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Abstract— Alternating direction method of multiplier
(ADMM) is a powerful method to solve decentralized convex
optimization problems. In distributed settings, each node per-
forms computation with its local data and the local results are
exchanged among neighboring nodes in an iterative fashion.
During this iterative process the leakage of data privacy
arises and can accumulate significantly over many iterations,
making it difficult to balance the privacy-utility tradeoff. In
this study we propose Recycled ADMM (R-ADMM), where
a linear approximation is applied to every even iteration, its
solution directly calculated using only results from the previous,
odd iteration. It turns out that under such a scheme, half
of the updates incur no privacy loss and require much less
computation compared to the conventional ADMM. We obtain
a sufficient condition for the convergence of R-ADMM and
provide the privacy analysis based on objective perturbation.

I. INTRODUCTION

Distributed optimization and learning are crucial for many
settings where the data is possessed by multiple parties or
when the quantity of data prohibits processing at a central
location. Many problems can be formulated as a convex
optimization of the following form: miny Zf\il fi(x). In a
distributed setting, each entity/node ¢ has its own local ob-
jective f;, N entities/nodes collaboratively work to solve this
objective through an interactive process of local computation
and message passing. At the end all local results should
ideally converge to the global optimum.

The information exchanged over the iterative process gives
rise to privacy concerns if the local training data contains
sensitive information such as medical or financial records,
web search history, and so on. It is therefore highly desirable
to ensure such iterative processes are privacy-preserving. We
adopt the e-differential privacy to measure such privacy guar-
antee; it is generally achieved by perturbing the algorithm
such that the probability distribution of its output is relatively
insensitive to any change to a single record in the input [1].

Existing approaches to decentralizing the above problem
primarily consist of subgradient-based algorithms [2]-[4] and
ADMM-based algorithms [5]-[12]. It has been shown that
ADMM-based algorithms can converge at the rate of O(%)
while subgradient-based algorithms typically converge at the
rate of O(—-), where k is the number of iterations [8]. In
this study, we will solely focus on ADMM-based algorithms.
While a number of differentially private (sub)gradient-based
distributed algorithms have been proposed [13]-[16], the
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same is much harder for ADMM-based algorithms due to
its computational complexity stemming from the fact that
each node is required to solve an optimization problem in
each iteration. To the best of our knowledge, only [17],
[18] apply differential privacy to ADMM. In particular,
[17] proposed the dual/primal variable perturbation method
to inspect the privacy loss of one node in every single
iteration; this, however, is not sufficient for guaranteeing
privacy as an adversary can potentially use the revealed
results from all iterations to perform inference. In [18] we
address this issue by inspecting the total privacy loss over
the entire process and the whole network; we proposed a
penalty perturbation method which improves the privacy-
utility tradeoff significantly.

In the present study we present Recycled ADMM (R-
ADMM), a modified version of ADMM where the privacy
leakage only happens during half of the updates. Specifically,
we adopt a linearized approximated optimization in every
even iteration, whose solution can actually be calculated
directly from results in the previous, odd iteration, and is
used for updating primal variable. We establish a sufficient
condition for convergence and provide a privacy analysis
using the objective perturbation method. Our numerical re-
sults show that the privacy-utility tradeoff can be improved
significantly.

The remainder of the paper is organized as follows. We
present problem formulation and definition of differential
privacy and ADMM in Section II and the Recycled ADMM
algorithm along with its convergence analysis in Section III.
A private version of this ADMM algorithm is then introduced
in Section IV and numerical results in Section V. Section VI
concludes the paper.

II. PRELIMINARIES

A. Problem Formulation

Consider a connected network! given by an undirected
graph G(.A4, &), which consists of a set of nodes A4~ =
{1,2,---,N} and a set of edges & = {1,2,---,E}.
Two nodes can exchange information if and only if they
are connected by an edge. Let ¥; denote node ¢’s set of
neighbors, excluding itself. A node ¢ has a dataset D; =
{(zyM)|n = 1,2,--- , B;}, where 27" € R? is the feature
vector representing the n-th sample belonging to ¢, y;* €
{—1,1} the corresponding label, and B; the size of D;.

'A connected network is one in which every node is reachable (via a
path) from every other node.



Consider the regularized empirical risk minimization
(ERM) problem for binary classification defined as follows:
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where C' < B; and p > 0 are constant parameters of the
algorithm, the loss function .Z(-) measures the accuracy of
the classifier, and the regularizer R(-) helps prevent overfit-
ting. The goal is to train a (centralized) classifier f. € R?
over the union of all local datasets Dy = U;e 4 D; in a
distributed manner using ADMM, while providing privacy
guarantee for each data sample.

B. Differential Privacy [1]

A randomized algorithm 7 (-) taking a dataset as input
satisfies e-differential privacy if for any two datasets D, D
differing in at most one data point, and for any set of possible
outputs S C range(.<7), Pr(<7 (D) € S) < ePr(# (D) € S)
holds. We call two datasets differing in at most one data point
as neighboring datasets. The above definition suggests that
for a sufficiently small ¢, an adversary will observe almost
the same output regardless of the presence (or value change)
of any one individual in the dataset; this is what provides
privacy protection for that individual.

C. Conventional ADMM

To decentralize (1), let f; be the local classifier of each
node i. To achieve consensus, i.e., f1 = fo = -+ = fn,

introduced for every pair of connected nodes. As a result,
(1) is reformulated equivalently as:
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{fi} (resp. {w;;}) is the shorthand for {f;}ic.y (resp.
{wijYiew jew). Let {wy, A} be the shorthand for
{wij, N Yie v jevi kefap)s Where A¢;, A?; are dual variables
corresponding to equality constraints f; = w;; and w;; = f;
respectively. The objective in (2) can be solved using ADMM

with the augmented Lagrangian:
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In the (¢ + 1)-th iteration, the ADMM updates consist of
the following:

filt+1) = arg;nin Ly({fi}, {wi; (0), A0 5 @)
wij(t+1) = arg{{lin Ly({fi(t + 1)}, {wij, A0 5 5)

At +1) = A5 +n(fi(t+1) —wi;(t+1)) 5 (6)

A1) = 250 + 0wy (t+1) = [i(t+1)) . (D
Using Lemma 3 in [19], if dual variables Af;(t) and AZ;(t)
are initialized to zero for all node pairs (i, j), then \{;(t) =
)\?j(t) and )\fj(t) = f/\é‘?i(t) will hold for all iterations with
k€ {a,b},i € N,j € Vi Let \i(t) = 30y A5(t) =
> et )\?j(t), then the ADMM iterations (4)-(7) can be
simplified as (Refer to Appendix A in [18] for proof):

fit+1) = argmm{O(f“ i)+ 20 (07T f;
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D. Private ADMM [17] & Private M-ADMM [18]

In private ADMM [17], the noise is added either to the
updated primal variable before broadcasting to its neighbors
(primal variable perturbation), or to the dual variable before
updating its primal variable using (8) (dual variable pertur-
bation). The privacy property is only evaluated for a single
node and a single iteration, both methods cannot balance the
privacy-utility tradeoff very well if consider the total privacy
loss. In [18] the total privacy loss of the whole network
over the entire iterative process is considered. A modified
ADMM (M-ADMM) was proposed to improve the privacy-
utility tradeoff. Specifically, it explores the rule of step-size
(penalty parameter) in stabilizing the algorithm. M-ADMM
allows each node to independently determine its penalty
parameter; by perturbing the algorithm with noise correlated
to penalty parameter and at the same time increasing the
penalty parameters, the privacy and accuracy are shown to
improve simultaneously.

E. Main idea

Fundamentally, the accumulation of privacy loss over iter-
ations stems from the fact that the raw data is used in every
primal update. If the updates can be made without using the
raw data, but only from computational results that already
exist, then the privacy loss originating from these updates
will be zero, while at the same time the computational cost
be reduced significantly. Based on this idea, we start with
modifying ADMM such that we can repeatedly use some
computational results to make updates.

ITII. RECYCLED ADMM (R-ADMM)
A. Making information recyclable

ADMM can outperform gradient-based methods in terms
of requiring fewer number of iterations for convergence; this



however comes at the price of high computational cost in
every iteration. In particular, the primal variable is updated
by performing an optimization in each iteration. In [9],
[20], [21], either a linear or quadratic approximation of the
objective function is used to obtain an inexact solution in
each iteration in lieu of solving the original optimization
problem. While this clearly lowers the computational cost,
the approximate computation is performed using the local,
raw data in every iteration, which means that privacy loss
inevitably accumulates over the iterations.

We begin by modifying ADMM in such a way that in
every even iteration, without using the raw data, the primal
variable is updated solely based the existing computational
results from the previous, odd iteration. Compared with
conventional ADMM, these updates incur no privacy loss
and less computation. Since the computational results are
repeatedly used, this method will be referred to as Recycled
ADMM (R-ADMM).

Specifically, in the 2k-th (even) iteration, we approxi-
mate O(f;, D;) (Eqn. (8), primal update optimization) by
O(fi, Di) = O(fi(2k —1), D;) + VO(fi(2k 1), D))" (fi —
fi(2k—1))+Z||fi— fi(2k—1)||3 (v > 0) and update only the
primal variables. Using the first-order condition, the updates
in the 2k-th iteration become:

fi(2k) = fi(2k — 1) ﬁ
202k — 1)+ > (fi2k — 1) = f;(2k — 1))} ; (10)

J€Y;

{VO(fi(2k = 1), D)

Ai(2k) = \i(2k —1) . (11)

In the (2k — 1)-th (odd) iteration, the updates are kept the
same as (8)(9):

fi(2k — 1) = argmin{O(fi, D;) + 2X;i(2k — 2)T f;

fi
1 N5k —2) 4 k- 2) ~ flB Y (2)
i€V
’ M2k — 1) = \i(2k — 2)
23 (k=1 - [2k-1) . (3)

JEY;

Note that in the (2k)-th (even) iteration, we need the gradient
VO(f;(2k—1), D;) and primal difference g > ey (fi(2k—
1) — fj(2k — 1)) for the updates; these are available directly
from the previous, (2k — 1)-th (odd) iteration, i.e., this
information can be recycled. In this sense, R-ADMM can
be viewed as alternating between conventional ADMM (odd
iterations) and a variant of gradient descent (even iterations),
where ﬁ is the step-size and the gradient of the objec-
tive function is corrected by the primal difference and dual
variable. The complete procedure is shown in Algorithm 1.

B. Convergence Analysis

We next show that R-ADMM (Eqn. (10)-(13)) converges
to the optimal solution under a set of common technical
assumptions.

Algorithm 1: Recycled ADMM (R-ADMM)

Input: {D;}Y,
Initialize: Vi, generate f;(0) randomly, A;(0) = 0g4x1
for k=1to K do
for i =1to .4 do
Update primal variable f;(2k — 1) via (12);
Calculate the gradient VO(f;(2k — 1), D;);
| Broadcast f;(2k — 1) to all neighbors j € 7;.
for i =1to ./ do
n

Calculate B djey, (fi(2k —1) — f;(2k — 1));
| Update dual variable \;(2k — 1) via (13).
for i =1to .4 do
Use the stored VO(f;(2k — 1), D;) and

Y jer (fil2k—1) = f(2k = 1) 0

update primal variable f;(2k) via (10);

Keep the dual variable \;(2k) = \;(2k — 1);

| Broadcast f;(2k) to all neighbors j € %;.

Output: primal {f;(2K)}, and dual {)\;(2K)}¥,

Assumption 1: Function O(f;, D;) is convex and differ-
entiable in f;, Vi.

Assumption 2: The solution set to the original ERM prob-
lem (1) is nonempty and there exists at least one bounded
element.

Assumption 3: For all i € 4, O(f;, D;) has Lipschitz
continuous gradients, i.e., for any fi1 and ff, we have:

IVO(fi, Di) = VO(f2, Di)ll2 < Millfi = f7ll2 (14)
By the KKT condition of the primal update (12):
0=VO(fi(2k —1),D;) + 2X;(2k — 2)
+n ) (2fi(2k = 1) = (fi(2k —2) + f;(2k = 2))) . (15)

JEY;
Define the adjacency matrix A € RV*N as:

if node ¢ and node j are connected
otherwise .

Stack the variables f;(t), A;(t) and VO(f;(t), D;) for i €
./ into matrices, i.e.,

fit)T ()T
_ f2(.t)T RN A(p) = >‘2(.’5)T c RN xd
Fn ()T An (1)
VO(fi(t), D1)*
VO(f(t), Dart) = VOUR: D™ | pvsa

Let V; = |¥]| be the number of neighbors of node i,
and define the degree matrix D = diag([V1; Va;--- ;VN]) €



RV*N and the diagonal matrix D with D;; = 2nV; + .
Then for each k, the matrix form of (10)(11)(15)(13) are:

f(2k) = f(2k —1) = D™{VO(f(2k — 1), Dan)
+20(2k —1) + (D — A)f(2k — 1)} ;  (16)
2N(2k) = 2A(2k — 1) ;  (17)

Onsxa = VO(f(2k —1), Day) + 2A(2k — 2)
+2Df(2k — 1) —n(D + A f(2k —2) ;  (18)
2AM(2k — 1) = 2A(2k — 2) + (D — A)f(2k — 1) . (19)

Writing f(2k —2) and A(2k — 2) in (18)(19) as functions
of f(2k —3), A(2k — 3) using (16)(17), we obtain:

VO(f(2k — 1), Daut) + n(D + A)D™'VO(f (2k — 3), Dant)
+n(D + A)(f(% — 1) — f(2k - 3))

+n(D + A)D"n(D — A) f(2k — 3)
+2A(2k — 1) +n(D 4+ A)D7'2A(2k — 3) = Onxq ;
2A(2k — 1) = 2A(2k — 3) +n(D — A) f(2k — 1) .

The convergence of R-ADMM is proved by showing that the
pair (f(2k — 1), A(2k — 1)) from odd iterations converges
to the optimal solution. To simplify the notation, we will re-
index every two consecutive odd iterations 2k — 3 and 2k —1
using ¢ and ¢ + 1:

VO(f(t+1), Dan) + n(D + A)D

+n(D+A)((f(t+1)—f()>+D n(D - A)f(t))
+2A(t + 1) +n(D + A)D712A(t) = Onxy ; (20)
2A(t+1) = 2A(t) + (D — A)f(t +1) . (21)

Note that D — A is the laplacian and D + A is the
signless Laplacian matrix of the network, with the following
properties if the network is connected: (i) D £ A > 0 is
positive semi-definite; (ii) Null(D — A) = cl, i.e., every
member in the null space of D — A is a scalar multiple of 1
with 1 being the vector of all 1’s [22].

Lemma IIL.1. /[First-order Optimality Condition [12]] Un-
der Assumptions 1 and 2, the following two statements are
equivalent:

o fr=1005 )
sual, i.e., f{ = f5 =---
optimal solution to (1).

o There exists a pair (f*, A*) with 2A* = (D — A)X for
some X € RV*? such that

VO(f*, Dait) + 20" = Onva ; (22)
(D= A)f* =0xxa - (23)

Lemma I11.1 shows that a pair (f*, A*) satisfying (22)(23)
is equivalent to the optimal solution of our problem, hence
the convergence of R-ADMM is proved by showing that
(f(t), A(t)) in (20)(21) converges to a pair (f*, A*) satisfy-
ing (22)(23).

Theorem IIL.1. /[Sufficient Condition] Consider the modi-
fied ADMM defined by (20)(21). Let {f(t), A(t)} be outputs
in each iteration and {f*,A\*} a pair satisfying (22)(23).

1vO(f( )> Daur)

()T € RNX4 s consen-

= fX = f& where f} is the

Denote Dy = diag([M3; M3;--- ; M%]) € RYNXN with
0 < M; < 400 as given in Assumption 3. If the following
two conditions hold for some constants L > 0 and p > 1:

Lp 1
20min (D) 1
n(D + A) = {n(D+ A)D

- L
+20(D+ A)D~ (D + 4) + e

20min(D)(,u — 1)

(I+n(D+A)D™1) - (D — AT (24)

'n(D — A)
Dar) . (25)

where omin(D) = min;{2nV; + v} is the smallest singular
value of D, then (f(t), A(t)) converges to (f*,A*).

Proof. See Appendix 1. O

By controlling -, it is easy to find constants L > 0 and
> 1 such that conditions (24)(25) are satisfied, and they
are not unique. One example is L = 2 and p = 2, in which
case (24)(25) are reduced to:

. 4 1
I+nD+AD Y)Y —————Du(D—-A"; (26
(L +n( )D™7) 20mmn(D) 1 M ) (26)

. 2
n(D+A)=2n(D+ A)D "D+ ——=Dy; . (27)
Omin

(26)(27) can be easily satisfied for sufficiently large v > 0.
Note that the conditions are sufficient but not necessary, so in
practice convergence may be attained under weaker settings.

IV. PRIVATE R-ADMM

In this section we present a privacy preserving version of
R-ADMM. In odd iterations, we adopt the objective perturba-
tion [23] where a random linear term ¢;(2k — 1)7 f; is added
to the objective function in (12)? 3, where €;(2k — 1) follows
the probability density proportional to exp{—a;(k)||€;(2k —
1)||2} and is stored.

LP"(2k — 1) = O(f;, Z) (2X\:(2k — 2) + &, (2k — )T f;
+nZ|I fi(2k —2) + f;(2k — 2)) — fi[3
JEY;

To generate this noisy vector, choose the norm from the
gamma distribution with shape d and scale ﬁ(k) and the
direction uniformly, where d is the dimension of the feature
space. Node 7’s local result is obtained by finding the optimal
solution to the private objective function:

fi(2k — 1) = argmin LP"*"(2k —
fi

1), ieNV . (28

In even iterations, use the stored gradient VO(f;(2k —

. . n
1), D;), primal difference B djey (fi(2k—1)— f;(2k—1))

2Qther perturbation methods can also be adopted such as output pertur-
bation, random sampling, etc.

3Pure differential privacy was adopted in this work, but the weaker (e, §)-
differential privacy can be applied as well.



and noise €;(2k — 1) to update primal variables:

fz(2k) = fz(Qk - 1) - W{Q)\i(Qk - 1)
+€(2k — 1) + VO(fi(2k — 1), D;)

the existing stored information

1) (fi2k = 1) = f;(2k — 1))}

JEY:

the existing stored information

Algorithm 2 shows the complete procedure, where the condi-
tion used to generate 7 helps to bound the worst-case privacy
loss but is not necessary in guaranteeing convergence.

Algorithm 2: Private R-ADMM
Input: {D }z 1> {ai(l)a T 7ai(K)}zN:1
Initialize: Vi, generate f;(0) randomly, Ai(0) = 0gx1
Parameter: Select 7 s.t. 2¢; < min; {21 (£ +2nV;)}
for k =1to K do

for i =1to ./ do
Generate noise

€i(2k — 1) ~ exp(—a;(k)|le[]2):

Update primal variable f;(2k — 1) via (28);
Calculate the gradient VO(f;(2k — 1), D;);
| Broadcast f;(2k — 1) to all neighbors j € %;.

for i =1to ./ do
n
Calculate B > jev (fi(2k —1) — f;(2k = 1));

| Update dual variable \;(2k — 1) via (13).
for i =1to .4 do
Use the stored ¢;(2k — 1),

VO(f;(2k —1),D;) and

n

TS en i@k = 1) = 52k~ 1)) to

update primal variable f;(2k) via (29);
Keep the dual variable \;(2k) = \;(2k — 1);
| Broadcast f;(2k) to all neighbors j € %;.

OLtput Upper bound of the total privacy loss 3;
primal {f;(2K)} | and dual {\;(2K)}}¥

In the distributed and iterative setting, the “output” of
the algorithm is not merely the end result, but includes
all intermediate results generated and exchanged during the
iterative process. For this reason, we adopt the differential
privacy definition proposed in [18] as follows.

Definition IV.1. Consider a connected network G(N , &)
with a set of nodes A = {1,2,--- N}. Let f(t)
{fi()}X., denote the information exchange of all nodes in
the t-th iteration. A distributed algorithm is said to satisfy -
differential privacy during T iterations if for any two datasets
Doy = U;D; and Dall = Uiﬁi, differing in at most one
data point, and for any set of possible outputs S during T
iterations, the following holds:

Pri{f(t)}=y € S|Dan) .
Pr{f O}y € SlDar) P

=20, v
—N= 200 g inal ADMM

[ 5 10 15 20 25 30 35 40 45 50

Fig. 1. Convergence properties of R-ADMM.

We now state another result of this paper, on the privacy
property of the private R-ADMM (Algorithm 2) using the
above definition. Additional assumptions on .Z(-) and R(-)
are used.

Assumption 4: The loss function £ is strictly convex and
twice differentiable. [V.Z| <1 and 0 < .£" < ¢; with ¢;
being a constant.

Assumption 5: The regularizer R is 1-strongly convex and
twice continuously differentiable.

Lemma IV.1. Consider the private R-ADMM (Algorithm
2), Vk = 1,--- K, assume the total privacy loss up to the
(2k —1)-th iteration can be bounded by Pay,_1, then the total
privacy loss up to the 2k-th iteration can also be bounded
by Bor_1. In other words, given the private results in odd
iterations, outputting private results in the even iterations
does not release more information about the input data.

Proof. See Appendix II. O

Theorem IV.1. Normalize feature vectors in the training set
such that ||z]||2 < 1 for all i € A and n. Then the private
R-ADMM algorithm (Algorithm 2) satisfies the (B-differential
privacy with

20 1.4¢q
> .
B> g;g;;{z @ oy T (k))} (30)
Proof. See Appendix III. O

V. NUMERICAL EXPERIMENTS

We use the Adult dataset from the UCI Machine Learning
Repository [24]. It consists of personal information of around
48,842 individuals, including age, sex, race, education, occu-
pation, income, etc. The goal is to predict whether the annual
income of an individual is above $50,000.

Following the same pre-processing steps as in [18], the
final data includes 45,223 individuals, each represented as
a 105-dimensional vector of norm at most 1. We will
use as loss function the logistic loss Z(z) = log(l +
exp(—2)), with |’ < 1 and £" < ¢ = . The
regularizer is R(fi) = 3||fil|3- We will measure the
accuracy of the algorithm by the average loss L(t) :=
LV 5 B L(yr fi(t)T ) over the training set. We
will measure the privacy of the algorithm by the upper bound
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Fig. 2. Comparison of accuracy and privacy.

L K 2C 1.4c .
P(t) = ?elsif/c{zkzl 5 (7(%—5-2171\/1) + «;(k))}. The smaller
L(t) and P(t), the higher accuracy and stronger privacy
guarantee.

A. Convergence of non-private R-ADMM

Figure 1 shows the convergence of R-ADMM with differ-
ent v and fixed n = 0.5 for a small network (N = 5) and a
large network (N = 20), both are randomly generated. Due
to the linear approximation in even iterations, it’s possible
to cause an increased average loss as shown in the plot.
However, the odd iterations will always compensate this
increase; if we only look at the odd iterations, R-ADMM
achieves a similar convergence rate as conventional ADMM.
v can also be thought of as an extra penalty parameter for
each node in even iterations to punish its update, i.e., the
difference between f;(2k) and f;(2k—1). Larger -y can result
in smaller oscillation between even and odd iterations but
will also lower the convergence rate.

B. Private R-ADMM

We next inspect the accuracy and privacy of the private R-
ADMM (Algorithm 2) and compare it with the private (con-

0.44 T T

@ —$-R-ADMM
043 N -
——R-ADMM + M-ADMM

Average Loss

038

Fig. 3. Accuracy comparison: n(t) = 1.01%, v(¢) = 0.2 x 1.01*

ventional) ADMM using dual variable perturbation (DVP)
[17] and the private M-ADMM using penalty perturbation
(PP) [18]. In the set of experiments, we fix y =02, n =1
in private R-ADMM and set the noise parameter o;(k) =
«, Vi, k. The noise parameters of conventional ADMM and
M-ADMM are also chosen respectively such that they have
almost the same total privacy loss bounds.

For each parameter setting, we perform 10 independent
runs of the algorithm, and record both the mean and the range
of their accuracy. Specifically, L'(t) denotes the average
loss over the training dataset in the ¢-th iteration of the I-
th experiment (1 < ! < 10). The mean of average loss is
then given by Liean(t) = 15 >0y L!(t), and the range

_ Uy — in Il
Lyange(t) = 12%§0L (t) 12150L (t). The larger the

range Lyqnge(t) the less stable the algorithm, i.e., under
the same parameter setting, the difference in performances
(convergence curves) of every two experiments is larger.
Each parameter setting also has a corresponding upper bound
on the privacy loss denoted by P(t). Figures 2(a)-2(b) show
both Lyeqn(t) and Lygnge(t) as vertical bars centered at
Lynean(t). Their corresponding privacy upper bound is given
in Figures 2(c)-2(d). The pair 2(a), 2(c) (resp. 2(b), 2(d)) is
for the same parameter setting. We see that the private R-
ADMM has higher accuracy than both the private ADMM
and M-ADMM, and the improvement is more significant
with the smaller total privacy loss.

We also incorporate the idea from [18] into private R-
ADMM, where we decrease the step-size, i.e., increase 7
and ~y, over iterations to stabilize the algorithm and improve
the algorithmic performance. The result is shown in Figure
3 where the privacy loss bound is controlled to be the same
during the whole period. It shows that by varying the step-
size, the privacy-utility tradeoff can be further improved.

VI. CONCLUSION

We presented Recycled ADMM (R-ADMM), a modified
version of ADMM that can improve the privacy-utility
tradeoff significantly with less computation. The idea is
to repeatedly use the existing computational results instead
of the raw data to make updates. We also established a
sufficient condition for convergence and privacy analysis
using objective perturbation.
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= S+ 1) = FU, + I+ 1) FOIE, — 5170 — FI, |
(ft+1) = f*, (I +n(D+ A)D™1)(2A* —2A(t+1)))p
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—szA*—zA(t >||é2+§\|f<> PR oy — \|f(t+1>—f*||3<D+A) 37)
APPENDIX I (X,JX)F and (X)7 be the pseudo inverse of X. Define:
PROOF OF THEOREM III.1 -
G1=n(D+A)D'n(D — A) ;
By convexity of O(f;,D;), (f} — fAHT(VO(ft, D;) — Gy = %(D—A)J“(I—l—n(D—i—A)f)_l) )

VO(f2,D;)) > 0 holds V f1, f2. Let (-,
inner product of two matrices, there is:

-yp be frobenius

(ft+1) = f*,VO(f(t + 1), Dat) — VO(f*, Dait)) r > 0

According to (20)(22) and (21), substitute VO(f(t +
1), Da”) Vé(f D,y;) and add an extra term n(D +
A)D (VO(f* Day) + 2A*) = Oy w4, implies Eqn. (31).
To simplify the notation, for a matrix X, let || X||% =

Use (21)(23) and the fact that (A, JB)r = (JTA,B)F,
Eqgn. (32)(33)(34) hold. Let VX denote the square root of
a symmetric positive semi-definite (PSD) matrix X that is
also symmetric PSD. Eqn. (35) holds, where the inequality
uses the facts that O(f;, D;) is convex for all ¢ and that the
matrix (D + A)D~" is positive definite.

According to (14) in Assumption 3, define the matrix
Dy = dlag([Ml,MQ, s M3Z)) € RNXIY, it implies
IVO(f*, Dan) — VO(f? Dau)HF < (f = A Du(f! —



f?))p. Since (A, B)p < HIAIZ + %||B||% holds for any
L

> 0, there is:

(35) < l\ln(D+A)\/l~7*1(f(t) —fE+ )

*||V L(VO(f(t), Dant) — VO(f*, Dant))||%
1 X
< Z||(f(t) *f(t+1))||2(D+A)D L(D+A)
Lamax(

27 90(F(). D) ~ VO Dun

= ZIIF0) — fle+ 1>>||W(D+A)D D)

_ 2
o 1 = 0l 6

where Opmax (), Omin(-) denote the largest and smallest
singular value of a matrix respectively. Since for any p > 1
and any matrices Cy, Cs, J with the same dimensions, there
is [|C1 + ol < pl|Chl[5 + 25 1Col |- which implies:

)~ f®)l5,,
D) - flb,,

17" = F O, = I1F* = F+ D+ f(t +
< ullfr = F+Dllb,, + 27+

Plug into (38) and use (21)(23) gives Eqn. (36).

Combine (32)(33)(34)(36), (31) becomes Eqn. (37). Sup-
pose the following two conditions hold for some constants
L>0and > 1:

= Lu 1
I+nD+AD Y)Y ——__-Dyu(D-A"; 39
(L +n( )D™) 20w (D)7 m( )T (39)
n(D+ A) = n(D+A)D 'n(D - A)
2 - Lu
+=n(D+ A)D" (D + A) + = Dy . (40
D 7 T R
Substitute Gy = n(D+A)D~1n(D—A) and G = (D~
A)H(I +n(D+ A)D™'), define Ry and Ry below gives:
Lp
Ri=nD+A) -G -—" D
2Crmin(D) (N - 1)
2 .
— 70D+ A)D™ (D + A) = Onsen ;- (41)
Lu 1
Ry=Gy— ———=(=(D—A)")2?Dy =0 .42
2 2 20min(D)(77( )" )"Dar = Onxn - (42)
Eqgn. (37) becomes:
Loz ; 2 1 2
SIF) = 7+ DI, + 5 I12A¢+1) — 240,
1,5 o 1osn  a
<SlfFE+0 = e, = 5170 - £l
* 1 *
+3l2A° ~ 2A0)I2, - gl =2 DI,
L2 £ £%
+§||f() fr n(psa) — ||f(t+1)—f 2 piay 43)

Sum up (43) over ¢ from 0 to +oo leads to:

Z{Ilf

t=0

<|lfo)-f 1 f(+00) — f

Pl psa) — 2 sy
+[f(o0) = FH1I&, = I1F(0) = F*IIZ,
247 = 2A(0)[[Z, — [12A% = 2A(c0)[[Z, (44)

The RHS of (44) is finite, implies that limtﬁoo{Hf(t) -
FE+ D)%, +112A(8+ 1) — 2A(t)[|%,} = 0. Since Ry, R,
are not unique, by (41)(42), it requires limy_,o || f(¢)— f(t+
D|I%, = 0 and limy_,o0 ||2A(¢ + 1) — 2A(2)||%, = 0 should
hold for all possible Ry, Ro. Therefore, lim;_, o ( f (t)— f (t+
1)) = O0nxq and lim;—, oo (2A(¢t+1) —2A(t)) = O xq should
hold. (f(t), A(t)) converges to the stationary point (f*, A%).
Now show that the stationary point (f*, A®) is the optimal
point (f*, A*).
Take the limit of both sides of (20)(21) yield:

(I +n(D + A)D Y (VO(f*, Dan) + 2A%) = Oy ; (45)
(D — A)fs =0nxq - (46)

Since I + n(D + A)D‘1 >~ Onxn, to satisfy (45),
Vé(fs, Dall) + 2A% = O« g must hold.

Compare with (22)(23) in Lemma IV.1 and observe that
(f*, A®) satisfies the optimality condition and is thus the
optimal point. Therefore, (f(t), A(t)) converges to (f*, A*).

Ft+ D)%, + 11240+ 1) — 20013, }

APPENDIX IT
PROOF OF LEMMA IV.1

Consider the Private R-ADMM up to 2k-th iteration. In
(2k — 1)-th iteration, the primal variable is updated via (28),
By KKT condition:

VO(fi(2k — 1), D;) + €(2k — 1) = —2X;(2k — 2)
—n > (2fi(2k — 1) = f;(2k — 2) — f;(2k — 2))  (47)

JEY;

Given {f;(t)}}N, for t < 2k — 2, {N(2k — 2)}Y, are
also given. RHS of (47) can be calculated completely after
releasing { f;(k—1)}}¥,, i.e., the information of VO(f;(2k—
1), D;) +€;(2k — 1) is completely released during (2k — 1)-
th iteration. Suppose the Private R-AMDD satisfies fPof_1-
differential privacy during (2k — 1) iterations, then in (2k)-th
iterations, by (29):

fi(2k) = fi(2k — 1) — W{VO(fi(zk —-1),D;)
+e;(2k — 1) +2);(2k — 1)
+n > (fi2k = 1) = f;(2k — 1))}

JEY:

which is a deterministic mapping taking the outputs from
(2k —1)-th iteration as input. Because the differential privacy
is immune to post-processing [25], releasing {f;(2k)}Y,
doesn’t increase the privacy loss, i.e., the total privacy loss
up to (2k)-th iteration can still be bounded by SBar_1.



APPENDIX III
PROOF OF THEOREM 1V.1

Use the uppercase letters X and lowercase letters x to
denote random variables and the corresponding realizations,
and use Fx(-) to denote its probability distribution.

For two neighboring datasets D,;; and Dall of the net-
work, by Lemma IV.1, the total privacy loss is only con-
tributed by odd iterations. Thus, the ratio of joint probabili-
ties (privacy loss) is given by:

Fro2r) L (1)} -0 K|Da) — Fr(0)(f(0)[Dan)
9F(0;2K)({f(7") %:0K|Dall) ; yF(O)(f(OMDall)
T Zree-n(fE2k = D)}, Dan)
i1 Zre—1)(f2k = DI{ (1)}, Dan)

Since f;(0) is randomly selected for all ¢, which is
independent of dataset, there is Fp)(f(0)|Dar) =
ﬁp(o)(f(0)|ﬁa”). First only consider (2k — 1)-th iteration,
since the primal variable is updated according to (28), by
KKT optimality condition:

(48)

—n Y (2fi(2k —1) = fi(2k —2) — £;(2k —2))  (49)
JEY:

Given {f(r)}7£5%
bijective Vi, there is:

Fi(2k — 1) and E;(2k — 1) will be

Frer-1)(f(2k - 1)|{f(T)}3k02aDall)
Free—1)(f(2k — DI{F()}2EG2, Dan)
_ ﬁ T, 2h-1) (fo 2k = DI{fo () }7E5%, Do)
=1 I, v(2k b (fo(2k = D{fo(r)}25%, Dy)
R (26— DUANEER D)
2k—2
fF(2k y(fi(2k = D{ fi(r)};Z0 ,D)

Since two neighboring datasets D,; and Dau only have at
most one data point that is different, the second equality
holds is because of the fact that this different data point could
only be possessed by one node, say node i. Then there is
D; = D for j # i.

leen {Fr)¥2E52, Tet gn(-, D) @ RY — R denote
the one-to-one mapping from F;(2k — 1) to F;(2k —
1) using dataset D,. By Jacobian transformation, there
is Zr, 1) (fi(2k — 1)|D;) = Fg,cn-1)(g; " (fi(2k —
1), Dy))- | det(I(g;; " (fi(2k—1), Dy)))| , where g, (fi(2k —
1), D;) is the mapping from F;(2k — 1) to E;(2k — 1) using
data D; as shown in (49) and J(g; ' (f:(2k — 1), D;)) is the
Jacobian matrix of it. Then (48) ylelds.

Fro2r) ({ ()15
Fro2r){F(r)}2E

- ﬁ T en-1 (g5 ' (fi(2k — 1), D :
o1 T B (2k— 1)(9,C (fi(2k — 1), D;
i)

;)

|Dair)
| Danr)
)
)

O [det(I (gt (fi(2k — 1), D))
H|det<< L(fi(2k — 1), Dy))

)
)
) 51
) D

Consider the first part, F;(2k — 1) ~ exp{—a;(k)|[¢[[},
let &2k — 1) = g '(fi(2k — 1),D;) and € (2k — 1) =
w L (fi(2k = 1), Dy)
K Fryee-1 gy (fi(2k — 1), D;))
= T en-1) (g (fi(2k = 1), D;))

K
H k)([1&:(2k = D = llei(2k = D))

K
<exp(Y_ai(k)[|é:(2k — 1) — &(2k —1)[])  (52)
k=1

Without loss of generality, let D; and D; be only different
in the first data point, say (z},y}) and (7, 9}) respectively.
By (49), Assumptions 4 and the facts that ||z?||]2 < 1 (pre-
normalization), y* € {+1,—1}.

[€:(2k — 1) — ei(2k — 1)

= [VO(fi(2k — 1), Dy) — YOUi(2k — 1), Dyl| < % (53)

(52) can be bounded:

ﬁ tg/'\E,i(Zk—l)(g]g_l(fi(Qk -
o1 T e k-1 (g (fi(2k —

(54)

Consider the Jacobian matrix

J(g ' (fi(2k — 1),

second part, the

Dy)) is:
J(g, ' (fi(2k — 1), D;))
o B

=~ LWk = ) a)a )T

n=1
_%V2R(fi(2k —1)) = 2nVilg
Define
G(k) D&z ()"

z)zi(x)") ;
Y(fi(2k — 1), Dy))

_ ¢ 1"esl e _

— Lyl fi 2k = 1T
H(k) = —J(g;,
There is:
| det(I(g; ' (fi(2k — 1), D))l
| det(J(gy, ' (fi(2k — 1), Dy)))l
_ | det(H (k))| _ 1
~|det(H(k) + G(k))|  |det(I + H(k)=1G(k))|
1

T I (U + A (H(E) TG (R))]

where \;(H(k)"'G(k)) denotes the j-th largest eigen-
value of H(k)"'G(k). Since G(k) has rank at most 2,
H(k)~'G(k) also has rank at most 2. By Assumptions 4
and 5, the eigenvalue of H (k) and G(k) satisfy

(55)

N (H(k)) > % LoV >0

Ccy Cey
_ZO oy, < .
a6 <




Implies

. a , -1 _a
%%+%ms&&m»ew»s%%+%m.
Bi(£ +2nV;), there is
1 1
—5 SNHE)TGR) < 5.
Since A\pin (H (k) "1G(k)) > —1, there is
1 1
T+ A L) TGR)E ~ [det(T + H(k) TG (k)]
1
= T e (HF) TG
Therefore,
] et Wi (2% = 1), D))
hlmaU(*Ux%—JLDMH
K
H _?4L4¥
k=1 F(&+2nVi)
K o
= — 2In(l = =—)) . 56
exp( ; n( %(%Hn%))) (56)

Since for any real number z € [0,0.5], — In(1—z) < 1.4x.
(56) can be bounded with a simper expression:

| det(J(g; ' (fi(2k — 1)71?1'))”
o | det( (gt (fi(2k — 1), Dy)))|

K
2.8
< el 52

k=1 %( +2nVi)

Combine (54)(57), (51) can be bounded:
jF(OQK)({f(T) 3§0|Dall)
yF(O:QK)({f(T) ?«I:(O|Dall)

2C 1. 401
< it
< exp(kz::1 B, (( V) +a

K

) - (57

i(k))) - (58)

Therefore, the total privacy loss during 7' iterations can
be bounded by any 3:

20 1. 401
> ; .
82 Q%Q: Ty )
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