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ABSTRACT

Owing' to an immense growth of internet-connected and learning-
enabled cyber-physical systems (CPSs) [1], several new types of
attack vectors have emerged. Analyzing security and resilience of
these complex CPSs is difficult as it requires evaluating many
subsystems and factors in an integrated manner. Integrated
simulation of physical systems and communication network can
provide an underlying framework for creating a reusable and
configurable testbed for such analyses. Using a model-based
integration approach and the IEEE High-Level Architecture
(HLA) [2] based distributed simulation software; we have created
a testbed for integrated evaluation of large-scale CPS systems.
Our tested supports web-based collaborative metamodeling and
modeling of CPS system and experiments and a cloud computing
environment for executing integrated networked co-simulations.
A modular and extensible cyber-attack library enables validating
the CPS under a variety of configurable cyber-attacks, such as
DDoS and integrity attacks. Hardware-in-the-loop simulation is
also supported along with several hardware attacks. Further, a
scenario modeling language allows modeling of alternative paths
(Courses of Actions) that enables validating CPS under different
what-if scenarios as well as conducting cyber-gaming
experiments. These capabilities make our testbed well suited for
analyzing security and resilience of CPS. In addition, the web-
based modeling and cloud-hosted execution infrastructure enables
one to exercise the entire testbed using simply a web-browser,
with integrated live experimental results display.
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1 INTRODUCTION

The last decade has seen an immense growth of internet-connected
systems such as the Internet of Things (IOT) and several large-scale
and learning-enabled Cyber-Physical Systems (CPSs) [1] [3]. CPS
systems are often part of critical infrastructure such as railway, road
transportation networks, power and water distribution systems, which
makes them particularly attractive for adversarial attacks. In general,
the attack vectors on these systems include attacks on the physical
infrastructure, computation hardware, and communication networks.
The tightly integrated nature of the physical, computational, and
communication components enables attackers to use attack vectors in
physical domain to attack the cyber domain and vice versa. Adding to
this complexity is the fact that they usually span a variety of physical
domains such as electrical, thermal, mechanical, and cyber (i.e. to route
network packets for the sensor messages and actuator commands).
Further, due to increased connectivity to the internet (both for access
and control), several attack vectors have emerged that an adversary can
utilize to exploit, disrupt, or damage the CPS. These multi-domain
interactions, coupled with concerns of security and resilience make the
task of analyzing the CPSs significantly challenging.
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Owing to these complex interactions among system
components and many possible combinations and manifestations
of attack vectors, analysis of CPSs is usually performed using
integrated simulations of different CPS components. However,
this requires supporting time-dependent data exchange and time-
synchronization between simulators. We rely on the IEEE High-
Level Architecture (HLA) standard [2] for coordinated distributed
simulations. In addition, due to performance reasons or
unavailability of high-fidelity simulation models, many attacks
and phenomena are not supported in simulations, thus requiring
use of real, physical hardware for their emulation.

The tight coupling between physical and cyber aspects of the
systems requires joint evaluation of CPS security and resilience.
As shown in Figure 1, a testbed must enable the user to not only
model the integrated system-of-systems, but also to
systematically deploy various attacks on the integrated
simulations. Our testbed, called the SecUre and Resilient Cyber-
Physical Systems (SURE), uses a model-based integration
approach, where models are used not only for the system
modeling, but also for their configuration, parameterization,
integration, and execution. Further, we created a library of attacks
in cyber, physical, and hardware domains, from which the
experimenter can pick any number of them and deploy
systematically in the integrated simulations. We enable attacker-
defender games to analyze the system’s performance with
different attacks as well as defense (and mitigation) strategies.
Multi-stage games allow modeling of counter attacks and
counter-counter attacks. Furthermore, Courses-of-Action (COA)
enables experimenters to design workflow-like scenario models
to perform a variety of what-if analyses in a systematic manner.

The complex nature of the real-world CPSs requires their
analysis with many different configurations, parameters, and
workflows, which can require significant computational
infrastructure. A cloud-based experimentation backend can be
used for testbed scalability. In SURE, a web-browser is used not
only for metamodeling, system modeling, and COA and
experiment designs, but also for the cloud experiment integration
and display of live experiment results. Taken together, these
capabilities provide a robust platform for analyzing the security

and resilience of complex CPSs.

Scenario-Driven Experimentation using COAs

CPS Security & Resilience

Attacker-Defender Games; Multi-Stage Games

System Modeling; Attack Modeling

Figure 1: Capability Layers of CPS Evaluation Testbed

Security and resilience of CPS has attracted significant
attention in many areas such as medical devices [16], automobiles
[17], and transportation systems [18]. Owing to the heterogeneity
and complexity of CPSs, their security methods are also highly
diverse [19]. Several testbeds have been proposed for security
assessment of CPS applications such as power and SCADA
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systems [20] [21] [22]. In contrast, our testbed provides unique
capabilities such as web-based collaborative metamodeling,
modeling of CPS, cloud computing platform for experimentation,
attacker-defender and multi-stage games, scenario-driven
experimentation using courses-of-action, and multiple layers of
abstraction for modeling CPSs.

The rest of the paper is organized in the following manner.
Section 2 paints the overall testbed architecture. Section 3
describes the hardware-in-the-loop simulation. Section 4 details
the attack libraries in the testbed and how attacks can be deployed
to carry out attacker-defender games. Section 5 presents the
Courses-of-Action (COA) modeling. Experiment results are
provided in Section 6 and we conclude the paper in Section 7.

2 TESTBED ARCHITECTURE

Our testbed focusses on providing modeling and experimentation
tools to enable system designers and security researchers to be
able to analyze security and resilience of CPSs. We use a web-
based metamodeling and modeling tool, WebGME [4] for
designing systems and scenarios, and configuring and executing
experiments. WebGME uses a central server that can be accessed
by multiple clients to enable collaborative modeling via the web.
Additionally, the tool provides detailed tracing of modifications
to help modelers with design evolutions by tracking change
history and permitting branching and rollbacks like in a
distributed source-code repository. We use road transportation
networks as the application domain for our testbed, but all our
tools are generic and have been used in many other domains such
as power distribution and command-and-control simulations.

The testbed architecture is shown in Figure 2. WebGME is
used to model the system and configure the simulation tools used
for different aspects of the modeled CPS. The different simulation
tools are integrated for timed data exchange and time-
synchronized execution using the framework Command and
Control Wind Tunnel (C2WT) [5] [6]. C2WT supports
integration of a variety of simulation tools such as
Matlab/Simulink [7], OMNeT++ [8], CPNTools [9], SUMO [10],
TrainDirector [11], and Gridlab-D [12].
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Figure 2: Testbed Architecture

As shown in Figure 2, we hosted the C2WT integration and
execution platform in a cloud environment using OpenStack [23].



Additionally, when integrated simulations are executed in the
C2WT platform the live experiment results are populated in a
streaming InfluxDB database [24]. These results are then queried
by the WebGME tool to display live charts of the experiment
results as the simulations are executed. One key feature of our
testbed is that it can execute many variations of the simulation
experiments in parallel, limited only by the available cloud
resources. This is crucial for analyzing CPS, which requires
analyzing many configurations, parameters, and workflows.

Modeling of the CPS, both in WebGME and in C2WT, is
based on Model-Integrated Computing (MIC) [13] that focuses on
formally representing the system components, their interactions,
and rules for composition and configuration. A metamodel is a
Domain-Specific Modeling Language (DSML) designed for a
particular application domain. For example, the metamodel in
SURE captures the modeling of CPS systems and scenarios with
a focus on security and resilience analysis, whereas in C2WT it
focusses on distributed simulation integration.

One of the fundamental aspects of the testbed is the
capability to analyze the CPS under a variety of attacks. The
attacks currently supported and how they are used is described in
Section 4. Further, the testbed allows detailed scenario modeling
for performing what-if analyses using Courses-of-Actions
(COAs) — described in detail in Section 5. In addition, the attack
library and COAs use an integrated hardware-in-the-loop testbed
to run hardware elements and deploy attacks in the hardware.

3 HARDWARE-IN-THE-LOOP SIMULATION

Many attacks and phenomena are not analyzable in simulations
due to performance reasons or unavailability of high-fidelity
simulation models, thus requiring use of real, physical hardware
for performing Hardware-in-the-loop (HIL) simulation. However,
the HIL platform must be connected with a distributed simulation
platform, which provides scalability and time-synchronization
needed for complex distributed simulations. Our HIL platform is
comprised of two parts: a hardware-in-the-loop testbed and the
C2WT distributed simulation environment. This allows for taking
advantage of both the scalability of the C2WT with the fine-tuned
ability to analyze CPS controller behavior on real emulated
hardware consistent with the platforms deployed in the field.

thsl:s
Network \

f '

N Ethernet ",
Switch "
g (48 Ports) 1

Device Node

BeagleBone
Black #1

. Network |
Emulator /| Device Node
|=———/Ethl  BeagleBone

X % 4 Black #2
i Openflow | |
Switch /

Development l

,  (48Forts) | : Physics
and / 9 |
Control vy M Device Node |/ Simulators
N E\ ,’J \ih BeagleBone USH Eth N\ : "‘»
l' Black #32 4[

Figure 3: Hardware-In-The-Loop Platform

As illustrated in Figure 3, the HIL testbed is comprised of 5
different components. These include the development system
where CPS control software is developed, the CPS nodes which
consist of embedded computing boards consistent with operating
platforms in the field, a software defined networking interface
that enables controlling various communication parameters and
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protocols through the network, a Physics simulator serving as the
physical plant, and a physical network connecting embedded
computing nodes with the simulator interface.
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Figure 4: HIL Integration with C2ZWT

The HIL testbed also has an interface (see Figure 4) to connect
the emulated software in the hardware with the simulated
software in C2WT. The interface protocol communication utilizes
Google Protocol Buffers [14] — a language and platform neutral
extensible mechanism for serializing data — for formatting custom
messages, and the ZeroMQ API [15] for transmitting and
receiving messages throughout the network.

The integration interface has two components, viz. HIL Proxy
and HIL gateway. The role of HIL Proxy is to serve as the
interface between the embedded computing nodes on the HIL
testbed and the simulation environment. As such, this proxy
mechanism receives sensor information from each HIL node as
well as sends custom commands to each respective node to adjust
behavior. The role of the HIL gateway is to serve as an interface
between C2WT simulators and the controller code in the HIL
testbed. This can include communication between controllers and
sensors defined in C2WT with controllers in the HIL testbed, as
well as receiving controller commands from respective HIL
nodes.

As the simulator interface is defined in C2WT as a
simulation, the gateway is additionally responsible for serving as
an interface for HIL node controllers to interact with the physical
plant simulator. In addition, two message types are used, viz. HIL
messages and interface messages. HIL messages correspond to
internal messages in the HIL testbed such as internal controller
communications or commands. However, when communication
needs to be established with the C2WT environment such as
obtaining sensor values or sending actuation commands to the
simulator, interface messages are utilized for transmission.

4 ATTACK MODELING & CYBER GAMING

As a part of our testbed, a cyber-attack library exists for
developing modular and reusable attack sequences. These attacks
represent atomic actions that can be chained together with
associated timing parameters to develop complex sequences of
attacks on CPS. The attack library consists of three groups of
attacks: cyber-attacks, physical attacks, and hardware attacks.
Cyber-attacks compromise cyber components (e.g., network
infrastructure) and message communications. Physical attacks
compromise the physical road infrastructure such as vehicle
crashes, lane closures, or traffic light failures. Hardware attacks
are implemented in the real hardware.



Table 1: Testbed Attack Libraries

Attack type Description
CYBER ATTACKS
DOS Disable a controller, or network component
Disable Network Disable communication within the network
Delay Delay packets when they are routed between components
Integrity Change packet values before they reach destination

Data Corruption

Make packets unreadable

Replay

Retransmit packets

Out of Order

Sent transmitted packets in the wrong order

Network Filter

Filter out traffic between given source & destination subnets

Sniffer

Listen to communicated traffic

Routing Table Manipulation

Redefine the network routes

PHYSICAL ATTACKS

Lane Closure

Close a road or lane of a road

Vehicle Failure

Cause a vehicle to stall

Traffic Light Failure

Cause a traffic light to stop operating

Vehicle Crash Cause vehicles to crash within the simulation
HIL ATTACKS
DOS/DDOS Transmit bulk traffic from multiple nodes
Side Channel Reverse engineer components based on behavior
Spoofing Transmit fake messages

As shown in Table 1, the current cyber-attack library
includes several key cyber-attacks such as denial of service,
delay, corruption, and integrity attacks. Additionally, each of
these contains parameters to customize the attack. For example,
for an integrity attack — that manipulates message level network
packets — the parameters are various fields of the message.
Integrity attack updates messages in the simulation by modifying
the message’s fields. The key attacks in the physical attack library
include lane closures, vehicle failures, traffic light failures, and
vehicle crashes. These attacks interact directly with the behavior
of the physical plant simulator (SUMO). Consistent with the
cyber-attack instances, each of these attacks has editable
parameters that allow each generic model to become a unique
implementation instance (e.g., editable lane field in a lane closure
attack is used update SUMO configuration to ensure the lane as
untraveled). Finally, the key hardware attacks include side
channel, [distributed] denial of service (DDoS), and spoofing
attacks. These attacks allow observing the effect of multiple
collaborating attack nodes on the outcome of an attack. This is
vital in DDoS attacks where the magnitude of system degradation
is directly proportional to the amount of attacking nodes.

Using the attack libraries we created several cyber-gaming
test scenarios for CPS security and resilience. Below are a few
such scenarios using a road transportation application domain
(with traffic sensors, traffic lights and controllers, etc.):

1. Observation selection: A set of traffic sensor locations
are to be selected from many possible locations such
that the chosen set is resilient to DoS attacks on a subset
of them. It uses regression analysis to learn the
covariance matrices model among the sensors and uses
the learned model to predict traffic parameters. The
integrated simulation is run on C2WT platform and the
actual traffic flows are compared against the predicted
values. The scenario allows attacker-defender gaming
by allowing defenders to set locations of sensors and the
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attacker to attack a subset of those locations. The
scenario can be used by multiple players at the same
time via the WebGME modeling tool.

2. Resilience monitoring and control: This scenario
enables analyzing resilient control algorithms. After the
defender has designed the initial traffic light control
parameters, the attacker uses integrity cyber-attack to
alter the traffic light phases and/or phase durations so as
to maximize the average travel time of vehicles.
Different control algorithms can be compared against
different attack schemes.

3. Resilient architectures: This scenario was designed to
incorporate attack parameter values generated from real
hardware based attack deployments. Using these
realistic attack parameters in the integrated simulation
environment provides more accurate analysis of CPS
architectures.

4. Hierarchical controller: 1t enables system-level
resilience studies by incorporating system-level control
algorithms to monitor and reconfigure low-level control
algorithms. For example, this scenario could be used to
study resilient algorithms that evolve in depth and
complexity depending on how threats emerge and
evolve.

5. DoS with Hardware-in-the-loop: It allows HIL
simulations by integrating the HIL testbed with C2WT.

5 COURSES-OF-ACTION ANALYSIS

Courses-of-Actions (COAs) allow for modeling scenarios that
describe detailed what-if analysis or multi-stage attacker-defender
gaming. As shown in Figure 5, the basic idea of COAs is to
enable analysis of integrated simulations along with dynamic
behavior to exercise the same system models with many different
behavioral or scenario workflows.
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Figure 5: Courses-of-Action (COA) for Dynamic Behavior

COAs are workflow-like scenario models that are created
using several atomic actions and atomic outcomes (i.e. triggers)
such as time, an event, or system outputs. Additionally, the COAs
contain a variety of COA elements (see Table 2), such as forks
and random durations, which can be used for elaborate strategy or
game planning. A COA model is a Directed Acyclic Graph
(DAG) that is created by connecting atomic nodes with directed
edges. A generic COA Orchestration Engine is used to execute
one or more COAs in parallel as individual atomic elements of
COAs become enabled (after preceding node’s execution).



Table 2: COA Atomic Elements

COA Element Description
Synchronization Represents absolute time-point from beginning of simulation. All incoming branches must wait until this time-
Point point has been reached.
Action An interaction that must be sent out by the COA Orchestration Engine as soon as the action point is reached. The
parameters of the interaction can be specified.
Outcome Represents the type of interaction that the COA Orchestration Engine must wait to arrive before it can proceed.
Fork A branching element with the following sementics: All branches following this element are executed in parallel.
Probabilistic Choice | Chooses only one succeeding branch based specified probabilities of outgoing branches.
AwaitN Waits on a given number of incoming branches to finish before letting the COA Orchestration engine proceed.
Duration Represents the time the COA Orchestration Engine delays the execution once the duration element is reached.
Random Duration A duration that is randomly distributed using a uniform distribution.
Outcome Filter Filter based on the values of the parameters of the received interaction. Different outgoing branches can be
executed based on different values of parameters.
Terminate COA When reached, the COA execution is terminated.
SimEnd ‘When reached, the entire simulation of the federation is terminated.
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Figure 6: Illustrative Example of a COA
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Figure 7: COA Status Display

that must match in order for the COA execution to proceed
further along the branch. Execution status of COAs is also made
available by the testbed. As shown in Figure 7, the status display

Figure 6 illustrates an example COA model. Note that the
action element injects new information into the running
simulation. Whereas, the outcomes are the observation patterns
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shows different color for different statuses of nodes, viz. red for
currently executing nodes, gray for nodes that have finished
execution, and green for inactive nodes.

In addition, the testbed allows for the grouping of COA
models and to automatically select combinations of COAs from
different COA groups. This is referred to as design of experiments
in the testbed. As an example, if the defender created 6 different
defense strategies as COA models in a defender COA group and
the attacker created 5 different attack strategies as COA models in
the attacker COA group, then choosing the two COA groups for
experimentation will automatically execute 5 x 6 = 30 different
combination of scenarios. Such a capability is useful for cyber
gaming as well as multi-stage attacker-defender games for the
security and resilience analysis of CPS’s.

6 EXPERIMENTAL RESULTS

Case-study 1: Observation selection scenario: Figure 8 shows a
road transportation network in the background overlaid with a
cyber communication network topology. The traffic sensors are
the circles marked with the letter 'S'. The red colored sensors are
those under DoS attack, while blue colored sensors are
operational. A set of sensors need to selected such that even when
a subset of those are under cyber-attacks, the estimation of traffic
flow at the magenta colored location will be close to acceptable
compared to the real traffic flow in the simulation.
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ObservationSelection_Attack ’

Figure 8: Observation Selection Experiment Scenario

We simulated the scenarios where none of the sensors were
attacked and the one shown in Figure 8 with several sensors
under DoS attack. The results from these two variations are
recorded by C2WT in an InfluxDB database, which were pulled
live by WebGME and shown to the user (see Figure 9). Also,
when the experiments are completed, the Root Mean Square Error
of the measured traffic densities is compared against the actual
flows for both cases, viz. when no sensors were attacked, and
when some sensors were attacked. In our experiments, we found
that when several sensors were attacked, the RMSE increased
from 10.546 to 20.0068. Our testbed also computes the graphs of
predicted traffic densities vs observed (in simulation) traffic
densities.
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Case-study 2: Hardware-in-the-loop scenario: A traffic
control study (see Figure 10) is used with 9 traffic light
controllers within a university campus routing vehicles efficiently
throughout the area. Additionally, there is a level 1 trauma center
near the center of campus making it crucial for ambulances and
other emergency vehicles to travel through this area with as little
traffic as possible. The intersection traffic light controllers are
split into two areas: intersections simulated in C2WT and
controllers emulated in the HIL testbed.

Each intersection in C2WT includes induction loop sensors
that detect traffic density at each direction. This information is
fed to the traffic light controller that then executes a queue based
controller algorithm to optimize traffic flow through the
intersection. However, the induction loop sensors communicate
wirelessly to the controller making them vulnerable to man in the
middle attacks that spoof or modify routed packets before they
reach the controller.

Each intersection emulated in the HIL testbed is controlled
through a fixed time schedule, preventing the possibility of
communication based integrity attacks, but also optimizing traffic
less efficiently than the queue based traffic light controllers. The
fixed time controllers are however prone to DoS attacks based on
power disruptions or physical attacks. The attack surface is
defined as follows: an attacker can perform an integrity attack at
an intersection in C2WT area and edit induction loop sensor
packets to show fewer cars at the intersection. Additionally, the
attacker can perform a DoS attack on an intersection within the
HIL area, to disrupt the path of critical routes.

The attacker tries to maximize the average vehicle trip
duration in the road network, as well as minimize the average
speed of traffic through the area. The results of the experiment are
shown in Figure 11. During the baseline scenario where no
attacks are observed, the average trip duration is approximately
284 seconds with an average trip speed of 24.45 miles per hour.
However, when the attacker performed integrity and denial of
service attacks on intersections, traffic flows were affected
significantly throughout the area. In this case, the average vehicle
trip duration increases to 512 seconds, almost double the original



trip duration value. Furthermore, the average speed decreases to
approximately 21.22 miles per hour, a 13% reduction compared
to the baseline scenario.
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7 CONCLUSION

Cyber-physical systems are becoming wide-spread in various
parts of the economy including the critical infrastructure. Secure
and resilient CPSs are vital to avoid disruptions and damages.
Evaluating CPS security and resilience is of extreme importance,
yet is a highly challenging task. Our testbed facilitates this
evaluation using model-based simulation integration, web-based
collaborative system and experiment modeling, and cloud
experiment execution. The testbed provides modular and
extensible attack libraries for the physical, cyber, and hardware
attacks. Also, the testbed provides modeling and experimentation
with Courses-of-Action (COAs) that enable analysis with
different what-if and gaming scenarios. The COAs provide an
intuitive means to enable system analysts to perform many
scenario-driven experiments over the same integrated simulation.
These sophisticated modeling and experimentation capabilities
make our testbed a robust, powerful, and scalable platform for
analyzing the security and resilience of CPSs.
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