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Abstract: Due to technical and budget limitations, there are inevitably some trade-offs in the design of
remote sensing instruments, making it difficult to acquire high spatiotemporal resolution remote sensing
images simultaneously. To address this problem, this paper proposes a new data fusion model named the
deep convolutional spatiotemporal fusion network (DCSTFN), which makes full use of a convolutional neural
network (CNN) to derive high spatiotemporal resolution images from remotely sensed images with high
temporal but low spatial resolution (HTLS) and low temporal but high spatial resolution (LTHS). The DCSTFN
model is composed of three major parts: the expansion of the HTLS images, the extraction of high frequency
components from LTHS images, and the fusion of extracted features. The inputs of the proposed network
include a pair of HTLS and LTHS reference images from a single day and another HTLS image on the prediction
date. Convolution is used to extract key features from inputs, and deconvolution is employed to expand the
size of HTLS images. The features extracted from HTLS and LTHS images are then fused with the aid of an
equation that accounts for temporal ground coverage changes. The output image on the prediction day has
the spatial resolution of LTHS and temporal resolution of HTLS. Overall, the DCSTFN model establishes a
complex but direct non-linear mapping between the inputs and the output. Experiments with MODerate
Resolution Imaging Spectroradiometer (MODIS) and Landsat Operational Land Imager (OLI) images show that
the proposed CNN-based approach not only achieves state-of-the-art accuracy, but is also more robust than
conventional spatiotemporal fusion algorithms. In addition, DCSTFN is a faster and less time-consuming
method to perform the data fusion with the trained network, and can potentially be applied to the bulk
processing of archived data.

Keywords: spatiotemporal data fusion; convolutional neural network; Landsat; MODIS; deep learning

1. Introduction

The advances in modern sensor technology have greatly expanded the use of remote sensing images in
scientific research and in many other life activities of humankind [1-3]. However, in practice, there are always
some trade-offs in the design of remote sensing instruments due to technical and budget limitations. Satellites
which image a wider swath width do have a shorter revisiting period, but this usually decreases the spatial
resolution of observed images, and vice versa [4]. Currently, it is not easy to acquire images that have both
high spatial and high temporal resolution [5,6]. For example,
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the widely used Landsat images have enabled a 30-m spatial resolution in the visible and infrared spectral
bands since the Landsat 4 was launched in 1982 [7]. The latest Landsat 8 maintains a 30-m resolution in most
spectral bands, with a long revisiting period of 16 days (the same as Landsat 4, for data continuity purposes)
[7]. Conversely, the MODerate Resolution Imaging Spectroradiometer (MODIS) instruments acquire data only
at spatial resolution of 250 to 1000 m in multiple spectral bands, but MODIS provides daily coverage of most
parts of our planet [8]. For the purpose of long-time series analysis of high spatial resolution imagery (e.g.,
vegetation-index-based monitoring of crop condition and anomalies at field scale [9,10], as well as water
resource assessment [11]), a single high spatial resolution data source usually cannot meet the requirements
of frequent temporal coverage. A number of remote sensing data fusion algorithms have been put forward to
address this problem, and research has shown that generating high spatiotemporal data by fusing high spatial
resolution images and high temporal resolution images from multiple data sources is a practical approach
[12,13].

In the remote sensing domain, spatiotemporal data fusion refers to a class of techniques that merge two
or more data sources which share similar spectral ranges to generate high spatiotemporal time-series data
and to derive richer information than a single data source can provide. In most cases, one data source has high
temporal but low spatial resolution (HTLS), while another has low temporal but high spatial resolution (LTHS).
After years of development, the research field of spatiotemporal data fusion has established certain theories
and methods, and some of these methods have been applied in practical geoscience analysis with respectable
accuracy [13-15]. As far as we have considered, the existing spatiotemporal fusion algorithms can be classified
into three categories:

(1) transformation-based; (2) reconstruction-based; and (3) learning-based [16].

The transformation-based methods employ specialized mathematical transforms, such as wavelet
transform [17], to transform data from spatial domain to another domain—typically to a frequency or
frequency-equivalent domain. Clear, high-frequency components are then extracted from the transformed
LTHS images and are merged with HTLS images using elaborately designed fusion rules. The theoretical basis
of this approach is that images in different spaces reveal different types of features, which allows a well-
designed algorithm to catch the desired features from specific spaces via appropriate transformations.

The reconstruction-based methods generate composite images from weighted sums of spectrally similar
neighboring pixels in the HTLS and LTHS image pairs [16]. At present, most of the spatiotemporal fusion
algorithms fall into this category. The reconstruction-based methods can be further subdivided into two major
groups: one is based on the ground coverage changes of different temporal images, and another is based on
the components of mixed ground material end member fractions. In the first case, a hypothetical relation is
established based on the difference or ratio deviation between the HTLS and LTHS image pair at the prediction
time and a second image pair at a given reference time. Then, a moving window is employed to scan similar
neighboring pixels locally and determine the weights. The final composite image is generated by a weighted
sum of neighboring pixels in the moving window combined with the hypothetical relation. A typical example
is the spatial and temporal adaptive reflectance fusion model (STARFM) [12]. It uses the differences between
HTLS and LTHS to establish a relation, and searches similar neighboring pixels by spectral difference, temporal
difference, and location distance. Inspired by STARFM, some other enhanced or improved fusion models have
been proposed, such as the spatial and temporal adaptive algorithm for mapping reflectance change (STAARCH)
[18], enhanced STARFM (ESTARFM) [5], and other STARFM-based models [19]. In general, the main differences
among algorithms of this type are in the designs of HTLS and LTHS relations and in the rules used to determine
weights.

The second group attacks the same problem by using spectral unmixing techniques to calculate the end
member fraction of mixed ground materials and replacing the corresponding components of HTLS at
prediction time according to the the unmixed spectral information derived from LTHS at another given time.
Typical examples are the unmixed-based data fusion (UBDF) method [20], the flexible spatiotemporal data
fusion (FSDAF) method [21], and spatial attraction models (SAM) [22].

The learning-based methods have grown considerably in recent years. Their approaches employ sparse
representation or machine learning techniques to extract some abstract features from volumes of data and
then reconstruct the predicted data with the extracted features. The main ideas of the sparse-representation-



Remote Sens. 2018, 10, 1066 30f 15

based data fusion are based on the working hypothesis that the HTLS and LTHS data pairs share the same
sparse coefficients. By jointly learning a sparse dictionary from the HTLS and LTHS data pairs, the HTLS images
can be reconstructed to high spatial resolution images by sparse encoding algorithms. A typical example is the
sparse-representation-based spatiotemporal reflectance fusion model (SPSTFM) [23]. Learning-based
methods have received increasing attention and are expected to perform better than the conventional ones
because they can gain more information from prior data.

Generally speaking, the key factors of a successful fusion algorithm always lie in the design of activity
level measurements and fusion rules [24]. Activity level measurements quantify the information quality
contained in raw images [25], and fusion rules describe the process of recognizing the information. Hand-
crafted level measurements and fusion rules are usually designed based on some mathematical or physical
theories. However, the actual data are usually contaminated with errors and noises, and are not conformant
to the theoretical ideal. Although most of the algorithms may perform well for some data with great quality or
with some specific characteristics in some geographical areas, they may fail with other data and in other areas.
In practice, however, it is difficult to acquire sufficient data without cloud or ice cover for a specific area of
interest, so the results of conventional algorithms turn out to be less accurate. Furthermore, in some areas
within a specific time period there is little LTHS data left once the cloud-covered data are filtered out. That
leaves no choice but to extend the time span between the reference data and prediction data. Unfortunately,
this produces output that is very unreliable. Besides, the conventional methods process the data pair-by-pair,
pixel-by-pixel—each image pair requires a long time to produce the output. In practical cases, where long-time
series data are needed, this processing becomes very time-consuming. In contrast, the learning-based
methods take time in the training process, but cost much less time in the prediction phase.

In this paper, the problems associated with conventional methods are addressed by a deep learning
approach to find a direct non-linear mapping relation between HTLS and LTHS images. Deep learning is a new
branch in machine learning technology, inheriting and extending classical artificial neural network principles
to automatically learn features and relations of data via more additional hidden processing layers [26,27]. It is
widely used in computer vision, natural language processing, finance, and other areas, and has achieved state-
of-the-art results in many fields. The pervasive application of convolutional neural networks (CNNs) in speech
recognition and visual object recognition and detection has especially drawn significant attention recently [28—
30]. The novelty of our approach is that a deep convolutional spatiotemporal fusion network (DCSTFN) is built
by integrating convolution and deconvolution layers to improve the accuracy and robustness of fusion
compared to conventional algorithms. The activity level measurement and fusion rules are actually learned
from actual datasets and presented by the weights in each layer. In our experiment, Landsat 8 Operational
Land Imager (OLI) and MODIS surface reflectance images are fed into the model to demonstrate its efficacy.
The results show that the proposed DCSTFN method outperforms conventional fusion methods. Another
significant aspect of the proposed CNN-based approach is its generality, which means it can be applied to
various data sources and has enough robustness to handle the quality variations in input data.

The rest of this paper is organized as follows. Section 2 introduces the whole architecture of the proposed
DCSTFN model. Section 3 describes the experiment details and comparisons with other classical fusion
methods. Discussion and conclusions are presented in Section 4.

2. Materials and Methods

2.1. CNN Model

In machine learning, CNNs are a class of deep feed-forward neural networks designed and trained to
extract hierarchical high-level features from inputs using multiple convolutional layers [26,31]. Thanks to the
use of a convolution operator, CNNs have fewer connections and parameters than standard feed-forward
networks of similar size. In this case, on the one hand, the training time is greatly reduced, on the other hand,
it also substantially improves the accuracy of models in practice [30]. A classic CNN is comprised of one or
more convolution layers, a subsampling (or called pooling) layer, finally followed by one or more fully-
connected (or called dense) layers to generate prediction. The front convolution layers in a CNN are intended
to extract low-level features. More complex high-level features can be automatically extracted by increasing
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the number of convolution layers. The pooling layer abstracts the raw features from the previous layer,
reduces training parameters, and prevents the over-fitting of a model.

Deconvolution is another operator that is often employed in CNN models in certain use scenarios, such
as unsupervised learning [32], CNN visualization [33], as well as image segmentation and reconstruction
[34,35]. Since deconvolution also acts as a convolution operator where the transformation is applied in the
opposite direction of a regular convolution, mathematically, a convolution can be expressed as matrix
multiplication and deconvolution is the reverse spatial transformation expressed as multiplication with the
transposed filter matrix [36]. For this reason, deconvolution in deep learning actually refers to the transposed
convolution or backward convolution.

Originally, CNNs were applied to extract high-level features in the image classification and recognition
tasks. Eventually, their applications were extended to the image super-resolution and data fusion domains
with direct mapping between input(s) and output [24,37]. Currently, the applications of CNNs on image fusion
are being actively explored. For example, a deep CNN model was successfully employed to merge images of
the same scene taken with different focal settings to gain more clarity [24]. The accuracy of the pan-sharpening
method for panchromatic and multispectral image fusion was increased by using CNN-based models [38,39].
In addition, CNN models have also been used in the fusion of multi-spectral and light detection and ranging
(LiDAR) data [40]. However, for the problem of spatiotemporal data fusion, to the best of our knowledge, such
studies have not yet been carried out widely.

2.2. DCSTFN Architecture

Inspired by the existing work in data fusion models, a deep convolutional fusion network was designed
to derive high spatiotemporal resolution remote sensing images. The whole architecture of the DCSTFN can
be divided into three parts: the expansion of the HTLS images, the extraction of high-frequency components
from LTHS images, and the fusion of extracted features, as shown in Figure 1. The DCSTFN model needs three
inputs: the HTLS image at prediction time and an HTLS and LTHS image pair at a time close to the prediction
date for reference. The output is the high-resolution image on the prediction date. The two HTLS images go
through the shared sub-network on the upper-left. Meanwhile, the reference LTHS image flows past the sub-
network on the lower-left. Next, the extracted features with the same size and dimension are merged together
to derive the composite image. The arrows in Figure 1 stand for hidden processing layers, and the cubes
represent the output tensors (namely multi-dimensional arrays) of each layer. The shape of the cube denotes
the size and dimension of the tensor output from the previous layer in the network. Taking the MODIS and
Landsat OLI data as an example, the MODIS data are resampled from 500 to 480 m, and the Landsat 8 OLI data
remain at 30-m resolution. Thus, the spatial resolution of resampled MODIS data are sixteen times coarser
than Landsat OLI. In the training phase, to reduce memory consumption, images are normally divided into
smaller patches that can be fed into the network. If we assume the size of each MODIS image patch is 10 x 10,
then the size of a Landsat patch is 160 x 160. Although images are divided into small patches during training,
the input image size for prediction is absolutely not affected once the training process is completed. Besides,
considering the large differences in ground surface reflectance from different spectral bands, a single image
band should fed into the model to train its own weighted network. The training on the images from different
bands will generate different networks under the common DCSTFN architecture. More details are discussed
further below.
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Figure 1. The architecture of the deep convolutional spatiotemporal fusion network (DCSTFN) model.

First, a shared network is used for the HTLS image expansion. This sub-network consists of two
convolution layers, three deconvolution layers, and another convolution layer. The two MODIS images both
go through the sub-network to extract the low-frequency components and meanwhile expand their input size,
respectively. The extracted features will provide the main frame and the background for the fusion result. In
Figure 1, the two parameters of a convolution operator denote the number of feature maps and the size of
the convolution window, respectively. The number of feature maps is undetermined parameters in a
convolution, and the moving window was set to 3 x 3 empirically in our experiment. A rectified linear unit
(ReLU) [41] activation function is used for each convolution or deconvolution layer in DCSTFN because RelLU is
a commonly-used activation in mainstream CNN models and has achieved excellent results in practice [42].
The deconvolution layers employed in the shared network can expand the MODIS feature maps to the size of
Landsat’s so that the two data sources have the same dimension and size in the fusion phase. The first two
parameters in a deconvolution operator are the same as the standard convolution, and the last parameter
specifies the stride along the convolution window. The stride of deconvolution in this model is set to 2.
Therefore, three deconvolutions in the shared network will expand the size of MODIS feature maps eightfold.
As shown in Figure 1, the input size of of the shared network for MODIS is 10 x 10 x 1, and the output size is
80 x 80 x d.

The second part is the extraction of high-frequency components from LTHS images. This sub-network is
a classical convolution network starting with two convolution layers, followed by a max-pooling layer that
connects with two more convolution layers. The convolution layers are applied to the Landsat image patches
to extract the high spatial frequency information like detailed edges and textures. The pooling layer is used to
filter high-frequency information. There are three undetermined parameters di(i = 0,1,2) in the DCSTFN model,
standing for the number of feature maps in three levels of abstraction. These parameters need to be tested
and determined with practical experimentation. From Figure 1, the output size of this sub-network for Landsat
shrinks from 160 x 160 x 1 to 80 x 80 x d>, which is the same as the output size of the sub-network for MODIS.

The last part is the fusion of extracted feature maps from HTLS and LTHS images. A significant difference
that distinguishes the DCSTFN model from conventional methods is that our fusion process is performed on
the extracted abstract features, while most of the conventional algorithms conduct the fusion based on the
original spectral signatures. In the preceding two sub-networks, the features from HTLS and LTHS inputs have
coordinated with the same size and dimension. To merge the extracted features, a hypothetical equation from
the STARFM model is adopted here. This equation defines the temporal ground coverage changes between
HTLS and LTHS images from the reference time tcto the prediction time to, and it can be formulated as follows:

LTHS(to) = HTLS(to)+ LTHS(te)— HTLS(te). (1)
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Following this equation, the MODIS patches for reference at time txare subtracted from Landsat patches
for reference on the same day, then the differences are added to the MODIS patches for prediction at time to.
At this point, the high and low spatial frequency information extracted from Landsat and MODIS is merged.
Then, a deconvolution layer is used to restore the merged patches to the original Landsat data size (160 x 160).
Finally, two fully-connected layers are used to fine-tune the fusion output from the previous layer and reduce
the output tensor dimension to restore the fine resolution image. The number of feature maps for the two full
connections are set to do and 1 respectively. Notably, the last fully-connected layer is just a linear
transformation without any activation operation.

3. Experiment and Evaluation

3.1. Data Preparation

The data collected for the experiment came from the Landsat 8 OLI level-2 surface reflectance product,
and from the MODIS surface reflectance 8-day L3 global 500 m (MOD09A1) product. The MODIS daily product
naturally has a stronger correlation with the Landsat OLI data of the very same day than the 8-day’s, and thus
using the MODIS daily product should theoretically generate a better result. The MODIS 8-day composite
product was chosen in our experiment because the daily product has poor data quality, while the 8-day
composite product shows much better quality as clouds have been removed as much as possible, missing data
have been repaired, and each pixel contains the best possible observation during the 8-day composition period.
Based on these considerations, this experiment used the MODIS 8-day product to test our model. In study
areas where good-quality daily data are available, the DCSTFN model is totally applicable for the daily data.
The initial preprocessing steps that must be performed for the image data are: radiometric calibration,
geometric correction, and atmospheric correction. For level-2 products, these processes are done when the
data are published. The two data sources are then reprojected into the same map projection and cropped to
the same extent. In this experiment, each scene of Landsat images was cropped to the size of 4800 x 4800 by
removing the “nodata” pixels from their boundaries. MODIS images are reprojected to the same Universal
Transverse Mercator (UTM) projection system used by Landsat. Then, the MODIS data should be cropped to
have the same geographical extent as the Landsat (size of 300 x 300).

A detailed data preprocessing flow chart is shown in Figure 2.

The study area was in the south of Guangdong province, China. The coordinates of the selected area in
the Landsat Worldwide Reference System (WRS) were P122R043, P122R044, and P123R044, respectively. The
corresponding coordinate to Landsat coverage in the MODIS Sinusoidal Tile Grid was h28v06. Images acquired
from January 2013 to December 2017 with less than 10% cloud coverage were collected for this experiment.
After the preprocessing, MODIS and Landsat data pairs for reference and prediction were organized in order.
Each data group contained four images: a pair of MODIS and Landsat on the prediction date, and a pair on a
specific date close to the prediction for reference. The basic rule for data grouping is that the date for reference
data should be as close to the prediction data as possible. Since Guangdong is located in the subtropical zone
with a humid climate, the acquired satellite images were often covered by ample clouds. If the time span
between reference and prediction pairs was longer than two months, we searched the previous or next years
to find appropriate reference data as close to the prediction data as possible within the same season. The
DCSTFN training process is a type of supervised learning. Three images including Landsat for reference and
MODIS for reference and prediction are entered into the model, and the observed Landsat image for prediction
is the expected output that guides the direction of the training process.
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Figure 2. The flow chart of data preprocessing. MODIS: MODerate Resolution Imaging Spectroradiometer; UTM:

Universal Transverse Mercator.

3.2. Experiment

The DCSTFN model is implemented using Python programming language and the Keras [43] deep learning
library with TensorFlow [44] as the computation backend. Keras provides simple, high-level Application
Programming Interfaces (APIs) enabling rapid prototyping. There are three undetermined hyper-parameters
di(i =0, 1, 2) in the DCSTFN model, namely the number of feature maps in three abstraction levels. If these
numbers are too large, the training process will take a long time doing computation, but if they are too small,
the model will not acquire enough knowledge from the training data. Based on the previous CNN-based
applications, the three parameters in our experiment were set to 32, 64, and 128, respectively. In this case,
the learning network had 408,961 trainable weight parameters in total. The optimization algorithm used for
training is called Adam [45], an improved stochastic gradient descent (SGD) method, and has been widely
adopted in CNN training. The initial learning rate of Adam was set to 10-3, 81= 0.9, 82= 0.999, and the decay
of the learning rate was set to 10-°. The loss function used for optimization is mean squared error (MSE), which
represents the average of the squares of deviations between predicted values and true values. To contribute
to the geoscience community, the implementation code and the trained network were released in open-
source format and can be publicly accessed via GitHub (https://github.com/theonegis/rs-data-fusion).

In the training process, eleven image groups from January 2013 to December 2015 were selectively fed
into the DCSTFN model for training, and another six groups from January 2016 to December 2017 were chosen
for validation. The validation data do not participate in the training. The size of the
MODIS image patch was cropped to 10 x 10, and the cropping stride was set to 5. In our experiment, 320
patches were fed into the model in each training batch. Usually, a larger batch size tends to generate better
results. This configuration can be adjusted according to the available hardware context. In the prediction
period, an entire image can be entered into the trained network and directly to get the output—regardless of
the image patch size in the training period.

When training the network, a single epoch ingests the entire set of samples. As the number of epochs
increases, the model can be trained more accurately. After entering the three different bands of data to the
DCSTFN model each time, the weights of the network are optimized respectively. Figure 3 shows the evolution
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of losses during a 50-epoch training period. The line color indicates different spectral bands, and the line style
denotes training and validation periods. Figure 4 uses the coefficient of determination (R?) to represent the
predicted results. The R%is a statistical measure of how close the data are fitted to the regression function. It

is defined as follows:
R_, (2)

where yiand y”;are the observed and predicted values for the ith pixel values, y~ denotes the mean of the
observed values, and N is the number of pixels. R? often ranges from 0 to 1, but it might be negative if the fit
is much worse. The closer it is to 1, the better the prediction.

The following conclusions can be drawn from the training process: (1) The losses of the DCSTFN model

did not change significantly after 40 epochs and the network was considered converged; (2) The images of
green spectral band had the smallest losses, closely followed by the red band, and the images of the near-
infrared (NIR) band had the highest losses; (3) The validation losses were slightly higher than the training losses,
and the R?of the validation data was slightly lower (less than 0.1) than the training data. This is normal, because
the model learned enough features from the training data but had no knowledge about the validation data.
However, a good model should produce an accurate prediction for unknown data using the knowledge from
the existing data; (4) From the perspective of the coefficient of determination, the DCSTFN model showed the
best fithess for red band images in that the R? was slightly higher and steadier than the other two. For NIR
images, the model did not perform as well as the other two; (5) Although the NIR band had a higher loss than
the other bands, the R?for NIR band was just slightly lower than others. This is because the NIR band has a
wider value range than visible bands. Generally, the prediction results for the NIR band matched observations.

Loss Curve
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Figure 3. Losses of the DCSTFN model. MSE: mean squared error; NIR: near-infrared.
Fitted Curve
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3.3. Comparison

To evaluate the proposed DCSTFN model, two conventional algorithms, including STARM and FSDAF,
were compared to the DCSTFN model. STARFM accepts at least one reference image pair, while FSDAF and
DCSTFN need only one reference pair. In our experiments, the input images for reference were limited to a
single pair so that all of the evaluated algorithms had the same number of inputs. The actual observed Landsat
data on the predicted days were used to evaluate the fusion results. By comparing the prediction results and
observed data, some statistical metrics were used to obtain the final quantified evaluation results. In addition
to the aforementioned R?, the root-mean-square error (RMSE), a common measurement of the differences
between actual values and predictions, was also used. RMSE is defined as follows:

The symbols in this formula have the same meanings as for the calculation of R?. A smaller RMSE means
a better result.

The third index employed to comprehensively evaluate the predictability of the proposed models is the
Kling—Gupta efficiency (KGE) [46]. It is defined as follows:

where r is the correlation coefficient between predicted and observed values, g, and oy denote the standard
deviation of the predicted and observed values, and u,~ and uy denote the mean value of the predicted and
observed values. The KGE of an ideal result is 1.

The last is the structural similarity (SSIM) index [47], which is often used to measure the similarity
between the actual and predicted images visually. It is defined as follows:

(2uypy + C1) (20" + C2)

SSIM = (u2y +u2y” + C1)(oy2 +oy2" + C2), (5)
where oy, denotes the covariance between the observed and predicted values, and Ciand C; are the

constants to enhance the stability of SSIM. The value of SSIM ranges from —1 to 1. The closer it is to 1, the

more similar two images are.
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Three scenes of images from the validation dataset were used to perform the evaluation: (1) prediction
on 7 December 2016 with reference on 5 November 2016 in P122R043; (2) prediction on 23 October 2017
with reference on 7 December 2016 in P122R044; (3) prediction on 1 March 2016
with reference on 16 April 2015 in P123R044. The quantitative evaluations in terms of RMSE, R?, KGE, and SSIM
for the fusion results are listed in Tables 1-3, respectively. The surface reflectance values in the following were
all scaled by 10,000, as with the image pixel values. We can obtain following information from the tables: (1)
For the DCSTFN model, overall the R metrics were greater than 0.9 for the three bands; the KGE indices were
greater than 0.8; and the SSIM indices were greater than 0.9. (2) Most metrics of DCSTFN were better than
conventional methods, but a few were not. For example, the RMSEs of STARFM were slightly smaller than
DCSTFN for some bands in a specific scene. (3) From the comprehensive evaluation of the prediction model,
KGE indices for DCSTFN were all better than the others and remained stable. From the visual inspection of the
output images, SSIM indices for DCSTFN showed a higher similarity than others. (4) The KGE of STARFM was
not stable, which shows that the input data quality had a great influence on the STARFM algorithm. The poor
KGE may be caused by the fact that there were some “nodata” pixels in the output of STARFM. In contrast, the
DCSTFN was very robust and not very sensitive to the input data quality.

Table 1. The quantitative evaluations for the fusion result on 7 December 2016 in P122R043 (The metrics of
DCSTFN are highlighted). FSDAF: flexible spatiotemporal data fusion; KGE: Kling—Gupta efficiency; RMSE: root-
mean-square error; SSIM: structural similarity; STARFM: spatial and temporal adaptive reflectance fusion

model.
Green Red NIR
DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF
RMSE 65.470 70.350 70.632  58.348 65.158 65.899  58.064 46.020 45.502
R2 0.919 0.906 0.906 0.956 0.945 0.944 0.994 0.997 0.997

KGE  0.879 _ 0.667  0.901 _ 0.745  0.884 0706  0.846
SSIM 0.964 0.936 0.957 0.925 0.920 0.846  0.890
Table 2. The quantitative evaluations for the fusion result on 23 October 2017 in P122R044.

Green Red NIR

DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF

RMSE 66.112 62.630 61.109 60.435 60.402 60.172 44.885 46.350 45912

R2 0.971 0.974 0.975 0.984 0.984 0.984 0.998 0.998 0.998
KGE 0.886 0.500 0.721 0.866 0.138 0.780 0.828 0.431 0.847
SSIM 0.909 0.872 0.867 0.880 0.822 0.829 0.809 0.783 0.801

Table 3. The quantitative evaluations for the fusion result on 1 March 2016 in P123R044.
Green Red NIR
DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF DCSTEN STARFM FSDAF

RMSE 60.159 66.696 64.183 61.737 66.488 65.135 49.796 44.160 43.952

R2 0.926 0.909 0.915 0.950 0.942 0.945 0.991 0.993 0.993
KGE ~ 0.870 0368 0751  0.858 _ 0.749  0.740 _ 0.682
SSIM 0.948 0.913 0.907 0.914 0.866 0.762 0.718

Figure 5 illustrates the fusion results on 7 December 2016 with reference on 5 November 2016 in
P122R043 from different models. The first row presents the overviews of the scene from different models, and
the second row corresponds to the yellow rectangles in the first row. The images of the first two rows are
standard false color composite. The last row shows the calculated Normalized Difference Vegetation Index
(NDVI) which is an important indicator that is frequently used in remote sensing analysis to quantify vegetation.
From Figure 5, it can be intuitively seen from the first row that in general the DCSTFN result was slightly closer
to the actual observation. The overall image tone of STARFM and FSDAF appeared darker than the observed
image, especially on the upper-left. Second, there were some “nodata” pixels in the STARFM result because of
the poor input data quality, as shown in the green rectangle, which does not exist in the DCSTFN model. Third,
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since the input Landsat image on 5 November 2016 was covered by small amount of clouds in the lower-right
corner corresponding to the orange rectangles, the fusion results were of course contaminated by clouds.
However, the DCSTFN result was the least affected among the three. Fourth, from the second row, it can be
seen that STARFM and FSDAF failed to catch the ground details of the urban area with heterogeneous features
marked with magenta rectangles, but the DCSTFN worked quite well. Fifth, the NDVI image derived from
DCSTFN output was apparently the closest to the actual observation, and detailed information can be seen
clearly. Hence, a conclusion can be safely drawn from Figure 5 that the DCSTFN model was more robust than
conventional methods regardless of the input data quality, and the results contained more details and showed
a higher accuracy. Note that the existing spatiotemporal fusion algorithms share the disadvantage that the
reference data have a significant impact on the prediction. Because the spatial resolution of the coarse MODIS
data need to be amplified sixteen times to match Landsat’s, much of the information needs to be referred
from the reference data. Inevitably, both the data quality of reference data and the degree of ground changes
between the reference and prediction date can influence the fusion result. Nevertheless, the DCSTFN model

less affected than the other two.
(1) Observed (2) DCSTFN (3) STARFM (4) FSDAF

The zoomed-in detail in the yellow rectangle
L e e % B " .

The NDVI of the zoomed-in detail

Figure 5. Illustration of data fusion results from different models on 7 December 2016 in P122R043. NDVI: Normalized

Difference Vegetation Index.

Figure 6 shows plots of the observed and predicted surface reflectance. The figure intuitively
demonstrates how the prediction results from different models fit into the actual observation. The samples
come from the the upper-left corner of the whole-scene images in Figure 5 (500 x 500). The color in the plots
indicates the density of points. For the visible bands, the R? of DCSTFN was slightly larger than STARFM and
FDSAF, and points far from the real values were less than the other two,

which means that the prediction error rate of DCSTFN was lower. For the NIR band, the “point cloud” of
DCSTFN was clearly narrower than the other two, which shows a higher correlation. In conclusion, both

statistical metrics and visual inspection of the correlation plots show that the results of DCSTFN
were closer to the actual observations than the other two.
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Figure 6. The correlation between observed and predicted surface reflectance on 7 December 2016 in P122R043.

4. Conclusions and Future Work

This paper introduces the deep learning approach into the remote sensing spatiotemporal data fusion
domain and produces a state-of-the-art result. The advantages of our CNN-based fusion approach are twofold:
(1) it can generate series of high spatiotemporal resolution images with high accuracy and it is more robust
and less-sensitive to the input data quality than conventional methods; and (2) the DCSTFN model can save
more time when handling large volumes of data for a long-time series analysis. Once the network is established,
it can be used for the entire dataset. In contrast, conventional methods are more suitable for tasks where
input data are of relatively good quality and the data volumes to be processed are not too large. We also made
our implementation code and trained network publicly accessible. Users can train on other areas with their
datasets based on our results
without starting from scratch.

We believe that future work with regard to the DCSTFN model should proceed in two directions. First,
some tuning practices from deep learning should be applied to the DCSTFN model to explore performance
improvements. For example, batch normalization [48] can be added into the layers of the network to reduce
overfitting. The idea of a residual network [49] can be introduced into the DCSTFN model to address the
degradation of the deep learning network. Second, a case study of practical analysis should be conducted to
evaluate whether the model can satisfy practical needs. Moreover, we want to utilize the deep learning
approach to explore the possibility of generating high spatiotemporal resolution images with only a single HTLS
image in the prediction period. To the best of our knowledge, existing spatiotemporal fusion algorithms all
need at least one HSLT and HTLS pair for reference. Inappropriate reference data can greatly influence the
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accuracy of the fusion result. However, it is often not easy to find high-quality reference images because of
cloud or ice cover in the study area. For this reason, we want to explore the possibility of using learned prior
knowledge from the HSLT images in the training period and then using the learned features and relational
mapping to derive the fusion result with only one HTLS image on the prediction day. If this is achieved, it will
greatly promote the use of the spatiotemporal fusion method in practical applications.
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Abbreviations

The following abbreviations are used in this manuscript:

MODIS MODerate Resolution Imaging Spectroradiometer

OIL Operational Land Imager

HTLS high temporal but low spatial resolution

LTHS low temporal but high spatial resolution

STARFM spatial and temporal adaptive reflectance fusion model

STAARCH spatial and temporal adaptive algorithm for mapping reflectance change
ESTARFM enhanced spatial and temporal adaptive reflectance fusion model
UBDF unmixed-based data fusion

FSDAF flexible spatiotemporal data fusion

SAM spatial attraction model

SPSTFM sparse-representation-based spatiotemporal reflectance fusion model
CNN convolutional neural network

DCSTFN deep convolutional spatiotemporal fusion network

LiDAR light detection and ranging

RelLU rectified linear unit

UTM Universal Transverse Mercator

SGD stochastic gradient descent

NIR near-infrared

RMSE root-mean-square error

KGE Kling—Gupta efficiency

SSIM structural similarity index

NDVI Normalized Difference Vegetation Index
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