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Abstract: Due to technical and budget limitations, there are inevitably some trade-offs in the design of 

remote sensing instruments, making it difficult to acquire high spatiotemporal resolution remote sensing 

images simultaneously. To address this problem, this paper proposes a new data fusion model named the 

deep convolutional spatiotemporal fusion network (DCSTFN), which makes full use of a convolutional neural 

network (CNN) to derive high spatiotemporal resolution images from remotely sensed images with high 

temporal but low spatial resolution (HTLS) and low temporal but high spatial resolution (LTHS). The DCSTFN 

model is composed of three major parts: the expansion of the HTLS images, the extraction of high frequency 

components from LTHS images, and the fusion of extracted features. The inputs of the proposed network 

include a pair of HTLS and LTHS reference images from a single day and another HTLS image on the prediction 

date. Convolution is used to extract key features from inputs, and deconvolution is employed to expand the 

size of HTLS images. The features extracted from HTLS and LTHS images are then fused with the aid of an 

equation that accounts for temporal ground coverage changes. The output image on the prediction day has 

the spatial resolution of LTHS and temporal resolution of HTLS. Overall, the DCSTFN model establishes a 

complex but direct non-linear mapping between the inputs and the output. Experiments with MODerate 

Resolution Imaging Spectroradiometer (MODIS) and Landsat Operational Land Imager (OLI) images show that 

the proposed CNN-based approach not only achieves state-of-the-art accuracy, but is also more robust than 

conventional spatiotemporal fusion algorithms. In addition, DCSTFN is a faster and less time-consuming 

method to perform the data fusion with the trained network, and can potentially be applied to the bulk 

processing of archived data. 
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1 . Introduction 

The advances in modern sensor technology have greatly expanded the use of remote sensing images in 

scientific research and in many other life activities of humankind [1–3]. However, in practice, there are always 

some trade-offs in the design of remote sensing instruments due to technical and budget limitations. Satellites 

which image a wider swath width do have a shorter revisiting period, but this usually decreases the spatial 

resolution of observed images, and vice versa [4]. Currently, it is not easy to acquire images that have both 

high spatial and high temporal resolution [5,6]. For example, 
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the widely used Landsat images have enabled a 30-m spatial resolution in the visible and infrared spectral 

bands since the Landsat 4 was launched in 1982 [7]. The latest Landsat 8 maintains a 30-m resolution in most 

spectral bands, with a long revisiting period of 16 days (the same as Landsat 4, for data continuity purposes) 

[7]. Conversely, the MODerate Resolution Imaging Spectroradiometer (MODIS) instruments acquire data only 

at spatial resolution of 250 to 1000 m in multiple spectral bands, but MODIS provides daily coverage of most 

parts of our planet [8]. For the purpose of long-time series analysis of high spatial resolution imagery (e.g., 

vegetation-index-based monitoring of crop condition and anomalies at field scale [9,10], as well as water 

resource assessment [11]), a single high spatial resolution data source usually cannot meet the requirements 

of frequent temporal coverage. A number of remote sensing data fusion algorithms have been put forward to 

address this problem, and research has shown that generating high spatiotemporal data by fusing high spatial 

resolution images and high temporal resolution images from multiple data sources is a practical approach 

[12,13]. 

In the remote sensing domain, spatiotemporal data fusion refers to a class of techniques that merge two 

or more data sources which share similar spectral ranges to generate high spatiotemporal time-series data 

and to derive richer information than a single data source can provide. In most cases, one data source has high 

temporal but low spatial resolution (HTLS), while another has low temporal but high spatial resolution (LTHS). 

After years of development, the research field of spatiotemporal data fusion has established certain theories 

and methods, and some of these methods have been applied in practical geoscience analysis with respectable 

accuracy [13–15]. As far as we have considered, the existing spatiotemporal fusion algorithms can be classified 

into three categories: 

(1) transformation-based; (2) reconstruction-based; and (3) learning-based [16]. 

The transformation-based methods employ specialized mathematical transforms, such as wavelet 

transform [17], to transform data from spatial domain to another domain—typically to a frequency or 

frequency-equivalent domain. Clear, high-frequency components are then extracted from the transformed 

LTHS images and are merged with HTLS images using elaborately designed fusion rules. The theoretical basis 

of this approach is that images in different spaces reveal different types of features, which allows a well-

designed algorithm to catch the desired features from specific spaces via appropriate transformations. 

The reconstruction-based methods generate composite images from weighted sums of spectrally similar 

neighboring pixels in the HTLS and LTHS image pairs [16]. At present, most of the spatiotemporal fusion 

algorithms fall into this category. The reconstruction-based methods can be further subdivided into two major 

groups: one is based on the ground coverage changes of different temporal images, and another is based on 

the components of mixed ground material end member fractions. In the first case, a hypothetical relation is 

established based on the difference or ratio deviation between the HTLS and LTHS image pair at the prediction 

time and a second image pair at a given reference time. Then, a moving window is employed to scan similar 

neighboring pixels locally and determine the weights. The final composite image is generated by a weighted 

sum of neighboring pixels in the moving window combined with the hypothetical relation. A typical example 

is the spatial and temporal adaptive reflectance fusion model (STARFM) [12]. It uses the differences between 

HTLS and LTHS to establish a relation, and searches similar neighboring pixels by spectral difference, temporal 

difference, and location distance. Inspired by STARFM, some other enhanced or improved fusion models have 

been proposed, such as the spatial and temporal adaptive algorithm for mapping reflectance change (STAARCH) 

[18], enhanced STARFM (ESTARFM) [5], and other STARFM-based models [19]. In general, the main differences 

among algorithms of this type are in the designs of HTLS and LTHS relations and in the rules used to determine 

weights. 

The second group attacks the same problem by using spectral unmixing techniques to calculate the end 

member fraction of mixed ground materials and replacing the corresponding components of HTLS at 

prediction time according to the the unmixed spectral information derived from LTHS at another given time. 

Typical examples are the unmixed-based data fusion (UBDF) method [20], the flexible spatiotemporal data 

fusion (FSDAF) method [21], and spatial attraction models (SAM) [22]. 

The learning-based methods have grown considerably in recent years. Their approaches employ sparse 

representation or machine learning techniques to extract some abstract features from volumes of data and 

then reconstruct the predicted data with the extracted features. The main ideas of the sparse-representation-
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based data fusion are based on the working hypothesis that the HTLS and LTHS data pairs share the same 

sparse coefficients. By jointly learning a sparse dictionary from the HTLS and LTHS data pairs, the HTLS images 

can be reconstructed to high spatial resolution images by sparse encoding algorithms. A typical example is the 

sparse-representation-based spatiotemporal reflectance fusion model (SPSTFM) [23]. Learning-based 

methods have received increasing attention and are expected to perform better than the conventional ones 

because they can gain more information from prior data. 

Generally speaking, the key factors of a successful fusion algorithm always lie in the design of activity 

level measurements and fusion rules [24]. Activity level measurements quantify the information quality 

contained in raw images [25], and fusion rules describe the process of recognizing the information. Hand-

crafted level measurements and fusion rules are usually designed based on some mathematical or physical 

theories. However, the actual data are usually contaminated with errors and noises, and are not conformant 

to the theoretical ideal. Although most of the algorithms may perform well for some data with great quality or 

with some specific characteristics in some geographical areas, they may fail with other data and in other areas. 

In practice, however, it is difficult to acquire sufficient data without cloud or ice cover for a specific area of 

interest, so the results of conventional algorithms turn out to be less accurate. Furthermore, in some areas 

within a specific time period there is little LTHS data left once the cloud-covered data are filtered out. That 

leaves no choice but to extend the time span between the reference data and prediction data. Unfortunately, 

this produces output that is very unreliable. Besides, the conventional methods process the data pair-by-pair, 

pixel-by-pixel—each image pair requires a long time to produce the output. In practical cases, where long-time 

series data are needed, this processing becomes very time-consuming. In contrast, the learning-based 

methods take time in the training process, but cost much less time in the prediction phase. 

In this paper, the problems associated with conventional methods are addressed by a deep learning 

approach to find a direct non-linear mapping relation between HTLS and LTHS images. Deep learning is a new 

branch in machine learning technology, inheriting and extending classical artificial neural network principles 

to automatically learn features and relations of data via more additional hidden processing layers [26,27]. It is 

widely used in computer vision, natural language processing, finance, and other areas, and has achieved state-

of-the-art results in many fields. The pervasive application of convolutional neural networks (CNNs) in speech 

recognition and visual object recognition and detection has especially drawn significant attention recently [28–

30]. The novelty of our approach is that a deep convolutional spatiotemporal fusion network (DCSTFN) is built 

by integrating convolution and deconvolution layers to improve the accuracy and robustness of fusion 

compared to conventional algorithms. The activity level measurement and fusion rules are actually learned 

from actual datasets and presented by the weights in each layer. In our experiment, Landsat 8 Operational 

Land Imager (OLI) and MODIS surface reflectance images are fed into the model to demonstrate its efficacy. 

The results show that the proposed DCSTFN method outperforms conventional fusion methods. Another 

significant aspect of the proposed CNN-based approach is its generality, which means it can be applied to 

various data sources and has enough robustness to handle the quality variations in input data. 

The rest of this paper is organized as follows. Section 2 introduces the whole architecture of the proposed 

DCSTFN model. Section 3 describes the experiment details and comparisons with other classical fusion 

methods. Discussion and conclusions are presented in Section 4. 

2. Materials and Methods 

2.1. CNN Model 

In machine learning, CNNs are a class of deep feed-forward neural networks designed and trained to 

extract hierarchical high-level features from inputs using multiple convolutional layers [26,31]. Thanks to the 

use of a convolution operator, CNNs have fewer connections and parameters than standard feed-forward 

networks of similar size. In this case, on the one hand, the training time is greatly reduced, on the other hand, 

it also substantially improves the accuracy of models in practice [30]. A classic CNN is comprised of one or 

more convolution layers, a subsampling (or called pooling) layer, finally followed by one or more fully-

connected (or called dense) layers to generate prediction. The front convolution layers in a CNN are intended 

to extract low-level features. More complex high-level features can be automatically extracted by increasing 
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the number of convolution layers. The pooling layer abstracts the raw features from the previous layer, 

reduces training parameters, and prevents the over-fitting of a model. 

Deconvolution is another operator that is often employed in CNN models in certain use scenarios, such 

as unsupervised learning [32], CNN visualization [33], as well as image segmentation and reconstruction 

[34,35]. Since deconvolution also acts as a convolution operator where the transformation is applied in the 

opposite direction of a regular convolution, mathematically, a convolution can be expressed as matrix 

multiplication and deconvolution is the reverse spatial transformation expressed as multiplication with the 

transposed filter matrix [36]. For this reason, deconvolution in deep learning actually refers to the transposed 

convolution or backward convolution. 

Originally, CNNs were applied to extract high-level features in the image classification and recognition 

tasks. Eventually, their applications were extended to the image super-resolution and data fusion domains 

with direct mapping between input(s) and output [24,37]. Currently, the applications of CNNs on image fusion 

are being actively explored. For example, a deep CNN model was successfully employed to merge images of 

the same scene taken with different focal settings to gain more clarity [24]. The accuracy of the pan-sharpening 

method for panchromatic and multispectral image fusion was increased by using CNN-based models [38,39]. 

In addition, CNN models have also been used in the fusion of multi-spectral and light detection and ranging 

(LiDAR) data [40]. However, for the problem of spatiotemporal data fusion, to the best of our knowledge, such 

studies have not yet been carried out widely. 

2.2. DCSTFN Architecture 

Inspired by the existing work in data fusion models, a deep convolutional fusion network was designed 

to derive high spatiotemporal resolution remote sensing images. The whole architecture of the DCSTFN can 

be divided into three parts: the expansion of the HTLS images, the extraction of high-frequency components 

from LTHS images, and the fusion of extracted features, as shown in Figure 1. The DCSTFN model needs three 

inputs: the HTLS image at prediction time and an HTLS and LTHS image pair at a time close to the prediction 

date for reference. The output is the high-resolution image on the prediction date. The two HTLS images go 

through the shared sub-network on the upper-left. Meanwhile, the reference LTHS image flows past the sub-

network on the lower-left. Next, the extracted features with the same size and dimension are merged together 

to derive the composite image. The arrows in Figure 1 stand for hidden processing layers, and the cubes 

represent the output tensors (namely multi-dimensional arrays) of each layer. The shape of the cube denotes 

the size and dimension of the tensor output from the previous layer in the network. Taking the MODIS and 

Landsat OLI data as an example, the MODIS data are resampled from 500 to 480 m, and the Landsat 8 OLI data 

remain at 30-m resolution. Thus, the spatial resolution of resampled MODIS data are sixteen times coarser 

than Landsat OLI. In the training phase, to reduce memory consumption, images are normally divided into 

smaller patches that can be fed into the network. If we assume the size of each MODIS image patch is 10 × 10, 

then the size of a Landsat patch is 160 × 160. Although images are divided into small patches during training, 

the input image size for prediction is absolutely not affected once the training process is completed. Besides, 

considering the large differences in ground surface reflectance from different spectral bands, a single image 

band should fed into the model to train its own weighted network. The training on the images from different 

bands will generate different networks under the common DCSTFN architecture. More details are discussed 

further below. 
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Figure 1. The architecture of the deep convolutional spatiotemporal fusion network (DCSTFN) model. 

First, a shared network is used for the HTLS image expansion. This sub-network consists of two 

convolution layers, three deconvolution layers, and another convolution layer. The two MODIS images both 

go through the sub-network to extract the low-frequency components and meanwhile expand their input size, 

respectively. The extracted features will provide the main frame and the background for the fusion result. In 

Figure 1, the two parameters of a convolution operator denote the number of feature maps and the size of 

the convolution window, respectively. The number of feature maps is undetermined parameters in a 

convolution, and the moving window was set to 3 × 3 empirically in our experiment. A rectified linear unit 

(ReLU) [41] activation function is used for each convolution or deconvolution layer in DCSTFN because ReLU is 

a commonly-used activation in mainstream CNN models and has achieved excellent results in practice [42]. 

The deconvolution layers employed in the shared network can expand the MODIS feature maps to the size of 

Landsat’s so that the two data sources have the same dimension and size in the fusion phase. The first two 

parameters in a deconvolution operator are the same as the standard convolution, and the last parameter 

specifies the stride along the convolution window. The stride of deconvolution in this model is set to 2. 

Therefore, three deconvolutions in the shared network will expand the size of MODIS feature maps eightfold. 

As shown in Figure 1, the input size of of the shared network for MODIS is 10 × 10 × 1, and the output size is 

80 × 80 × d2. 

The second part is the extraction of high-frequency components from LTHS images. This sub-network is 

a classical convolution network starting with two convolution layers, followed by a max-pooling layer that 

connects with two more convolution layers. The convolution layers are applied to the Landsat image patches 

to extract the high spatial frequency information like detailed edges and textures. The pooling layer is used to 

filter high-frequency information. There are three undetermined parameters di(i = 0,1,2) in the DCSTFN model, 

standing for the number of feature maps in three levels of abstraction. These parameters need to be tested 

and determined with practical experimentation. From Figure 1, the output size of this sub-network for Landsat 

shrinks from 160 × 160 × 1 to 80 × 80 × d2, which is the same as the output size of the sub-network for MODIS. 

The last part is the fusion of extracted feature maps from HTLS and LTHS images. A significant difference 

that distinguishes the DCSTFN model from conventional methods is that our fusion process is performed on 

the extracted abstract features, while most of the conventional algorithms conduct the fusion based on the 

original spectral signatures. In the preceding two sub-networks, the features from HTLS and LTHS inputs have 

coordinated with the same size and dimension. To merge the extracted features, a hypothetical equation from 

the STARFM model is adopted here. This equation defines the temporal ground coverage changes between 

HTLS and LTHS images from the reference time tk to the prediction time t0, and it can be formulated as follows: 

 LTHS(t0) = HTLS(t0)+ LTHS(tk)− HTLS(tk). (1) 
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Following this equation, the MODIS patches for reference at time tk are subtracted from Landsat patches 

for reference on the same day, then the differences are added to the MODIS patches for prediction at time t0. 

At this point, the high and low spatial frequency information extracted from Landsat and MODIS is merged. 

Then, a deconvolution layer is used to restore the merged patches to the original Landsat data size (160 × 160). 

Finally, two fully-connected layers are used to fine-tune the fusion output from the previous layer and reduce 

the output tensor dimension to restore the fine resolution image. The number of feature maps for the two full 

connections are set to d0 and 1 respectively. Notably, the last fully-connected layer is just a linear 

transformation without any activation operation. 

3. Experiment and Evaluation 

3.1. Data Preparation 

The data collected for the experiment came from the Landsat 8 OLI level-2 surface reflectance product, 

and from the MODIS surface reflectance 8-day L3 global 500 m (MOD09A1) product. The MODIS daily product 

naturally has a stronger correlation with the Landsat OLI data of the very same day than the 8-day’s, and thus 

using the MODIS daily product should theoretically generate a better result. The MODIS 8-day composite 

product was chosen in our experiment because the daily product has poor data quality, while the 8-day 

composite product shows much better quality as clouds have been removed as much as possible, missing data 

have been repaired, and each pixel contains the best possible observation during the 8-day composition period. 

Based on these considerations, this experiment used the MODIS 8-day product to test our model. In study 

areas where good-quality daily data are available, the DCSTFN model is totally applicable for the daily data. 

The initial preprocessing steps that must be performed for the image data are: radiometric calibration, 

geometric correction, and atmospheric correction. For level-2 products, these processes are done when the 

data are published. The two data sources are then reprojected into the same map projection and cropped to 

the same extent. In this experiment, each scene of Landsat images was cropped to the size of 4800 × 4800 by 

removing the “nodata” pixels from their boundaries. MODIS images are reprojected to the same Universal 

Transverse Mercator (UTM) projection system used by Landsat. Then, the MODIS data should be cropped to 

have the same geographical extent as the Landsat (size of 300 × 300). 

A detailed data preprocessing flow chart is shown in Figure 2. 

The study area was in the south of Guangdong province, China. The coordinates of the selected area in 

the Landsat Worldwide Reference System (WRS) were P122R043, P122R044, and P123R044, respectively. The 

corresponding coordinate to Landsat coverage in the MODIS Sinusoidal Tile Grid was h28v06. Images acquired 

from January 2013 to December 2017 with less than 10% cloud coverage were collected for this experiment. 

After the preprocessing, MODIS and Landsat data pairs for reference and prediction were organized in order. 

Each data group contained four images: a pair of MODIS and Landsat on the prediction date, and a pair on a 

specific date close to the prediction for reference. The basic rule for data grouping is that the date for reference 

data should be as close to the prediction data as possible. Since Guangdong is located in the subtropical zone 

with a humid climate, the acquired satellite images were often covered by ample clouds. If the time span 

between reference and prediction pairs was longer than two months, we searched the previous or next years 

to find appropriate reference data as close to the prediction data as possible within the same season. The 

DCSTFN training process is a type of supervised learning. Three images including Landsat for reference and 

MODIS for reference and prediction are entered into the model, and the observed Landsat image for prediction 

is the expected output that guides the direction of the training process. 
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Figure 2. The flow chart of data preprocessing. MODIS: MODerate Resolution Imaging Spectroradiometer; UTM: 

Universal Transverse Mercator. 

3.2. Experiment 

The DCSTFN model is implemented using Python programming language and the Keras [43] deep learning 

library with TensorFlow [44] as the computation backend. Keras provides simple, high-level Application 

Programming Interfaces (APIs) enabling rapid prototyping. There are three undetermined hyper-parameters 

di(i = 0, 1, 2) in the DCSTFN model, namely the number of feature maps in three abstraction levels. If these 

numbers are too large, the training process will take a long time doing computation, but if they are too small, 

the model will not acquire enough knowledge from the training data. Based on the previous CNN-based 

applications, the three parameters in our experiment were set to 32, 64, and 128, respectively. In this case, 

the learning network had 408,961 trainable weight parameters in total. The optimization algorithm used for 

training is called Adam [45], an improved stochastic gradient descent (SGD) method, and has been widely 

adopted in CNN training. The initial learning rate of Adam was set to 10−3, β1 = 0.9, β2 = 0.999, and the decay 

of the learning rate was set to 10−5. The loss function used for optimization is mean squared error (MSE), which 

represents the average of the squares of deviations between predicted values and true values. To contribute 

to the geoscience community, the implementation code and the trained network were released in open-

source format and can be publicly accessed via GitHub (https://github.com/theonegis/rs-data-fusion). 

In the training process, eleven image groups from January 2013 to December 2015 were selectively fed 

into the DCSTFN model for training, and another six groups from January 2016 to December 2017 were chosen 

for validation. The validation data do not participate in the training. The size of the 

MODIS image patch was cropped to 10 × 10, and the cropping stride was set to 5. In our experiment, 320 

patches were fed into the model in each training batch. Usually, a larger batch size tends to generate better 

results. This configuration can be adjusted according to the available hardware context. In the prediction 

period, an entire image can be entered into the trained network and directly to get the output—regardless of 

the image patch size in the training period. 

When training the network, a single epoch ingests the entire set of samples. As the number of epochs 

increases, the model can be trained more accurately. After entering the three different bands of data to the 

DCSTFN model each time, the weights of the network are optimized respectively. Figure 3 shows the evolution 
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of losses during a 50-epoch training period. The line color indicates different spectral bands, and the line style 

denotes training and validation periods. Figure 4 uses the coefficient of determination (R2) to represent the 

predicted results. The R2 is a statistical measure of how close the data are fitted to the regression function. It 

is defined as follows: 

 R , (2) 

where yi and yˆi are the observed and predicted values for the ith pixel values, y¯ denotes the mean of the 

observed values, and N is the number of pixels. R2 often ranges from 0 to 1, but it might be negative if the fit 

is much worse. The closer it is to 1, the better the prediction. 

The following conclusions can be drawn from the training process: (1) The losses of the DCSTFN model 

did not change significantly after 40 epochs and the network was considered converged; (2) The images of 

green spectral band had the smallest losses, closely followed by the red band, and the images of the near-

infrared (NIR) band had the highest losses; (3) The validation losses were slightly higher than the training losses, 

and the R2 of the validation data was slightly lower (less than 0.1) than the training data. This is normal, because 

the model learned enough features from the training data but had no knowledge about the validation data. 

However, a good model should produce an accurate prediction for unknown data using the knowledge from 

the existing data; (4) From the perspective of the coefficient of determination, the DCSTFN model showed the 

best fitness for red band images in that the R2 was slightly higher and steadier than the other two. For NIR 

images, the model did not perform as well as the other two; (5) Although the NIR band had a higher loss than 

the other bands, the R2 for NIR band was just slightly lower than others. This is because the NIR band has a 

wider value range than visible bands. Generally, the prediction results for the NIR band matched observations. 

Loss Curve 

 

Figure 3. Losses of the DCSTFN model. MSE: mean squared error; NIR: near-infrared. 
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Figure 4. Fitness of the DCSTFN model. 

3.3. Comparison 

To evaluate the proposed DCSTFN model, two conventional algorithms, including STARM and FSDAF, 

were compared to the DCSTFN model. STARFM accepts at least one reference image pair, while FSDAF and 

DCSTFN need only one reference pair. In our experiments, the input images for reference were limited to a 

single pair so that all of the evaluated algorithms had the same number of inputs. The actual observed Landsat 

data on the predicted days were used to evaluate the fusion results. By comparing the prediction results and 

observed data, some statistical metrics were used to obtain the final quantified evaluation results. In addition 

to the aforementioned R2, the root-mean-square error (RMSE), a common measurement of the differences 

between actual values and predictions, was also used. RMSE is defined as follows: 

 RMSE . (3) 

The symbols in this formula have the same meanings as for the calculation of R2. A smaller RMSE means 

a better result. 

The third index employed to comprehensively evaluate the predictability of the proposed models is the 

Kling–Gupta efficiency (KGE) [46]. It is defined as follows: 

 KGE , (4) 

where r is the correlation coefficient between predicted and observed values, σyˆ and σy denote the standard 

deviation of the predicted and observed values, and µyˆ and µy denote the mean value of the predicted and 

observed values. The KGE of an ideal result is 1. 

The last is the structural similarity (SSIM) index [47], which is often used to measure the similarity 

between the actual and predicted images visually. It is defined as follows: 

(2µyµyˆ + C1)(2σyyˆ + C2) 

 

 SSIM = (µ2y +µ2yˆ + C1)(σy2 +σy2ˆ + C2), (5) 

where σyyˆ denotes the covariance between the observed and predicted values, and C1 and C2 are the 

constants to enhance the stability of SSIM. The value of SSIM ranges from −1 to 1. The closer it is to 1, the 

more similar two images are. 
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Three scenes of images from the validation dataset were used to perform the evaluation: (1) prediction 

on 7 December 2016 with reference on 5 November 2016 in P122R043; (2) prediction on 23 October 2017 

with reference on 7 December 2016 in P122R044; (3) prediction on 1 March 2016 

with reference on 16 April 2015 in P123R044. The quantitative evaluations in terms of RMSE, R2, KGE, and SSIM 

for the fusion results are listed in Tables 1–3, respectively. The surface reflectance values in the following were 

all scaled by 10,000, as with the image pixel values. We can obtain following information from the tables: (1) 

For the DCSTFN model, overall the R2 metrics were greater than 0.9 for the three bands; the KGE indices were 

greater than 0.8; and the SSIM indices were greater than 0.9. (2) Most metrics of DCSTFN were better than 

conventional methods, but a few were not. For example, the RMSEs of STARFM were slightly smaller than 

DCSTFN for some bands in a specific scene. (3) From the comprehensive evaluation of the prediction model, 

KGE indices for DCSTFN were all better than the others and remained stable. From the visual inspection of the 

output images, SSIM indices for DCSTFN showed a higher similarity than others. (4) The KGE of STARFM was 

not stable, which shows that the input data quality had a great influence on the STARFM algorithm. The poor 

KGE may be caused by the fact that there were some “nodata” pixels in the output of STARFM. In contrast, the 

DCSTFN was very robust and not very sensitive to the input data quality. 

Table 1. The quantitative evaluations for the fusion result on 7 December 2016 in P122R043 (The metrics of 

DCSTFN are highlighted). FSDAF: flexible spatiotemporal data fusion; KGE: Kling–Gupta efficiency; RMSE: root-

mean-square error; SSIM: structural similarity; STARFM: spatial and temporal adaptive reflectance fusion 

model. 

  Green   Red   NIR  

 DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF 

RMSE 65.470 70.350 70.632 58.348 65.158 65.899 58.064 46.020 45.502 

R2 0.919 0.906 0.906 0.956 0.945 0.944 0.994 0.997 0.997 
KGE 
SSIM 

0.879 

0.964  
0.667 
0.936 

0.901 

0.957  
0.745 
0.925 

0.884 

0.920 
0.706 
0.846 

0.846 
0.890 

Table 2. The quantitative evaluations for the fusion result on 23 October 2017 in P122R044. 

  Green   Red   NIR  

 DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF 

RMSE 66.112 62.630 61.109 60.435 60.402 60.172 44.885 46.350 45.912 

R2 0.971 0.974 0.975 0.984 0.984 0.984 0.998 0.998 0.998 

KGE 0.886 0.500 0.721 0.866 0.138 0.780 0.828 0.431 0.847 
SSIM 0.909 0.872 0.867 0.880 0.822 0.829 0.809 0.783 0.801 

Table 3. The quantitative evaluations for the fusion result on 1 March 2016 in P123R044. 

  Green   Red   NIR  

 DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF 

RMSE 60.159 66.696 64.183 61.737 66.488 65.135 49.796 44.160 43.952 

R2 0.926 0.909 0.915 0.950 0.942 0.945 0.991 0.993 0.993 
KGE 
SSIM 

0.870 
0.948 

0.368 
0.913 

0.751 
0.907 

0.858 
0.914  

0.749 
0.866 

0.740 
0.762  

0.682 
0.718 

Figure 5 illustrates the fusion results on 7 December 2016 with reference on 5 November 2016 in 

P122R043 from different models. The first row presents the overviews of the scene from different models, and 

the second row corresponds to the yellow rectangles in the first row. The images of the first two rows are 

standard false color composite. The last row shows the calculated Normalized Difference Vegetation Index 

(NDVI) which is an important indicator that is frequently used in remote sensing analysis to quantify vegetation. 

From Figure 5, it can be intuitively seen from the first row that in general the DCSTFN result was slightly closer 

to the actual observation. The overall image tone of STARFM and FSDAF appeared darker than the observed 

image, especially on the upper-left. Second, there were some “nodata” pixels in the STARFM result because of 

the poor input data quality, as shown in the green rectangle, which does not exist in the DCSTFN model. Third, 
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since the input Landsat image on 5 November 2016 was covered by small amount of clouds in the lower-right 

corner corresponding to the orange rectangles, the fusion results were of course contaminated by clouds. 

However, the DCSTFN result was the least affected among the three. Fourth, from the second row, it can be 

seen that STARFM and FSDAF failed to catch the ground details of the urban area with heterogeneous features 

marked with magenta rectangles, but the DCSTFN worked quite well. Fifth, the NDVI image derived from 

DCSTFN output was apparently the closest to the actual observation, and detailed information can be seen 

clearly. Hence, a conclusion can be safely drawn from Figure 5 that the DCSTFN model was more robust than 

conventional methods regardless of the input data quality, and the results contained more details and showed 

a higher accuracy. Note that the existing spatiotemporal fusion algorithms share the disadvantage that the 

reference data have a significant impact on the prediction. Because the spatial resolution of the coarse MODIS 

data need to be amplified sixteen times to match Landsat’s, much of the information needs to be referred 

from the reference data. Inevitably, both the data quality of reference data and the degree of ground changes 

between the reference and prediction date can influence the fusion result. Nevertheless, the DCSTFN model 

less affected than the other two. 

 

Figure 5. Illustration of data fusion results from different models on 7 December 2016 in P122R043. NDVI: Normalized 

Difference Vegetation Index. 

Figure 6 shows plots of the observed and predicted surface reflectance. The figure intuitively 

demonstrates how the prediction results from different models fit into the actual observation. The samples 

come from the the upper-left corner of the whole-scene images in Figure 5 (500 × 500). The color in the plots 

indicates the density of points. For the visible bands, the R2 of DCSTFN was slightly larger than STARFM and 

FDSAF, and points far from the real values were less than the other two, 

which means that the prediction error rate of DCSTFN was lower. For the NIR band, the “point cloud” of 

DCSTFN was clearly narrower than the other two, which shows a higher correlation. In conclusion, both 

statistical metrics and visual inspection of the correlation plots show that the results of DCSTFN 

were closer to the actual observations than the other two. 

(1)  Observed (2)  DCSTFN (3)  STARFM (4)  FSDAF 

The overview of the scene 

The zoomed-in detail in the yellow rectangle 

The NDVI of the zoomed-in detail 
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 (a)DCSTFN for green band (b) DCSTFN for red band (c) DCSTFN for NIR band 

 

 (d) STARFM for green band (e) STARFM for red band (f) STARFM for NIR band 

 

 (g) FSDAF for green band (h) FSDAF for red band (i) FSDAF for NIR band 

Figure 6. The correlation between observed and predicted surface reflectance on 7 December 2016 in P122R043. 

4. Conclusions and Future Work 

This paper introduces the deep learning approach into the remote sensing spatiotemporal data fusion 

domain and produces a state-of-the-art result. The advantages of our CNN-based fusion approach are twofold: 

(1) it can generate series of high spatiotemporal resolution images with high accuracy and it is more robust 

and less-sensitive to the input data quality than conventional methods; and (2) the DCSTFN model can save 

more time when handling large volumes of data for a long-time series analysis. Once the network is established, 

it can be used for the entire dataset. In contrast, conventional methods are more suitable for tasks where 

input data are of relatively good quality and the data volumes to be processed are not too large. We also made 

our implementation code and trained network publicly accessible. Users can train on other areas with their 

datasets based on our results 

without starting from scratch. 

We believe that future work with regard to the DCSTFN model should proceed in two directions. First, 

some tuning practices from deep learning should be applied to the DCSTFN model to explore performance 

improvements. For example, batch normalization [48] can be added into the layers of the network to reduce 

overfitting. The idea of a residual network [49] can be introduced into the DCSTFN model to address the 

degradation of the deep learning network. Second, a case study of practical analysis should be conducted to 

evaluate whether the model can satisfy practical needs. Moreover, we want to utilize the deep learning 

approach to explore the possibility of generating high spatiotemporal resolution images with only a single HTLS 

image in the prediction period. To the best of our knowledge, existing spatiotemporal fusion algorithms all 

need at least one HSLT and HTLS pair for reference. Inappropriate reference data can greatly influence the 
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accuracy of the fusion result. However, it is often not easy to find high-quality reference images because of 

cloud or ice cover in the study area. For this reason, we want to explore the possibility of using learned prior 

knowledge from the HSLT images in the training period and then using the learned features and relational 

mapping to derive the fusion result with only one HTLS image on the prediction day. If this is achieved, it will 

greatly promote the use of the spatiotemporal fusion method in practical applications. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

MODIS MODerate Resolution Imaging Spectroradiometer 
OIL Operational Land Imager 

HTLS high temporal but low spatial resolution 
LTHS low temporal but high spatial resolution 
STARFM spatial and temporal adaptive reflectance fusion model 

STAARCH spatial and temporal adaptive algorithm for mapping reflectance change 
ESTARFM enhanced spatial and temporal adaptive reflectance fusion model 
UBDF unmixed-based data fusion 

FSDAF flexible spatiotemporal data fusion 
SAM spatial attraction model 
SPSTFM sparse-representation-based spatiotemporal reflectance fusion model 

CNN convolutional neural network 
DCSTFN deep convolutional spatiotemporal fusion network 
LiDAR light detection and ranging 

ReLU rectified linear unit 
UTM Universal Transverse Mercator 
SGD stochastic gradient descent 

NIR near-infrared 
RMSE root-mean-square error 
KGE Kling–Gupta efficiency 

SSIM structural similarity index 
NDVI Normalized Difference Vegetation Index 
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