
braking, as in hybrid vehicles, would be possible.



utilizing future speed of the leading vehicle and system dynam-
ics, and accounting for the input and state constraints. The spac-
ing constraint of maximum and minimum admissible following
distances, d,,4, and d,,;,,, are two piece-wise linear functions of
the lead vehicle speed v; [5, 10]. Here we assume accurate pre-
view velocity of the lead vehicle is known within the prediction
horizon, so its position p; can be calculated. Then the following
vehicle’s position py.n should satisfy:

{pveh(k) < max(pi(k) — dmin(vi(k)), pic) (15)
Dven(k) > max(pi(k) — dmaz(vi(k)),pic)

where
dmin (Ul) = 0.31)[ (16)

dinaz (Vi) = o
max\Vl) — 10’1)[_3 if’U[<2OMPH

and pyc > 0 is the initial distance between the two vehicles, and
is assumed to be 10m.

Other motion constraints are imposed to the vehicle speed
and acceleration. Considering the maximum possible power of
the vehicle and driver comfort, the vehicle acceleration is con-
strained by:

a7

—6m/s? < a(k) < 6m/s?, (18)

where the maximum acceleration and deceleration are chosen
twice of that of the standard FTP drive cycle, and vehicle veloc-
ity is constrained by:

0m/s < v(k) < 30mJs, (19)

which is very close to the typical highway speed limit in the
USA.

Satisfying (18) and (19) does not guarantee sufficient engine
power, as, for example, the power demand for achieving 3m/s?
acceleration at 5m/s speed is different from that at 25m/s. So
for speed and acceleration points that satisfy (18) and (19) but
require higher power than the engine maximum, the correspond-
ing cost function value is set to +00 to avoid infeasible operating
conditions.

To summarize, the controller solves for the optimal decision
variable U of the following problem:

min  J;(k) (20)
U
Subject to
pen(kli+ 1] _ [1 T.] [peen(kls)] , [0.572 .
v?k|j+1) ] - {0 1} [ vfku) }+[ T, }a(klj))
' @)
10 0
LV N ekl
0 —1 o] vkED
0 o0 1 a(kl7)
L0 0 -1
(22)

max(p(k + j +1) = dmin(vi(k + j + 1)), pic)
—max(pl(k: +.7 + 1) - dmaz(vl(k +.7 + 1))7pIC)
30
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0
6
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where j = {0,1,..., N, — 1}.

The above optimization problem is solved using the fmincon
command available in the MATLAB optimization toolbox. Then
the optimized input at current step k is implemented and the con-
troller proceeds to optimize for the next step until the end of the
trajectory. The MPC is not fast enough yet to finish solving the
optimization problem at each step within T = 0.1s, but the in-
vestigation of increasing computation speed is subject to a future
study.

4 SIMULATION RESULTS AND DISCUSSIONS

The vehicle speed calculated by the MPC over Bag2 of the Fed-
eral Test Procedure for heavy duty vehicles is presented in Fig. 5
for different prediction horizons T’p and for fuel consumption
minimization MPCg. Also, global optimal results form Dynamic
Programming [13, 5] (DP) and a conventional driving style emu-
lated by a PI driver model tracking FTP are included to evaluate
the MPC performance. The driver model is a PI feedback con-
troller developed based on system dynamics (1) to track vehicle
speed, with maximum tracking error smaller than £1mph. As
plotted in Fig. 5-(a),(b), a longer prediction horizon Tp = 24s
yields a smoother speed trajectory and smaller distance between
the two vehicles compared to a shorter prediction horizon of 6s.
As plotted in Fig. 5-(c), the trajectory from the 6s-horizon con-
troller stays close to the maximum following distance. This is
because the controller with a shorter horizon does not ask for ac-
celeration until the following vehicle moves very close to high-
est distance constraint. Thus the final speed trajectory has more
oscillations, with corresponding oscillations in the engine speed
and load.
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Figure 5: Prediction horizon affects driving pattern in MPCy

The effect of the prediction horizon on the controller perfor-
mance is shown in Fig. 6. As shown in Fig. 6-(c), when the
prediction horizon is as long as Tp = 26s, with MPC, the vehi-
cle fuel economy is improved by 25% compared to the PI driver
model, very close to the global optimal fuel consumption result
of DP. Average engine efficiency achieved by MPCs is not as
high as DP in Fig. 6-(d). This is expected as DP guarantees
global minimum solution, while MPC only returns locally min-
imum results. MPCp also approaches DP result in terms of the
objective function value as is observed in Fig. 6-(a). Both MPC,
and MPC,;, controllers show a potential of reducing the fuel con-
sumption by 7% and 11%, respectively, with a with Tp = 26s
prediction horizon. It is worth noting that the short horizon con-
trollers may not be able to generate a feasible input that satis-
fies both the input constraint (18) and the distance constraint
(15) because of the limited reaction time. In the simulations,
when T'p < 6s, with MPC, and MPC; controllers, upper distance
bound violations were observed with a maximum of 6m, in ad-
dition to their poor fuel efficiency results.

The speed trajectory optimization reduces the energy required
for driving the vehicle as shown in Fig. 6-(a), and at the same
time, the energy wasted by braking is reduced (Fig. 6-(b)). As
shown, minimizing either fuel consumption or power, i.e. MPC¢
and MPC,, reduces the required energy to the same order, but
more than the energy reduction obtained by minimizing the ac-
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celeration with MPC,. However, the vehicle trip total fuel us-
age is shown to be reduced more with MPCy, 14% more with
a 26s prediction horizon compared to MPC,, (Fig. 6-(b)). This
indicates the importance of explicit inclusion of the engine fuel
efficiency model in the optimization problem, since MPC; tra-
jectory has a cycle averaged engine efficiency of 21% compared
to 17% obtained with MPC,, (Fig. 6-(d)). This causes the MPC¢
with T'p = 8s to be more fuel efficient than MPC, or MPC,, with
the long horizon of T = 26s.

Another important observation shown in Fig. 6-(c) is that the
engine efficiency decreases with increased prediction horizon.
This happens because with increased prediction, the required ve-
hicle energy and consequently the engine power reduces. For in-
ternal combustion engines, lower power (or torque assuming a
constant speed) operating conditions are less efficient. This can
be seen in their engine operation visitation. Figure 7 shows the
engine visitation points for (MPC,, Tp = 12s), (MPC,, Tp = 65)
and (MPC¢, T’ = 6s) trajectories. These three trajectories have
similar drive energy demand: 6.2MJ for MPC,, 6.1MJ for MPC,,
and 6.4MJ for MPC;. By looking at the engine visitation plots
of these three cases, the effect of engine operation optimiza-
tion can be seen. As is shown by the colorbar, the more time is
spent, the darker the color is. Comparing Fig. 7-(c) with Fig. 7-
(a),(b), MPC; spends the highest amount of time visiting low
BSFC (brake specific fuel consumption) region, and thus has the
highest fuel efficiency.

Cycle averaged NOx emission results are shown in Fig. 8
for different controllers and prediction horizons. As Fig. 8-(a)
shows, the engine out NOx emissions reduce when the predic-
tion horizon increases, since the engine operates at lower power
and torque conditions. As a consequence of the lower power and
torque operation of the engine, the lower bound of the simulated
SCR temperature reduces with increased horizon (Fig. 8-(b)).
A comparison between SCR temperature traces of FTP trajec-
tory, MPC¢ controller with T'p = 6s, 24s and DP result as shown
in Fig. 9 also indicates that SCR temperature reduces with in-
creased horizon. The SCR temperature reduction decreases the
catalyst NOx conversion efficiency plotted in Fig. 8-(c). For
MPC, and MPC,, the decrease in the SCR efficiency is miti-
gated by the reduction in the engine out NOx, such that the total
tailpipe emissions remains almost constant with increasing hori-
zon. However, with MPC;, the engine NOx will be higher than
MPC,, (Fig. 8-(a)) despite their similar energy demand and sim-
ilar SCR temperature. This is because the MPC; coordinates the
engine to operate at lower speed but higher torque points, where

engine NOx emission is high. As a result, MPC; leads to much
more tailpipe emissions compared to MPC, and MPC,, and the
total tailpipe NOx emission increases as prediction horizon in-
creases (due to lower SCR temperature and efficiency). For all
the simulated prediction horizons, the vehicle with MPC; emits
significantly more tailpipe NOx emissions than the PI-model
driven standard FTP drive cycle. When the speed trajectory is
selected from the MPC,, controller, however, a 9% fuel saving is
achieved with prediction horizon T» > 16s, with tailpipe NOx
emissions similar to the baseline FTP simulations. Thus, MPC,
controller with T» > 16s stands out as a better choice for the
CAV speed planning studied in this work.

5 CONCLUSIONS

The influence of different predictive speed controller designs and
prediction horizon on the performance of a CAV driven in a car-
following scenario on the Federal Test Procedure has been pre-
sented. Controllers with three different objective functions in-
cluding fuel consumption, demanded power, and acceleration
have been tested with prediction horizons between 4s and 26s.
Results show that even under limited preview, model predictive
controllers with 26s prediction horizon achieves fuel consump-
tion results that are within 5% of the dynamic programming re-
sults, where perfect knowledge of the entire prediction horizon
is assumed. Results also show that with the same objective func-
tion, longer prediction horizons save more fuel. Furthermore, di-
rect inclusion of the engine fuel consumption map in the opti-
mization achieve the most fuel saving (25%) among the three
case studies, since it both optimizes engine operation and re-
duces trajectory energy demand. These fuel efficiency benefits
come with the stark realization that better fuel economy pushes
the engine to run at lower speed and higher load region, where
the raw engine NOx emissions increase. Compounding the ad-
verse influence on tailpipe emissions, the velocity smoothing en-
abled by the connectivity leads to colder aftertreatment, and con-
sequently, less efficient emissions reduction for a fixed (size and
catalyst loading) aftertreatment system.

The results point to the need for an even more complex opti-
mization process that includes the full fuel and emission mod-
els in the optimizer. This complex optimization problem could
be addressed in the future. Meanwhile, the results in this paper
highlight that reduction of the fuel consumption in the speed
planning for a connected autonomous vehicle could lead to
higher real driving emissions (RDE) if the trade-off is not care-
fully considered.
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6.2MJ, fuel consumption 0.212 gallon (b) MPC,,, T'p = 6s. Energy demand 6.1MJ, fuel consumption 0.217 gallon (c) MPCy, Tp = 6s.
Energy demand 6.4M]J, fuel consumption 0.204 gallon. BSFC curve is normalized to make the maximum value being 1 on the plot to
show the relatively high and low efficiency regions
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Figure 8: (a) Cycle averaged Engine NOx (b) Range of SCR tem-
perature variation (c) Cycle averaged SCR efficiency (d) Cycle
averaged tailpipe NOx emissions
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Figure 9: SCR temperature trace of different horizons using
MPC; compared with standard FTP cycle and DP result
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