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Abstract— Alternating direction method of multiplier
(ADMM) is a powerful method to solve decentralized convex
optimization problems. In distributed settings, each node per-
forms computation with its local data and the local results are
exchanged among neighboring nodes in an iterative fashion.
During this iterative process the leakage of data privacy
arises and can accumulate significantly over many iterations,
making it difficult to balance the privacy-utility tradeoff. In
this study we propose Recycled ADMM (R-ADMM), where
a linear approximation is applied to every even iteration, its
solution directly calculated using only results from the previous,
odd iteration. It turns out that under such a scheme, half
of the updates incur no privacy loss and require much less
computation compared to the conventional ADMM. We obtain
a sufficient condition for the convergence of R-ADMM and
provide the privacy analysis based on objective perturbation.

I. INTRODUCTION

Distributed optimization and learning are crucial for many
settings where the data is possessed by multiple parties or
when the quantity of data prohibits processing at a central
location. Many problems can be formulated as a convex
optimization of the following form: minx

∑N
i=1 fi(x). In a

distributed setting, each entity/node i has its own local ob-
jective fi, N entities/nodes collaboratively work to solve this
objective through an interactive process of local computation
and message passing. At the end all local results should
ideally converge to the global optimum.

The information exchanged over the iterative process gives
rise to privacy concerns if the local training data contains
sensitive information such as medical or financial records,
web search history, and so on. It is therefore highly desirable
to ensure such iterative processes are privacy-preserving. We
adopt the ε-differential privacy to measure such privacy guar-
antee; it is generally achieved by perturbing the algorithm
such that the probability distribution of its output is relatively
insensitive to any change to a single record in the input [1].

Existing approaches to decentralizing the above problem
primarily consist of subgradient-based algorithms [2]–[4] and
ADMM-based algorithms [5]–[12]. It has been shown that
ADMM-based algorithms can converge at the rate of O( 1

k )
while subgradient-based algorithms typically converge at the
rate of O( 1√

k
), where k is the number of iterations [8]. In

this study, we will solely focus on ADMM-based algorithms.
While a number of differentially private (sub)gradient-based
distributed algorithms have been proposed [13]–[16], the

This work is supported by the NSF under grants CNS-1422211, CNS-
1646019, CNS-1739517.

X. Zhang, M. Khalili and M. Liu are with the Dept. of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor,
MI 48105, {xueru, khalili, mingyan}@umich.edu

same is much harder for ADMM-based algorithms due to
its computational complexity stemming from the fact that
each node is required to solve an optimization problem in
each iteration. To the best of our knowledge, only [17],
[18] apply differential privacy to ADMM. In particular,
[17] proposed the dual/primal variable perturbation method
to inspect the privacy loss of one node in every single
iteration; this, however, is not sufficient for guaranteeing
privacy as an adversary can potentially use the revealed
results from all iterations to perform inference. In [18] we
address this issue by inspecting the total privacy loss over
the entire process and the whole network; we proposed a
penalty perturbation method which improves the privacy-
utility tradeoff significantly.

In the present study we present Recycled ADMM (R-
ADMM), a modified version of ADMM where the privacy
leakage only happens during half of the updates. Specifically,
we adopt a linearized approximated optimization in every
even iteration, whose solution can actually be calculated
directly from results in the previous, odd iteration, and is
used for updating primal variable. We establish a sufficient
condition for convergence and provide a privacy analysis
using the objective perturbation method. Our numerical re-
sults show that the privacy-utility tradeoff can be improved
significantly.

The remainder of the paper is organized as follows. We
present problem formulation and definition of differential
privacy and ADMM in Section II and the Recycled ADMM
algorithm along with its convergence analysis in Section III.
A private version of this ADMM algorithm is then introduced
in Section IV and numerical results in Section V. Section VI
concludes the paper.

II. PRELIMINARIES

A. Problem Formulation

Consider a connected network1 given by an undirected
graph G(N ,E ), which consists of a set of nodes N =
{1, 2, · · · , N} and a set of edges E = {1, 2, · · · , E}.
Two nodes can exchange information if and only if they
are connected by an edge. Let Vi denote node i’s set of
neighbors, excluding itself. A node i has a dataset Di =
{(xni , yni )|n = 1, 2, · · · , Bi}, where xni ∈ Rd is the feature
vector representing the n-th sample belonging to i, yni ∈
{−1, 1} the corresponding label, and Bi the size of Di.

1A connected network is one in which every node is reachable (via a
path) from every other node.



Consider the regularized empirical risk minimization
(ERM) problem for binary classification defined as follows:

min
fc

OERM (fc, Dall) =
N∑
i=1

C

Bi

Bi∑
n=1

L (yni f
T
c x

n
i ) + ρR(fc)

(1)
where C ≤ Bi and ρ > 0 are constant parameters of the
algorithm, the loss function L (·) measures the accuracy of
the classifier, and the regularizer R(·) helps prevent overfit-
ting. The goal is to train a (centralized) classifier fc ∈ Rd
over the union of all local datasets Dall = ∪i∈N Di in a
distributed manner using ADMM, while providing privacy
guarantee for each data sample.

B. Differential Privacy [1]

A randomized algorithm A (·) taking a dataset as input
satisfies ε-differential privacy if for any two datasets D, D̂
differing in at most one data point, and for any set of possible
outputs S ⊆ range(A ), Pr(A (D) ∈ S) ≤ eεPr(A (D̂) ∈ S)
holds. We call two datasets differing in at most one data point
as neighboring datasets. The above definition suggests that
for a sufficiently small ε, an adversary will observe almost
the same output regardless of the presence (or value change)
of any one individual in the dataset; this is what provides
privacy protection for that individual.

C. Conventional ADMM

To decentralize (1), let fi be the local classifier of each
node i. To achieve consensus, i.e., f1 = f2 = · · · = fN ,
a set of auxiliary variables {wij |i ∈ N , j ∈ Vi} are
introduced for every pair of connected nodes. As a result,
(1) is reformulated equivalently as:

min
{fi},{wij}

ÕERM ({fi}Ni=1, Dall) =

N∑
i=1

O(fi, Di)

s.t. fi = wij , wij = fj , i ∈ N , j ∈ Vi

(2)

where O(fi, Di) =
C

Bi

∑Bi
n=1 L (yni f

T
i x

n
i ) +

ρ

N
R(fi).

{fi} (resp. {wij}) is the shorthand for {fi}i∈N (resp.
{wij}i∈N ,j∈Vi ). Let {wij , λkij} be the shorthand for
{wij , λkij}i∈N ,j∈Vi,k∈{a,b}, where λaij , λ

b
ij are dual variables

corresponding to equality constraints fi = wij and wij = fj
respectively. The objective in (2) can be solved using ADMM
with the augmented Lagrangian:

Lη({fi}, {wij , λkij}) =
N∑
i=1

O(fi, Di)

+
N∑
i=1

∑
j∈Vi

(λaij)
T (fi − wij) +

N∑
i=1

∑
j∈Vi

(λbij)
T (wij − fj) (3)

+
N∑
i=1

∑
j∈Vi

η

2
(||fi − wij ||22 + ||wij − fj ||22) .

In the (t+ 1)-th iteration, the ADMM updates consist of
the following:

fi(t+ 1) = argmin
fi

Lη({fi}, {wij(t), λkij(t)}) ; (4)

wij(t+ 1) = argmin
wij

Lη({fi(t+ 1)}, {wij , λkij(t)}) ; (5)

λaij(t+ 1) = λaij(t) + η(fi(t+ 1)− wij(t+ 1)) ; (6)

λbij(t+ 1) = λbij(t) + η(wij(t+ 1)− fj(t+ 1)) . (7)

Using Lemma 3 in [19], if dual variables λaij(t) and λbij(t)
are initialized to zero for all node pairs (i, j), then λaij(t) =
λbij(t) and λkij(t) = −λkji(t) will hold for all iterations with
k ∈ {a, b}, i ∈ N , j ∈ Vi. Let λi(t) =

∑
j∈Vi

λaij(t) =∑
j∈Vi

λbij(t), then the ADMM iterations (4)-(7) can be
simplified as (Refer to Appendix A in [18] for proof):

fi(t+ 1) = argmin
fi

{O(fi, Di) + 2λi(t)
T fi

+η
∑
j∈Vi

||1
2

(fi(t) + fj(t))− fi||22 } ; (8)

λi(t+ 1) = λi(t) +
η

2

∑
j∈Vi

(fi(t+ 1)− fj(t+ 1)) . (9)

D. Private ADMM [17] & Private M-ADMM [18]

In private ADMM [17], the noise is added either to the
updated primal variable before broadcasting to its neighbors
(primal variable perturbation), or to the dual variable before
updating its primal variable using (8) (dual variable pertur-
bation). The privacy property is only evaluated for a single
node and a single iteration, both methods cannot balance the
privacy-utility tradeoff very well if consider the total privacy
loss. In [18] the total privacy loss of the whole network
over the entire iterative process is considered. A modified
ADMM (M-ADMM) was proposed to improve the privacy-
utility tradeoff. Specifically, it explores the rule of step-size
(penalty parameter) in stabilizing the algorithm. M-ADMM
allows each node to independently determine its penalty
parameter; by perturbing the algorithm with noise correlated
to penalty parameter and at the same time increasing the
penalty parameters, the privacy and accuracy are shown to
improve simultaneously.

E. Main idea

Fundamentally, the accumulation of privacy loss over iter-
ations stems from the fact that the raw data is used in every
primal update. If the updates can be made without using the
raw data, but only from computational results that already
exist, then the privacy loss originating from these updates
will be zero, while at the same time the computational cost
be reduced significantly. Based on this idea, we start with
modifying ADMM such that we can repeatedly use some
computational results to make updates.

III. RECYCLED ADMM (R-ADMM)

A. Making information recyclable

ADMM can outperform gradient-based methods in terms
of requiring fewer number of iterations for convergence; this



however comes at the price of high computational cost in
every iteration. In particular, the primal variable is updated
by performing an optimization in each iteration. In [9],
[20], [21], either a linear or quadratic approximation of the
objective function is used to obtain an inexact solution in
each iteration in lieu of solving the original optimization
problem. While this clearly lowers the computational cost,
the approximate computation is performed using the local,
raw data in every iteration, which means that privacy loss
inevitably accumulates over the iterations.

We begin by modifying ADMM in such a way that in
every even iteration, without using the raw data, the primal
variable is updated solely based the existing computational
results from the previous, odd iteration. Compared with
conventional ADMM, these updates incur no privacy loss
and less computation. Since the computational results are
repeatedly used, this method will be referred to as Recycled
ADMM (R-ADMM).

Specifically, in the 2k-th (even) iteration, we approxi-
mate O(fi, Di) (Eqn. (8), primal update optimization) by
O(fi, Di) ≈ O(fi(2k−1), Di)+∇O(fi(2k−1), Di)

T (fi−
fi(2k−1))+ γ

2 ||fi−fi(2k−1)||22 (γ ≥ 0) and update only the
primal variables. Using the first-order condition, the updates
in the 2k-th iteration become:

fi(2k) = fi(2k − 1)− 1

2ηVi + γ
{∇O(fi(2k − 1), Di)

+2λi(2k − 1) + η
∑
j∈Vi

(fi(2k − 1)− fj(2k − 1))} ; (10)

λi(2k) = λi(2k − 1) . (11)

In the (2k − 1)-th (odd) iteration, the updates are kept the
same as (8)(9):

fi(2k − 1) = argmin
fi

{O(fi, Di) + 2λi(2k − 2)T fi

+η
∑
j∈Vi

||1
2

(fi(2k − 2) + fj(2k − 2))− fi||22 } ; (12)

λi(2k − 1) = λi(2k − 2)

+
η

2

∑
j∈Vi

(fi(2k − 1)− fj(2k − 1)) . (13)

Note that in the (2k)-th (even) iteration, we need the gradient
∇O(fi(2k−1), Di) and primal difference

η

2

∑
j∈Vi

(fi(2k−
1)− fj(2k− 1)) for the updates; these are available directly
from the previous, (2k − 1)-th (odd) iteration, i.e., this
information can be recycled. In this sense, R-ADMM can
be viewed as alternating between conventional ADMM (odd
iterations) and a variant of gradient descent (even iterations),
where 1

2ηVi+γ
is the step-size and the gradient of the objec-

tive function is corrected by the primal difference and dual
variable. The complete procedure is shown in Algorithm 1.

B. Convergence Analysis

We next show that R-ADMM (Eqn. (10)-(13)) converges
to the optimal solution under a set of common technical
assumptions.

Algorithm 1: Recycled ADMM (R-ADMM)

Input: {Di}Ni=1

Initialize: ∀i, generate fi(0) randomly, λi(0) = 0d×1
for k = 1 to K do

for i = 1 to N do
Update primal variable fi(2k − 1) via (12);
Calculate the gradient ∇O(fi(2k − 1), Di);
Broadcast fi(2k − 1) to all neighbors j ∈ Vi.

for i = 1 to N do
Calculate

η

2

∑
j∈Vi

(fi(2k − 1)− fj(2k − 1));
Update dual variable λi(2k − 1) via (13).

for i = 1 to N do
Use the stored ∇O(fi(2k − 1), Di) and
η

2

∑
j∈Vi

(fi(2k − 1)− fj(2k − 1)) to
update primal variable fi(2k) via (10);

Keep the dual variable λi(2k) = λi(2k − 1);
Broadcast fi(2k) to all neighbors j ∈ Vi.

Output: primal {fi(2K)}Ni=1 and dual {λi(2K)}Ni=1

Assumption 1: Function O(fi, Di) is convex and differ-
entiable in fi, ∀i.

Assumption 2: The solution set to the original ERM prob-
lem (1) is nonempty and there exists at least one bounded
element.

Assumption 3: For all i ∈ N , O(fi, Di) has Lipschitz
continuous gradients, i.e., for any f1i and f2i , we have:

||∇O(f1i , Di)−∇O(f2i , Di)||2 ≤Mi||f1i − f2i ||2 (14)

By the KKT condition of the primal update (12):

0 = ∇O(fi(2k − 1), Di) + 2λi(2k − 2)

+η
∑
j∈Vi

(2fi(2k − 1)− (fi(2k − 2) + fj(2k − 2))) . (15)

Define the adjacency matrix A ∈ RN×N as:

aij =

{
1, if node i and node j are connected
0, otherwise .

Stack the variables fi(t), λi(t) and ∇O(fi(t), Di) for i ∈
N into matrices, i.e.,

f̂(t) =


f1(t)T

f2(t)T

...
fN (t)T

 ∈ RN×d , Λ(t) =


λ1(t)T

λ2(t)T

...
λN (t)T

 ∈ RN×d

∇Ô(f̂(t), Dall) =


∇O(f1(t), D1)T

∇O(f2(t), D2)T

...
∇O(fN (t), DN )T

 ∈ RN×d

Let Vi = |Vi| be the number of neighbors of node i,
and define the degree matrix D = diag([V1;V2; · · · ;VN ]) ∈



RN×N and the diagonal matrix D̃ with D̃ii = 2ηVi + γ.
Then for each k, the matrix form of (10)(11)(15)(13) are:

f̂(2k) = f̂(2k − 1)− D̃−1{∇Ô(f̂(2k − 1), Dall)

+2Λ(2k − 1) + η(D −A)f̂(2k − 1)} ; (16)
2Λ(2k) = 2Λ(2k − 1) ; (17)

0N×d = ∇Ô(f̂(2k − 1), Dall) + 2Λ(2k − 2)

+2ηDf̂(2k − 1)− η(D +A)f̂(2k − 2) ; (18)

2Λ(2k − 1) = 2Λ(2k − 2) + η(D −A)f̂(2k − 1) . (19)

Writing f̂(2k − 2) and Λ(2k − 2) in (18)(19) as functions
of f̂(2k − 3), Λ(2k − 3) using (16)(17), we obtain:

∇Ô(f̂(2k − 1), Dall) + η(D +A)D̃−1∇Ô(f̂(2k − 3), Dall)

+η(D +A)(f̂(2k − 1)− f̂(2k − 3))

+η(D +A)D̃−1η(D −A)f̂(2k − 3)

+2Λ(2k − 1) + η(D +A)D̃−12Λ(2k − 3) = 0N×d ;

2Λ(2k − 1) = 2Λ(2k − 3) + η(D −A)f̂(2k − 1) .

The convergence of R-ADMM is proved by showing that the
pair (f̂(2k − 1), Λ(2k − 1)) from odd iterations converges
to the optimal solution. To simplify the notation, we will re-
index every two consecutive odd iterations 2k−3 and 2k−1
using t and t+ 1:

∇Ô(f̂(t+ 1), Dall) + η(D +A)D̃−1∇Ô(f̂(t), Dall)

+η(D +A)((f̂(t+ 1)− f̂(t)) + D̃−1η(D −A)f̂(t))

+2Λ(t+ 1) + η(D +A)D̃−12Λ(t) = 0N×d ; (20)

2Λ(t+ 1) = 2Λ(t) + η(D −A)f̂(t+ 1) . (21)

Note that D − A is the laplacian and D + A is the
signless Laplacian matrix of the network, with the following
properties if the network is connected: (i) D ± A � 0 is
positive semi-definite; (ii) Null(D − A) = c1, i.e., every
member in the null space of D−A is a scalar multiple of 1
with 1 being the vector of all 1’s [22].

Lemma III.1. [First-order Optimality Condition [12]] Un-
der Assumptions 1 and 2, the following two statements are
equivalent:
• f̂∗ = [(f∗1 )T ; (f∗2 )T ; · · · ; (f∗N )T ] ∈ RN×d is consen-

sual, i.e., f∗1 = f∗2 = · · · = f∗N = f∗c where f∗c is the
optimal solution to (1).

• There exists a pair (f̂∗,Λ∗) with 2Λ∗ = (D−A)X for
some X ∈ RN×d such that

∇Ô(f̂∗, Dall) + 2Λ∗ = 0N×d ; (22)

(D −A)f̂∗ = 0N×d . (23)

Lemma III.1 shows that a pair (f̂∗,Λ∗) satisfying (22)(23)
is equivalent to the optimal solution of our problem, hence
the convergence of R-ADMM is proved by showing that
(f̂(t),Λ(t)) in (20)(21) converges to a pair (f̂∗,Λ∗) satisfy-
ing (22)(23).

Theorem III.1. [Sufficient Condition] Consider the modi-
fied ADMM defined by (20)(21). Let {f̂(t),Λ(t)} be outputs
in each iteration and {f̂∗,Λ∗} a pair satisfying (22)(23).

Denote DM = diag([M2
1 ;M2

2 ; · · · ;M2
N ]) ∈ RN×N with

0 < Mi < +∞ as given in Assumption 3. If the following
two conditions hold for some constants L > 0 and µ > 1:

(I + η(D +A)D̃−1) � Lµ

2σmin(D̃)

1

η
DM (D −A)+ ; (24)

η(D +A) � {η(D +A)D̃−1η(D −A)

+
2

L
η(D +A)D̃−1η(D +A) +

Lµ

2σmin(D̃)(µ− 1)
DM} . (25)

where σmin(D̃) = mini{2ηVi + γ} is the smallest singular
value of D̃, then (f̂(t),Λ(t)) converges to (f̂∗,Λ∗).

Proof. See Appendix I.

By controlling γ, it is easy to find constants L > 0 and
µ > 1 such that conditions (24)(25) are satisfied, and they
are not unique. One example is L = 2 and µ = 2, in which
case (24)(25) are reduced to:

(I + η(D +A)D̃−1) � 4

2σmin(D̃)

1

η
DM (D −A)+ ; (26)

η(D +A) � 2η(D +A)D̃−1ηD +
2

σmin(D̃)
DM . (27)

(26)(27) can be easily satisfied for sufficiently large γ ≥ 0.
Note that the conditions are sufficient but not necessary, so in
practice convergence may be attained under weaker settings.

IV. PRIVATE R-ADMM

In this section we present a privacy preserving version of
R-ADMM. In odd iterations, we adopt the objective perturba-
tion [23] where a random linear term εi(2k−1)T fi is added
to the objective function in (12)2 3, where εi(2k−1) follows
the probability density proportional to exp{−αi(k)||εi(2k−
1)||2} and is stored.

Lprivi (2k − 1) = O(fi, Di) + (2λi(2k − 2) + εi(2k − 1))T fi

+η
∑
j∈Vi

||1
2

(fi(2k − 2) + fj(2k − 2))− fi||22

To generate this noisy vector, choose the norm from the
gamma distribution with shape d and scale 1

αi(k)
and the

direction uniformly, where d is the dimension of the feature
space. Node i’s local result is obtained by finding the optimal
solution to the private objective function:

fi(2k − 1) = argmin
fi

Lprivi (2k − 1), i ∈ N . (28)

In even iterations, use the stored gradient ∇O(fi(2k −
1), Di), primal difference

η

2

∑
j∈Vi

(fi(2k−1)−fj(2k−1))

2Other perturbation methods can also be adopted such as output pertur-
bation, random sampling, etc.

3Pure differential privacy was adopted in this work, but the weaker (ε, δ)-
differential privacy can be applied as well.



and noise εi(2k − 1) to update primal variables:

fi(2k) = fi(2k − 1)− 1

2ηVi + γ
{2λi(2k − 1)

+ εi(2k − 1) +∇O(fi(2k − 1), Di)︸ ︷︷ ︸
the existing stored information

+ η
∑
j∈Vi

(fi(2k − 1)− fj(2k − 1))︸ ︷︷ ︸
the existing stored information

} (29)

Algorithm 2 shows the complete procedure, where the condi-
tion used to generate η helps to bound the worst-case privacy
loss but is not necessary in guaranteeing convergence.

Algorithm 2: Private R-ADMM

Input: {Di}Ni=1, {αi(1), · · · , αi(K)}Ni=1

Initialize: ∀i, generate fi(0) randomly, λi(0) = 0d×1
Parameter: Select η s.t. 2c1 < mini{BiC ( ρN + 2ηVi)}
for k = 1 to K do

for i = 1 to N do
Generate noise
εi(2k − 1) ∼ exp(−αi(k)||ε||2);

Update primal variable fi(2k − 1) via (28);
Calculate the gradient ∇O(fi(2k − 1), Di);
Broadcast fi(2k − 1) to all neighbors j ∈ Vi.

for i = 1 to N do
Calculate

η

2

∑
j∈Vi

(fi(2k − 1)− fj(2k − 1));
Update dual variable λi(2k − 1) via (13).

for i = 1 to N do
Use the stored εi(2k − 1),
∇O(fi(2k − 1), Di) and
η

2

∑
j∈Vi

(fi(2k − 1)− fj(2k − 1)) to
update primal variable fi(2k) via (29);

Keep the dual variable λi(2k) = λi(2k − 1);
Broadcast fi(2k) to all neighbors j ∈ Vi.

Output: Upper bound of the total privacy loss β;
primal {fi(2K)}Ni=1 and dual {λi(2K)}Ni=1

In the distributed and iterative setting, the “output” of
the algorithm is not merely the end result, but includes
all intermediate results generated and exchanged during the
iterative process. For this reason, we adopt the differential
privacy definition proposed in [18] as follows.

Definition IV.1. Consider a connected network G(N ,E )
with a set of nodes N = {1, 2, · · · , N}. Let f(t) =
{fi(t)}Ni=1 denote the information exchange of all nodes in
the t-th iteration. A distributed algorithm is said to satisfy β-
differential privacy during T iterations if for any two datasets
Dall = ∪iDi and D̂all = ∪iD̂i, differing in at most one
data point, and for any set of possible outputs S during T
iterations, the following holds:

Pr({f(t)}Tt=0 ∈ S|Dall)

Pr({f(t)}Tt=0 ∈ S|D̂all)
≤ exp(β)
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Fig. 1. Convergence properties of R-ADMM.

We now state another result of this paper, on the privacy
property of the private R-ADMM (Algorithm 2) using the
above definition. Additional assumptions on L (·) and R(·)
are used.

Assumption 4: The loss function L is strictly convex and
twice differentiable. |∇L | ≤ 1 and 0 < L ′′ ≤ c1 with c1
being a constant.

Assumption 5: The regularizer R is 1-strongly convex and
twice continuously differentiable.

Lemma IV.1. Consider the private R-ADMM (Algorithm
2), ∀k = 1, · · ·K, assume the total privacy loss up to the
(2k−1)-th iteration can be bounded by β2k−1, then the total
privacy loss up to the 2k-th iteration can also be bounded
by β2k−1. In other words, given the private results in odd
iterations, outputting private results in the even iterations
does not release more information about the input data.

Proof. See Appendix II.

Theorem IV.1. Normalize feature vectors in the training set
such that ||xni ||2 ≤ 1 for all i ∈ N and n. Then the private
R-ADMM algorithm (Algorithm 2) satisfies the β-differential
privacy with

β ≥ max
i∈N
{
K∑
k=1

2C

Bi
(

1.4c1
( ρN + 2ηVi)

+ αi(k))} . (30)

Proof. See Appendix III.

V. NUMERICAL EXPERIMENTS

We use the Adult dataset from the UCI Machine Learning
Repository [24]. It consists of personal information of around
48,842 individuals, including age, sex, race, education, occu-
pation, income, etc. The goal is to predict whether the annual
income of an individual is above $50,000.

Following the same pre-processing steps as in [18], the
final data includes 45,223 individuals, each represented as
a 105-dimensional vector of norm at most 1. We will
use as loss function the logistic loss L (z) = log(1 +
exp(−z)), with |L ′| ≤ 1 and L ′′ ≤ c1 = 1

4 . The
regularizer is R(fi) = 1

2 ||fi||
2
2. We will measure the

accuracy of the algorithm by the average loss L(t) :=
1
N

∑N
i=1

1
Bi

∑Bi
n=1 L (yni fi(t)

Txni ) over the training set. We
will measure the privacy of the algorithm by the upper bound
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(a) Accuracy comparison: α = 2
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(b) Accuracy comparison: α = 4
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(c) Privacy comparison: α = 2
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(d) Privacy comparison: α = 4

Fig. 2. Comparison of accuracy and privacy.

P (t) := max
i∈N
{
∑K
k=1

2C
Bi

( 1.4c1
( ρN+2ηVi)

+ αi(k))}. The smaller

L(t) and P (t), the higher accuracy and stronger privacy
guarantee.

A. Convergence of non-private R-ADMM

Figure 1 shows the convergence of R-ADMM with differ-
ent γ and fixed η = 0.5 for a small network (N = 5) and a
large network (N = 20), both are randomly generated. Due
to the linear approximation in even iterations, it’s possible
to cause an increased average loss as shown in the plot.
However, the odd iterations will always compensate this
increase; if we only look at the odd iterations, R-ADMM
achieves a similar convergence rate as conventional ADMM.
γ can also be thought of as an extra penalty parameter for
each node in even iterations to punish its update, i.e., the
difference between fi(2k) and fi(2k−1). Larger γ can result
in smaller oscillation between even and odd iterations but
will also lower the convergence rate.

B. Private R-ADMM

We next inspect the accuracy and privacy of the private R-
ADMM (Algorithm 2) and compare it with the private (con-
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Fig. 3. Accuracy comparison: η(t) = 1.01t, γ(t) = 0.2 ∗ 1.01t

ventional) ADMM using dual variable perturbation (DVP)
[17] and the private M-ADMM using penalty perturbation
(PP) [18]. In the set of experiments, we fix γ = 0.2, η = 1
in private R-ADMM and set the noise parameter αi(k) =
α, ∀i, k. The noise parameters of conventional ADMM and
M-ADMM are also chosen respectively such that they have
almost the same total privacy loss bounds.

For each parameter setting, we perform 10 independent
runs of the algorithm, and record both the mean and the range
of their accuracy. Specifically, Ll(t) denotes the average
loss over the training dataset in the t-th iteration of the l-
th experiment (1 ≤ l ≤ 10). The mean of average loss is
then given by Lmean(t) = 1

10

∑10
l=1 L

l(t), and the range
Lrange(t) = max

1≤l≤10
Ll(t) − min

1≤l≤10
Ll(t). The larger the

range Lrange(t) the less stable the algorithm, i.e., under
the same parameter setting, the difference in performances
(convergence curves) of every two experiments is larger.
Each parameter setting also has a corresponding upper bound
on the privacy loss denoted by P (t). Figures 2(a)-2(b) show
both Lmean(t) and Lrange(t) as vertical bars centered at
Lmean(t). Their corresponding privacy upper bound is given
in Figures 2(c)-2(d). The pair 2(a), 2(c) (resp. 2(b), 2(d)) is
for the same parameter setting. We see that the private R-
ADMM has higher accuracy than both the private ADMM
and M-ADMM, and the improvement is more significant
with the smaller total privacy loss.

We also incorporate the idea from [18] into private R-
ADMM, where we decrease the step-size, i.e., increase η
and γ, over iterations to stabilize the algorithm and improve
the algorithmic performance. The result is shown in Figure
3 where the privacy loss bound is controlled to be the same
during the whole period. It shows that by varying the step-
size, the privacy-utility tradeoff can be further improved.

VI. CONCLUSION

We presented Recycled ADMM (R-ADMM), a modified
version of ADMM that can improve the privacy-utility
tradeoff significantly with less computation. The idea is
to repeatedly use the existing computational results instead
of the raw data to make updates. We also established a
sufficient condition for convergence and privacy analysis
using objective perturbation.



〈f̂(t+ 1)− f̂∗,−η(D +A)D̃−1(∇Ô(f̂(t), Dall)−∇Ô(f̂∗, Dall)) + (I + η(D +A)D̃−1)(2Λ∗ − 2Λ(t+ 1))

+η(D +A)D̃−1(2Λ(t+ 1)− 2Λ(t))− η(D +A)(f̂(t+ 1)− f̂(t))− η(D +A)D̃−1η(D −A)f̂(t)〉F ≥ 0 . (31)

〈f̂(t+ 1)− f̂∗, η(D +A)D̃−1(2Λ(t+ 1)− 2Λ(t))− η(D +A)D̃−1η(D −A)f̂(t)〉F
= 〈f̂(t+ 1)− f̂∗, η(D +A)D̃−1η(D −A)(f̂(t+ 1)− f̂(t))〉F (32)

=
1

2
||f̂(t+ 1)− f̂∗||2G1

+
1

2
||f̂(t+ 1)− f̂(t)||2G1

− 1

2
||f̂(t)− f̂∗||2G1

;

〈f̂(t+ 1)− f̂∗, (I + η(D +A)D̃−1)(2Λ∗ − 2Λ(t+ 1))〉F

= 〈1
η

(D −A)+(2Λ(t+ 1)− 2Λ(t)), (I + η(D +A)D̃−1)(2Λ∗ − 2Λ(t+ 1))〉F (33)

=
1

2
||2Λ∗ − 2Λ(t)||2G2

− 1

2
||2Λ∗ − 2Λ(t+ 1)||2G2

− 1

2
||2Λ(t+ 1)− 2Λ(t)||2G2

;

〈f̂(t+ 1)− f̂∗,−η(D +A)(f̂(t+ 1)− f̂(t))〉F

=
1

2
||f̂(t)− f̂∗||2η(D+A) −

1

2
||f̂(t+ 1)− f̂∗||2η(D+A) −

1

2
||f̂(t)− f̂(t+ 1)||2η(D+A) . (34)

〈f̂(t+ 1)− f̂∗,−η(D +A)D̃−1(∇Ô(f̂(t), Dall)−∇Ô(f̂∗, Dall))〉F
= 〈f̂(t+ 1)− f̂(t) + f̂(t)− f̂∗,−η(D +A)D̃−1(∇Ô(f̂(t), Dall)−∇Ô(f̂∗, Dall))〉F

≤ 〈f̂(t)− f̂(t+ 1), η(D +A)D̃−1(∇Ô(f̂(t), Dall)−∇Ô(f̂∗, Dall))〉F
= 〈η(D +A)

√
D̃−1(f̂(t)− f̂(t+ 1)),

√
D̃−1(∇Ô(f̂(t), Dall)−∇Ô(f̂∗, Dall))〉F . (35)

(35) ≤ 1

L
||(f̂(t)− f̂(t+ 1))||2

η(D+A)D̃−1η(D+A)
+

L

4σmin(D̃)
(µ||f̂∗ − f̂(t+ 1)||2DM +

µ

µ− 1
||f̂(t+ 1)− f̂(t)||2DM )

=
1

2
||(f̂(t)− f̂(t+ 1))||22

Lη(D+A)D̃−1η(D+A)+ Lµ

2σmin(D̃)(µ−1)
DM

+
1

2
||2Λ(t+ 1)− 2Λ(t)||2 Lµ

2σmin(D̃)
( 1
η (D−A)+)2DM

(36)

1

2
||f̂(t)− f̂(t+ 1)||2η(D+A)−G1

− 1

2
||(f̂(t)− f̂(t+ 1))||22

Lη(D+A)D̃−1η(D+A)+ Lµ

2σmin(D̃)(µ−1)
DM

+
1

2
||2Λ(t+ 1)− 2Λ(t)||2G2

− 1

2
||2Λ(t+ 1)− 2Λ(t)||2 Lµ

2σmin(D̃)
( 1
η (D−A)+)2DM

≤ 1

2
||f̂(t+ 1)− f̂∗||2G1

− 1

2
||f̂(t)− f̂∗||2G1

+
1

2
||2Λ∗ − 2Λ(t)||2G2

−1

2
||2Λ∗ − 2Λ(t+ 1)||2G2

+
1

2
||f̂(t)− f̂∗||2η(D+A) −

1

2
||f̂(t+ 1)− f̂∗||2η(D+A) (37)

APPENDIX I
PROOF OF THEOREM III.1

By convexity of O(fi, Di), (f1i − f2i )T (∇O(f1i , Di) −
∇O(f2i , Di)) ≥ 0 holds ∀ f1i , f2i . Let 〈·, ·〉F be frobenius
inner product of two matrices, there is:

〈f̂(t+ 1)− f̂∗,∇Ô(f̂(t+ 1), Dall)−∇Ô(f̂∗, Dall)〉F ≥ 0

According to (20)(22) and (21), substitute ∇Ô(f̂(t +
1), Dall) − ∇Ô(f̂∗, Dall) and add an extra term η(D +
A)D̃−1(∇Ô(f̂∗, Dall) + 2Λ∗) = 0N×d, implies Eqn. (31).

To simplify the notation, for a matrix X , let ||X||2J =

〈X, JX〉F and (X)+ be the pseudo inverse of X . Define:

G1 = η(D +A)D̃−1η(D −A) ;

G2 =
1

η
(D −A)+(I + η(D +A)D̃−1) .

Use (21)(23) and the fact that 〈A, JB〉F = 〈JTA,B〉F ,
Eqn. (32)(33)(34) hold. Let

√
X denote the square root of

a symmetric positive semi-definite (PSD) matrix X that is
also symmetric PSD. Eqn. (35) holds, where the inequality
uses the facts that O(fi, Di) is convex for all i and that the
matrix η(D +A)D̃−1 is positive definite.

According to (14) in Assumption 3, define the matrix
DM = diag([M2

1 ;M2
2 ; · · · ;M2

N ]) ∈ RN×N , it implies
||∇Ô(f̂1, Dall) − ∇Ô(f̂2, Dall)||2F ≤ 〈f̂1 − f̂2, DM (f̂1 −



f̂2)〉F . Since 〈A,B〉F ≤ 1
L ||A||

2
F + L

4 ||B||
2
F holds for any

L > 0, there is:

(35) ≤ 1

L
||η(D +A)

√
D̃−1(f̂(t)− f̂(t+ 1))||2F

+
L

4
||
√
D̃−1(∇Ô(f̂(t), Dall)−∇Ô(f̂∗, Dall))||2F

≤ 1

L
||(f̂(t)− f̂(t+ 1))||2

η(D+A)D̃−1η(D+A)

+
Lσmax(D̃−1)

4
||∇Ô(f̂(t), Dall)−∇Ô(f̂∗, Dall)||2F

=
1

L
||(f̂(t)− f̂(t+ 1))||2

η(D+A)D̃−1η(D+A)

+
L

4σmin(D̃)
||f̂∗ − f̂(t)||2DM (38)

where σmax(·), σmin(·) denote the largest and smallest
singular value of a matrix respectively. Since for any µ > 1
and any matrices C1, C2, J with the same dimensions, there
is ||C1 + C2||2J ≤ µ||C1||2J + µ

µ−1 ||C2||2J . which implies:

||f̂∗ − f̂(t)||2DM = ||f̂∗ − f̂(t+ 1) + f̂(t+ 1)− f̂(t)||2DM
≤ µ||f̂∗ − f̂(t+ 1)||2DM +

µ

µ− 1
||f̂(t+ 1)− f̂(t)||2DM

Plug into (38) and use (21)(23) gives Eqn. (36).
Combine (32)(33)(34)(36), (31) becomes Eqn. (37). Sup-

pose the following two conditions hold for some constants
L > 0 and µ > 1:

(I + η(D +A)D̃−1) � Lµ

2σmin(D̃)

1

η
DM (D −A)+ ; (39)

η(D +A) � η(D +A)D̃−1η(D −A)

+
2

L
η(D +A)D̃−1η(D +A) +

Lµ

2σmin(D̃)(µ− 1)
DM . (40)

Substitute G1 = η(D+A)D̃−1η(D−A) and G2 = 1
η (D−

A)+(I + η(D +A)D̃−1), define R1 and R2 below gives:

R1 = η(D +A)−G1 −
Lµ

2σmin(D̃)(µ− 1)
DM

− 2

L
η(D +A)D̃−1η(D +A) � 0N×N ; (41)

R2 = G2 −
Lµ

2σmin(D̃)
(
1

η
(D −A)+)2DM � 0N×N . (42)

Eqn. (37) becomes:

1

2
||f̂(t)− f̂(t+ 1)||2R1

+
1

2
||2Λ(t+ 1)− 2Λ(t)||2R2

≤ 1

2
||f̂(t+ 1)− f̂∗||2G1

− 1

2
||f̂(t)− f̂∗||2G1

+
1

2
||2Λ∗ − 2Λ(t)||2G2

− 1

2
||2Λ∗ − 2Λ(t+ 1)||2G2

+
1

2
||f̂(t)− f̂∗||2η(D+A) −

1

2
||f̂(t+ 1)− f̂∗||2η(D+A) (43)

Sum up (43) over t from 0 to +∞ leads to:
∞∑
t=0

{||f̂(t)− f̂(t+ 1)||2R1
+ ||2Λ(t+ 1)− 2Λ(t)||2R2

}

≤ ||f̂(0)− f̂∗||2η(D+A) − ||f̂(+∞)− f̂∗||2η(D+A)

+||f̂(∞)− f̂∗||2G1
− ||f̂(0)− f̂∗||2G1

+||2Λ∗ − 2Λ(0)||2G2
− ||2Λ∗ − 2Λ(∞)||2G2

(44)

The RHS of (44) is finite, implies that limt→∞{||f̂(t) −
f̂(t+ 1)||2R1

+ ||2Λ(t+ 1)− 2Λ(t)||2R2
} = 0. Since R1, R2

are not unique, by (41)(42), it requires limt→∞ ||f̂(t)−f̂(t+
1)||2R1

= 0 and limt→∞ ||2Λ(t+ 1)− 2Λ(t)||2R2
= 0 should

hold for all possible R1, R2. Therefore, limt→∞(f̂(t)−f̂(t+
1)) = 0N×d and limt→∞(2Λ(t+1)−2Λ(t)) = 0N×d should
hold. (f̂(t),Λ(t)) converges to the stationary point (f̂s,Λs).
Now show that the stationary point (f̂s,Λs) is the optimal
point (f̂∗,Λ∗).

Take the limit of both sides of (20)(21) yield:

(I + η(D +A)D̃−1)(∇Ô(f̂s, Dall) + 2Λs) = 0N×d ; (45)

(D −A)f̂s = 0N×d . (46)

Since I + η(D + A)D̃−1 � 0N×N , to satisfy (45),
∇Ô(f̂s, Dall) + 2Λs = 0N×d must hold.

Compare with (22)(23) in Lemma IV.1 and observe that
(f̂s,Λs) satisfies the optimality condition and is thus the
optimal point. Therefore, (f̂(t),Λ(t)) converges to (f̂∗,Λ∗).

APPENDIX II
PROOF OF LEMMA IV.1

Consider the Private R-ADMM up to 2k-th iteration. In
(2k−1)-th iteration, the primal variable is updated via (28),
By KKT condition:

∇O(fi(2k − 1), Di) + εi(2k − 1) = −2λi(2k − 2)

−η
∑
j∈Vi

(2fi(2k − 1)− fi(2k − 2)− fj(2k − 2)) (47)

Given {fi(t)}Ni=1 for t ≤ 2k − 2, {λi(2k − 2)}Ni=1 are
also given. RHS of (47) can be calculated completely after
releasing {fi(k−1)}Ni=1, i.e., the information of ∇O(fi(2k−
1), Di) + εi(2k− 1) is completely released during (2k− 1)-
th iteration. Suppose the Private R-AMDD satisfies β2k−1-
differential privacy during (2k−1) iterations, then in (2k)-th
iterations, by (29):

fi(2k) = fi(2k − 1)− 1

2ηVi + γ
{∇O(fi(2k − 1), Di)

+εi(2k − 1) + 2λi(2k − 1)

+η
∑
j∈Vi

(fi(2k − 1)− fj(2k − 1))}

which is a deterministic mapping taking the outputs from
(2k−1)-th iteration as input. Because the differential privacy
is immune to post-processing [25], releasing {fi(2k)}Ni=1

doesn’t increase the privacy loss, i.e., the total privacy loss
up to (2k)-th iteration can still be bounded by β2k−1.



APPENDIX III
PROOF OF THEOREM IV.1

Use the uppercase letters X and lowercase letters x to
denote random variables and the corresponding realizations,
and use FX(·) to denote its probability distribution.

For two neighboring datasets Dall and D̂all of the net-
work, by Lemma IV.1, the total privacy loss is only con-
tributed by odd iterations. Thus, the ratio of joint probabili-
ties (privacy loss) is given by:

FF (0:2K)({f(r)}2r=0K|Dall)

FF (0:2K)({f(r)}2r=0K|D̂all)
=

FF (0)(f(0)|Dall)

FF (0)(f(0)|D̂all)

·
K∏
k=1

FF (2k−1)(f(2k − 1)|{f(r)}2k−2r=0 , Dall)

FF (2k−1)(f(2k − 1)|{f(r)}2t−2r=0 , D̂all)
(48)

Since fi(0) is randomly selected for all i, which is
independent of dataset, there is FF (0)(f(0)|Dall) =

FF (0)(f(0)|D̂all). First only consider (2k − 1)-th iteration,
since the primal variable is updated according to (28), by
KKT optimality condition:

εi(2k − 1) = −∇O(fi(2k − 1), Di)− 2λi(2k − 2)

−η
∑
j∈Vi

(2fi(2k − 1)− fi(2k − 2)− fj(2k − 2)) (49)

Given {f(r)}2k−2r=0 , Fi(2k − 1) and Ei(2k − 1) will be
bijective ∀i, there is:

FF (2k−1)(f(2k − 1)|{f(r)}2k−2r=0 , Dall)

FF (2k−1)(f(2k − 1)|{f(r)}2k−2r=0 , D̂all)

=

N∏
v=1

FFv(2k−1)(fv(2k − 1)|{fv(r)}2k−2r=0 , Dv)

FFv(2k−1)(fv(2k − 1)|{fv(r)}2k−2r=0 , D̂v)

=
FFi(2k−1)(fi(2k − 1)|{fi(r)}2k−2r=0 , Di)

FFi(2k−1)(fi(2k − 1)|{fi(r)}2k−2r=0 , D̂i)
(50)

Since two neighboring datasets Dall and D̂all only have at
most one data point that is different, the second equality
holds is because of the fact that this different data point could
only be possessed by one node, say node i. Then there is
Dj = D̂j for j 6= i.

Given {f(r)}2k−2r=0 , let gk(·, Di) : Rd → Rd denote
the one-to-one mapping from Ei(2k − 1) to Fi(2k −
1) using dataset Di. By Jacobian transformation, there
is FFi(2k−1)(fi(2k − 1)|Di) = FEi(2k−1)(g

−1
k (fi(2k −

1), Di)) · | det(J(g−1k (fi(2k−1), Di)))| , where g−1k (fi(2k−
1), Di) is the mapping from Fi(2k− 1) to Ei(2k− 1) using
data Di as shown in (49) and J(g−1k (fi(2k− 1), Di)) is the
Jacobian matrix of it. Then (48) yields:

FF (0:2K)({f(r)}2Kr=0|Dall)

FF (0:2K)({f(r)}2Kr=0|D̂all)

=
K∏
k=1

FEi(2k−1)(g
−1
k (fi(2k − 1), Di))

FEi(2k−1)(g
−1
k (fi(2k − 1), D̂i))

·
K∏
k=1

| det(J(g−1k (fi(2k − 1), Di)))|
| det(J(g−1k (fi(2k − 1), D̂i)))|

(51)

Consider the first part, Ei(2k − 1) ∼ exp{−αi(k)||ε||},
let ε̂i(2k − 1) = g−1k (fi(2k − 1), D̂i) and εi(2k − 1) =
g−1k (fi(2k − 1), Di)

K∏
k=1

FEi(2k−1)(g
−1
k (fi(2k − 1), Di))

FEi(2k−1)(g
−1
k (fi(2k − 1), D̂i))

=
K∏
k=1

exp(αi(k)(||ε̂i(2k − 1)|| − ||εi(2k − 1)||))

≤ exp(
K∑
k=1

αi(k)||ε̂i(2k − 1)− εi(2k − 1)||) (52)

Without loss of generality, let Di and D̂i be only different
in the first data point, say (x1i , y

1
i ) and (x̂1i , ŷ

1
i ) respectively.

By (49), Assumptions 4 and the facts that ||xni ||2 ≤ 1 (pre-
normalization), yni ∈ {+1,−1}.

||ε̂i(2k − 1)− εi(2k − 1)||

= ||∇O(fi(2k − 1), D̂i)−∇O(fi(2k − 1), Di)|| ≤
2C

Bi
(53)

(52) can be bounded:
K∏
k=1

FEi(2k−1)(g
−1
k (fi(2k − 1), Di))

FEi(2k−1)(g
−1
k (fi(2k − 1), D̂i))

≤ exp(
K∑
k=1

2Cαi(k)

Bi
)

(54)
Consider the second part, the Jacobian matrix

J(g−1k (fi(2k − 1), Di)) is:

J(g−1k (fi(2k − 1), Di))

= − C
Bi

Bi∑
n=1

L ′′(yni fi(2k − 1)Txni )xni (xni )T

− ρ

N
∇2R(fi(2k − 1))− 2ηViId

Define

G(k) =
C

Bi
(L ′′(ŷ1i fi(2k − 1)T x̂1i )x̂

1
i (x̂

1
i )
T

−L ′′(y1i fi(2k − 1)Tx1i )x
1
i (x

1
i )
T ) ;

H(k) = −J(g−1k (fi(2k − 1), Di)) .

There is:

| det(J(g−1k (fi(2k − 1), Di)))|
| det(J(g−1k (fi(2k − 1), D̂i)))|

=
| det(H(k))|

| det(H(k) +G(k))|
=

1

| det(I +H(k)−1G(k))|

=
1

|
∏r
j=1(1 + λj(H(k)−1G(k)))|

(55)

where λj(H(k)−1G(k)) denotes the j-th largest eigen-
value of H(k)−1G(k). Since G(k) has rank at most 2,
H(k)−1G(k) also has rank at most 2. By Assumptions 4
and 5, the eigenvalue of H(k) and G(k) satisfy

λj(H(k)) ≥ ρ

N
+ 2ηVi > 0 ;

−Cc1
Bi
≤ λj(G(k)) ≤ Cc1

Bi
.



Implies

− c1
Bi
C ( ρN + 2ηVi)

≤ λj(H(k)−1G(k)) ≤ c1
Bi
C ( ρN + 2ηVi)

.

Since 2c1 <
Bi
C ( ρN + 2ηVi), there is

−1

2
≤ λj(H(k)−1G(k)) ≤ 1

2
.

Since λmin(H(k)−1G(k)) > −1, there is

1

|1 + λmax(H(k)−1G(k))|2
≤ 1

|det(I +H(k)−1G(k))|

≤ 1

|1 + λmin(H(k)−1G(k))|2
.

Therefore,
K∏
k=1

| det(J(g−1k (fi(2k − 1), Di)))|
| det(J(g−1k (fi(2k − 1), D̂i)))|

≤
K∏
k=1

1

|1− c1
Bi
C ( ρN+2ηVi)

|2

= exp(−
K∑
k=1

2 ln(1− c1
Bi
C ( ρN + 2ηVi)

)) . (56)

Since for any real number x ∈ [0, 0.5], − ln(1−x) < 1.4x.
(56) can be bounded with a simper expression:

K∏
k=1

| det(J(g−1k (fi(2k − 1), Di)))|
| det(J(g−1k (fi(2k − 1), D̂i)))|

≤ exp(
K∑
k=1

2.8c1
Bi
C ( ρN + 2ηVi)

) . (57)

Combine (54)(57), (51) can be bounded:

FF (0:2K)({f(r)}2Kr=0|Dall)

FF (0:2K)({f(r)}2Kr=0|D̂all)

≤ exp(
K∑
k=1

2C

Bi
(

1.4c1
( ρN + 2ηVi)

+ αi(k))) . (58)

Therefore, the total privacy loss during T iterations can
be bounded by any β:

β ≥ max
i∈N
{
K∑
k=1

2C

Bi
(

1.4c1
( ρN + 2ηVi)

+ αi(k))} .
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