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Abstract Comprehensive characterization of diversity in global patterns of precipitation
variability and change is an important starting point for climate adaptation and resilience
assessments. Capturing the nature of precipitation probability distribution functions (PDF)
is critical for assessing variability and change. Conventional linear regression-based analy-
ses assume that slope coefficients for the wet and dry tails of the PDF are consonant with
the conditional mean trend. This assumption is not always borne out in the analyses of
historical records. Given the relationship between sea surface temperature (SST) and pre-
cipitation, recent trends in global SST complicate interpretations of precipitation variability
and risk. In this study, changes in the PDF of annual precipitation (1951–2011) at the global
river basin scale were analyzed using quantile regression (QR). QR is a flexible approach
allowing for the assessment of precipitation variability conditioned on the leading empirical
orthogonal function (EOF) patterns of global SST that reflect El Niño–Southern Oscillation
and Atlantic Multi-decadal Oscillation. To this end, the framework presented (a) offers a
characterization of the entire PDF and its sensitivity to the leading modes of SST variability,
(b) captures a range of responses in the PDF including asymmetries, (c) highlights regions
likely to experience higher risks of precipitation excesses and deficits and inter-annual vari-
ability, and (d) offers an approach for quantifying risk across specified quantiles. Results
show asymmetric responses in the PDF in all regions of the world, either in single or both
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tails. In one instance, QR detects a differential response to the leading patterns of SST in
the Tana basin in eastern Africa, highlighting changes in variability as well as risk.

1 Introduction

Precipitation is a primary component of the freshwater budget across various spatial and
temporal scales. Numerous human and environmental systems, such as agriculture, industry,
and recreation are sensitively linked to precipitation variability. Furthermore, freshwater-
reliant ecosystems provide a range of services, such as resource provision, nutrient cycling,
water purification, flood protection, and have cultural importance (Brauman et al. 2007;
Chang and Bonnette 2016). In the multifarious contexts noted above, estimation of likeli-
hood of precipitation excesses and deficits over decision-specific thresholds is of interest.
This includes characterization of precipitation functional-forms from which PDF parame-
ters are modeled, including changes in central tendency, and position of upper and lower
tails, which are critical to assessing variability.

Changing patterns of precipitation and its extremes at regional (Bradley et al. 1987; Gro-
isman and Easterling 1994) and global (Jones 1988; Diaz et al. 1989; Karl et al. 1995) scales
have been documented, with changes in precipitation trends linked with sea surface temper-
ature (SST) variability studied extensively. El Niño–Southern Oscillation (ENSO) is most
influential in determining global precipitation variability (Gershunov and Barnett 1998; Dai
and Wigley 2000; Kenyon and Hegerl 2010; Sun et al. 2015). However, there are additional
patterns of ocean-atmospheric variability with regional effects, such as the North Atlantic
Oscillation (NAO), Pacific Decadal Oscillation (PDO), and the Atlantic Multi-decadal
Oscillation (AMO) (Scaife et al. 2008; Nigam et al. 2011; Whan and Zwiers 2017), which
are associated with global-scale precipitation changes with regional effects over the USA,
Africa, India, and Europe (Enfield et al. 2001; Sutton and Hodson 2005; Knight et al. 2006).

Given the sensitivities of the precipitation PDF to SSTs, the nature of SST oscillations
and combined influence of patterns complicates assessments of precipitation variability. The
SST patterns often exhibit slow variations and persist on seasonal to annual time scales.
For example, ENSO oscillates between cold and warm phases on a 3–7-year time scale
(Deser et al. 2010), while AMO is characterized by slow variations over a 65–80-year period
(Enfield et al. 2001). The effect of SSTs on the functional form of precipitation can be
to minimize or amplify sensitivities, with persistence of pattern phases implying that loca-
tions with significant sensitivities to SST patterns may experience impacts with increased
frequency.

Despite these recorded relationships, widely used linear statistical techniques, such as
linear regression (LR), rely on measures of central tendency and constant variance, assum-
ing that changes in the mean characterize location changes over the entire distribution.
Precipitation distributions often violate these assumptions, and changes in the mean often do
not characterize changes in extremes (Kim and Jain 2011; Lee et al. 2013). An example of
such an application is Observations: Surface and Atmospheric Climate Change (Trenberth
et al. 2007) in the Intergovernmental Panel on Climate Change (IPCC) Climate Change
2007 Working Group I Report. Figure 3.13 on pg. 256 of the report (https://www.ipcc.
ch/publications and data/ar4/wg1/en/ch3s3-3-2-2.html) assesses mean annual precipitation
trends, implying that the risk of a high or low annual total is proportionally increasing
or decreasing with the mean and that the variance is time-invariant. Furthermore, with

https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch3s3-3-2-2.html
https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch3s3-3-2-2.html
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precipitation having a significant relationship with other drivers, such as SST, specifying
year as the only covariate may not adequately characterize the distributional changes in
annual total precipitation, underscoring the need for more flexible approaches.

This study reappraises the nature and type of changes in the magnitude of annual precipi-
tation on the river basin scale. Climate risks are characterized as the changes in likelihood of
precipitation excesses and deficits, requiring particular assessment of shifts in the extrema
of the precipitation PDF. Unless otherwise noted, in this study, risk signifies changes in
likelihood. The PDF aids computation of exceedance and non-exceedance probabilities for
a given precipitation threshold. The selection of thresholds may depend upon either (a) a
specification of precipitation magnitude when exceeded constitutes an extreme event (e.g.,
an annual precipitation total exceeding two standard deviations above the mean) or (b)
for a specified exceedance probability (e.g., 1% or 100-year return period): the extreme
annual precipitation value consistent with the exceedance probability. For the remainder of
this study, extreme wet and dry conditions are defined as large excursions from long-term
median estimates based on historical data. Consequently, tail probabilities represent the like-
lihood of such events. Shifts (changes in location) in the tails of the distribution indicate a
higher or lower probability of an extreme annual total. A quantile regression (QR) model
(Koenker and Bassett 1978; Koenker 2017) was applied as an alternative to LR approaches
as it (a) is robust to outliers, (b) does not make distributional assumptions, (c) character-
izes a variety of shifts across the entire distribution (including extremes), (d) can be used
to quantify changes for any specified thresholds (quantile) of interest for coupled human-
environmental contexts, and (e) offers insight into exposure and consequence via derivation
of spatial patterns of global precipitation sensitivity and changing likelihood induced by
SST conditions. In this work, global patterns of conditional quantile response were estima-
ted, with attention to changes in risk. Salient questions addressed in this study are as follows:

1. Based on a quantile regression approach, what are the linkages between river basin
scale precipitation and coherent patterns of global sea surface temperature variability?

2. At regional and global scales, what are the detailed spatial characteristics of precipita-
tion variability for lower, median, and upper quantile levels?

3. In what ways can a quantile regression approach be used to estimate the influence of
climate variability patterns on conditional risk likelihoods for precipitation?

The rest of this paper is organized as follows. Firstly, linkages between precipitation
and climate variability are delineated (Section 2.1) followed by an examination of the
advantages of a quantile regression approach over ordinary least squares regression for
characterizing distributional asymmetries (Sections 2.2–2.4). Next, an assessment of the
linkages between annual precipitation and the coherent patterns of climate variability at the
basin scale globally and regionally is presented (Sections 3.1–3.2). Lastly, the use of SST
variability patterns for estimating conditional risk likelihoods is explored (Section 3.3).

2 Data and methods

2.1 Data and study region

Annual precipitation for 405 river basins around the world were analyzed (Fig. S1) for
the 1951–2011 time period on a June–May annual year. A June–May annual designation
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captures the expression of El Niño and La Niña events as well as preserves the primary wet
season for most basins (Fig. S2). The river basin delineations used for precipitation anal-
ysis are from the 405 Major Water Basins of the World dataset obtained from the Global
Runoff Data Centre (Global Runoff Data Centre (GRDC) 2007). Global gridded monthly
total precipitation dataset at a 0.5◦ x 0.5◦ resolution (CRU TS3.22) were obtained from
the UK Natural Environment Resource Council’s British Atmospheric Data Centre (NERC-
BADC), and were produced by the University of East Anglia Climatic Research Unit (Harris
et al. 2014). SST data monthly grids were obtained from National Oceanic and Atmospheric
Administration (NOAA) Extended Reconstructed Sea Surface Temperature V3b dataset
with 2.0◦ x 2.0◦ resolution (Smith et al. 2008).

Monthly precipitation data were aggregated to produce annual totals, and were areally
averaged over the global river basins. Monthly SST data were aggregated at each grid point
to produce an annually resolved dataset, and the long-term trend was removed. To derive
the leading SST patterns, empirical orthogonal functions (EOFs) were produced from the
detrended data. A correlation matrix was used over a covariance matrix as large variance
differences between elements can lead to a few elements dominating the first few patterns
(Jolliffe 2002). To assess the relationship between the leadings patterns of SST and precipi-
tation variability, precipitation EOFs were produced in a similar manner. Additional details
can be found in Online Resource 1.

2.2 Annual precipitation variability and change: conditional quantile functions

QR is a robust approach to characterizing changes across the range of precipitation thresh-
olds, including the upper and lower tails. Unlike LR, QR detects responses in upper and
lower quantiles that may differ in magnitude and/or direction to the mean, with different
implications for variability and risk. Additional details of the methodology and advantages
over LR are offered in Koenker (2005). The linear QR model has the form

yi = β
(τ)
0 + β

(τ)
1 xi + ε

(τ)
1 , (1)

where β
(τ)
0 is the intercept and β

(τ)
1 is the slope coefficient for the selected quantile τ ,

which ranges from 0 to 1. The reader should note that τ is not read as an exponent. In this
approach, QR allows conditional estimates of precipitation levels (at quantile τ ) that are
larger than τ and smaller than (1 − τ ) proportion of historical data. In this study, a no-cross
restriction was placed on quantile coefficient values for each covariate, as the crossing of
quantile regression lines provides erroneous results (Bondell et al. 2010). To assess signif-
icance, a permutation test was conducted, where yi was sampled with replacement and βi

was calculated (n = 1000) producing a distribution of coefficient values. A percentile test
(0.95, 0.05) was used to determine the significance of βi . In an effort to characterize the
relative sensitivity of basin scale precipitation to leading patterns of SST variability, the QR
approach was used due to its ability to clarify the quantile-by-quantile conditional relation-
ship. To this end, prior to introducing SST covariates (Sections 3.1–3.2), several illustrative
cases are presented to aid a clearer interpretation of QR coefficients (both their magnitude
and signs) across select quantiles.

2.3 Distributional characterization of synthetic data

To demonstrate the diversity of responses captured in the QR approach, synthetic precipita-
tion data were generated to mimic geophysical records of the same length as the historical
data. The synthetic data exhibit the combinations of upper (τ = 0.8) and lower (τ = 0.2)
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tail trends; some or all of these may be found in historical records. QR was conducted on
the datasets across the quantiles, τ = 0.2, 0.5 (median), and 0.8, conditioned on time only,
and compared to LR results. Figure 1a, e, i represents the changes implied by LR, where
the entire PDF symmetrically shifts location to a higher or lower magnitude, or undergoes
no significant change. However, in both a and i, changes in τ = 0.2 and 0.8 are asymmet-
ric, indicating differences in distributional probabilities in contrast to LR. d is an example
where there is only an increase in the position of τ = 0.8. This implies both increased vari-
ability, and probability of wet extremes. b, f, and h also exhibit single-tailed changes with
b and f showing decreases in variability, while h indicates an increased risk of a dry year
and increased variability. Similarly, g (c) indicates an increase (decrease) in variability due
to diverging (converging) trends in the tails, where LR would find no significant change.
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Fig. 1 Quantile regression of synthetic precipitation data (mm) conditioned on time (τ = 0.2, 0.5, 0.8) to
highlight the diversity of changes in environmental data. Linear regression estimations are shown using a
dashed line. Arrows are color coded to represent the direction of changes for the respective conditional quan-
tiles at a 90% significance level. Circles indicate no significant response. Shaded gray areas show empirical
probability distributions for each case constructed for years 1956, 1981, 2006



Climatic Change

Taken together, the diversity of changes discussed above underscore: (a) the fidelity with
which the QR approach can be applied across cases of variability and change, (b) the ease
with which one or more covariates (for example, time, ocean-atmospheric indices) can be
incorporated, and (c) that QR can be readily tailored to be specific to the requisite quan-
tiles or thresholds (including extremas—lower and upper tails) for place-based precipitation
variability and change assessments. Additionally, over the range of quantiles, QR-derived
regression coefficients constitute the basis to derive conditional probability distribution at a
particular value of the climatic covariate (for example, El Niño conditions). Non-parametric
estimation of conditional PDFs and their utility for risk analysis are discussed next.

2.4 Changing perspectives of conditional risk

In addition to characterizing the variety of possible quantile responses, conditional empir-
ical probability distributions for each synthetic dataset were constructed for three different
years to highlight differences in exceedance probabilities in the QR approach compared to
LR (Fig. 1). Particularly when there is no significant change in the conditional mean, the
results from the LR approach indicate no appreciable change across the entire range of quan-
tiles. For environmental data, this can be restrictive and lead to mischaracterization of trends
under LR approach. The QR approach allows for semi-independent shifts across quantiles
implying changes in the risk of extremes in one or both tails of the probability distribu-
tion. For example, Fig. 1c shows an increase in τ = 0.2 and decrease in τ = 0.8 implying
a decrease in variability over time. QR detects a decrease in τ = 0.8 exceedance proba-
bility between 1956 and 2006, while a LR approach indicates an increase. A full example
comparing the QR and LR exceedance probability differences over time for Fig. 1c can be
found in Online Resource 1. While the reader should note that these PDFs are for illustrative
purposes only, the QR approach shows that asymmetric changes in exceedance probabil-
ity with increases (decreases) in upper threshold risk are not necessarily accompanied by
proportional decreases (increases) in risk in corresponding lower thresholds.

2.5 Basin scale distributional changes

For a global analysis, the effects of SST variability on annual precipitation for the years
1951–2011 in the 405 global major river basins were assessed across the τ = 0.2, 0.5, 0.8
quantiles using QR. Three covariates were used: year (1951–2011), and the SST time-series
for the EOF analysis (EOF1, EOF2). All covariates are uncorrelated. The year covariate
values were standardized and centered on 0, minimizing erroneous intercept calculations
that may arise when using a wide range of values (Koenker 2005). Significance of each
coefficient was determined at a p ≤ 0.1 significance level (see Section 2.2 for details).
A cautionary note to the reader is that trends in annual totals may not be indicative of the
precipitation—SST relationship on monthly, seasonal, and episodic timescales.

3 Results

3.1 SST-precipitation relationships

SST has been shown to significantly correlate with precipitation globally (Diaz and Mark-
graf 2000). EOF results show that SST EOF1 and EOF2 explain 33.1 and 10.8% of the
variance respectively (Table S1). SST EOF1 shows the highest anomalies in the Eastern
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Fig. 2 a Leading empirical orthogonal function (EOF) of annual precipitation anomalies over land (June
1951–May 2011) based on the CRU TS3.22 monthly precipitation grids. b Leading EOF of annual SST
anomalies over the global oceans based on NOAA ERSST v3b monthly SST data set (June 1951– May 2011).
c Comparison of global land precipitation EOF1 and SST EOF1 time-series. d Second precipitation EOF.
e Second SST EOF. f Comparison of precipitation EOF2 and SST EOF2. Partial correlation with trend shows
no change in correlation coefficients

Pacific (Fig. 2b) with SST EOF2 showing contrasting patterns in the north and mid-Atlantic
and the northwestern Pacific to those in the mid-latitude Pacific (Fig. 2e). SST EOF1 has a
correlation coefficient of r = 0.93 with the Niño-3.4 index, which is consistent with studies
identifying EOF1 as capturing ENSO phenomenon (Deser et al. 2010; Messié and Chavez
2011), and r = 0.72 with the PDO index. EOF2 has a correlation coefficient of r = 0.85
with the AMO index and r = −0.3 with the PDO index. Precipitation EOF1 and EOF2
explain 15.4 and 5.3% of the variability (Table S1) with EOF1 showing highest correla-
tions in North and South America, Indonesia, and Northern Australia (Fig. 2a) and EOF2
showing high correlations in sub-Saharan Africa, Northern Europe, and Australia (Fig. 2d).
Comparison of the EOFs of SST and precipitation show high correlation between the first
EOFs (r = 0.92) with the SST EOFs showing distinct covarying patterns with precipita-
tion (Fig. 2c). SST EOF2 and precipitation EOF2 are moderately correlated (r = 0.4), but
captures sensitivities in Africa, which have been linked to AMO (Fig. 2f). The SST EOF1
and EOF2 time-series were chosen for this study to be used as covariates in a QR analysis
model as they explain the highest amount of SST variation, and have the highest correla-
tion to physical modes and precipitation patterns. Additional details can be found in Online
Resource 1.

3.2 Variability in quantile-specific SST–precipitation relationship

The relationship between SST variability and precipitation for the years 1951–2011 was
assessed at τ = 0.2, 0.5, and 0.8 quantiles in the 405 global major river basins by

Annual precipitation(τ | x) = β
(τ)
0 + β

(τ)
1 year + β

(τ)
2 EOF1 + β

(τ)
3 EOF2 + ε(τ), (2)

where 0 < τ < 1 represents the quantile, year is the time-series 1951–2011, and EOF1 and
EOF2 are the respective SST time-series from the analysis of the global SST data.

The spatial patterns of precipitation response across quantiles (Fig. 3) identifies regions
that are sensitive to EOF1 and EOF2, depicting the influence of phase and magnitude of SST
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Fig. 3 Spatial distribution of basin-level precipitation quantile regression coefficients conditioned on years
1951–2011, EOF1, and EOF2 for select quantiles (τ = 0.2, 0.5, 0.8) of basin areal average annual
precipitation. Cross-hatch represents significance at α = 0.1

on annual precipitation distributional response. The same analysis was conducted on annual
precipitation data corrected for unequal areal extent of grids across latitudes, with negligible
differences (Fig. S5). Coefficient signs and values across quantiles indicate that shifts are
in the extremes of the distribution (τ = 0.2, 0.8), and do not coincide with the slope of the
estimated conditional mean function. EOF1 shows the most influence on precipitation with
62.0% of all basin area showing a significant response (p ≤ 0.1) in at least one quantile,
followed by EOF2 (44.1%), and trend (35.5%). Findings summarized by covariate include
the following:

1. Precipitation shows significant increases across quantiles over time (trend) in the USA,
South America, Africa, and decreases in southern Asia, and western Europe. In partic-
ular, both the Mississippi River basin in North America and the Parana Basin in South
America show significant increases in all three quantiles evaluated.

2. EOF1 produces stronger magnitudes of response relative to the year covariate, with the
PDF varying widely in shape and position from year to year. When EOF1 is in positive
phase, corresponding to SST patterns in the tropical Pacific consistent with El Niño, there
are strong negative responses in northern parts of South America, Africa, Southeast Asia,
and Australia. Strong positive responses are seen in southern South America, and some
moderate increases in the USA and Europe. For example, the Godavari and Ganges
basins in the Indian subcontinent show negative responses consistent across quantiles.

3. When EOF2 is in positive phase, corresponding to warm temperatures in the Arctic and
north Pacific, negative sensitivities are shown for τ = 0.5 and 0.8 in the western USA,
while negative responses in τ = 0.2 are limited to the east. There are also strong to
moderate positive responses in Africa, and in Southeast Asia in τ = 0.8 only, while
northern latitudes in Asia show only low magnitude positive response. For example, the
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Yenisei basin shows a positive response of similar magnitude across quantiles, while
the Guadalquivir basin in Spain shows a stronger positive response in τ = 0.8 than
τ = 0.2 and 0.5 indicating an increase in variability.

With SST predictability, this spatial view highlights the overall sensitivity across quan-
tiles, and the regional patterns of coherent precipitation variability. τ = 0.2 and 0.8
coefficients that differ from each other in magnitude and sign from the median specifically
demonstrate the value of the QR model with shifts evident across a range of locations. Wider
distributions imply a higher uncertainty in anticipating the amount of precipitation, with
implications for planning regarding water use in sectors, such as agriculture and industry.
To this end, a continent-scale examination of upper and lower quantile SST-precipitation
sensitivities with discussion of non-climatic factors, such as infrastructure, population, and
water demand and sectoral uses that may amplify or temper risk can be found in Online
Resource 2.

3.3 Combinations of upper and lower precipitation quantile responses

To explicitly categorize the diversity of quantile shifts, combinations of significant posi-
tive and negative, and non-significant changes in τ = 0.2 and 0.8, hereafter referred to as
typologies, were constructed for each covariate as demonstrated in the synthetic example
(Section 2.3). These typologies (Fig. 4) offer a synthesized view of Fig. 3, allowing for a
clearer spatial assessment of regions undergoing similar shifts in response to covariates. In
the following, typologies will be referenced by Fig. 1 a–i. Typologies characterized by shifts
in single quantiles (b, d, f, h) indicate higher variability (increase or decrease) than simulta-
neous shifts in the same direction. Conditional quantile responses are all for positive EOF1

a b

c

τ 0.8
+ o −

τ
0.

2
−

o
+

Fig. 4 Typologies of basin scale precipitation sensitivity to climate variability and change based on pairwise
combinations of regression coefficients of τ = 0.2 and 0.8. Basins are color coded according to combinations
of positive (+), negative (-) significant response (α = 0.1), and non-significant (o) response. Typologies are
shown for annual precipitation totals (mm) for the 1951–2011 period conditioned on a years 1951–2011,
b EOF1, and c EOF2
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and EOF2 conditions. Responses in each quantile are opposite in sign for negative EOF1
and EOF2 conditions.

Globally, EOF1 and EOF2 show the most influence on precipitation and the year covari-
ate the least with 56.7, 41.0, and 31.1% of basin land area showing a response respectively.
The trend shows basins are largely characterized by either increases or decreases in both
τ = 0.2 and 0.8. (Fig. 4a). While trend captures temporal variability as well as other drivers
in the system, the analysis in Section 3.1 demonstrated that distributional changes are more
sensitive to EOF1 and EOF2, with larger covariate coefficients calculated.

3.3.1 Africa

Basins show either no response or a significant decrease in one or both quantiles over time,
suggesting drier conditions. Precipitation changes conditioned on EOF1 generally show
decreases except for eastern Africa. Conversely, EOF2 shows increases in quantile position.
Key examples include the Pangani basin in Tanzania characterized by typology a, indicating
increased probability of wet events. The Tana basin is characterized by type a under EOF1
and b under EOF2 indicating a decrease in probability of dry conditions. Western African
basins, such as Niger, Lake Chad, and Sassandra, all show increases in both quantiles under
EOF2. For EOF1, the Niger basin (f ) shows a reduction in variability and probability of wet
conditions. Lake Chad experiences a decrease in both quantiles. The continent generally
experiences precipitation deficits (excesses) under positive EOF1 (EOF2).

3.3.2 Australia and Southeast Asia

Basins primarily show precipitation decreases under EOF1. For example, the Blackwood
basin is characterized by h under EOF1 and f under EOF2. Type h indicates increased proba-
bility of dry conditions and higher variability, and f an decrease in wet conditions and lower
variability. The Murray (i), Pahang (h), and Kinabatanga (i) basins similarly show decreases
under for EOF1. Conversely for EOF2, there is no response in either the Kinabatanga or
Murray basins and an increase in both quantiles (a) in the Pahang basin.

3.3.3 Asia

Most basins show precipitation decreases under EOF1 and increases under EOF2. For exam-
ple, the Mekong shows decreases in both quantiles under EOF1 (i) and increase in τ = 0.8
(d) under EOF2. Similarly, the Huang He (Yellow river) shows higher probability of dry
conditions (h). The Ganges basin shows a decrease in τ = 0.8 under EOF1 indicating
a reduction in variability and wet conditions. Conversely, the Dongjiang basin shows an
increase in τ = 0.8 indicating an increase in variability and probability of wet conditions.

3.3.4 Western Europe

Few basins show significant response, with general increases under EOF1 and EOF2. For
example, the Garonne basin in France shows increase in both quantiles (a) under EOF1,
while the Rhone and Seine show increases in τ = 0.8 only, indicating greater variability.
The Thames shows a decrease in variability under EOF1 with an increase in τ = 0.2 (b).
The Guadalquivir basin is a key example of response to EOF2, showing an increase in
τ = 0.8 (d).
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3.3.5 Eastern Europe and Russia

The basins with highest sensitivity are some of the least populated areas of the Northern
Hemisphere. For example, the Yenisei basin shows a decrease in τ = 0.2 under EOF1 (h)
and an increase in both quantiles for EOF2 (a). This indicates a higher variability and prob-
ability of dry conditions for positive EOF1. Neighboring basins show similar results with
decreases (increases) in either both or single-quantile positions for positive EOF1 (EOF2)
conditions.

3.3.6 South America

EOF1 dominates the significant response with deficits in the north and excesses in the south.
EOF2 has an influence along the east coast and southern tip, showing decreases in quantile
position. For example, the Orinoco and Amazonas basins show decreases in both quan-
tiles (i) indicating higher probability of deficits under EOF1. Conversely, the Parana and
Uruguay basins show simultaneous increases (a). Under EOF2, the Parana basin shows a
decrease in τ = 0.2 (h).

3.3.7 North America

Precipitation changes over time show increases across the eastern USA and Canada, and
decreases in northwestern Canada. EOF1 shows increases across the USA and central Amer-
ica and decreases in Canada, while EOF2 shows decreases. For example, the Sacramento
and Colorado river basins show increases in both quantiles (a) and increase in τ = 0.8 (d)
respectively, showing increased probability of wet events and higher variability. Conversely,
the Columbia river basin shows decreases in τ = 0.8 (f ) under EOF2. In the southeast USA,
the Alabama & Tombigee and Suwannee basins show increases in both quantiles under
EOF1 and decreases in τ = 0.8 under EOF2. In the northeast USA, the Penobscot river
basin shows a decrease in τ = 0.2 (h) under EOF2 suggesting an increase in variability.

Typologies indicate the directionality of shifts, imply uncertainties, and highlight which
drivers (EOF1 or EOF2) are most critical to these changes. For basins where EOF1 and
EOF2 are both significant, distributional shifts are highly dependent on the commingling of
covariate conditions. For example, the Tana basin in East Africa shows increases (a) when
EOF1 is positive, and an asymmetric increase (b) when EOF2 is positive. When EOF1 and
EOF2 are in the same phase, shifts are amplified depending on the magnitude, while oppo-
site phase tempers the overall response and the directionality of shifts becomes dependent
on covariate magnitudes. A related notion is the change in variability and risk implied by
various combinations of EOF1, EOF2 conditions.

3.4 Assessment of distributional variability and conditional risk

The quantile-specific coefficients for EOF1 and EOF2 at a given location apportion the
influence of each SST to risk. For given coefficients, the phase and magnitude of EOF1 and
EOF2 determine the distribution of precipitation in a location, and thereby the risk likeli-
hood at specified thresholds. To illustrate how EOF1 and EOF2 conditions jointly influence
shifts in aspects of the precipitation distribution, quantile responses were calculated for the
range of possible EOF combinations. This was applied to τ = 0.2, 0.5, 0.8, and for the
τ = 0.8 − 0.2 quantile range illustrating shifts in location and distributional spread (vari-
ability). A case example for the Chad River basin in Northern Africa is presented (Fig. 5),
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Fig. 5 Precipitation quantile position changes for possible EOF1, EOF2 values for the Chad River Basin,
Africa. a–c ratio of conditional quantile regression coefficients of precipitation to unconditional quantiles.
a τ = 0.2, b τ = 0.5, c τ = 0.8. Ratios greater than 1 indicate an increase in exceedance probability
compared to the unconditional quantile, and ratios less than one signify a decrease. d Classification of com-
bination of changes in magnitude and direction of the upper and lower quantiles for EOF1, EOF2 pairs. Each
red line marks the EOF1, EOF2 pairs for which the τ = 0.2, 0.8 equals the unconditional τ = 0.2, 0.8. Areas
numbered (i–vi) show possible combinations of τ = 0.2, 0.8 changes with implied changes for variability
and risk (Table S3). A comparison of unconditional and conditional PDFs during distinct tropical Pacific sea
surface temperature conditions: e strong El Niño event (1982–1983) and f median conditions (1990–1991).
For significant departures in EOF1 and EOF2 median conditions, the precipitation distribution undergoes
wide excursions from the unconditional state

with τ = 0.2, 0.5, 0.8 significant to EOF1 and EOF2. The slopes of the contours indi-
cate higher precipitation sensitivity to EOF2 in τ = 0.2, and to EOF1 for τ = 0.8 and
the τ = 0.8 − 0.2 quantile range. Distributional changes are characterized by six bounded
areas depending on covariate phase and magnitude (Fig. 5d). For additional details, see
Table S3. For any global SST condition, represented as a pair of EOF1 and EOF2 values,
the appropriately conditioned precipitation conditional distribution can be determined for
any basin.

For example, unconditional and conditional PDFs using EOF1 and EOF2 as covariates
were constructed for 1982–1983 and 1990–1991. In the late 1970s, stronger ENSO ampli-
tude was observed, with 1982–1983 being one of the most extreme El Niño events of the
examined record. In a linear QR context with statistically significant regression slopes, sig-
nificant departures from the median state of the covariate values can produce dramatic shifts
in the conditional PDF. For the 1982–1983 event, EOF1 = 37.24 and EOF2 = − 5.06. This
event falls in region vi of Fig. 5d, which for this basin is characterized by a decrease in vari-
ability, a decrease in risk of extreme wet conditions, and an increase in risk of extreme dry
conditions (Table S3). The conditional distribution acknowledges that the probability of the
precipitation total for 1982–1983 occurring is greater than in the unconditional distribution
(Fig. 5e). Conversely, the 1990–1991 year is characterized by EOF1 and EOF2 conditions
that do not depart significantly from the long-term median (EOF1= 4.15; EOF2= − 1.39).
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Due to the small values, the quantile shifts are minimal (Fig. 5f). The observed value falls
within the middle 60% of both distributions, with each representing a similar exceedance
probability for the observed total. In the absence of EOF1 and EOF2 information, the uncon-
ditional distribution may over- or underestimate the likelihood of exceeding given thresholds
for years with significant departures from mean conditions.

4 Summary and conclusions

The analysis presented considers the changes of the annual precipitation distribution condi-
tioned on leading patterns of global SST variability for 405 major river basins. The results
show that (a) sensitivities to EOF1 and EOF2 conditions vary across quantiles resulting
in asymmetric shifts with implications for uncertainty and changes in exceedance proba-
bilities, and (b) when EOF1 and EOF2 conditions depart significantly from median states,
stationary distributional approaches systematically over and underestimate risk.

1. Given that the leading patterns of SST variability are strongly correlated with global
precipitation patterns, apportioning variability from trend to SST-based covariates and
stratifying variation across quantiles affords a clearer understanding of the variability
in annual precipitation. Results show widespread sensitivities to EOF1, particularly in
South America, Africa, the USA, and Southeast Asia. Fewer basins are sensitive to
EOF2, with responses in parts of Africa, Southeast Asia, and high northern latitudes.
Typologies highlight a range of single-quantile sensitivities to EOF1 and EOF2. For
example, EOF1 shows increases in τ = 0.2 in parts of North America with EOF2
showing decreases in τ = 0.2 only. In parts of Africa, Australia, and South America,
EOF1 shows decreases in both tails, while EOF2 shows the opposite response in the
lower tail only. Asymmetric or single-tail responses indicate both changes in variability
and risk.

2. The precipitation conditional PDF is jointly influenced by EOF1 and EOF2. Basins
with significant sensitivities in either or both tails—representing large departures from
median annual totals—to EOF1 and EOF2 experience a range of changes dependent on
phase and magnitude. If EOF1 and EOF2 quantile-specific coefficients are of the same
sign, EOF1 and EOF2 produce an additive response when in the same phase, and may
minimize response when in different phases. For parts of Africa, positive EOF1 and
negative EOF2 events amplify the risk of dry conditions compared to positive EOF1 and
EOF2 events. QR offers an approach for assessing the SST-influenced changes across
a range of quantiles, which can be applied at various spatial and temporal scales.

3. Precipitation is a primary component of water resources assessment—wet and dry peri-
ods, of short to long durations and intensity. Mischaracterization of tail-specific changes
and variability has the potential of compounding error and can lead to shortcomings in
assessment of risk and uncertainty. For example, Dai (2012) assessed global-warming
induced drought and found widespread increase in drought risk, with many regions
influenced by ENSO-induced precipitation changes. However, the results presented
here show that responses in the tails to SST variability do not necessarily correspond
to the mean, indicating that drought risk can be further amplified or reduced due to
changes in annual total precipitation. Likewise, there are similar implications for water
supply (Garcı́a-Garcı́a and Ummenhofer 2015; Richey et al. 2015).

4. QR is a robust method of estimating the annual precipitation distribution. QR (a)
allows quantiles to move semi-independently of each other, (b) is robust to outliers,
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and (c) offers a more explicit characterization of variability and implied risk. LR meth-
ods assess mean shifts but mischaracterize changes in the upper and lower quantiles.
The QR model highlights sensitivities of distinct parts of the annual precipitation dis-
tribution to SST with implications for changes in risk for precipitation excesses and
deficits.

In closing, we note that the analysis presented imposes a restriction of a linear
model. A linear model assumes that precipitation has equal and opposite responses to
positive and negative EOF1 and EOF2 phases; some deviations have been noted in
a recent study (Cai et al. 2011). Furthermore, while the empirically derived patterns
are uncorrelated there have been studies that show AMO modulates the amplitude of
ENSO events in some regions (Power et al. 1999; Kayano and Capistrano 2014). The
QR methodology and analyses presented here can be conducted for any functional
form that is suited to data for a given scale and sectoral context. Assessment of pre-
cipitation at other spatial and temporal scales in the future is valuable to assessing
regional or local sensitivities to climate variables for consideration in other analyses and
decision-making.

Acknowledgements Climate data used in this study was downloaded from NOAA/OAR/ESRL PSD,
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