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Abstract

Alternating direction method of multiplier
(ADMM) is a popular method used to design dis-
tributed versions of a machine learning algorithm,
whereby local computations are performed on lo-
cal data with the output exchanged among neigh-
bors in an iterative fashion. During this iterative
process the leakage of data privacy arises. A dif-
ferentially private ADMM was proposed in prior
work (Zhang & Zhu, 2017) where only the pri-
vacy loss of a single node during one iteration
was bounded, a method that makes it difficult to
balance the tradeoff between the utility attained
through distributed computation and privacy guar-
antees when considering the total privacy loss of
all nodes over the entire iterative process. We
propose a perturbation method for ADMM where
the perturbed term is correlated with the penalty
parameters; this is shown to improve the utility
and privacy simultaneously. The method is based
on a modified ADMM where each node indepen-
dently determines its own penalty parameter in
every iteration and decouples it from the dual up-
dating step size. The condition for convergence
of the modified ADMM and the lower bound on
the convergence rate are also derived.

1. Introduction

Distributed machine learning is crucial for many settings
where the data is possessed by multiple parties or when the
quantity of data prohibits processing at a central location. It
helps to reduce the computational complexity, improve both
the robustness and the scalability of data processing. In a
distributed setting, multiple entities/nodes collaboratively
work toward a common optimization objective through an
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interactive process of local computation and message pass-
ing, which ideally should result in all nodes converging to
a global optimum. Existing approaches to decentralizing
an optimization problem primarily consist of subgradient-
based algorithms (Nedic et al., 2008; Nedic & Ozdaglar,
2009; Lobel & Ozdaglar, 2011), ADMM-based algorithms
(Wei & Ozdaglar, 2012; Ling & Ribeiro, 2014; Shi et al.,
2014; Zhang & Kwok, 2014; Ling et al., 2016), and compos-
ite of subgradient and ADMM (Bianchi et al., 2014). It has
been shown that ADMM-based algorithms can converge at
the rate of O(%) while subgradient-based algorithms typi-
cally converge at the rate of O(ﬁ) where k is the number
of iterations (Wei & Ozdaglar, 2012). In this study, we will
solely focus on ADMM-based algorithms.

The information exchanged over the iterative process gives
rise to privacy concerns if the local training data is pro-
prietary to each node, especially when it contains sensitive
information such as medical or financial records, web search
history, and so on. It is therefore highly desirable to ensure
such iterative processes are privacy-preserving.

A widely used notion of privacy is the e-differential privacy;
it is generally achieved by perturbing the algorithm such
that the probability distribution of its output is relatively
insensitive to any change to a single record in the input
(Dwork, 2006). Several differentially private distributed
algorithms have been proposed, including (Hale & Egerst-
edty, 2015; Huang et al., 2015; Han et al., 2017; Zhang &
Zhu, 2017; Bellet et al., 2017). While a number of such
studies have been done for (sub)gradient-based algorithms,
the same is much harder for ADMM-based algorithms due
to its computational complexity stemming from the fact that
each node is required to solve an optimization problem in
each iteration. To the best of our knowledge, only (Zhang
& Zhu, 2017) applies differential privacy to ADMM, where
the noise is either added to the dual variable (dual variable
perturbation) or the primal variable (primal variable per-
turbation) in ADMM updates. However, (Zhang & Zhu,
2017) could only bound the privacy loss of a single itera-
tion. Since an attacker can potentially use all intermediate
results to perform inference, the privacy loss accumulates
over time through the iterative process. It turns out that the
tradeoff between the utility of the algorithm and its privacy
preservation over the entire computational process becomes
hard using the existing method.
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In this study we propose a perturbation method that could si-
multaneously improve the accuracy and privacy for ADMM.
We start with a modified version of ADMM whereby each
node independently decides its own penalty parameter in
each iteration; it may also differ from the dual updating step
size. For this modified ADMM we establish conditions for
convergence and quantify the lower bound of the conver-
gence rate. We then present a penalty perturbation method
to provide differential privacy. Our numerical results show
that under this method, by increasing the penalty parameter
over iterations, we can achieve stronger privacy guarantee
as well as better algorithmic performance, i.e., more stable
convergence and higher accuracy.

The remainder of the paper is organized as follows. We
present problem formulation and definition of differential
privacy and ADMM in Section 2 and a modified ADMM al-
gorithm along with its convergence analysis in Section 3. A
private version of this ADMM algorithm is then introduced
in Section 4 and numerical results in Section 5. Discussions
are given in Section 6 and Section 7 concludes the paper.

2. Preliminaries
2.1. Problem Formulation

Consider a connected network! given by an undirected
graph G(./, &), which consists of a set of nodes A4~ =
{1,2,--- ,N} and aset of edges & = {1,2,--- , E}. Two
nodes can exchange information if and only if they are
connected by an edge. Let ¥#; denote node i’s set of
neighbors, excluding itself. A node ¢ contains a dataset
D; = {(z7,yM)|n = 1,2, , B;}, where 27 € R? is the
feature vector representing the n-th sample belonging to i,

€ {—1, 1} the corresponding label, and B; the size of
D;.

Consider the regularized empirical risk minimization (ERM)
problems for binary classification defined as follows:

B;
Z (2 7 ) +pR(fe)
- (1)

where C' < B; and p > 0 are constant parameters of the
algorithm, the loss function .Z(-) measures the accuracy of
classifier, and the regularizer R(-) helps to prevent overfit-
ting. The goal is to train a (centralized) classifier f. € R?
over the union of all local datasets D,;; = U;c ¢ D; in a
distributed manner using ADMM, while providing privacy
guarantee for each data sample 2.

bo\Q

N
min Oprum(fe, Dau) Z

'A connected network is one in which every node is reachable
(via a path) from every other node.

The proposed penalty perturbation method is not limited to
classification problems. It can be applied to general ADMM-based
distributed algorithms since the convergence and privacy analysis

2.2. Conventional ADMM

To decentralize (1), let f; be the local classifier of each
node i. To achieve consensus, i.e., fi = fo = -+ =
fn, aset of auxiliary variables {w;;|i € A,j € 7/} are
introduced for every pair of connected nodes. As a result,
(1) is reformulated equivalently as:

min O ifie1s Da O(fi,
{fi}{wi;} ERM({f ! ll Z f

s.t. fi:wij;wij:fjv ZEL/VJG%
where O(f;, D;) = Zn VLR fEar) + R(fl).

The objective in (2) can be solved using ADMM. Let { fi} be
the shorthand for { f; }ic_s: let {w;;, A¥;} be the shorthand
for {wij, ¥ Yie v jevi kefap), Where A, A0 are dual
variables corresponding to equality constraints f; = w;;
and w;; = f; respectively. Then the augmented Lagrangian
is as follows:

N
Ly({fi}{wij, A }) = Z O(fi, Dy)

N
(fi — wiz) + Z Z (A?

i=1je;

N

+> Z (I1fi = wijlI3 + [Jwig = f5113) -
i=1j€Y;

In the (¢ + 1)-th iteration, the ADMM updates consist of
the following:

fi(t +1) = argmin Ly ({f;}, {wi; (1), WAGIENC
wij (¢ +1) = argmin Ly ({fi(t + )}, {wij, A5(0)}) ;- (5)
At +1) = A5 +n(filt +1) —wi(t+1)) 5 (6)
AL+ 1) = A () + n(wg(t+1) = f(t+1)) . (D)

Using Lemma 3 in (Forero et al., 2010), if dual variables

Ay (t) and /\ﬁ-’j(t) are initialized to zero for all node pairs
S @ (4) — \b k() — _\k :

(4,7), then A, (¢) = A7;(t) and A (t) = —AJ;(t) will hold

for all iterations with k € {a,b},1 € A, j € ¥;.

Let Ai(t) = ey AG(t) = Xicy, AY(1), then the
ADMM iterations (4)-(7) can be simplified as:

filt+1) = argmm{O(fZ, i) 4 20 (07T f;

N

33T

i=1je7;

T(wij — f;) 3)

+nZ|lf O+ @)= FIBY: ®
JEY;
ME+D) =N+ 1D+ = [E+D) . ©)
JEY;

in Section 3 & 4 remain valid.
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2.3. Differential Privacy

Differential privacy (Dwork, 2006) can be used to measure
the privacy risk of each individual sample in the dataset
quantitatively. Mathematically, a randomized algorithm
</ (-) taking a dataset as input satisfies e-differential privacy
if for any two datasets D, D differing in at most one data
point, and for any set of possible outputs S C range(.</),
Pr(</(D) € S) < exp(e)Pr(#/ (D) € S) holds. We call
two datasets differing in at most one data point as neigh-
boring datasets. The above definition suggests that for a
sufficiently small €, an adversary will observe almost the
same output regardless of the presence (or value change)
of any one individual in the dataset; this is what provides
privacy protection for that individual.

2.4. Private ADMM proposed in (Zhang & Zhu, 2017)

Two randomizations were proposed in (Zhang & Zhu, 2017):
(i) dual variable perturbation, where each node ¢ adds a
random noise to its dual variable \;(t) before updating its
primal variable f;(¢) using (8) in each iteration; and (ii)
primal variable perturbation, where after updating primal
variable f;(t), each node adds a random noise to it before
broadcasting to its neighbors. Both were evaluated for a
single iteration for a fixed privacy constraint. As we will see
later in numerical experiments, the privacy loss accumulates
significantly when inspected over multiple iterations.

In contrast, in this study we will explore the use of the
penalty parameter 7 to provide privacy. In particular, we will
allow this to be private information to every node, i.e., each
decides its own 7) in every iteration and it is not exchanged
among the nodes. Below we will begin by modifying the
ADMM to accommodate private penalty terms.

3. Modified ADMM (M-ADMM)
3.1. Making 7 a node’s private information

Conventional ADMM (Boyd et al., 2011) requires that the
penalty parameter 7 be fixed and equal to the dual updating
step size for all nodes in all iterations. Varying the penalty
parameter to accelerate convergence in ADMM has been
proposed in the literature. For instance, (He et al., 2002;
Magntisson et al., 2014; Aybat & Iyengar, 2015; Xu et al.,
2016) vary this penalty parameter in every iteration but keep
it the same for different equality constraints in (2). In (Song
et al., 2016; Zhang & Wang, 2017) this parameter varies in
each iteration and is allowed to differ for different equality
constraints. However, all of these modifications are based on
the original ADMM (Eqn. (4)-(7)) and not on the simplified
version (Eqn. (8)-(9)); the significance of this difference
is discussed below in the context of privacy requirement.
Moreover, we will decouple 7);(t+1) from the dual updating
step size, denoted as 6 below. For simplicity, 6 is fixed for

all nodes in our analysis, but can also be private information
as we show in numerical experiments.

First consider replacing n with 7;;(¢ + 1) in Eqn. (4)-(5) of
the original ADMM (as is done in (Song et al., 2016; Zhang
& Wang, 2017)) and replacing n with 8 in Eqn. (6)-(7); we
obtain the following:

fi(t + 1) = argmin {O(fi, D;) 42X ()T f;
fi

. Z i (t + 1)+77ji(t+1)|%(fi(t) + £ @) = fill3}

. 2
JEY;

M) = M)+ 5 SOt 1) ~ f(4+1).
JEY;
This however violates our requirement that 7, (¢) be node
j’s private information since this is needed by node ¢ to
perform the above computation. To resolve this, we instead
start from the simplified ADMM, modifying Eqn. (8)-(9):

fi

e+ 1) Y I = S0+ HEIE Y (10
JEY;
M) = N0+ 2 ST+ 1) - [+ 1), (D

2
JEY;

where 7);(t + 1) is now node ’s private information. Indeed
7:(t + 1) is no longer purely a penalty parameter related to
any equality constraint in the original sense. We will how-
ever refer to it as the private penalty parameter for simplicity.
The above constitutes the M-ADMM algorithm.

3.2. Convergence Analysis

We next show that the M-ADMM (Eqn. (10)-(11)) con-
verges to the optimal solution under a set of common tech-
nical assumptions. Our proof is based on the method given
in (Ling et al., 2016).

Assumption 1: Function O(f;, D;) is convex and continu-
ously differentiable in f;, Vi.

Assumption 2: The solution set to the original ERM prob-
lem (1) is nonempty and there exists at least one bounded
element.

The KKT optimality condition of the primal update (10) is:
0=VO(f;(t+1),D;) + 2\ (1)
it +1) Y (2fi(t+1) = (fi(t) + £5(2)) -

JEY;

(12)
We next rewrite (11)-(12) in matrix form. Define the adja-
cency matrix of the network A € RV*N as

1, ifnode ¢ and node j are connected
Q5 = 0 .
, otherwise .
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Stack the variables f;(t), A;(t) and VO(f;(t), D;) fori €
./ into matrices, i.e.,

oR ()"
T T

Ft) = fz(:t) cRVY, A(f) = >\2(:t) c RN
fN(.t)T /\N&t)T

c RNXd

VO(fn(t), Dn)"

Let V; = |¥%] be the number of neighbors of node i, and
define the degree matrix D = diag([Vi; Va;--- ;Vy]) €
RN*N - Define for the t-th iteration a penalty-weighted
matrix W (t) = diag([n: (t); n2(t); - - ;9w (t)]) € RV,
Then the matrix form of (11)-(12) are:

VO(f(t+1), Do) + 2A(t) + 2W (t + 1)Df(t 4+ 1)
—W(t+1)(D+ A)f(t) = Oxxa; (13)

2A(t+1) = 2A(t) + (D — A)f(t +1) . (14)

Note that D — A is the Laplacian matrix and D + A is the
signless Laplacian matrix of the network, with the following
properties if the network is connected: (i) D += A > 0 is
positive semi-definite; (i) Null(D — A) = cl, i.e., every
member in the null space of D — A is a scalar multiple of 1
with 1 being the vector of all 1’s (Kelner, 2007).

Let v/ X denote the square root of a symmetric positive
semi-definite (PSD) matrix X that is also symmetric PSD,
i.e., vVXvX = X. Define matrix Y (¢) such that 2A(t) =
VD — AY (). Since A(0) = zeros(N, d), which is in the
column space of D — A, this together with (14) imply that
A(t) is in the column space of D — A and /D — A. This
guarantees the existence of Y (¢). This allows us to rewrite
(13)-(14) as:

VO(f(t+1), Do) + VD — AY (t + 1)
+(W(t+1)—0I)(D - A)f(t+1)

W (t+1)(D+A)(ft+1) = f(£) =Onxa; (195
Y(t+1)=Y(t)+0VD—Af(t+1). (16)

Lemma 3.1 [First-order Optimality Condition (Ling et al.,
2016)] Under Assumptions 1 and 2, the following two state-
ments are equivalent:

o =N U 5 ()T € RN s consen-
sual, ie., f{ = f5 == fx = fi where f} is the
optimal solution to (1).

e There exists a pair (f*,Y*) with Y* = /D — AX

for some X € RN*? such that

VO(f*, Da) + VD — AY* = 0nya; (17
VD = Af* =0nyq. (18)

Lemma 3.1 shows that a pair (Y*, f*) satisfying (17)(18)
is equivalent to the optimal solution of our problem, hence
the convergence of M-ADMM is proved by showing
that (Y (t), f(t)) converges to a pair (Y*, f*) satisfying
(17)(18).

Theorem 3.1 Consider the modified ADMM defined by
(10)-(11). Let {Y(t), f(t)} be outputs in each iteration
and (Y*, f*) a pair satisfying (17)-(18). Denote

Z(t) = {1;((;))] e R2Vxd . 7 = {?:} c R2Nxd
e 0
= [ 0 W(t)(DJrA)} e REN

Let (-, ) be the Frobenius inner product of two matrices.
We have

(Z(t+1) = Z5 Jt+1)(Z(t+1) = Z(1))r <0. (19)

Ifni(t+1) > n(t) > 0 > 0and n;(t) < oo, Vt, i, then
(Y(t), f(t)) converges to (Y*, f*).

3.3. Convergence Rate Analysis

To further establish the convergence rate of modified
ADMM, an additional assumption is used:

Assumption 3: For alli € A, O(f;, D;) is strongly con-
vex in f; and has Lipschitz continues gradients, i.e., for any
f} and f?, we have:

(fi =F)T(VO(S}, Di) =V O(f7, D)) = mill £} = f2113
IVO(f}, Di) = VO(f2, Di)ll < Mi||fi = f7]l2 (20)

where m; > 0 is the strong convexity constant and 0 <
M; < 40 is the Lipschitz constant.

Theorem 3.2 Define D,,, = diag([my;mz;--- ;my]) €
RN*N and Dy = diag([M#; M2;--- ; M%]) € RV*N
with m; > 0 and 0 < M; < 400 as given in Assumption 3.
Denote by || X ||% = (X, JX ) the Frobenius inner product
of any matrix X and JX; denote by 0,n(-) and opax()
the smallest nonzero, and the largest, singular values of a
matrix, respectively.

Let Gpax(t) = Omax(W (@) (D + A)), Guawmin(t) =
Omaximin(W (t) — 0I)(D — A)) and p > 1 be an arbitrary
constant. Consider any 6(t) that satisfies (21)(22):

S() 2 Gnax ()
00’,”[,,(D - A) S ! (21)
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and

Mamax(t)2IN + /142D]\/I
Gomn(D— A1) TP o)
< AW (t) — OI)(D — A) + 2D, .

a(t)(

Ifni(t+1) > ni(t) > 0 > 0and n;(t) < +oo, Vt, i, then

(Y(t), f(t)) converges to (Y*, f*) in the following sense:
AL+ o@NZE) = Z* 150y < 112(t = 1) = Z"||5¢) -

Furthermore, a lower bound on §(t) is:

. {Hamm(D — A) Zmo + 26min(t) }
i 25 7 2 M2 A UG ma(t)? ~ (23)
WoOmax(t) oot s 4 Gn(t)

where m, = min;e_y {m;} and Mo = max;c_y{M;}.

Although Theorem 3.2 only gives a lower bound on the
convergence rate (1 + §(t)) of the M-ADMM, it reflects the
impact of penalty {n;(t)}Y; on the convergence. Since
Tmax(t) = Omax(W(t) —0I)(D — A)) and Gmax(t) =
Tmax (W (t) (D + A)), larger penalty results in larger omax (t)
and Gy (£). By (23), the first term, 27un(P—4)

fEESwE is smaller
when . (t) is larger.

The second term is bounded

by fomn(D=A)(u=1)@mo+20m (1)
HOmax (t)?

Tmax (t) is larger. Therefore, the convergence rate 1 + ()

decreases as {n; ()}, increase.

, which is smaller when

4. Private M-ADMM

In this section we present a privacy preserving version of M-
ADMM. To begin, a random noise ¢; (¢ + 1) with probability
density proportional to exp{—o;(t + 1)||e;(t + 1)||2} is
added to penalty term in the objective function of (10):

LE™(t+1) = O(fi, Do) +2X(0)" fi
e+ 1) Y Uit el +1) — S0 + OB

JEY:
(24)
To generate this noisy vector, choose the norm from the
gamma distribution with shape d and scale m and the
direction uniformly, where d is the dimension of the feature
space. Then node 7’s local result is obtained by finding the
optimal solution to the private objective function:

filt +1) = argmin LY (t + 1), i € AN . (25)
fi

It is equivalent to (26) below when noise 7; (t+ 1) V;e; (t+1)

Algorithm 1 Penalty perturbation (PP) method

Parameter: Determine 6 such that 2¢; < 2i (£ +20V;)
holds for all :.
Initialize: Generate f;(0) randomly and \;(0) = 0gx1
foreverynodei € A, t =0
Input: {Di}i]\il’ {ai(l)v T 7ai(T) zNzl
fort=0toT — 1do
fori =1to N do
Generate noise €;(t + 1) ~ exp(—a;(t + 1)||€||2)
Perturb the penalty term according to (24)
Update primal variable via (25)
end for
fori =1to N do
Broadcast f;(t + 1) to all neighbors j € ¥%;
end for
for i = 1to N do
Update dual variable according to (11)
end for
end for
Output: upper bound of the total privacy loss 3

is added to the dual variable \;(¢):

s T Ppriv _ C < n n P
arg;:nn LVt +1) = B, ;3(% flap) + NR(fi)
+2(Ni(t) + mi(t + D Vies (8 + 1)1 f;
et 1) 31— 50 + OB

JEYS

Further, if n;(t+1) = n = 60, Vi, t, then the above is reduced
to the dual variable perturbation in (Zhang & Zhu, 2017)3.

The complete procedure is shown in Algorithm 1, where the
condition used to generate 6 helps bound the worst-case pri-
vacy loss but is not necessary in guaranteeing convergence.

In a distributed and iterative setting, the “output” of the
algorithm is not merely the end result, but includes all inter-
mediate results generated and exchanged during the iterative
process. For this reason, we formally state the differential
privacy definition in this setting below.

Definition 4.1 Consider a connected network G(.N, &)
with a set of nodes N = {1,2,---  N}. Let f(t) =
{fi(®)}X.| denote the information exchange of all nodes
in the t-th iteration. A distributed algorithm is said to sat-
isfy B-differential privacy during T iterations if for any two
datasets Dy = U;D; and ﬁa” = Uif)i, differing in at

3Only a single iteration is considered in (Zhang & Zhu, 2017)
while imposing a privacy constraint. Since we consider the entire
iterative process, we don’t impose per-iteration privacy constraint
but calculate the total privacy loss.
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(a) Different n;(t) (b) Impact of increasing penalty

Figure 1. Convergence properties of M-ADMM.

most one data point, and for any set of possible outputs S
during T iterations, the following holds:

Pr({f(t)}_o € S|Dan) ox
LAY € SiDar) ~ TP

We now state our main result on the privacy property of the
penalty perturbation algorithm using the above definition.
Additional assumptions on .Z(-) and R(-) are used.

Assumption 4: The loss function & is strictly convex and
twice differentiable. |-¢’| < 1and 0 < " < ¢; with ¢;
being a constant.

Assumption 5: The regularizer R is 1-strongly convex and
twice continuously differentiable.

Theorem 4.1 Normalize feature vectors in the training set
such that ||z} ||2 < 1 foralli € A and n. Then the private
M-ADMM algorithm (PP) satisfies the [3-differential privacy
with

C(1. 401 + al( )

B> max{z T (26)

ieN

5. Numerical Experiments

We use the same dataset as (Zhang & Zhu, 2017), i.e., the
Adult dataset from the UCI Machine Learning Repository
(Lichman, 2013). It consists of personal information of
around 48,842 individuals, including age, sex, race, educa-
tion, occupation, income, etc. The goal is to predict whether
the annual income of an individual is above $50,000.

To preprocess the data, we (1) remove all individuals with
missing values; (2) convert each categorical attribute (with
m categories) to a binary vector of length m; (3) normalize
columns (features) such that the maximum value of each
column is 1; (4) normalize rows (individuals) such that its [o
norm is at most 1; and (5) convert labels {> 50k, < 50k} to
{+1, —1}. After this preprocessing, the final data includes
45,223 individuals, each represented as a 105-dimensional
vector of norm at most 1.

075 - -

ok —-DVP:q, =1, q,=0.9903
$-DVPiq, =1,q,=1

oss;- | J-PP:q, =103,q,=102
§-PP:q, =1.02,q,=1.02

Average Loss
T

—}-DVP:q, =1,q,=0.9902)
046 1= —§-DVP:iq, =1,q,=1

~J-PP:g, =1.02,0,=101
—§-PP:q, =1.02,q,=1.02

Average Loss

- DVP:q, =1,q, =0.9903]
W |=—DVP:q, =1,q,=1

——PP:q, =1.03,q,=1.02
=1.02,q,=102

- DVP:q, =1,q, =0.9902]
sof [-DVP:q,=1,0q,=

- PPiq, =102,q,=101
102,q,=102

[ |[—PPa, ——PP:q, =

Upper Bound of Privacy Loss

(c) Privacy: a(t) = 3¢5™"  (d) Privacy: a(t) = 5¢5*

Figure 2. Compare accuracy and privacy, n(t) = 0.5¢% ™!

We will use as loss function the logistic loss £ (z) =
log(1 + exp(—z)), with |.Z’| < 1 and £" < ¢; = ;.
The regularizer is R(f;) = 1||/;||3. We will measure the
accuracy of the algorithm by the average loss L(t) :=
N S L(yr fi(t)Ta) over the training set.
We will measure the privacy of the algorithm by the upper

L t C(1l.4ci+ay(r
bound P(t) := %%{{Zml W} The smaller

L(t) and P(t), the higher accuracy and stronger privacy
guarantee.

5.1. Convergence of M-ADMM

We consider a five-node network and assign each
node the following private penalty parameters:
ni(t) = n;(1)q;~" for node i, where [:(1),-- ,75(1)]
= [0.55,0.65,0.6,0.55,0.6] and [q1,--- ,qs] =
[1.01,1.03,1.1,1.2,1.02].

Figure 1(a) shows the convergence of M-ADMM under
these parameters while using a fixed dual updating step size
0 = 0.5 across all nodes (blue curve). This is consistent with
Theorem 3.1. As mentioned earlier, this step size can also be
non-fixed (black) and different (red) for different nodes. In
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Figure 1(b) we let each node use the same penalty 7;(t) =
n(t) = 0.5qi71 and compare the results by increasing ¢,
q1 > 1. We see that increasing penalty slows down the
convergence, and larger increase in ¢; slows it down even
more, which is consistent with Theorem 3.2.

5.2. Private M-ADMM

We next inspect the accuracy and privacy of the penalty
perturbation (PP) based private M-ADMM (Algorithm 1)
and compare it with the dual variable perturbation (DVP)
method proposed in (Zhang & Zhu, 2017). In this set of
experiments, for simplicity of presentation we shall fix § =
0.5, let ;(t) = n(t) = 6gi~", and noise a;(t) = a(t) =
a(l)q?1 for all nodes. We observe similar results when
7;(t) and a;(¢) vary from node to node.

For each parameter setting, we perform 10 independent runs
of the algorithm, and record both the mean and the range
of their accuracy. Specifically, L!(¢) denotes the average
loss over the training dataset in the ¢-th iteration of the [-th
experiment (1 < [ < 10). The mean of average loss is
then given by Lucan(t) = 15 /2, LX(t), and the range

_ A pain T
Lygnge(t) = 1131115%)§OL (t) 1g}1gr1loL (t). The larger the

range Lyqnge(t) the less stable the algorithm, i.e., under the
same parameter setting, the difference in performances (con-
vergence curves) of every two experiments is larger. Each
parameter setting also has a corresponding upper bound on
the privacy loss denoted by P(t). Figures 2(a)2(b) show
both Lyeqn (t) and Lyqnge(t) as vertical bars centered at
Lnean(t). Their corresponding privacy upper bound is
given in Figures 2(c)2(d). The pair 2(a)-2(c) (resp. 2(b)-
2(d)) is for the same parameter setting.

Figure 2 compares PP (blue & red, with 7;(t) increasing
geometrically) with DVP (black & magenta, with n;(t) = 6,
Vi, t). We see that in both cases improved accuracy comes
at the expense of higher privacy loss (from magenta to black
under DVP, from red to blue under PP). However, we also
see that with suitable choices of ¢1, g2, PP can outperform
DVP significantly both in accuracy and in privacy (e.g., red
outperforms magenta in both accuracy and privacy, and blue
outperforms black in both accuracy and privacy).

We also performed experiments with the same dataset on
larger networks with tens and hundreds of nodes and with
samples evenly and unevenly spread across nodes. In both
cases, convergence is attained and our algorithm continues
to outperform (Zhang & Zhu, 2017) in a large network (see
Figures 3 & 4). Since the privacy loss of the network is
dominated by the node with the largest privacy loss and
it increases as the number of samples in a node decreases
(Theorem 4.1), the loss of privacy in a network with un-
even sample size distributions is higher; note that this is a
common issue with this type of analysis.

6. Discussion

Our numerical results show that increasing the penalty
{n:(t)}¥, over iterations can improve the algorithm’s ac-
curacy and privacy simultaneously. Below we provide some
insight on why this is the case and discuss possible general-
izations of our method.

6.1. Higher accuracy

When the algorithm is perturbed by random noise, which
is necessary to achieve privacy, increasing the penalty pa-
rameters over iterations makes the algorithm more noise
resistant. In particular, for the minimization in (25), larger
7;(t + 1) results in smaller updates of variables, i.e., smaller
distance between f;(t + 1) and f;(t). In the non-private
case, since f;(t) always moves toward the optimum, smaller
update slows down the process. In the private case, on the
other hand, since a random noise is added to each update,
fi(t) does not always move toward the optimum in each
step. When the overall perturbation has a larger variance,
it is more likely that f;(¢) could move further away from
the optimum in some iterations. Because larger 7);(¢) leads
to smaller update, it helps prevent f;(¢) from moving too
far away from the optimum, thus stabilizing the algorithm
(smaller Lyqrge (%))

6.2. Stronger privacy

First of all, more added noise means stronger privacy guaran-
tee. Increasing 7;(¢) and «;(t) in such a way that the overall
perturbation 2;(t)V;e; (t)T fi(t) in (26) is increasing leads
to less privacy loss, as shown in Figure 2. The noise resis-
tance provided by an increasing 7;(¢) indeed allows larger
noises to be added under PP without jeopardizing conver-
gence as observed in Section 6.1.

More interestingly, keeping 7;(¢) private further strengthens
privacy protection. Consider the following threat model: An
attacker knows {(z7,y) 2, and {f;(t)} e, for all ¢,
i.e., all data points except for the first data point of node i, as
well as all intermediate results of node ¢ and its neighbors.
If the attacker also knows the dual updating step size 6 and
penalty parameter {n;(t)}_, of node i, it can then infer
the unknown data point (x},y}) with high confidence by
combining the KKT optimality conditions from all iterations
(see supplementary material for details). However, if the
penalty parameters {7;(t)}7_, are private to each node, then
it is impossible for the attacker to infer the unknown data.
Even if the attacker knows the participation of an individual,
it remains hard to infer its features.

6.3. Generalization & comparison

The main contribution of this paper is the finding that in-
creasing {n; }}¥., improves the algorithm’s ability to resist
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noise: even though we increase noise in each iteration to
improve privacy, the accuracy does not degrade signifi-
cantly due to this increasing robustness, which improves
the privacy-utility tradeoff. This property holds regardless
of the noise distribution. While the present privacy analy-
sis uses a similar framework as in (Chaudhuri et al., 2011;
Zhang & Zhu, 2017) (objective perturbation with added
Gamma noise), we can also use methods from other exist-
ing (centralized) ERM differentially private algorithms to
every iteration in ADMM. For example, if we allow some
probability (0 > 0) of violating e-differential privacy and
adopt a weaker variant (¢, §)-differential privacy, we can
adopt methods from works such as (Kifer et al., 2012; Jain
& Thakurta, 2014; Bassily et al., 2014), by adding Gaussian
noise to achieve tighter bounds on privacy loss. However,
as noted above, the robustness is improved as {n;}2 , in-
creases; thus the same conclusion can be reached that both
privacy and accuracy can be improved.

This idea can also be generalized to other differentially
private iterative algorithms. A key observation of our algo-
rithm is that the overall perturbation (27;(t)Vie; (£) fi(t))
is related to the parameter that controls the updating step
size (1;(t)). In general, if the algorithm is perturbed in
each iteration with a quantity ¢(e, ), which is a function of
added noise € and some parameter £ that controls the step
size, such that the resulting step size and ¢(¢, £) move in
opposite directions (i.e., decreasing step size increases the
o (€, £)), then it is possible to simultaneously improve both
accuracy and privacy by varying £ to decrease the step size
over time.

Interestingly, in a differentially private (sub)gradient-based
distributed algorithm (Huang et al., 2015), the step size

and the overall perturbation move in the same direction
(i.e., decreasing step size decreases perturbation). The rea-
son for this difference is that under this subgradient-based
algorithm, the sensitivity of the algorithm decreases with de-
creasing step size, which in turn leads to privacy constraint
being satisfied with smaller perturbation. In contrast, for
ADMM the sensitivity of the algorithm is independent of the
step size, and the perturbation actually needs to increase to
improve privacy guarantee; the decreasing step size acts to
compensate for this increase in noise to maintain accuracy,
as discussed in Section 6.1.

This issue of step size never arises in the study of (Zhang &
Zhu, 2017) because the analysis is only for a single iteration;
however, as we have seen doing so leads to significant total
privacy loss over many iterations.

7. Conclusions

This paper presents a penalty-perturbation idea to introduce
privacy preservation in iterative algorithms. We showed
how to modify an ADMM-based distributed algorithm to
improve privacy without compromising accuracy. The key
idea is to add a perturbation correlated to the step size so
that they change in opposite directions. Applying this idea
to other iterative algorithms can be part of the future work.
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(Supplementary materials)

A. Proof of Simplifying ADMM (Forero et al., 2010)
By KKT condition of (5), there is:

0=A(t) = A% (8) + n(wi(t+ 1) — fi(t+1) — fi(t+1))

Implies:
wi(t+1) = 2%]()‘?]‘(?5) - )‘?j(t)) + %(fi(t + 1)+ fi(t+1)) (27)
Plug (27) into (6)(7):
N6+ 1) = SO0+ X (0) + (il +1) - (6 + 1) @8)
N+ 1) = SO0+ M50 + 20+ 1) — e+ 1) 9)

If initialize Af;(0) = A?;(0) to be zero vectors for all node pairs (4, j), (28)(29) imply that A%; (t) = A?;(t) and A%, (t) =
— (), k € {a,b} will hold for all £. (27) becomes:

1
wij(t+1) = S (filt+1) + fi(t +1)) (30)

Let Aj;(t) = A%, (t) = A2;(t), (6)(7) can be simplified as:
/\ij(t+1):)‘ij(t)+g(fi(t+1)_fj(t+1)) (31)

Plug (30) into the augmented Lagrangian (3) to simplify it:

N
Ly ({fi}, {wij, A¥ ZO fis D)+ 3 > (i) (fi = £5)
. =1 j€%; (32)
£33 2 - U0+ HONB) +ZZ2H2f1 )+ f(0) = fi1[3)
i:lje% i=1je¥;

Since Zfil D jer Nig () f; ZZ 1 2 jew; Aji(t) fi and Agj(t) = —A;i(t), the second term in (32) can be simplified:

i=1je; i=1j€Y;

The last term can be expressed as:

N
53 HIL G0+ 500 - 51 =30 5 L0 + 50) - 11

i=1j€Y; i=1j€Y;
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Therefore, (32) is simplified as:

N N
Ly({fi} Awigs Nigh) = DO Di) +2 3 3~ A TfﬁZZ (1fi = 5(fO + HOE) 33

i=1 je¥, i=1 je¥,

Define \;(t) = Zj ey, Nij (t). Based on (31)(33), the original ADMM updates (4)-(7) are simplified as:

fi(t+1)=arg;nn0(fz—, i)+ 2 (t Tfﬂr??ZHfz—*fz()+fj(f))||§

JEY:

N(t+1) = N0+ 3 D (filt+1) = f(t+1))

JEY;
B. Proof of Theorem 3.1
Subtract (17) from (15) and (18) from (16):

VO(f(t +1), Dan) = VO(f*, Daut) + VD = A(Y (t +1) = Y*) + (W(t + 1) = 01)(D = A) f(t +1)

+W(t+1)(D+ A)(f(t+1) = f(1) = Onxa oY
Y(t+1)=Y(t)+60vVD - A(f(t+1) - f*) (35)
By convexity of O(f;, D;), for any f} and f2, there is:
(fi = YT (VO(F!, Di) = VO(f2,Di)) 2 0
Let (-, -) » be frobenius inner product of two matrices, there is:
(f(t+1) = f*,VO(f(t +1), Dan) = VO(f*, Darr))r = 0
Substitute VO(f(t + 1), D) — VO(f*, Day) from (34):
0<(ft+1) - f*, VDAY Y(E+1)=Y")r +(f(t+1) Af (W({+1)701)(D7A)f(t+1>>F G6)
H(f(E+1) = [ =W+ DD+ A)(f(E+1) = f(1)r

Consider the right hand side of (36). Since D — A is symmetric and PSD, v/D — A is also a symmetric matrix and by (35),

(F+1)— f1o VDAY 41— Y p = (VD A1) — ) (Y1)~ ¥ )
37
. —(é(Y(t+1)—Y(t)),Y(t+1)—Y*)F G7

Rearrange (36) and use (D — A)f* =0nxd

0>(Z(t+1)— 2%, J(t+1)(Z(t+1) — Z())r + (f(t+1) — f*,(W(t+1) — 0I)(D — A)(f(t+1) — f*))r
(38)

Suppose 7;(t) > 6 for all ¢, 1, i.e., the diagonal matrix W (¢) — 81 = 0 for all ¢. Since D — A > 0, whose eigenvalues are all
non-negative, the eigenvalues of (W (¢t + 1) — 6I)(D — A) are thus also non-negative, i.e., (W(t+1) —0I)(D — A) = 0
Then for the second term of the RHS of (38), there is:

(ft+1) = f*(W(t+1)—0I)(D - A)(f(t+1) = f*))p >0
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Therefore,
(ZA+1) =2, Jt+1)(Z(t+1) - Z(t)r <0 (39)

To simplify the notation, for a matrix X, let || X||3 = (X, JX) r, then (39) can be represented as:
1 *|12 1 2 1 *112
§||Z(t+ D = Z 5441 + §||Z(t+ 1) = ZWO50t1) — §||Z(f) = Z5441) 0

implies
12(t+1) = Z(OF 41y < 120+ 1) = Z7 NG g0y +1Z2#) = Z7([F0) +1Z(8) = Z7Faq0) = 12(8) = 2750
(40)

Suppose n;(t+1) > n;(t) for all ¢ and ¢, i.e., the diagonal matrix W (¢t +1) — W (¢) > 0 for all ¢. Since D+ A > 0, implies
(W(t+1)—W(@)(D+ A) = 0. Let U = sup|(fi(t) — f¥)&| € R be the finite upper bound of all nodes 4, all iterations ¢
itk

and all components k, then

12(t) = Z* |5 () = 112(8) = Z* |3y = Te((Z(1) = Z*)T (I (¢ +1) = J()(Z(t) = Z*))

=Te((f(t) = [T W (t+1) = WD + A)(f(t) = f*)) < U(||ones(N, [Ty (111)(p+4) — mes(N, d)l[fy (1) (p4.4))
(41)

where ones(V, d) is all one’s matrix of size N x d. By (40)(41):

1Z(t+1) = ZWO| 541y < N2 = Z7 |5 = N1Z(8 +1) = Z7|F 1)

(42)
+U?(||ones(N, d)| \%V(t+1)(D+A) — ||ones(IV, d)| ‘%/V(t)(D+A))

Sum up (42) over t from 0 to 4-oco leads to:

S+ 1) = 20l sy < 120) = 2710y = 12(+50) = Z°[3 w
t=0

+U?(|lones(N, d)[[3y (4 ooy(p+.4) — ||ones(N, d)|[3y 0y p+ 4))

Since 7);(t) < 400, the RHS of (43) is finite, implies that lim; o ||Z(t + 1) — Z(¢ )HJ(tJrl = 0 must hold.
By the definition of Z(t), J(t) and || X||3 = (X, JX) r, the following must hold

tijlfoo I[f(t+1)— f(t)H%/V(t-&-l)(D-&-A) =0 (44)
. 2
Jim [[Y(+ 1)~ Y (0] =0 @s)

(45) shows that Y (¢) converges to a stationary point Y*, along with (16) imply lim; 1 o, v/ D — Af(t + 1) = 0. Since
Null(v/D — A) = cl, f(t + 1) must lie in the subspace spanned by 1 as t — oo. To satisfy (44), either of the following two
statements must hold:

o limy oo (f(t+1) = f(t) = Onxa

o limy oo W(t+ 1) (D + A1 =limy_, oo W(t+ 1) A1+ 1m0 S0 mi(E+ 1)V = Oy
Since n;(t) > 6 > 0 for all ¢, implies lim;_, | oo Ziv 1 mi(t +1)V; > 0. The second statement can never be true because all
elements of A and W (¢ + 1) are non-negative. Hence f (t) should also converge to a stationary point f s,

).

Now show that the stationary point (Y'*, f*) is (Y*
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Take limit of both sides of (15) (16), substitute f 5,Y? yields

VO(f*, Do) + VD — AY® + (W (t+1) — 01)(D — A) f* = Oy g (46)
D—Af* =0yxq (47)

By (47), (46) turns into: o
VO(f*,Dayy) + VD — AY® = O g (48)

Compare (47)(48) with (17)(18) in Lemma 3.1 and observe that (Y5, f ¢) satisfies the optimality condition (17)(18) and is
thus the optimal point. Therefore, f(t) converges to f* and Y (¢) converges to Y*.

C. Proof of Theorem 3.2

According to the Assumption 3 that O( f;, D;) is strongly convex and has Lipschitz continues gradients for all i € .4, define
diagonal matrices D,,, = diag([my;ma;--- ;my]) € RV*N and Dy, = diag([MZ; M3;--- ; M%]) € RVXN_(20) yield:

(f* = F2VO(fY, Dant) — VO(F2, D)) r > (f* = 2, Din(f* = f2))r (49)
IVO(f*, Dant) — VO(f2, Da)||% < (f* = 2, Dne(F* = f2))p (50)

Since for any ¢ > 1 and any matrices C, Cy with the same dimensions, there is:

1
IC1 + Cal|F < pl|ChllF + EH@H%

From (34), there is:
IVD =AW (t+ 1) = Y[ < ulIVO(F(t + 1), Da) = VO(F*, Dart) + W (t +1)(D + A)F(t +1) = F(1)) I3
A 2 N A A A
IOV @+ 1) = 00D = A)f e+ DI < E VO (e + 1), Dan) = YO, D) [

~ ~ ’LL ~
FEIW DD+ A+ 1) = FOF + = W (E+1) = DD = At + Dl
(51
Let omin(+), 0max (-) denote the smallest nonzero singular value and the largest singular value of a matrix respectively.

For any matrices C, Cs, let C; = UTVT be SVD of 4, there is:

H0102||§7 < UmaX(Cl)”CQHélT
Tmin(C1)?|Cal|F < [|C1C2l|F < omax (C1)?||Cal|F
Denote
Tmax(t + 1) = Omax (W (t + 1) — 0I)(D — A))
6min(t + 1) = O'min((W(t =+ 1) — 9[)(D — A))
Tmax(t + 1) = omax(W(t + 1)(D + A))

Using (50) and (D — A) f* = 0, (51) is turned into:

1 . 12 R N
IV e+ 1) =Yl < oo oS lf e+ 1) - Fll,

2~ma)(t""1 P R 7maxt""12 r [k
W|f(t+1) _f(t)H%/V(t+1)(D+A) + Gamfj((TD(A)(‘Lzl)Hf(t—’—l) — M%
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Adding || f(t +1) — f*\|%,v(t+1)(D+A) at both sides leads to:

Omax t f t—'— ’A t t+1)(D

+||f(t + 1) - f*||2u2D1\4+ufrmax(t+1)2

00 min(D—A)(p—1)

1Z(t +1) = Z*|5441) <

IN W (t+1)(D+A)

Since ,
O(t + 1)p*Fmax(t + 1)
bomn(D— A) =1 (>3)
and B ) )
S(t+ 1)(“0‘“'“(’5 + 1)Ly + 4" Dy +W(t+1)(D+ A) 22(W(t+1)—0I)(D — A) +2D,, (54)

O min(D — A)(u—1)
It implies from (52) that:

S+ DZ(E+1) = Z* |54 < <|Ift+1) - (t)H%/V(tJrl)(DJrA) +IFE+1) - f*||3(W(t+1)701)(D7A)+2Dm

<I[lZ(t+1) - (t)H.QJ(tH) +If(t+1) - f*||§(W(t+1)70[)(D7A)+2Dm )
Substituting f I with f (t+1)and f 2 with f * and the gradient difference from (34) in (49) leads to:
(fe+1) = VD =AY (t+1) = Y))r+ (ft+1) = [ W(E+ DD+ A)(f(t+1) = f()r
HfEHD) = LW (1) = 00D = A)f(t+ D)) < —(ft+1) = f Du(fE+1) = f)r
Similar to the proof of Theorem 3.1, using the definition of Z(t + 1), Z*, J(t + 1) and (D — A) f* = 0, there is:
1Z(t+1) = Z*|5041) < —N1ZE+1) = ZO) 5040y + 120) = 215010y — 1FE+1) = f*||§Dm+2(W(t+1)—GI)(([5)6)A)

Sum up (55) and (56) gives:

A+ o+ IZE+1) = Z 54y < 120 = Z7 (5041

Let my, = min;e v {m;}, Mo = max;c_4{M;}. One 6(t + 1) that satisfies (53) and (54) could be:

eUmm(D A) 2m0 + 25-mm(t + ]-)

P Omax(t 4 1) MO O L 5 (14 1)

min{

D. Proof of Theorem 4.1

In the following proof, use the uppercase letters and lowercase letters to denote random variables and the corresponding
realizations.

Since the modified ADMM is randomized, denote F;(t) as the random variable of the result that node ¢ broadcasts in ¢-th
iteration, of which the realization is f;(¢). Define F(t) = {F;(t)}}¥., whose realization is { f;(t)} ;.

Let .Zp(0:+)(-) be the joint probability distribution of F'(0 : ) = {F(r)}._,, and F g (-) be the distribution of F'(t), by
chain rule:
Fron({F(n)Y=) = Zror—n{F ()} 20) - Fray (FORf(N)} ) =

T
= Zr)(f(0) - [[ Zro(F@O{F(r)}Z0)

t=1
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For two neighboring datasets D,;; and [)all of the network, the ratio of joint probabilities is given by:

Fror){f (1)} =olDan) _ 9F(o)(f(0)\l?au) . T 9F(t)(f@)|{f(7”)}3;%7l?au) 57)

yF(O:T)({f(r)}fzo‘Dall) yF(O)(f(O)‘Dall) =1 «%(t)(f(t)l{f(r)}i;%, Dan)

Since f;(0) is randomly selected for all 4, which is independent of dataset, there is .7 (o) (f(0)|Daut) = -Fr(0)(f(0) |Danr).

First only consider ¢-th iteration, since the primal variable is updated according to (25), by KKT optimality condition,
Vi LY (t)| f,= f.(1) = 0, implies:

ilt) = - Qm(l)ngy”f’ PO ) g (FVRUD) +22( = 1) .
1
“av; L A0~ (=D = fi0-1)

Given {fi(r)}.Z4, F;(t) and E;(t) will be bijective:

e For any F;(t) with the realization f;(t), 3 an unique F;(t) = ¢;(t) having the form of (58) such that the KKT condition
holds.

e Since the Lagrangian L i (t) is strictly convex (by Assumption 4,5), its minimizer is unique, implies that for any
E;(t) with the realization ¢;(t), 3 an unique F;(t) = f;(t) such that the KKT condition holds.

Since each node 7 generates ¢;(t) independently, f;(t) is also independent from each other. Let ., (4)(-) be the distribution
of F;(t), there is:

Frw(fOHS ()=, Dan) _ T Frolf (t)\{fu(?")}fbl?) T, (fi(O){fi(r)}1 20, Di) (59)

Trw(FOUF N0 Danr) 35 Frvy (Fo U206, Do) P (O i)}, Di)

Since two neighboring datasets D,;; and ball only have at most one data point that is different, the second equality hqlds is
because of the fact that this different data point could only be possessed by one node, say node 7. Then there is D; = D; for

J# i

Given {fi(r)}.Z4, let g;(-, D;) : R — R denote the one-to-one mapping from E;(t) to F;(t) using dataset D;. Let

ZE,t)(+) be the probability density of E;(t), by Jacobian transformation, there is*:

Frw) ([i()1Di) = Fp, (97 (f:(£), D2)) - | det(I(g; " (fi(t), Dy)))] (60)

where g; '(fi(t), D;) is the mapping from Fj(t) to FE;(t) using data D; as shown in (58) and J(g; *(f:(t), D)) is the
Jacobian matrix of it.

Without loss of generality, let D; and D; be only different in the first data point, say (2!, y!) and (2!, §!) respectively. Then
by (59)(60), (57) yields:

Fron){f ()} ol Dar) _ 11 Zmn(9i  (fild), H | det(J(g, (fi(t), Di)))]

Feony (Yo Da) 15 oo (90 (fi(t 1)) =1 [ det(I (g, (fi(t%f?z')))l

“We believe that there is a critical mistake in (Zhang & Zhu, 2017) and the original paper (Chaudhuri et al., 2011) where the objective
perturbation method was proposed. A wrong mapping is used in both work:

T (fi(0)|Di) = F, (g0 ' (fi(t), Di)) - | det(F(gi ' (fi(t), Da)))| ™"

(61)
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Consider the first part, E;(t) ~ exp{—a;(t)||¢||}, let & (t) = g,  (fi(t), D;) and €;(t) = g; L (fi(t), D;)

T Ty, . ;1 T T )
152 5 = Iewe@a®l -6l £ en-a@li® -0l ©

By (58), Assumptions 4 and the facts that ||z}'||2 < 1 (pre-normalization), y* € {41, —1}.

AN 1 c Lot (1 £ ()T _alepral e (T 2141 ¢
lei(t) = sl = 5y ;- i i el = 912/ GO Dalll <
(62) can be bounded:
9Ez‘(t)(gt (fz(t)aDl)) <exp(§: Caz(t) ) (63)

t=1 LQ\El(t)(gt_l(fl(t)aDl)) B t=1 nz(t)‘/’BZ
Consider the second part, the Jacobian matrix J(g; ' (fi(t), D)) is:

N Qirf”( PO (@) — — - PRR(f () -
Wi By 2 M gy Y )

Let G(t) = g5 (L (@1 i) @)@ (@) — 2" (y} fi(®) af)x}(2z])") and H(t) = —J(g; ' (fi(t), Di)), there is:

|det@(g; ' (fi(t), D))l [det(H(t)| 1 _ 1
|det((g; ' (fi(t), D)) |det(H@) +G@)]  |det(I + H(O)T'G(@)] [TTj= (1 + X (H(E) ' G(1))]

where \;(H(t)"*G(t)) denotes the j-th largest eigenvalue of H(t)~'G(t). Since G(t) has rank at most 2, implies
H(t)~*G(t) also has rank at most 2.

Because 6 is determined such that 2¢; < % (& +260V;), and 0 < n;(t) holds for all node i and iteration ¢, which implies:

C1

1
B2 fon (V) 2

(64)

By Assumptions 4 and 5, the eigenvalue of H (t) and G(t) satisfy:

Aj(H(t) > m +1>0
A <A < 5
Tmplies:
“H g vy < VOO0 <

By (64): ) 1

L enwn e < 2
Since Amin (H () "'G(t)) > —1, there is:

1 1 1

T4 A HO GNP~ [detT + HEOGO)] ~ 1+ A (HOGO)P
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Therefore,

| det(J(g; 2 (fi (D), -
H|detJ (f(t) 1;[ -

C1

p = e Zzln Egremon) @

%(mzmﬂﬁ

Since for any real number 2 € [0,0.5], —In(1 — z) < 1.4z. By condition (64), (65) can be bounded with a simper
expression:

T 1 T
| det(J(g; " (fi(t), D:)))| < ox 2.8¢1 < ox 1.4C¢ 66
1 oo bonl = P& TG ) = M novis) (66)
Combine (63)(66), (61) can be bounded:
F o) {F(r)}- 0|Dall L 4001 Cai(t) _ - ¢ .
ng.F(O:T)({f(T)L 0|Dall ; ( )Vle )) == exp(; ni(t)ViBi (1.401 + Olz(t)))

Therefore, the total privacy loss during 7" iterations can be bounded by any /3:

92 mas(y mu.m +ailt)

€N

E. Inference of Attackers when 7,(¢) is Non-private

By KKT optimality condition in each iteration, we have:

1 O 1 C Bl n / n n n
€it) + 5s—rer 2771( Wi B (yz fi(t ) z) zl = _WE ;ylg (yi fi(t>T$i )T

1 p 1

~arv v VEG®) 24t~ 1) — 5 J;V Q2f:(t) — fi(t—1) — f;(t—1)).

In this case the attacker can compute the RHS of (67) completely. Furthermore, since E;(t) is zero-mean, over a large
number of iterations we will have Zip:l €;(t) ~ 0 with high probability, which then allows the attacker to determine
the features of the unknown individual up to a scaling factor, i.e., it can determine the second term on the LHS as a scalar
multiplied with ;.



