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Abstract —In an accurate and timely manner, capturing the risk signals for a specific emerging
technology from academic publications is important to facilitate risk governance and to reduce the
potential negative impact on socioeconomic systems. In the past decade, three-dimensional printing
(3D printing) has become a promising emerging technology. To identify the relevant research on
risk analysis for 3D printing, term clumping on “risk analysis” is explored using a quantitative
method, and an integrated framework for risk identification is proposed with regard to 3D printing.
This method involves a variation of TF*IDF and several new metrics for a Boolean query of the
literature. The empirical results for the risk analysis studies of 3D printing show that, to date, very
little attention has been paid to the relevant topics. However, although the risk signals of 3D printing
are still weak and dispersed in many different categories, the potential threats to human health,
cyber-security, and the environment are revealed in some facets. This enables initiation of
strategies for anticipatory governance, involving science and technology policies and regulations.
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1. Introduction

In terms of emerging technologies (e.g., autonomous vehicles, the Internet of Things, and three-
dimensional printing [3D printing]), new opportunities and promising prospects in marketing
and entrepreneurship are the focus of research and public attention. Innovations, technological
revolutions, and dramatic changes in society are often related to the development of emerging
technologies. However, although technological evolution can produce excitement and have a
positive impact on society and the economic system, some emerging technologies also bring

new risks and threats to the environment, to health, and to safety (Taleb 2010; Kipper and
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Rampolla 2012; Sandler 2014).

While examining several historical cases about the development of emerging technologies,
complementary or alternative means were not considered until the risk had developed into a
real danger, or even a disaster. For instance, although early research articles noted the
detrimental impact of leaded gasoline on human health, the ban on leaded gasoline was only
gradually implemented from the 1980s (in Japan) to the 2000s (in China and India), and leaded
gasoline had been used for over 70 years (Zheng et al. 2004; Nichani et al. 2006; Huang et al.
2012). Leaded gasoline was an emerging and exciting technology in the 1920s when it was
invented and commercialized in the US. Therefore, as electric vehicles, an emerging or
disruptive technology replacing traditional fuel-driven vehicles, are developed, we must be
aware of and emphasize their potential negative impacts on our future. For example, electric
vehicles can reduce the emission of greenhouse gases and the particles of PM2.5 and decrease
noise pollution; however, battery recycling, the sudden burden on, and pollution of, power
plants, and the rapid growth in the operational complexity of the power system in urban areas
could cause serious social and economic risks and problems (Keefe et al. 2008; Cabrera-Castillo
et al. 2016; Yang et al. 2016).

In the past ten years, studies on 3D printing have dramatically increased, and the growth
in publications related to 3D printing in WOS (Web of Science) based on a relatively simple

search! is depicted in Figure 1.

1 TS=("3D Print*" or "Additive Manufactur*" OR "Three Dimension* Print*" OR "3D Bioprint*" OR "4D print*") Indexes=SCI-
EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=1990-2016. A
more complete or complicated strategy of search will be discussed in the following content.
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Figure 1. The growth in publications related to 3D printing in WOS between 1990 and 2016

Basically, neither 3D printing nor Additive Manufacturing is a novel concept in some
engineering areas (Espalin et al. 2014); however, the rapid growth has occurred in the past five
years — more than an exponential growth curve since 2013. Massive, center-oriented, and
standard manufacturing patterns must confront the challenges from small volumes and extreme
customized requirements (Espalin et al. 2014). Meanwhile, with the growth in small/home
factories, distributed production lines, flexible delivery systems, creativity industries, and
innovated incubators, 3D printing could become office or even home equipment in following
years (Niaki and Nonino 2017).

Meanwhile, with the irreversible commercialization of 3D printing technology, very little
attention has been paid to the possible negative impact of 3D printing technology on
socioeconomic systems and the environment. Stephens et al. (2013) argue that desktop 3D
printers could significantly increase the emissions of ultrafine particles and possibly harmful
aerosols. Further, in a recent control experiment on the emissions of a 3D printer, lung
deposition calculations indicated a threefold higher polylactic acid (PLA) particle deposition in
alveoli compared to ABS (acrylonitrile butadiene styrene) (Yi et al. 2016). In addition to the
emissions issues of 3D printing, the 3D-printed parts could pose threats of toxicity to human

health (Oskui et al. 2015).



Therefore, more holistically mastering the facets of risk to the environment, society, and
humans is significant for public policy-making and the other relevant issues in anticipatory
governance. To further explore the relevant issues, this article is organized as follows: (a)
related work; (b) methodology and analytical framework; (c) empirical study of the risk

analysis of 3D printing technology; and (d) limitations and discussions.

2. Related Work

Basically, risk analysis for a specific emerging technology is typically interdisciplinary research,
which involves different categories such as multi-engineering, multidisciplinary social sciences,
and so on (Kunreuther 2002). In contrast, for nanotechnology, as a notable and developed
emerging technology, its risk analysis could be more abundantly studied in past decades, even
derived from some specific branches (e.g., nanotoxicology [Oberdorster et al. 2007; Podila and
Brown 2013; Shatkin and Ong 2016]), and these relevant studies provided important
implications for policy-making. Similarly, studies on the risks of 3D printing technologies to
socioeconomic systems, the environment, and ecosystems, and relevant issues in cyber security,
human health, and intellectual property within the context of 3D printing, also have critical
significance in anticipatory governance.

Although the concept of emerging technology can be traced to the mid-1980s, the uniform
definition for emerging technology is still controversial, and there is a lack of consensus in
some fundamental elements. Recently, five distinguishing characteristics of an emerging
technology have been proposed: (a) radical novelty, (b) relatively fast growth, (¢) coherence,
(d) prominent impact, and (e) uncertainty and ambiguity (Rotolo et al. 2015). In particular, the
evaluation of uncertainty and ambiguity with respect to emerging technologies remains a
largely unexplored area (Rotolo et al. 2015).

Regarding risk analysis, the nature of risk is the primary issue. Although risk could have
many definitions in different scientific areas, Kaplan’s (1997) concept of risk and risk analysis
could be a typical view, based on which risk is a triplet of scenarios, likelihoods, and
consequences, and risk analysis concerns finding the complete set of such triplets (Kaplan
1997). In situations of deep uncertainty, each element in Kaplan’s triplet of risk is difficult to

determine. To mitigate the gap between traditional statistical methods and practical risk
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management, some constructive methods have been explored in the past five years; for example,
robust and adaptive risk analysis has been proposed (Kunreuther 2002; Pate-Cornell 2012).
However, these more constructive methods of risk analysis are only facilitated to improve the
measuring of alternative acts and probable consequences, whose completeness hypothesis
about risk scenarios is the same as that of traditional methods. Therefore, how to find more
complete information or knowledge about risk scenarios remains the critical challenge of risk
analysis and risk management.

In the past two decades, nanotechnology has been one of the most prevailing emerging
technologies and has attracted much attention and research on related risk analysis, perception,
and governance. However, the innovation and business activities associated with
nanotechnology precede policy development and environmental regulations, and the
governance gap on the risk of nanotechnology is significant (Renn and Roco 2006; McComas
and Besley 2011; Read et al. 2016). Shatkin and Ong (2016) argue that the nanotoxicology and
risk assessment of nanomaterials have seriously lagged behind the development of the
nanotechnology industry, particularly alternative testing methods and strategies for the risk
assessment of manufactured nanomaterials. In terms of the risk analysis of nanotechnology,
some iconic studies focus on three dimensions: the environment, health, and safety (EHS). EHS
involves too many categories and research areas to construct a concise terminology, and topic
modeling on risk analysis of EHS for a specific emerging technology appears to remain a
difficult issue.

From the perspective of risk assessment, because the data from emerging technologies are
too sparse and uncertain, a multi-criteria decision analysis (MCDA) is proposed to support early
decisions for emerging technologies (Bates et al. 2016). In terms of the risk perception of the
public, reducing knowledge deficits is correlated with positive perceptions of the risk of
emerging technologies in the early and controversy-free period, and the risk perception of
emerging technologies could be malleable to an extent (Satterfield et al. 2009; Pidgeon et al.
2011). When analyzing public opinion on emerging technologies, the risk perception and
benefit evaluation should be aggregated into a systematic approach, which could reduce the
public’s global bias to risk (Binder et al. 2012).

The factors of risk perception of emerging technologies could involve many different
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aspects, including psychological, social, and cultural aspects, and these factors shape individual
and social risk perceptions (Renn and Benighaus 2013). Based on the literature on the risk of
emerging technologies, the majority of the research comes from the social sciences,
environmental science, engineering, communication, and toxicology; therefore, the risk
management of emerging technologies is a multi-disciplinary or inter-disciplinary field.

Although it is difficult to find a uniform and undisputed definition of risk management for
emerging technologies (Kipper and Rampolla 2012), researchers related to the social sciences,
public administration, and environmental science. Researchers could be more concerned about
the impact of emerging technologies on socioeconomic and environmental-ecological systems
(An and Ahn 2016; Jeong et al 2016).

For complicated reasons, including economic development and the desire to encourage the
development of new technologies and related entrepreneurial activities, the policies of risk
prevention and remediation for emerging technologies always seem to lag in time (Renn and
Roco 2006; Gavankar et al. 2015). In an academic context, the relevant studies on the risk
analysis of emerging technologies are fragmented and distributed in many different disciplines,
and the indications of risk are considered too insignificant for policy decision-making,
particularly in the early stages. Uncovering the related research and initiatives on the risk
analysis of emerging technologies in a more efficient manner can provide justification for
policy-makers and attract more attention from diversified communities, including academia,
social services, and environmental governance.

In summary, there are several significant gaps between prior relevant literature and the
issues proposed by this article:

(1) Risk analysis is a typical multidisciplinary topic in the social sciences. Relatively, risk
analysis for a specific emerging technology lags behind industrial application and
commercialization. Although studies of risk analysis combined with emerging technologies are
also important issues—particularly for public administration, S&T policy, technology
management, and so forth—the topic terms (keywords) about “risk analysis” still lack a general
consensus and academic investigation. Thus, the relevant literature search on the risk analysis
for a specific emerging technology must favor a more personal experience than quantitative

methods. Basically, the relevant studies on risk analysis for a specific emerging technology are
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sparse, interdisciplinary, and dispersed in many different categories, particularly in the early
stages.

(2) Meanwhile, topic modeling and the topic terminology for 3D printing also remain
unexplored. Therefore, determining the topic descriptors on 3D printing could face challenges
involving many different engineering categories (e.g., mechanical engineering, material science,
manufacturing, automation, etc.). Therefore, capturing the highly relevant terms for 3D printing
also has significant value for subsequent studies.

(3) In addition, how to locate the relevant studies concerning risk analysis of a specific
emerging technology could be transferred into another more generalized question (e.g., how
can we find the most relevant research literature between two different topics via a quantitative
and efficient method?).

To mitigate the gaps between the current studies and the concrete needs in many relevant
facets, several research questions could be raised:

Question 1: What keywords/terms are highly relevant on the topic of risk analysis within
an academic context?

Question 2: In terms of highly relevant keywords on risk analysis, how can we determine
the relevant studies/literature for the risk analysis of 3D printing or find the best strategies for
literature retrieval?

Question 3: If a new analytical framework for capturing the literature on the risk analysis
of 3D printing is proposed, then how could its advantages or implications be interpreted?

Further, to address the questions raised above, an integrated framework based on a
technique of the variation of TF*IDF and several new metrics for a Boolean query is designed;

meanwhile, an empirical case study related to 3D printing is implemented.

3. Methodology and Analytical Framework

To mitigate the gaps noted above, the analytical, deductive process is designed and presented

in Figure 2, in which each step will be addressed in the following.
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Figure 2. Analytical and deduction flow of this article
In Figure 2, because 3D printing technology is involved in many different categories, a survey
for domain experts is added into step 5. Additionally, the topic models for risk analysis and
emerging technologies should be built to efficiently extract the related knowledge, and then,
the risk signs for an emerging technology could be used to determine the inter-knowledge
between the two topics.
Definition 1. It is assumed that a sign of risk in an emerging technology can be defined as
a simple tuple, as shown in equation (1).
Risk-Signal for a specific topic= <Documents, Terms> )
Definition 1 could apply to most traditional topic models. For example, if the elements in
equation (1) are described and presented by the probability distribution, then Definition 1 could
apply to an LDA model. On the other hand, if the documents represent the nodes, and the terms
represent the edges in a specific knowledge-map, then Definition 1 could partially match the
basic conception of the knowledge-map (Kim et al. 2003; Vickery 2013). In terms of the
documents, they could be an aggregating concept that could include multiple types of
documents (e.g., articles, patents, news, blogs, etc.). The terms represent the words that are
highly related to the specific topic. Because the two elements in equation 1 are time-varying,

they are functions that are consistent with the dynamic evolution.
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Based on equation 1, the inter-knowledge among different topics could be interpreted by
the intersection of two multi-dimensional sets and their relevant functions (from the perspective
of the set theory) or the overlapping areas of two different knowledge graphs (based on
knowledge mapping). Here, set theory is first utilized to leverage the elaborations, and
knowledge mapping theory is then interpreted.

Definition 2. The inter-knowledge for any two different topics can be represented by the
intersection of the document and term sets, which are the elements defined in equation 1 (i.e.,
the multi-dimensional and time-varying elements, as shown in equation 2).

Inter- KnowledgdT, , T;) ={ Udock |term; € dog, & term; € dog, } 2)
k=1

Based on equation 2 and temporarily ignoring the dynamic portion of the knowledge,
accurately identifying the static intersection content between two different research themes is
still complicated because the research topic or theme is thought of as a derivative concept that
obeys a specific probability distribution (Blei et al. 2003). However, in the practice or activities
of retrieving information, the relatively simple concept of a topic is a convenient, intuitive
approach that is often facilitated by accessing the knowledge (e.g., the topics of “3D printing,”
“risk management,” and “risk analysis”).

Based on equations 1 and 2, directed toward a specific emerging technology, the
intersection between the topic of “risk analysis” and the emerging technology could be valuable
knowledge for exploring signs of risk, particularly in the early stage of the technology life cycle.
Therefore, we first define the topic terms for “risk analysis” or highly relevant issues. Because
the journal Risk Analysis is a leading forum for risk analysis based on the comprehensive
perspectives of multi-disciplinary social sciences, the articles published in this journal are
selected as the corpus of risk analysis. The time span for access is from 2000 to 2016 in the
Web of Science (WOS) database.

In the criteria for extracting the topic terms of risk analysis, the basic philosophy of
TF*IDF (Term Frequency * Inverse Document Frequency) (Zhang et al. 2011) is referred to
and extended. Based on traditional TF*IDF theory, a specific term related to a certain topic
should present a much higher frequency in a relevant document compared to an irrelevant

document. Therefore, TF*IDF is a useful tool for weighting the different terms for topic
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discrimination. Furthermore, to extract the contrast sample of the corpus, a stratified sampling
method is utilized to extract the common corpus. From 2000 to 2016, a random 1,000 articles
were extracted in each year from the WOS database and the number of articles in the contrast
corpus was 17,000. Based on the two corpora, the extended or variation of TF*IDF is shown in

equation 3.

. worry o M | D]
Variation tf zdf)—(zni) (log1+|{j:tiedj|) )

In equation 3, " is the frequency of the term appearing in the related corpus on the

specific topic, and Zni is the sum of the frequency of all terms in the topic corpus. |D]| is
the number of documents in the contrast sample, and |{j: ¢, €d;| represents the frequency of

a specific term appearing in the contrast sample. Considering the expertise of the authors in the
relevant research fields, the author keywords are used as the critical source of topic terms.
However, in the data sample extracted from the WOS database, some of the records did not
contain author keyword data due to unknown technical reasons, according to Clarivate Help
response. Therefore, after data cleaning, 9,866 records in the contrast sample have valid content
in the Author Keywords field. The percentage of documents in the contrast sample that have
author keywords is 58.03%. Based on cleaning the data and equation 3, the top 50 terms for
risk analysis are shown in Table 1.

Table 1. Top 30 terms for risk analysis, based on equation 3

Author Keyword Term frequency  Variation(TF*IDF) Common Word
risk perception 0.11099 0.92539

risk assessment 0.1001 0.72582

risk communication 0.06068 0.4914 .

risk 0.04305 0.39592 risk

risk analysis 0.03683 0.31319

risk management 0.0389 0.28206

uncertainty 0.03631 0.25843 uncertainty
trust 0.02956 0.22428 trust

terrorism 0.02075 0.17645 terrorism
decision analysis 0.014 0.12876 decision analysis
uncertainty analysis 0.01504 0.1218 uncertainty
exposure assessment 0.01141 0.10494 exposure
microbial risk assessment 0.01089 0.10015 microbial

10



vulnerability 0.01089 0.10015 vulnerability

variability 0.01245 0.09724 variability

risk perceptions 0.01037 0.09537 risk

quantitative risk assessment 0.00985 0.09059 quantitative risk

benchmark dose 0.00985 0.09059 benchmark dose

sensitivity analysis 0.01141 0.08657 sensitivity analysis

precautionary principle 0.00934 0.0859 precautionary
principle

homeland security 0.00934 0.0859 homeland security

modeling 0.01349 0.08585 modeling

climate change 0.01141 0.07758 climate change

decision making 0.01037 0.07679 decision making

probabilistic risk assessment  0.0083 0.07633 risk

expert elicitation 0.0083 0.07633 expert elicitation

Campylobacter 0.00882 0.075 Campylobacter

Bayesian network 0.00882 0.075 Bayesian

expert judgment 0.0778 0.07155 expert judgment

food safety 0.00882 0.07143 food safety

In Table 1, some general keywords are in the top 30 terms in the risk analysis topic (e.g.,
modeling, trust, and decision analysis). This phenomenon could be due to the following: (1) the
core corpus for risk analysis is not sufficient, or the contrast corpus is too small or has a certain
bias of representation; or (2) these words are actually important for the specific topic, although
the contrast corpus is the entire WOS database, which contains over 24 million records between
2000 and 2016.

Further, according to the top 100 terms ordered by the variation of TF*IDF, some highly
relevant terms on risk analysis could be determined after excluding several significant general
words (e.g., modeling, trust, decision making, etc.). The Boolean search formula for the topic
of risk analysis is shown in Table 2.

Table 2. Boolean formula for “risk analysis” based on the top 100 terms ordered by the variation of TF*IDF

No | Search Formula for a topic in Web of Science

0# | TS=(risk™ OR uncertainty OR terrori* OR exposure OR vulnerability OR "microbial”" OR variability OR
"benchmark dose" OR "homeland security” OR "precautionary” OR "climate chang*" OR "expert
Jjudgment" OR "food safety” OR epidemiolog* OR "dose response” OR "natural hazard*" OR "particulate

matter” OR "nuclear waste" OR "invasive specie*" OR  "extreme event*" OR "air pollution” OR "cross
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contaminat®" OR "ecolog*" OR "cancer” OR "health*" OR "environment®" OR "global warming" OR

toxic* )

Regarding how to evaluate the identification or filtering of the relevant research on risk
analysis and emerging technology, the assessment criteria for signal recognition and knowledge
discovery provide the inspiration. In the traditional theory of knowledge discovery and the
relevant classification and clustering algorithms, two proportion values involving accuracy and
recall are often utilized to evaluate the performance of the algorithms; furthermore, the
harmonic mean of accuracy and recall also prevails in presenting the integrated perspective to
compare multiple models or algorithms (Domingos 1999; Lee et al. 2016). Meanwhile, the
Signal-Noise Ratio (SNR) and Signal-Gain Cost (SGC) are also referred to, in order to evaluate
the performance of Boolean queries. The relevant indicators are presented in equations 4, 5, 6,

7, and 8:

M.
u, while| D, | >0
Accuracy= | D, |

0, while| D, |=0

(4)

In Equation 4, the metric of Accuracy is utilized to present the proportion of matching
records in the i Boolean query experiment, in which [M;| represents the matched records and

|Di| presents all records.

M|
Recall=1|M | swhile | M [>0 %)
0, while |M|=0
In Equation 5, Recall is a metric that is often utilized to present the ratio for matched

records in the i Boolean query experiment with the total matched records (TMR)-M]|. To

some extent, [M| could be approximately substituted for by a benchmark value.

0, while| D, |5 M |=0;
1
lity = =1, 1
Utility D] N ] ,and o, + o, =1; @, 0, €[0,1] (6)
@y )
M, M.

1 l

In Equation 6, the metric of Utility can facilitate the combination between Recall and
Accuracy to evaluate the comprehensive performance among different Boolean queries for a

specific topic search. For example, if the Recall is the preference for a topic search, then the
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weight of Recall (i.e., m2) in Equation 6 could be much larger than the weight of Accuracy,

(i.e., o, or vice versa).

| M, | .
—t D |—|M >0
Signal- Noise Ratio (SNR) =1 | D, |—| M, |’Whlle| (=1 M (7)
0, otherwise
Equation 7 represents a typical metric of information theory and presents the ratio of
matching records to noise data.
L hile SNR >0
Signal—Gain Cost(SGC)=| sng’ "WHePV> (8)

O — oo, while SNR=0

In Equation 8, SGC is the reciprocal of SNR within the mathematical form, which can
more intuitively present the cost (noise amount) per matched record in a Boolean query
experiment.

The metrics of Accuracy, Recall, and Utility are often utilized to evaluate different
algorithms in computer science, and SNR and SGC are also two general measurements in
classical information theory consideration. How these metrics are integrated could be
meaningful and helpful for the following case study. Basically, how to discover the relevant
studies on risk analysis of 3D printing is a complicated query because of its interdisciplinary
characteristics, and because real signals could be sparse and dispersed in many different
categories; in other words, tremendous noise seems to be inevitable in Boolean queries on this

topic.

4. Empirical Study: Discovering the Relevant Literature on the Risk Analysis of
3D Printing in WOS

To verify the analytical framework introduced, a promising emerging technology, 3D printing,

is used as the case study (Rayna and Striukova 2016). The technology of 3D printing is still in

its early stages (Laplume et al. 2016). Theoretically, the topic model for 3D printing should be

built before the literature is retrieved; however, several topic terms clumped around 3D printing

are still controversial.
4.1 Data Collection

To obtain more accurate topic terms on 3D printing, step 5 in Figure 2 is decoupled into several

subsequent steps and depicted in Figure 3.
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Figure 3. The flow of capturing the topic terms on 3D printing
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e.g. CiteSpace,
vantagePpomt etc.

Based on the processing presented in Figure 3, topic keywords on 3D printing are
determined, based on which the relevant query result is shown in Table 3. Although four
subsequent steps in Figure 2 are processed, the bias could not be completely eliminated, and
the set of topic keywords on 3D printing in Table 3 remains a compromise.

Table 3. Boolean search formula for 3D Printing recommended by domain experts

No | Search formula in Web of Science Count Scope

1# | TS=("3D Printing" or "Solid Freeform Fabrication” | 18,182 Indexes=SCI-EXPANDED,
or "Rapid Prototyping" OR "Additive Manufacturing” SSCI, A&HCI, CPCI-S,
OR "Three Dimensional Printing” OR "3D CPCI-SSH, BKCI-S,
Bioprinting” OR "Direct ink writing" OR "Direc-write BKCI-SSH, ESCI, CCR-
assembly” OR '"solvent-cast 3D printing” OR "UV- EXPANDED, IcC
assisted 3D printing” OR '"radiation-assisted 3D Timespan=1996-2016
printing” OR "liquid deposition modeling” OR "two-
photon polymerization" OR "4D printing”)

Additionally, the Boolean formula could cause debate to some extent for different expert
groups or different perspectives. Based on the search strategy for 3D printing in Table 3, 18,182
publications in the WOS between 1996 and 2016 seem relevant for 3D printing, and the control
experiments through combining the “3D printing” terms with the topic of “risk analysis” are
shown in Table 4.

Table 4. Retrieval results combing 0# formula with 1# formula

Search Records | Matched | Accuracy | Recall | Utility SNR SGC
No

formula Records (©1=0.3, ®2=0.7)
24 1#and 0# | 2868 38 1.325% 100% 4.284%
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Before Boolean querying the 2# experiment between risk analysis and 3D printing
(although the noise data had been considered), such low accuracy and recall ratio are beyond
the prior estimation. Additionally, the query result raises interesting questions: (1) Which topic
keywords on risk analysis are actually helpful for this topic search, and which keywords
generate primarily noise? (2) How can we describe the noted areas and most likely keep blank
areas based on the subsequent experiments? and (3) Can the relevant Boolean formulas be
refined to improve the search performance based on the quantitative criteria?

To further explore these questions 38 matched publications are taken as the benchmark
value. The 38 matched records identified by abstract reading could have biased judgments due
to the authors’ knowledge background and personal cognitive habits; therefore, they are a

relatively compromised benchmark value for the following experiments and discussions.
4.2 Ildentifying the current noted areas on the risk analysis of 3D printing technology

Clearly, in Table 4, the tremendous noise data show that some topic terms for risk analysis
merely bring noise rather than actually relevant records, or offer relationships that we fail to
discern. To further identify the noted and blank areas on the risk analysis of 3D printing,
sequential Boolean queries are implemented by adding the topic keywords of risk analysis one
by one, and the accumulated noise data and matched records are calculated. The sequential
Boolean queries are shown in Table 5, and the result is shown in Figure 4.

Table 5. Boolean queries for single keywords on risk analysis combined with 1# formula

Accu Accumul

Term of risk Matc

No Count | mulat ated Accuracy | Recall SNR SGC
analysis hes

ion Matches

1# and

3# 248 248 12 12 4.84% 31.58% | 5.08% | 19.67
TS=risk*
1# and TS=

4# ) 108 356 1 13 0.93% 2.63% 0.93% | 107.00
uncertainty
1# and TS=

S# 4 360 0 13 0.00% 0.00% 0.00% | -
terrori*
1#and TS =

6# 276 636 3 16 1.09% 7.89% 1.10% | 91.00
exposure
1# and TS= 16.67

T# 7 643 1 17 14.29% 2.63% 6.00
vulnerability %
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8#

1# and TS=

microbial

20

663

17

0.00%

0.00%

0.00%

O

1# and TS=

variability

78

741

17

0.00%

0.00%

0.00%

10#

1# and TS=
“benchmark

dose”

741

17

0.00%

11#

1# and TS=
“homeland

security”

744

17

0.00%

0.00%

0.00%

12#

1# and TS=

precautionary

744

17

0.00%

13#

1# and TS=
"climate

chang*"

747

17

0.00%

0.00%

0.00%

14#

1# and TS=
"expert

judgment"

747

17

0.00%

15#

1# and TS=
"food safety"

751

18

25.00%

2.63%

33.33
%

3.00

16#

1# and TS=

epidemiolog*

754

18

0.00%

0.00%

0.00%

17#

1# and TS=
"dose

response"

758

0.00%

0.00%

0.00%

18#

1# and TS=
"natural

hazard*"

758

0.00%

19#

1# and TS=
"particulate

matter"

760

0.00%

0.00%

0.00%

20#

1# and TS=
"nuclear

waste"

761

0.00%

0.00%

0.00%

21#

1# and TS=
"invasive

specie*"

762

0.00%

0.00%

0.00%

22#

1# and TS=
"extreme

event*"

762

0.00%

23#

1# and TS=

"air pollution"

762

0.00%

16




1# and TS=

24# | "cross 1 763 0 18 0.00% 0.00% 0.00% | -
contaminat*"
1# and TS=

25# 28 791 1 19 3.57% 2.63% 3.70% | 27.00
"ecolog*"
1# and TS=

26i# 145 936 0 19 0.00% 0.00% 0.00% | -
"cancer"
1# and TS=

27# 273 1209 4 23 1.47% 10.53% | 1.49% | 67.25
"health*"
1# and TS=

28# ] 1583 2792 11 34 0.69% 28.95% | 0.70% | 142.91
environment*
1# and TS=

29# | "global 1 2793 0 34 0.00% 0.00% 0.00% | -
warming"
1# and

30# 75 2868 4 38 5.33% 10.53% | 5.63% | 17.75
TS=toxic*

To clearly present the query results in Table 5, the columns of Match and Accumulated

Matches are shown in Figure 4.
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Figure 4. Matched and Accumulated Match results of the Boolean query in Table 5
From the results depicted in Table 5 and Figure 4, in the set of topic keywords on risk
analysis, several types of terms for the Boolean query of risk analysis on 3D printing could be
classified, such as:

(1) a complete noise term (CNT) that only adds noise in a Boolean query without any real
17



signal;

(2) a high SGC term (HST), which could bring some matched records (real signal)
accompanied by high costs (much more noise);

(3) a relatively efficient term (RET), which brings a real signal with a relatively low cost
(less noise); and

(4) a double zero term (DZT), which cannot be matched to any record.
The classification results based on the descriptions of the three types of CNT, HST, and RET
are presented in Table 6.

Table 6. Classification of the topic keywords on risk analysis based on Table 5 and Figure 3

Type | Terms Average SGC | Matched records

CNT | “terrori*”, “microbial”, “variability”, “epidemiolog*”, "dose | - 0
response”, '"particulate matter", "nuclear waste", "invasive

"non

specie*", "cross contaminat*", "cancer", "global warming"

HST | “uncertainty”, “exposure”, "health*", “environment*” 102.04 19

RET | “risk*”, “vulnerability”, "ecolog*", "food safety", “toxic*” 14.68 19

99¢¢ 9 <

DZT | “benchmark dose”, “precautionary, ”“expert judgment”, “natural | - 0

%99 <

hazard*”, “extreme event air pollution”
2 b

Based on the information presented in Table 6, although there are very few studies on the
risk analysis of 3D printing, issues such as the environment, health, food safety, and toxicity
are explored and discussed to some extent. However, other aspects of risk analysis (e.g.,
terrorism, cross contamination, cancer, precautionary governance, etc.) could be blind spots at
the current stage based on the WOS data. Although the keyword for “air pollution” is not
explicitly found in the matched records, several publications noted that the “emission of ultra-

fine particles” of 3D printers could be considered in the relevant exploration.

4.3 Refining the Boolean Query Formula based on the Risk Analysis of 3D printing

technology

Clearly, aiming at these four types of topic keywords noted in Table 6, to improve the
performance of the Boolean query, handling strategies could be considered such as: (1)

excluding CNT and DZT; and (2) refining HST based on the application context. Some attempts
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to refine the Boolean query are shown in Table 7.

Table 7. Attempts to refine the Boolean query on risk analysis of 3D printing

Search formula

Records

Matches

Accuracy

Recall

Utility (%)
(@1=0.3, @2=0.7)

31#

1# and TS=(risk* OR
uncertainty OR exposure OR
vulnerability OR "food safety"
OR "ecolog*" OR "health*" OR
"environment* impact" OR

toxic* )

1095

38

3.47%

100.00%

10.70

32#

1# and TS=(risk* OR
vulnerability OR "food safety"
OR "ecolog*" OR "health*" OR
"environment® impact" OR

toxic*)

733

34

4.64%

89.47%

13.79

33#

1# and TS=(risk* OR
uncertainty OR exposure OR
vulnerability OR "food safety"
OR "environment* impact" OR

toxic*)

796

38

4.77%

100.00%

14.32

34#

[#AND TS=(risk* OR
vulnerability OR "food safety"
OR "environment* impact" OR

toxic*)

420

35

8.33%

92.11%

22.94

common-sense synonyms of risk are implemented and shown in Table 8.

To compare the query results presented in Table 7, several extra Boolean queries based on

Table 8. Extra Boolean queries based on common-sense synonyms of risk

Utility (%)
No | Search formula Records | Matches | Accuracy | Recall
(@1=0.3, @2=0.7)
1# and TS=(risk* OR uncertainty
OR exposure OR vulnerability OR
35# | food OR ecolog® OR toxic* ) 193 15 7.77% 39.47% | 17.75
AND TS=( safe* OR health* OR
environment*)
1# and TS=environment* and
36# | TS=(risk OR impact OR threat* 219 20 9.13% 52.63% | 21.67
OR influence)
1# and TS=environment* and
37# ) ) 229 20 8.73% 52.63% | 20.99
TS=(risk OR impact OR threat*
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OR influence OR pollution OR

contaminat*)

1# and TS=(health* OR
environment® OR safe* OR food
38# OR air OR soil OR water) and 312 22 7.05% 57.89% | 18.30
TS=(risk OR impact OR threat*
OR pollution OR contaminat* OR
danger*)

1# and TS=(risk* OR exposure OR
vulnerability OR "food safety" OR

"environment® impact" OR
39# ) ) 720 31 4.31% 81.58% | 12.78
"environment™® perspective" OR
toxic* OR threat* OR "cyber*
security")

1# and TS=(risk* OR "pontential

exposure”" OR vulnerability OR
40# | "food safety" OR "environment* 592 28 4.73% 73.68% | 13.71
impact" OR toxic* OR "cyber*
security" OR safety)

Identifying the relevant literature on risk analysis for a specific emerging technology is
beyond the scope of a traditional topic query in the WOS or other academic databases. Here,
through 40 query experiments, the topic keywords of risk analysis could be significantly helpful

for finding the relevant studies on the risk analysis of 3D printing.

5. Discussions and Limitations

This article is simply inspired by the challenge of developing an ordinary query based on basic
Boolean operators; however, the final work put into this article is far beyond our estimation.
Even the literature retrieval in WOS based on simple Boolean computing and how to
completely find the interdisciplinary studies that bring together two different topics remain a
challenge, aiming at which some explorations are introduced in this article.

The paper offers some possible advances:

(1) The topic terms on risk analysis and 3D printing are explored based on an integrated
framework involving techniques such as co-word analysis, variation of TF*IDF, and the survey
of domain experts.

(2) Some metrics often utilized in computer science are proposed to evaluate the

performance of a Boolean query of an interdisciplinary research literature.
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(3) With the commercialization process of 3D printing, capturing the potential risk signals
is critically important for anticipatory governance and the policy-makers involved. Based on
the literature discovered in WOS, possible threats to the environment, human health, and social
security (such as emissions of ultra-fine particles from some commercial 3D printers), the
potential toxicity of 3D printed parts, the decryption of biological features, and the possible
infringement of intellectual property warrant further monitoring and in-depth research.

(4) The analytical framework proposed by this paper should seemingly generalize to
similar explorations — e.g., how to discover the relevant studies on risk analysis of synthetic
biology, or how to identify the relevant literature on the risk analysis of graphene technologies?

Meanwhile, in addition to the possible meanings and implications noted, some limitations
of this paper are significant and must be addressed:

First, the risk analysis corpus could cause controversy concerning the data source, even
though Risk Analysis is the leading relevant journal, because the concept of “leading” is fuzzy
and disputed. However, Risk Analysis is a professional journal in the relevant area; therefore,
the articles published in Risk Analysis should be a qualified, if not complete, data source for the
corpus. Theoretically, the contrast corpus based on the basic sampling methods could be
acceptable to some extent. An alternative solution for the contrast corpus could be developing
an interface to access Google Scholar or a third-party, large, and authoritative corpus.

Second, because the search strategies for 3D printing and risk analysis could be
controversial and the publication data from WOS could be insufficient, the case study needs to
be compared to other databases (e.g., Scopus and Google Scholar.) However, there is no
combination of search criteria that can find all of the relevant literature based on Boolean
operators. Therefore, obtaining uniform and undisputed term combinations on 3D printing
should be explored in depth in future research.

In terms of a specific emerging technology, capturing the risk signal and delivering the
risk signal for policy-making remain very difficult for researchers and decision-makers. With
regard to Kaplan’s theory of risk analysis (Kaplan 1997) and the latest relevant research
(McComas 2011; Read et al. 2016), the discovery of risk scenarios is still the most difficult for
all of the related issues compared to the other two elements: likelihoods and consequences.

Occasionally, creative or innovative ideas, models, and techniques on risk scenarios are
21



necessary (Kaplan 1997). In this paper, an integrated framework based on traditional
methodologies of bibliometrics and knowledge discovery is proposed to identify the risk signals
of a specific emerging technology, which are scattered and hidden in many different disciplinary

publications, particularly in the early stages.
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Appendix

Table 9. 38 publications related to the risk analysis of 3D printing

Articles Main Categories of WOS

Santos, A. L., Almeida, H. A., Bartolo, H., & Bartolo, P. J. (2012, July). A

decision tool for green manufacturing while utilizing additive process. In ) ) )
Mechanical Engineering

ASME 2012 11th Biennial Conference on Engineering Systems Design and

Analysis (pp. 155-161). American Society of Mechanical Engineers.

Baechler, C., DeVuono, M., & Pearce, J. M. (2013). Distributed recycling of
waste polymer into RepRap feedstock. Rapid Prototyping Journal, 19(2),
118-125.

Mechanical Engineering
Multidisciplinary Material

Science

Huang, S. H., Liu, P., Mokasdar, A., & Hou, L. (2013). Additive
manufacturing and its societal impact: a literature review. The International

Journal of Advanced Manufacturing Technology, 1-13.

Automation & Control
Engineering

Manufacturing Engineering

Stephens B., Azimi P., El Orch Z., et al. (2013). Ultrafine particle emissions
from desktop 3D printers. Atmospheric Environment, 79:334-339.

Environmental Sciences;
Meteorology & Atmospheric

Sciences

Le Bourhis, F., Kerbrat, O., Hascoét, J. Y., & Mognol, P. (2013). Sustainable
manufacturing: evaluation and modeling of environmental impacts in additive
manufacturing. The International Journal of Advanced Manufacturing

Technology, 69(9—-12), 1927-1939.

Automation & Control
Engineering

Manufacturing Engineering

Kreiger, M., & Pearce, J. M. (2013). Environmental life cycle analysis of

distributed three-dimensional printing and conventional manufacturing of

Multidisciplinary chemistry

Chemical engineering

22



polymer products. ACS Sustainable Chemistry & Engineering, 1(12), 1511—
1519.

Green & Sustainable Science &

Technology

Kellens, K., Renaldi, R., Dewulf, W., Kruth, J. P., & Duflou, J. R. (2014).
Environmental impact modeling of selective laser sintering processes. Rapid

Prototyping Journal, 20(6), 459—470.

Mechanical Engineering
Multidisciplinary Material

Science

Short, D. B., Volk, D., Badger, P. D., Melzer, J., Salerno, P., & Sirinterlikci,
A. (2014). 3D Printing (Rapid Prototyping) Photopolymers: An Emerging
Source of Antimony to the Environment. 3D Printing and Additive

Manufacturing, 1(1), 24-33.

Manufacturing Engineering

Mechanical Engineering

Yoon, H. S., Lee, J. Y., Kim, H. S., Kim, M. S., Kim, E. S, Shin, Y. J., ... &
Ahn, S. H. (2014). A comparison of energy consumption in bulk forming,
subtractive, and additive processes: Review and case study. International
Journal of Precision Engineering and Manufacturing-Green Technology,

1(3), 261-279.

Manufacturing Engineering
Mechanical Engineering
Green & Sustainable Science &

Technology

Depoorter, B. (2014). Intellectual property infringements & 3d printing:
Decentralized piracy. Hastings Law Journal, 65(6), 1483—-1503.

Law

Mani, M., Lyons, K. W., & Gupta, S. K. (2014). Sustainability
characterization for additive manufacturing. Journal of research of the

National Institute of Standards and Technology, 119, 419-428.

Instrument & Instrumentation

Applied Physics

Short, D. B., Sirinterlikei, A., Badger, P., & Artieri, B. (2015).
Environmental, health, and safety issues in rapid prototyping. Rapid

Prototyping Journal, 21(1), 105-110.

Mechanical Engineering
Multidisciplinary Material

Science

Hu JF. (2015).Thoughts on 3D printing. Proceedings of the 2015 international
conference on education, management, information and medicine (EMIM

2015), 8:499-502.

Business; Economics;

Management

Yampolskiy M., Schutzle L., Vaidya U., et al. (2015). Security challenges of
additive manufacturing with metals and alloys. Critical Infrastructure

Protection IX, 466:169—183.

Computer Science

Zhu F., Skommer J., Friedrich T., et al. (2015). 3D printed polymers toxicity
profiling - A caution for biodevice applications. MICRO+NANO
MATERIALS, DEVICES, AND SYSTEMS, 9668:1-7.

Nanoscience & Nanotechnology

Hunt EJ., Zhang CL., Anzalone N., et al. (2015). Polymer recycling codes for
distributed manufacturing with 3-D printers. Resources Conservation and

Recycling, 97: 24-30.

Environmental Engineering &

Sciences

KimY., Yoon C., Ham S., et al. (2015). Emissions of Nanoparticles and
Gaseous Material from 3D Printer Operation. Environmental Science &

Technology, 49(20):12044-12053.

Environmental Engineering;

Environmental Sciences

Afshar-Mohajer N., Wu CY., Ladun T., et al. (2015). Characterization of
particulate matters and total VOC emissions from a binder jetting 3D printer.

Building and Environment, 93:293-301.

Construction & Building
Technology; Environmental

Engineering

Zhu F., Friedrich T., Nugegoda D., et al. (2015). Assessment of the
biocompatibility of three-dimensional-printed polymers using multispecies

toxicity tests. BIOMICROFLUIDICS, 9(6):1-5.

Biochemical Research Methods;

Biophysics;
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Flank S., Ritchie GE., Maksimovic R. (2015). Anticounterfeiting Options for
Three-Dimensional Printing. 3D Printing and Additive Manufacturing,
2(4):181-189.

Manufacturing Engineering;

Materials Science

Oskui SM.,Diamante G., Liao CY., et al. (2016). Assessing and Reducing the
Toxicity of 3D-Printed Parts. Environmental Science & Technology Letter
3(1):1-6.

Environmental Engineering;

Environmental Sciences

Vimal K., Vinodh S., Brajesh P., et al. (2016). Rapid prototyping process
selection using multi criteria decision making considering environmental
criteria and its decision support system. Rapid Prototyping Journal, 22(2):
225-250.

Mechanical Engineering
Multidisciplinary Material

Science

YiJH., LeBouf RF., Duling MG., et al. (2016). Emission of particulate matter
from a desktop three-dimensional (3D) printer. Journal of Toxicology and

Environmental Health-Part A-Current Issues, 79(11): 453—465.

Environmental Sciences;
Occupational Health;
Toxicology

Barron S., Cho YM., Hua A., et al. (2016). Systems-Based Cyber Security in
the Supply Chain. Proceedings of 2016 IEEE Systems and Information
Engineering Design Symposium (SIEDS), pp. 20-25.

Computer Science

Azimi P., Zhao D., Pouzet C., et al. (2016). Emissions of Ultrafine Particles
and Volatile Organic Compounds from Commercially Available Desktop
Three-Dimensional Printers with Multiple Filaments. Environmental Science

& Technology, 50(3):1260—-1268.

Environmental Engineering;

Environmental Sciences

Zhang LY., Dong HW., El Saddik A. (2016). From 3D Sensing to Printing: A
Survey. ACM Transactions on Multimedia Computing Communications and

Applications, 12(2):1-23.

Computer Science,

Izdebska J., Zolek-Tryznowska Z. (2016). 3D food printing - facts and future.
AGRO Food Industry Hi-Tech, 27(2):33-37.

Biotechnology & Food Science
& Technology

Panda, B. N., Garg, A., & Shankhwar, K. (2016). Empirical investigation of
environmental characteristic of 3-D additive manufacturing process based on

slice thickness and part orientation. Measurement, 86, 293-300.

Multidisciplinary Engineering

Instruments & Instrumentation

Galbally, J., & Satta, R. (2016). Three-dimensional and two-and-a-half-
dimensional face recognition spoofing using three-dimensional printed

models. /IET Biometrics, 5(2), 83-91.

Computer science, Artificial

intelligence

Zeltmann SE.,Gupta N.,Tsoutsos NG., et al.(2016). Manufacturing and
Security Challenges in 3D Printing. JOM, 68(7):1872—-188]1.

Materials Science

Do Q., Martini B., Choo KKR. (2016). A Data Exfiltration and Remote
Exploitation Attack on Consumer 3D Printers. [EEE Transactions on

Information Forensics and Security, 11(10):2174-2186.

Computer Science

Nagarajan, H. P., Malshe, H. A., Haapala, K. R., & Pan, Y. (2016).
Environmental Performance Evaluation of a Fast Mask Image Projection
Stereolithography Process Through Time and Energy Modeling. Journal of
Manufacturing Science and Engineering, 138(10), 101004.

Manufacturing engineering

Mechanical engineering

Neely, E. L. (2016). The Risks of Revolution: Ethical Dilemmas in 3D
Printing from a US Perspective. Science and engineering ethics, 22(5), 1285—
1297.

Multidisciplinary Sciences
Multidisciplinary Engineering
Ethics
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History & Philosophy of

Science

Liu, Z., Ning, F., Cong, W, Jiang, Q., Li, T., Zhang, H., & Zhou, Y. (2016).
Energy Consumption and Saving Analysis for Laser Engineered Net Shaping ~ Energy & Fuels
of Metal Powders. Energies, 9(10), 763.

Environmental engineering
Tang, Y., Mak, K., & Zhao, Y. F. (2016). A framework to reduce product

Environmental sciences
environmental impact through design optimization for additive

Green & sustainable science &
manufacturing. Journal of Cleaner Production, 137, 1560-1572.

technology

Environmental engineering
Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability:

Environmental sciences
an exploratory study of the advantages and challenges. Journal of Cleaner

Production, 137, 1573-1587.

Green & sustainable science &

technology
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