
Evaluating the Effects of Cyber-Attacks on Cyber

Physical Systems using a Hardware-in-the-Loop

Simulation Testbed

Bradley Potteiger, William Emfinger,

Himanshu Neema, Xenofon Koutosukos

Institute for Software Integrated Systems

Vanderbilt University

Nashville, TN 37235

CheeYee Tang, Keith Stouffer

National Institute of Standards and Technology

Gaithersburg, MD 20899

ABSTRACT

Cyber-Physical Systems (CPS) consist of embedded com-

puters with sensing and actuation capability, and are integrated

into and tightly coupled with a physical system. Because

the physical and cyber components of the system are tightly

coupled, cyber-security is important for ensuring the system

functions properly and safely. However, the effects of a cyber-

attack on the whole system may be difficult to determine, an-

alyze, and therefore detect and mitigate. This work presents a

model based software development framework integrated with

a hardware-in-the-loop (HIL) testbed for rapidly deploying

CPS attack experiments. The framework provides the ability

to emulate low level attacks and obtain platform specific

performance measurements that are difficult to obtain in a

traditional simulation environment. The framework improves

the cybersecurity design process which can become more

informed and customized to the production environment of

a CPS. The developed framework is illustrated with a case

study of a railway transportation system.

Keywords

Hardware-in-the-Loop, Model Integrated Computing, Vul-

nerability Assessment, Resilience, Cyber-Physical System, Ex-

perimentation, Testbed

I. INTRODUCTION

Cyber-Physical Systems (CPS) include co-engineered inter-

acting networks of physical and computational components.

Such systems typically consist of embedded computers with

sensing and actuation capability, and are integrated into a

tightly coupled physical system. Because the physical and

cyber aspects of the system are tightly coupled, cyber-security

The work at Vanderbilt is supported by NIST (70NANB13H169). No
approval or endorsement of any commercial product by the National Institute
of Standards and Technology is intended or implied. Certain commercial
equipment, instruments, or materials are identified in this paper in order
to specify the experimental procedure adequately. Such identification is not
intended to imply recommendation or endorsement by the National Institute
of Standards and Technology, nor is it intended to imply that the materials or
equipment identified are necessarily the best available for the purpose. This
publication was prepared by United States Government employees as part of
their official duties and is, therefore, a work of the U.S. Government and not
subject to copyright.

is important for ensuring the system functions properly and

safely. Cyber-security is further becoming increasingly im-

portant as many CPS are becoming distributed and utilizing

wired or wireless networks for communications and coordina-

tion. Such distribution enables smarter systems with increased

functionality but also creates a larger attack surface.

In traditional cyber-security it can be difficult to determine

how a cyber-attack will affect the running system, especially

given that the same attack will most likely have different

effects depending on which subset of the system is being

attacked. Given how networks and communications couple

the components of a system, determining how the effects of

an attack propagate through the system can compound the

difficulty of such analysis and of predicting attack severity.

These problems are only exacerbated when such networked

systems are connected to sensors and actuators which tightly

couple the system to the physical world. In that case the

attack’s effects propagate not only through the cyber and

communications parts of the system, but also through the

embedded controllers and into the physical world [12] [5].

Our previous work focused on utilizing the Command

and Control Wind Tunnel (C2WT) environment to develop

synchronized, multi-domain CPS simulations [1]. By combin-

ing different CPS models (Network, Physics, User Interface)

into a single system of systems simulation, a vulnerability

assessment framework was developed to analyze impacts of

cyber-attacks on different levels of a CPS. Further, an attacker-

defender (Red team vs Blue team) game was implemented to

aid in developing cybersecurity strategies. However, in certain

cases such as platform dependent vulnerabilities, simulations

are limited in their ability to predict system behavior. This

is especially true for attacks such as distributed denial of

service (DDOS) and code injection attacks that have platform

dependent impacts.

To address the difficulties of performing impact analysis on

cyber-attacks in CPS solely on simulation techniques, we have

extended a hardware-in-the-loop (HIL) CPS testbed, and an

associated experimentation software development and deploy-

ment platform. The HIL testbed extends the capabilities of the

C2WT to emulate the CPS software on embedded computers

that are representative of the future production environment.



Realistic measurements of the system behavior in the presence

of cyber-attacks and defense mechanisms can be obtained,

which in turn can be fed back into the simulation environment

to provide more accurate results. The testbed and software

platform together allow rapid development and experimenta-

tion with a variety of CPS, ranging from networked satellites,

to airplanes and cars [8] [9]. In this paper we demonstrate

how the model based software development framework can

be used with the testbed for rapidly deploying cyber-attack

experiments for impact analysis in a safety-critical CPS such

as a railway transportation network. Railway presents a critical

domain in that hazardous material, shipping companies, and

the general public rely on this method of transportation for

timely, reliable and safe movement.

The paper is organized as follows: Section II discusses

our previous research and related work, Section III details

the architecture of the HIL testbed, Section IV presents a

model driven experiment development software framework,

Section V presents a case study based of a railway transporta-

tion system illustrating the testbed and software framework,

and Section VI provides concluding remarks for the paper.

II. RELATED WORK

Cyber-security for CPS is a rapidly growing field, as

researchers are demonstrating critical vulnerabilities in net-

worked CPS such as automobiles [2], implanted pacemakers

[4], [6], and home automation systems [12]. However, testing

the security of networked CPS is challenging, both with regard

to the difficulty and price of setting up a CPS on which to test

and with regard to the possible dangers associated with the

results of the experiments [12] [13] [14]. This is especially

true for larger-scale safety critical CPS, such as transportation

networks, power distribution networks, and commercial air-

lines. For such systems, a real laboratory testbed is impossible,

leading to the development of simulation or emulation testbeds

which involve a simulation of the CPS. The authors in [12]

demonstrate the need for complete testing of CPS, as even

non-networked devices such as standard lightbulbs can be

compromised and pose a threat to users if a networked home

automation controller becomes compromised. Such a threat

pathway clearly indicates that the physical characteristics of

the CPS and its environment play a critical role in threat

analysis.

Since this paper presents the uses of such a testbed and how

it can be used to analyze the behavior of a distributed CPS

under attack, we will not cover the advances in many of the

related fields associated with simulation of physical systems,

hardware in the loop simulation, software platforms for exper-

iment development, deployment and analysis, or cyber-attack

detection and mitigation. This paper addresses only the goal

of analyzing how cyber-attacks propagate through networked

CPS through the software and into the physical domain. More

details about the design of the testbed, its integration with

physics simulation, and the software platform enabling rapid

experimentation on the testbed can be found in [8] and [9],

respectively.

Security research in CPS using testbeds has been an active

area of research. A good overview of their architecture, and

their application in the Smart Grid domain is provided in [5].

The authors mention nine research applications of security

research using CPS testbeds as: 1) vulnerability research,

2) impact analysis, 3) mitigation research, 4) cyber-physical

metrics, 5) data and model development, 6) security valida-

tion, 7) interoperability, 8) cyber forensics, and 9) operator

training. Many of these applications are related, but our main

research application according to this classification scheme is

#2, viz. impact analysis, which “explores the physical system

impacts from various cyber attacks to quantify physical system

impact.”

Indeed other CPS testbeds have been built providing varying

degrees of fidelity with respect to the CPS they are trying to

analyze. Supervisory Control and Data Acquisition (SCADA)

systems have been explored most extensively [10] [3] since

they form the backbone of much of the critical infrastructure.

Many of these alternative platforms for security testing do

not incorporate the CPS (either through simulation or in the

loop), are tied to a specific system being tested, and/or are

prohibitively expensive to replicate or extend in other research

labs. The rest of the paper demonstrates how the HIL CPS

testbed can provide similar capabilities for impact analysis

without being bound to any specific CPS.

III. HIL ARCHITECTURE

To determine, measure, and analyze the effects of cyber-

attacks on networked CPS, we need a platform for developing

tests and experiments which can detect, quantify, and measure

the effects of cyber-attacks on real CPS. Such a platform needs

to have real embedded hardware that would be used in the

CPS, and this hardware must have a way to sense and actuate

a physical system. For many systems, building and deploying

the real CPS is not feasible or not possible due to financial,

logistical, or safety reasons. It is traditional and acceptable to

use physics simulators to act as the CPS, using hardware-in-

the-loop (HIL) with simulation to provide the computational

and communication capabilities of the CPS. Additionally, a

complete software development and deployment infrastructure

is required to enable rapid, iterative experiment design, deploy-

ment, and data collection.

The rest of the paper covers the procedures for developing

and deploying security experiments using our model based

software development framework. To complete the description

of the experimental environment, we first describe the archi-

tecture of both the hardware and software platforms used by

the HIL testbed.

A. Hardware Architecture

The functions of a CPS testbed for security research are

1) (re-)configurability with respect to CPS and software, 2)

accurate behavior of the software with respect to the CPS, 3)

accurate behavior of the network with respect to the CPS, and

4) accurate behavior of the sensors/actuators with respect to

the CPS. In addition to these concerns, the CPS testbed should



behave similarly to the real system in the case of failures or

attacks.

Because of these requirements, the CPS testbed was ex-

tended with a Hardware-in-the-Loop Emulation platform,

where embedded computing nodes on multiple configurable

networks are connected to one or more simulation machines.

The simulation machines provide the embedded computers the

ability to sense and control the (simulated) physical systems

in which they will be deployed. The configurable network

through which the embedded computers communicate allows

more robust and higher-fidelity emulation of the CPS’ network

as it would be deployed than if the network were simulated. An

architectural diagram of the CPS testbed is shown in Figure 1.

For more information about this testbed please see [8].

Fig. 1: Diagram showing the architecture of the CPS security

HIL testbed.

B. Software Platform

In addition to the hardware and simulation platform which

form the backbone of the HIL CPS testbed, the software plat-

form must provide functions for 1) developing the CPS code,

2) developing the attack and measurement code, 3) configuring

the experiment, 4) deploying the experiment, and 5) retrieving

the results from the experiment for analysis. To meet these

requirements, the ROSMOD software toolsuite is extended [9].

Using this software platform, we can create reusable software

components which each provide key functionality for our

experiments. We compose these software components together

into an experiment for deployment onto the HIL CPS testbed.

Further details about the software framework are detailed in

the following section.

IV. MODEL BASED SOFTWARE DEVELOPMENT FOR CPS

SECURITY ANALYSIS

For the purpose of vulnerability analysis on the HIL testbed,

a software framework is used to enhance and streamline

the cyber-attack experiment creation process. ROSMOD is a

graphical model integrated computing(MIC) tool that utilizes

component based design principles with the Robot Operating

System (ROS) middleware for representing the distributed

nature of a CPS. The ROSMOD framework is extended to

support the implementation of cyber-attacks within the com-

ponent and communication scope for the purpose of exploiting

respective vulnerabilities in a component’s software. The rest

of the section details the process of creating an experiment

and the different capabilities that can be included.

A. Experiment Development

In respect to the hardware-in-the-loop testbed, the purpose

of the software framework is to enhance and allow for rapidly

prototyping experiments for measuring the effects of cyber-

attacks on a CPS. For accomplishing this task, experiments

can be developed representing a system at baseline, as well as

under attack to identify potential vulnerabilities and analyze

the resiliency and fault tolerance of critical infrastructure.

ROSMOD provides the ability to model the specific compo-

nents of an experiment, as well as the communication network

through the ROS protocol. ROS utilizes a publish-subscriber

technique where each line of communication is assigned a

unique identifier (ROS Topic) which can be used by subscriber

nodes to filter out incoming messages. To successfully develop

an experiment in the software framework, the following needs

to be completed:

1) Development of the Software Model

2) Development of the System Model

3) Development of the Deployment Model

4) Execution of the Experiment Interpreter

The first step involves developing the generic component

libraries representing the various parts of a CPS. The compo-

nent in the software library represents a basic building block

for insertion into an experiment including timer based code

execution, publisher-subscriber functionality for communica-

tion, and variable placeholders for allowing components to

be customized after being placed into an experiment model.

Furthermore, the communication messages and their contents

are defined, as well as external libraries to link to simulator ap-

plication program interfaces(APIs). A compilation interpreter

is included to provide the ability to cross compile the library

code under the testbed node architecture(Arm V7 architecture)

and identify locations of errors within the code in the graphical

interface similar to a traditional compiler.

The next step includes defining the architecture of the hosts

that the experiment is executed on. This includes defining

attributes such as the host name, operating system architecture,

and location of a secure shell(ssh) key for accessing the host.

Additionally, the model specifies the connection of the host to

the ROSMOD server through an internet protocol(IP) address

for the purpose of transferring and executing code on the hosts

and fetching the results back to the ROSMOD server.

The third step includes taking the generic component

building blocks previously built in the software library, and

customizing them to produce an implementation model for the

experiment. This includes creating component instances and

editing the component parameters appropriately through the

variable placeholders. The deployment represents the finalized

experiment model to be executed on the testbed.



The final step involves executing the experiment interpreter

which maps the deployment components to the appropriate

host nodes declared in the system model (HIL embedded

computers), transfers each respective component binary to

the appropriate host, and starts the component processes on

the HIL testbed nodes. Additionally, this is the time where

the user starts up the physics simulator for synchronization

with the respective component processes. Furthermore, after

the simulation is complete, the results are fetched from the

respective hosts and transferred to the server where they can

be analyzed in the ROSMOD graphical environment.

B. Experiment Capabilities

The following features can be included in experiments using

the development process described above.

1) Baseline: For the purpose of measuring the effects of

attacks as well as the impact of defense mechanisms, the

first place to start is with a baseline experiment under normal

operating circumstances. In this case, the CPS is implemented

as it would operate with no external impacting factors, as in

how the operators expect the system to behave on a routine

day to day basis. This allows the operators to have data to

compare against when trying to decide whether an attack is

occurring and have a data-centric method of determining the

best course of action to mitigate the situation.

2) Attack Implementation: To effectively identify the most

critical vulnerabilities of a system, it is important to test the

system under as many circumstances as possible, including

under attack. By developing experiments with individual attack

implementations, the attack effects on system specific metrics

are measured to appropriately quantify the impact of the

attack and in turn the criticality of the system vulnerability.

This aids the risk assessment process in allowing engineers

to have an objective, quantitative metric to judge various

vulnerabilities. Various attacks are implemented to effect the

confidentiality, integrity, and availability of a CPS. Confiden-

tiality attacks that are implemented include packet sniffing,

password/authentication, session hijacking, and side channel

attacks. Integrity attacks include replay, spoofing, packet delay,

and packet dropping attacks. Availability attacks include denial

of service, distributed denial of service, and spamming attacks.

Additionally, attacks are implemented that include multiple

categories such as buffer overflow and code injection attacks.

3) Attack Linking: To make attacks more realistic, the

software framework provides the feature of staging multiple

attacks to occur in an experiment. As such, multiple attacks

can be linked together to identify propagating vulnerabilities

in a system and maximize the impact of an attacker. All of

the attacks described above can be combined into a single

experiment implementation. Attacks can be modeled both

occurring simultaneously and occurring in stages. For the

simultaneous category, attacks that are independent can be

implemented within the software model with no correspond-

ing communication with one another. For example, with an

experiment including a denial of service attack on a respective

component and spoofing attack on a separate part of the

network, the two attacks are not correlated to one another and

can be implemented in software as occurring through the entire

simulation with no communication or timer dependencies.

However, it is often the case that attacks are dependent on one

another. As such, attacks can be modeled as being dependent

on timer information, event information, or both. For example,

by accessing timer data in the case of the denial of service

and packet spoofing attack, the packet spoofing attack can

be deployed to start at the beginning of the simulation while

the denial of service attack can be programmed to start at

200 seconds into the simulation. Additionally, with a case

such as a replay attack and packet sniffing attack, the replay

attack will be dependent on the success of the packet sniffing

attack capturing a transmitted packet. As such, event based

dependencies can be programmed into the software model

by having communications between the respective attacks.

For example, once the packet sniffing attack is successful,

an event message can be transmitted to the replay attack

implementation including the captured packet information.

Once this message is received, the replay attack sequence can

be initiated and executed.

4) Defense Mechnamisms: The most important benefit to

system engineers is the ability to implement and analyze the

effects of defense mechanisms on the security and function-

ality of the CPS. The insertion of a defense mechanism often

produces a tradeoff (e.g., performance vs. security) where the

benefit has to be weighed against the cost. By measuring

the performance overhead of the defense mechanism on the

testbed while analyzing the success of preventing the targeted

attacks, engineers can make the crucial cost benefit decision

when designing their systems. Engineers can implement de-

fense mechanisms dealing with hardening communications

(AES 256 message encryption, message authentication, fire-

wall implementations, dynamically changing ip addresses),

hardening the component device software (password authent-

ciation, input buffer limits, variable scope enforcement), or

implementing monitoring algorithms for detecting abnormal-

ities (threshold detection, gaussian processes, unsafe state

detection).

5) Data Collection: After the conclusion of an experiment

simulation, it is important to analyze the results to determine

the behavior of the system. As such, the software framework

provides the ability to fetch data results to analyze through

the graphical interface. During every experiment, event times

are logged in the host repositories and transferred back to the

ROSMOD server at the end. By default these events include

the timer based execution of code, publishing of messages,

and receipt of subscribed messages. Additionally, custom log

messages can be inserted to record experiment-specific events

such as when a state is changed in a controller. In the graphical

interface, the data can be downloaded in text files, but events

can also be observed through time domain plots, allowing for

rapidly analyzing the sequence of events in the experiment.

Furthermore, the user can generate data from the physics

simulator to record the consequential behavior in the physical

environment. This allows for analyzing the cyber effects of



the experiment on the physical environment.

V. CASE STUDY

The reference case study is based on a railway transportation

system. In this example, there are many railway signals and

switches that route trains throughout the rail network. Railway

signals have a green or red state and determine whether a

train can travel to the next rail segment. In circumstances

where a junction exists that connects multiple rail segments,

rail switches are used to route trains to the appropriate adjacent

rail segment. Each rail switch or signal is controlled by

command messages sent through a communications network

by a train operator located at a central facility. The commu-

nication network is comprised of network switches, routers,

and basestations. The communications from the train operator

are first transmitted through ethernet to a network switch and

then passed to a router which transmits packets wirelessely to

basestations in the field. Basestations then filter out and relay

command packets to the appropriate associated rail signals and

switches at the location.

Fig. 2: The railway communication network

For the CPS cyber-attack experiment, a critical rail segment

is selected for attack which serves as a central hub to the rest

of the network. The corresponding rail segment as well as its

relationship in the communications network and connection

to the railway network simulated in Train Director [7] are

shown in Figure 3. This example consists of ten rail signals, six

rail switches, four basestations, two routers, a network switch

and a train operator. These components from the architecture

described in Figure 2 are mapped to individual nodes in the

HIL testbed for execution of the experiment.

A. Experiment 1: Packet Delay Attack

The method of attack on the railway network consists of

a man in the middle attack on the communications to the

Basestation 1 software component. The railway network is

comprised of actuators (railway signals and switches), as well

Fig. 3: Train Director Railway Network Configuration and

Communication Network Relationship

as communication infrastructure (basestations, routers, net-

work switches) that relay command messages from a train op-

erator located at a central facility. The wired network between

the train operator, network switch, and router is encrypted

and authenticated. Additionally, the wireless communication

between the routers and basestations has cryptographic en-

cryption but no authentication, preventing an attacker from

spoofing command packets. However, this doesn’t prevent an

attacker from inserting a malicious node to delay the routing

of command messages through the network.

In this experiment, command packets (ROS Messages) from

the train operator ROS node consist of an actuator name and

goal state string variable. The attacker creates a malicious

man in the middle node and intercepts traffic routed through

Basestation 1. As such, the attacker has the ability to delay

when command packets are transmitted to the Rail Signal 1,

Rail Signal 2, and Rail Switch 1 components. The attacker

uses this vulnerability to execute a packet delay attack, de-

laying command packets by 20 minutes to have a sufficient

effect on the railway network to keep trains from reaching

their destinations on time, but at the same time, decreasing

suspicion of a denial of service attack or faulty components

by keeping components operational. A diagram illustrating this

experiment is shown in Figure 4.

1) Experiment Configuration: Configuration of the experi-

ments entails:

1) Configuring the communications network between the

software components,

2) Mapping the software components to simulated CPS

sensors/actuators as required,

3) Configuring the parameters of the attack, e.g., amount

of time to delay command messages,

4) Mapping the CPS software components onto the pro-

cessing hardware of the testbed,

5) Mapping the attacking software components onto the



Fig. 4: The attack vector used against the railway communi-

cation network

processing hardware of the testbed, and

6) Configuring the simulator (Train Director) with the

proper rail network and communications interface

The ROSMOD software infrastructure described previously

enables all of this configuration from its graphical user inter-

face(GUI), as well as deployment, startup, and shutdown of

the experiment. For the experiment, the malicious man in the

middle node delays packets for 20 minutes from the time the

message was received. There are also rail signals, rail switches,

basestations, routers, network switches, and a train operator

component in the deployment. Each component is mapped to

its own computing node.

Further, the experiment development process using the

software framework includes developing a software model,

developing a system model, developing a deployment model,

and executing the experiment by running the experiment

interpreter. To develop the software model, component specific

code is written to serve as the basic building blocks for

designing the CPS topology. Additionally, external libraries

are linked into the framework for accessing simulator APIs.

To develop the system model, the HIL testbed architecture

is defined including the network connectivity, hostname, op-

erating system, ssh key, and IP address for each node in

the testbed. To develop the deployment model, instances

of generic component models from the software library are

customized to create the experiment implementation model.

This includes designing the the CPS topology, as well as

implementing cyber-attack instances. To run the experiment,

an interpreter is executed to map the deployment model to

associated nodes in the HIL testbed, transfer the compiled

component binaries to the appropriate hosts, start component

processes, run the simulation, and fetch results at the end of

execution.

2) Results: From the experiment configuration explained

above, we want to determine the effects that the packet delay

attack (which is a cyber-attack) has on the train arrival times

in the network. For the physical system, which is simulated

in Train Director, we directly use Train Director to measure

the effects of the attack. The attack alters the behavior of the

rail signal 1, rail signal 2, and rail switch 1 components and

we wish to determine how these changes affect the train delay

in the railway network. We directly capture the state of the

railway network from Train Director represented by the time

the train arrived late to its destination.

Determining and measuring the effects of the packet delay

attack on the software’s behavior is not difficult, given that the

behavior and structure of the software component are known.

However, given the coupling between the software and the

physical system, it is not as easy to determine what the effects

of the altered behavior will be on the overall CPS as a whole.

Clearly, the delayed reception of the train operator command

messages will cause any trains at the affected location to be

delayed. However, this alteration in behavior does not lend

itself directly to prediction of the state of the train delay since

it is difficult not only to quantify but to relate to the train

routes. With the physical simulator (Train Director) we are

able to see how the trains respond to the degraded behavior

of signal and switch actuators and measure the effects on the

train arrival times. Figure 5 shows the results of the Train

Director simulation in respect to the lateness of the respective

trains. As can be observed from the figure, the packet delay

attack caused considerable delay to a number of the trains.

Additionally, the trains that were not on the path were not

affected by the attack. Therefore, if an attacker wanted to limit

his exposure while maintaining the goal of delaying a critical

shipment on this route, this attack could suffice. Furthermore,

the delay of trains 4 and 5, which follow the path of train 2,

is compounded by the time it takes train 2 to pass through the

attacked signals and switches.

Fig. 5: Packet Delay Attack Experiment Train Delay

B. Experiment 2: Packet Delay Attack and Denial of Service

In addition to implementing a single attack in an experiment,

the software framework provides the ability to create an

experiment with multiple attacks. As such, the first experiment

in which a packet delay attack is implemented is extended to

include a second attack: a denial of service attack on a set of

railway switches. In this instance the goal of the attacker is to

not only delay trains but to prevent the trains not on a specific

path (trains coming from railway signal 1) from being able to

reach their destination. As such, the critical shipments on these

trains will not reach their customers causing a detrimental



effect on the receiving companies operating status. To execute

this attack series, the packet delay attack will consist of a

malicious man in the middle node effecting the rail signal 1,

rail signal 2, and rail switch 1 components while the denial

of service attack will focus on compromising the rail switch 2

and rail switch 4 components. Due to the fact that rail switch

2 and rail switch 4 are no longer functional, trains originating

from the top and bottom of the map will be stuck and will not

be able to travel to their adjacent rail segments.

1) Experiment Configuration: The experimental setup is

consistent with the same process followed in Experiment 1.

As such, the same software component library and system

model are used. However, when developing the deployment

model, the user configuration section of the rail switch 2 and

rail switch 4 components are customized to represent a denial

of service attack in addition to the changes already made

to the basestation 1 communications path from the previous

experiment. In this experiment the compromised components

are a malicious man in the middle node, the rail switch 2

component, and rail switch 4 component. This deployment

setup is then transferred to the HIL Testbed hosts for execution

through the experiment interpreter.

2) Results: The Experiment 2 results are similar to Exper-

iment 1 in that a set of trains are significantly delayed due to

the attacks. In the packet delay attack example, train 1 and

3 arrived on time while the rest of the trains arrived to their

destinations late. In Experiment 2, trains 1 and 6 arrived on

time while the rest of the trains appear significantly delayed.

This can be observed from Figure 6. However, it is important

to note that even though there is significant train delay in the

plot, this delay is actually unbounded. This experiment was

run under a 200 minute experiment time, and therefore the

delay is limited to that restriction. In reality, due to the fact

that trains 2, 3,4, and 5 all have to travel through paths passing

through rail switch 2 or rail switch 4, these trains will never

reach their destinations due to the denial of service attacks on

the respective rail switches. Therefore, as the execution time

for this experiment is increased, the output train delays will

subsequently increase.

Fig. 6: Multiple Attack Experiment Train Delay

VI. CONCLUSIONS

In this work we’ve shown how a HIL CPS testbed can

be used in security research for determining, measuring, and

analyzing how cyber-attacks affect CPS systems and how the

attack propagates through the software into the physical sys-

tem. We described the architecture of such a testbed, including

its hardware and software platforms and developed an example

security experiment for a railway network. By measuring both

the software behavior and the physical system behavior during

both normal operations and under attack, we showed how the

coupling between software and the CPS can be measured. This

work is part of the first steps towards modeling, analyzing,

and predicting CPS behavior during cyber-attacks, and by

providing a testbed for systematically running experiments and

collecting data for attacks, models and analysis techniques can

be developed.

REFERENCES

[1] KOUTSOUKOS, X., NEEMA, H., MARTINS, G., BHATIA, S., JANOS, S.,
STOUFFER, K., TANG C.Y., CANDELL, R. Performance Evaluation of
Secure Industrial Control System Design: A Railway Control System
Case Study. In 4th International Symposium on Resilient Cyber Systems

(2016), Chicago.
[2] CHECKOWAY, S., MCCOY, D., KANTOR, B., ANDERSON, D.,

SHACHAM, H., SAVAGE, S., KOSCHER, K., CZESKIS, A., ROESNER, F.,
KOHNO, T., ET AL. Comprehensive experimental analyses of automotive
attack surfaces. In USENIX Security Symposium (2011), San Francisco.

[3] DAVIS, C., TATE, J., OKHRAVI, H., GRIER, C., OVERBYE, T., AND

NICOL, D. Scada cyber security testbed development. In Proceedings of

the 38th North American power symposium (NAPS 2006) (2006), pp. 483–
488.

[4] GOLLAKOTA, S., HASSANIEH, H., RANSFORD, B., KATABI, D., AND

FU, K. They can hear your heartbeats: non-invasive security for
implantable medical devices. ACM SIGCOMM Computer Communication

Review 41, 4 (2011), 2–13.
[5] HAHN, A., ASHOK, A., SRIDHAR, S., AND GOVINDARASU, M. Cyber-

physical security testbeds: Architecture, application, and evaluation for
smart grid. IEEE Transactions on Smart Grid, 4.2(2013):847–855.

[6] HALPERIN, D., HEYDT-BENJAMIN, T. S., RANSFORD, B., CLARK,
S. S., DEFEND, B., MORGAN, W., FU, K., KOHNO, T., AND MAISEL,
W. H. Pacemakers and implantable cardiac defibrillators: Software radio
attacks and zero-power defenses. In Security and Privacy, 2008. SP 2008.

IEEE Symposium on (2008), IEEE, pp. 129–142.
[7] Train Director Raiload Simulation. http://www.backerstreet.com/traindir/

en/trdireng.php Accessed on April 07, 2017
[8] KUMAR, P., EMFINGER, W., AND KARSAI, G. Testbed to simulate and

analyze resilient cyber-physical systems. In Rapid System Prototyping,

2015. RSP ’15. (October 2015).
[9] KUMAR, P., EMFINGER, W., KULKARNI, A., KARSAI, G., WATKINS,

D., GASSER, B., AND ANILKUMAR, A. ROSMOD: a toolsuite for
modeling, generating, deploying, and managing distributed real-time
component-based software using ROS In Electronics 5.3(2016):53.

[10] MALLOUHI, M., AL-NASHIF, Y., COX, D., CHADAGA, T., AND

HARIRI, S. A testbed for analyzing security of scada control systems
(tasscs). In Innovative Smart Grid Technologies (ISGT), 2011 IEEE PES

(2011), IEEE, pp. 1–7.
[11] MITROPOULOS, D., KARAKOIDAS, V., LOURIDAS, P., GOUSIOS, G.,

AND SPINELLIS, D. Dismal code: Studying the evolution of security
bugs. In Proceedings of the LASER Workshop (2013), pp. 37–48.

[12] OLUWAFEMI, T., KOHNO, T., GUPTA, S., AND PATEL, S. Experimental
security analyses of non-networked compact fluorescent lamps: A case
study of home automation security. In Proceedings of the LASER 2013

(LASER 2013) (Arlington, VA, 2013), USENIX, pp. 13–24.
[13] VAN LEEUWEN, B., URIAS, V., ELDRIDGE, J., VILLAMARIN, C.,

AND OLSBERG, R. Cyber security analysis testbed: Combining real,
emulation, and simulation. In Security Technology (ICCST), 2010 IEEE

International Carnahan Conference on (2010), IEEE, pp. 121–126.
[14] VAN LEEUWEN, B., URIAS, V., ELDRIDGE, J., VILLAMARIN, C., AND

OLSBERG, R. Performing cyber security analysis using a live, virtual,
and constructive (lvc) testbed. In Military Communications Conference,

2010-MILCOM 2010 (2010), IEEE, pp. 1806–1811.


