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Abstract –In an accurate and timely manner, capturing the risk signals for a specific emerging 
technology from academic publications is important to facilitate risk governance and to reduce the 
potential negative impact on socioeconomic systems. In the past decade, three-dimensional printing 
(3D printing) has become a promising emerging technology. To identify the relevant research on 
risk analysis for 3D printing, term clumping on “risk analysis” is explored using a quantitative 
method, and an integrated framework for risk identification is proposed with regard to 3D printing. 
This method involves a variation of TF*IDF and several new metrics for a Boolean query of the 
literature. The empirical results for the risk analysis studies of 3D printing show that, to date, very 
little attention has been paid to the relevant topics. However, although the risk signals of 3D printing 
are still weak and dispersed in many different categories, the potential threats to human health, 
cyber-security, and the environment are revealed in some facets.  This enables initiation of 
strategies for anticipatory governance, involving science and technology policies and regulations. 

Key words: emerging technology; risk analysis; 3D printing; TF*IDF 

 

1. Introduction 

In terms of emerging technologies (e.g., autonomous vehicles, the Internet of Things, and three-

dimensional printing [3D printing]), new opportunities and promising prospects in marketing 

and entrepreneurship are the focus of research and public attention. Innovations, technological 

revolutions, and dramatic changes in society are often related to the development of emerging 

technologies. However, although technological evolution can produce excitement and have a 

positive impact on society and the economic system, some emerging technologies also bring 

new risks and threats to the environment, to health, and to safety (Taleb 2010; Kipper and 
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Rampolla 2012; Sandler 2014).  

While examining several historical cases about the development of emerging technologies, 

complementary or alternative means were not considered until the risk had developed into a 

real danger, or even a disaster. For instance, although early research articles noted the 

detrimental impact of leaded gasoline on human health, the ban on leaded gasoline was only 

gradually implemented from the 1980s (in Japan) to the 2000s (in China and India), and leaded 

gasoline had been used for over 70 years (Zheng et al. 2004; Nichani et al. 2006; Huang et al. 

2012). Leaded gasoline was an emerging and exciting technology in the 1920s when it was 

invented and commercialized in the US. Therefore, as electric vehicles, an emerging or 

disruptive technology replacing traditional fuel-driven vehicles, are developed, we must be 

aware of and emphasize their potential negative impacts on our future. For example, electric 

vehicles can reduce the emission of greenhouse gases and the particles of PM2.5 and decrease 

noise pollution; however, battery recycling, the sudden burden on, and pollution of, power 

plants, and the rapid growth in the operational complexity of the power system in urban areas 

could cause serious social and economic risks and problems (Keefe et al. 2008; Cabrera-Castillo 

et al. 2016; Yang et al. 2016).  

In the past ten years, studies on 3D printing have dramatically increased, and the growth 

in publications related to 3D printing in WOS (Web of Science) based on a relatively simple 

search1 is depicted in Figure 1. 

                                                             
1 TS= ("3D Print*" or "Additive Manufactur*" OR "Three Dimension* Print*" OR "3D Bioprint*" OR "4D print*") Indexes=SCI-
EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC Timespan=1990-2016. A 
more complete or complicated strategy of search will be discussed in the following content. 
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Figure 1. The growth in publications related to 3D printing in WOS between 1990 and 2016 

Basically, neither 3D printing nor Additive Manufacturing is a novel concept in some 

engineering areas (Espalin et al. 2014); however, the rapid growth has occurred in the past five 

years – more than an exponential growth curve since 2013.  Massive, center-oriented, and 

standard manufacturing patterns must confront the challenges from small volumes and extreme 

customized requirements (Espalin et al. 2014). Meanwhile, with the growth in small/home 

factories, distributed production lines, flexible delivery systems, creativity industries, and 

innovated incubators, 3D printing could become office or even home equipment in following 

years (Niaki and Nonino 2017).  

Meanwhile, with the irreversible commercialization of 3D printing technology, very little 

attention has been paid to the possible negative impact of 3D printing technology on 

socioeconomic systems and the environment. Stephens et al. (2013) argue that desktop 3D 

printers could significantly increase the emissions of ultrafine particles and possibly harmful 

aerosols. Further, in a recent control experiment on the emissions of a 3D printer, lung 

deposition calculations indicated a threefold higher polylactic acid (PLA) particle deposition in 

alveoli compared to ABS (acrylonitrile butadiene styrene) (Yi et al. 2016). In addition to the 

emissions issues of 3D printing, the 3D-printed parts could pose threats of toxicity to human 

health (Oskui et al. 2015).  
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Therefore, more holistically mastering the facets of risk to the environment, society, and 

humans is significant for public policy-making and the other relevant issues in anticipatory 

governance. To further explore the relevant issues, this article is organized as follows: (a) 

related work; (b) methodology and analytical framework; (c) empirical study of the risk 

analysis of 3D printing technology; and (d) limitations and discussions. 

2. Related Work 

Basically, risk analysis for a specific emerging technology is typically interdisciplinary research, 

which involves different categories such as multi-engineering, multidisciplinary social sciences, 

and so on (Kunreuther 2002). In contrast, for nanotechnology, as a notable and developed 

emerging technology, its risk analysis could be more abundantly studied in past decades, even 

derived from some specific branches (e.g., nanotoxicology [Oberdörster et al. 2007; Podila and 

Brown 2013; Shatkin and Ong 2016]), and these relevant studies provided important 

implications for policy-making. Similarly, studies on the risks of 3D printing technologies to 

socioeconomic systems, the environment, and ecosystems, and relevant issues in cyber security, 

human health, and intellectual property within the context of 3D printing, also have critical 

significance in anticipatory governance. 

Although the concept of emerging technology can be traced to the mid-1980s, the uniform 

definition for emerging technology is still controversial, and there is a lack of consensus in 

some fundamental elements. Recently, five distinguishing characteristics of an emerging 

technology have been proposed: (a) radical novelty, (b) relatively fast growth, (c) coherence, 

(d) prominent impact, and (e) uncertainty and ambiguity (Rotolo et al. 2015). In particular, the 

evaluation of uncertainty and ambiguity with respect to emerging technologies remains a 

largely unexplored area (Rotolo et al. 2015).  

Regarding risk analysis, the nature of risk is the primary issue. Although risk could have 

many definitions in different scientific areas, Kaplan’s (1997) concept of risk and risk analysis 

could be a typical view, based on which risk is a triplet of scenarios, likelihoods, and 

consequences, and risk analysis concerns finding the complete set of such triplets (Kaplan 

1997). In situations of deep uncertainty, each element in Kaplan’s triplet of risk is difficult to 

determine. To mitigate the gap between traditional statistical methods and practical risk 
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management, some constructive methods have been explored in the past five years; for example, 

robust and adaptive risk analysis has been proposed (Kunreuther 2002; Pate-Cornell 2012). 

However, these more constructive methods of risk analysis are only facilitated to improve the 

measuring of alternative acts and probable consequences, whose completeness hypothesis 

about risk scenarios is the same as that of traditional methods. Therefore, how to find more 

complete information or knowledge about risk scenarios remains the critical challenge of risk 

analysis and risk management. 

In the past two decades, nanotechnology has been one of the most prevailing emerging 

technologies and has attracted much attention and research on related risk analysis, perception, 

and governance. However, the innovation and business activities associated with 

nanotechnology precede policy development and environmental regulations, and the 

governance gap on the risk of nanotechnology is significant (Renn and Roco 2006; McComas 

and Besley 2011; Read et al. 2016). Shatkin and Ong (2016) argue that the nanotoxicology and 

risk assessment of nanomaterials have seriously lagged behind the development of the 

nanotechnology industry, particularly alternative testing methods and strategies for the risk 

assessment of manufactured nanomaterials. In terms of the risk analysis of nanotechnology, 

some iconic studies focus on three dimensions: the environment, health, and safety (EHS). EHS 

involves too many categories and research areas to construct a concise terminology, and topic 

modeling on risk analysis of EHS for a specific emerging technology appears to remain a 

difficult issue.  

From the perspective of risk assessment, because the data from emerging technologies are 

too sparse and uncertain, a multi-criteria decision analysis (MCDA) is proposed to support early 

decisions for emerging technologies (Bates et al. 2016). In terms of the risk perception of the 

public, reducing knowledge deficits is correlated with positive perceptions of the risk of 

emerging technologies in the early and controversy-free period, and the risk perception of 

emerging technologies could be malleable to an extent (Satterfield et al. 2009; Pidgeon et al. 

2011). When analyzing public opinion on emerging technologies, the risk perception and 

benefit evaluation should be aggregated into a systematic approach, which could reduce the 

public’s global bias to risk (Binder et al. 2012).   

The factors of risk perception of emerging technologies could involve many different 
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aspects, including psychological, social, and cultural aspects, and these factors shape individual 

and social risk perceptions (Renn and Benighaus 2013). Based on the literature on the risk of 

emerging technologies, the majority of the research comes from the social sciences, 

environmental science, engineering, communication, and toxicology; therefore, the risk 

management of emerging technologies is a multi-disciplinary or inter-disciplinary field.  

Although it is difficult to find a uniform and undisputed definition of risk management for 

emerging technologies (Kipper and Rampolla 2012), researchers related to the social sciences, 

public administration, and environmental science. Researchers could be more concerned about 

the impact of emerging technologies on socioeconomic and environmental-ecological systems 

(An and Ahn 2016; Jeong et al 2016).  

For complicated reasons, including economic development and the desire to encourage the 

development of new technologies and related entrepreneurial activities, the policies of risk 

prevention and remediation for emerging technologies always seem to lag in time (Renn and 

Roco 2006; Gavankar et al. 2015). In an academic context, the relevant studies on the risk 

analysis of emerging technologies are fragmented and distributed in many different disciplines, 

and the indications of risk are considered too insignificant for policy decision-making, 

particularly in the early stages. Uncovering the related research and initiatives on the risk 

analysis of emerging technologies in a more efficient manner can provide justification for 

policy-makers and attract more attention from diversified communities, including academia, 

social services, and environmental governance.  

In summary, there are several significant gaps between prior relevant literature and the 

issues proposed by this article: 

(1) Risk analysis is a typical multidisciplinary topic in the social sciences. Relatively, risk 

analysis for a specific emerging technology lags behind industrial application and 

commercialization. Although studies of risk analysis combined with emerging technologies are 

also important issues—particularly for public administration, S&T policy, technology 

management, and so forth—the topic terms (keywords) about “risk analysis” still lack a general 

consensus and academic investigation. Thus, the relevant literature search on the risk analysis 

for a specific emerging technology must favor a more personal experience than quantitative 

methods. Basically, the relevant studies on risk analysis for a specific emerging technology are 
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sparse, interdisciplinary, and dispersed in many different categories, particularly in the early 

stages. 

(2) Meanwhile, topic modeling and the topic terminology for 3D printing also remain 

unexplored. Therefore, determining the topic descriptors on 3D printing could face challenges 

involving many different engineering categories (e.g., mechanical engineering, material science, 

manufacturing, automation, etc.). Therefore, capturing the highly relevant terms for 3D printing 

also has significant value for subsequent studies. 

(3) In addition, how to locate the relevant studies concerning risk analysis of a specific 

emerging technology could be transferred into another more generalized question (e.g., how 

can we find the most relevant research literature between two different topics via a quantitative 

and efficient method?). 

To mitigate the gaps between the current studies and the concrete needs in many relevant 

facets, several research questions could be raised:  

Question 1: What keywords/terms are highly relevant on the topic of risk analysis within 

an academic context?  

Question 2: In terms of highly relevant keywords on risk analysis, how can we determine 

the relevant studies/literature for the risk analysis of 3D printing or find the best strategies for 

literature retrieval? 

Question 3: If a new analytical framework for capturing the literature on the risk analysis 

of 3D printing is proposed, then how could its advantages or implications be interpreted? 

Further, to address the questions raised above, an integrated framework based on a 

technique of the variation of TF*IDF and several new metrics for a Boolean query is designed; 

meanwhile, an empirical case study related to 3D printing is implemented. 

3. Methodology and Analytical Framework 

To mitigate the gaps noted above, the analytical, deductive process is designed and presented 

in Figure 2, in which each step will be addressed in the following. 
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Figure 2. Analytical and deduction flow of this article 

In Figure 2, because 3D printing technology is involved in many different categories, a survey 

for domain experts is added into step 5. Additionally, the topic models for risk analysis and 

emerging technologies should be built to efficiently extract the related knowledge, and then, 

the risk signs for an emerging technology could be used to determine the inter-knowledge 

between the two topics. 

Definition 1. It is assumed that a sign of risk in an emerging technology can be defined as 

a simple tuple, as shown in equation (1). 

Risk-Signal for a specific topic= <Documents, Terms>           (1) 

Definition 1 could apply to most traditional topic models. For example, if the elements in 

equation (1) are described and presented by the probability distribution, then Definition 1 could 

apply to an LDA model. On the other hand, if the documents represent the nodes, and the terms 

represent the edges in a specific knowledge-map, then Definition 1 could partially match the 

basic conception of the knowledge-map (Kim et al. 2003; Vickery 2013). In terms of the 

documents, they could be an aggregating concept that could include multiple types of 

documents (e.g., articles, patents, news, blogs, etc.). The terms represent the words that are 

highly related to the specific topic. Because the two elements in equation 1 are time-varying, 

they are functions that are consistent with the dynamic evolution. 
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Based on equation 1, the inter-knowledge among different topics could be interpreted by 

the intersection of two multi-dimensional sets and their relevant functions (from the perspective 

of the set theory) or the overlapping areas of two different knowledge graphs (based on 

knowledge mapping). Here, set theory is first utilized to leverage the elaborations, and 

knowledge mapping theory is then interpreted. 

Definition 2. The inter-knowledge for any two different topics can be represented by the 

intersection of the document and term sets, which are the elements defined in equation 1 (i.e., 

the multi-dimensional and time-varying elements, as shown in equation 2). 

}&{)(- kjki

n

k

kji doctermdocterm|docT,TKnowledgeInter =
=

1

        (2) 

Based on equation 2 and temporarily ignoring the dynamic portion of the knowledge, 

accurately identifying the static intersection content between two different research themes is 

still complicated because the research topic or theme is thought of as a derivative concept that 

obeys a specific probability distribution (Blei et al. 2003). However, in the practice or activities 

of retrieving information, the relatively simple concept of a topic is a convenient, intuitive 

approach that is often facilitated by accessing the knowledge (e.g., the topics of “3D printing,” 

“risk management,” and “risk analysis”). 

Based on equations 1 and 2, directed toward a specific emerging technology, the 

intersection between the topic of “risk analysis” and the emerging technology could be valuable 

knowledge for exploring signs of risk, particularly in the early stage of the technology life cycle. 

Therefore, we first define the topic terms for “risk analysis” or highly relevant issues. Because 

the journal Risk Analysis is a leading forum for risk analysis based on the comprehensive 

perspectives of multi-disciplinary social sciences, the articles published in this journal are 

selected as the corpus of risk analysis. The time span for access is from 2000 to 2016 in the 

Web of Science (WOS) database. 

In the criteria for extracting the topic terms of risk analysis, the basic philosophy of 

TF*IDF (Term Frequency * Inverse Document Frequency) (Zhang et al. 2011) is referred to 

and extended. Based on traditional TF*IDF theory, a specific term related to a certain topic 

should present a much higher frequency in a relevant document compared to an irrelevant 

document. Therefore, TF*IDF is a useful tool for weighting the different terms for topic 
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discrimination. Furthermore, to extract the contrast sample of the corpus, a stratified sampling 

method is utilized to extract the common corpus. From 2000 to 2016, a random 1,000 articles 

were extracted in each year from the WOS database and the number of articles in the contrast 

corpus was 17,000. Based on the two corpora, the extended or variation of TF*IDF is shown in 

equation 3.  

)
|dt:j{|

|D|
log(*)

n

n
()idf*tf(Variation

jii

i

+
=
 1                (3) 

In equation 3, in   is the frequency of the term appearing in the related corpus on the 

specific topic, and  in is the sum of the frequency of all terms in the topic corpus. |D|  is 

the number of documents in the contrast sample, and |dt:j{| ji   represents the frequency of 

a specific term appearing in the contrast sample. Considering the expertise of the authors in the 

relevant research fields, the author keywords are used as the critical source of topic terms. 

However, in the data sample extracted from the WOS database, some of the records did not 

contain author keyword data due to unknown technical reasons, according to Clarivate Help 

response. Therefore, after data cleaning, 9,866 records in the contrast sample have valid content 

in the Author Keywords field. The percentage of documents in the contrast sample that have 

author keywords is 58.03%. Based on cleaning the data and equation 3, the top 50 terms for 

risk analysis are shown in Table 1. 

Table 1. Top 30 terms for risk analysis, based on equation 3 

Author Keyword Term frequency Variation(TF*IDF) Common Word 

risk perception 0.11099 0.92539 

risk 

risk assessment 0.1001 0.72582 

risk communication 0.06068 0.4914 

risk 0.04305 0.39592 

risk analysis 0.03683 0.31319 

risk management 0.0389 0.28206 

uncertainty 0.03631 0.25843 uncertainty 

trust 0.02956 0.22428 trust 

terrorism 0.02075 0.17645 terrorism 

decision analysis 0.014 0.12876 decision analysis 

uncertainty analysis 0.01504 0.1218 uncertainty 

exposure assessment 0.01141 0.10494 exposure 

microbial risk assessment 0.01089 0.10015 microbial 
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vulnerability 0.01089 0.10015 vulnerability 

variability 0.01245 0.09724 variability 

risk perceptions 0.01037 0.09537 risk 

quantitative risk assessment 0.00985 0.09059 quantitative risk 

benchmark dose 0.00985 0.09059 benchmark dose 

sensitivity analysis 0.01141 0.08657 sensitivity analysis 

precautionary principle 0.00934 0.0859 
precautionary 

principle 

homeland security 0.00934 0.0859 homeland security 

modeling 0.01349 0.08585 modeling 

climate change 0.01141 0.07758 climate change 

decision making 0.01037 0.07679 decision making 

probabilistic risk assessment 0.0083 0.07633 risk 

expert elicitation 0.0083 0.07633 expert elicitation 

Campylobacter 0.00882 0.075 Campylobacter 

Bayesian network 0.00882 0.075 Bayesian 

expert judgment 0.0778 0.07155 expert judgment 

food safety 0.00882 0.07143 food safety 

 

In Table 1, some general keywords are in the top 30 terms in the risk analysis topic (e.g., 

modeling, trust, and decision analysis). This phenomenon could be due to the following: (1) the 

core corpus for risk analysis is not sufficient, or the contrast corpus is too small or has a certain 

bias of representation; or (2) these words are actually important for the specific topic, although 

the contrast corpus is the entire WOS database, which contains over 24 million records between 

2000 and 2016. 

Further, according to the top 100 terms ordered by the variation of TF*IDF, some highly 

relevant terms on risk analysis could be determined after excluding several significant general 

words (e.g., modeling, trust, decision making, etc.). The Boolean search formula for the topic 

of risk analysis is shown in Table 2. 

Table 2. Boolean formula for “risk analysis” based on the top 100 terms ordered by the variation of TF*IDF 

No Search Formula for a topic in Web of Science 

0# TS=(risk* OR uncertainty OR terrori* OR exposure OR vulnerability OR "microbial" OR variability OR 

"benchmark dose" OR "homeland security" OR "precautionary" OR "climate chang*" OR "expert 

judgment" OR "food safety" OR epidemiolog* OR "dose response" OR "natural hazard*" OR "particulate 

matter" OR "nuclear waste" OR "invasive specie*" OR  "extreme event*" OR "air pollution" OR "cross 
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contaminat*" OR "ecolog*" OR "cancer" OR "health*" OR "environment*" OR "global warming" OR 

toxic* ) 

 

Regarding how to evaluate the identification or filtering of the relevant research on risk 

analysis and emerging technology, the assessment criteria for signal recognition and knowledge 

discovery provide the inspiration. In the traditional theory of knowledge discovery and the 

relevant classification and clustering algorithms, two proportion values involving accuracy and 

recall are often utilized to evaluate the performance of the algorithms; furthermore, the 

harmonic mean of accuracy and recall also prevails in presenting the integrated perspective to 

compare multiple models or algorithms (Domingos 1999; Lee et al. 2016). Meanwhile, the 

Signal-Noise Ratio (SNR) and Signal-Gain Cost (SGC) are also referred to, in order to evaluate 

the performance of Boolean queries. The relevant indicators are presented in equations 4, 5, 6, 

7, and 8: 
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In Equation 4, the metric of Accuracy is utilized to present the proportion of matching 

records in the ith Boolean query experiment, in which |Mi| represents the matched records and 

|Di| presents all records. 
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In Equation 5, Recall is a metric that is often utilized to present the ratio for matched 

records in the ith Boolean query experiment with the total matched records (TMR)-|M|. To 

some extent, |M| could be approximately substituted for by a benchmark value. 
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In Equation 6, the metric of Utility can facilitate the combination between Recall and 

Accuracy to evaluate the comprehensive performance among different Boolean queries for a 

specific topic search. For example, if the Recall is the preference for a topic search, then the 
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weight of Recall (i.e., 2) in Equation 6 could be much larger than the weight of Accuracy, 

(i.e., 1, or vice versa). 


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Equation 7 represents a typical metric of information theory and presents the ratio of 

matching records to noise data. 
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In Equation 8, SGC is the reciprocal of SNR within the mathematical form, which can 

more intuitively present the cost (noise amount) per matched record in a Boolean query 

experiment. 

The metrics of Accuracy, Recall, and Utility are often utilized to evaluate different 

algorithms in computer science, and SNR and SGC are also two general measurements in 

classical information theory consideration. How these metrics are integrated could be 

meaningful and helpful for the following case study. Basically, how to discover the relevant 

studies on risk analysis of 3D printing is a complicated query because of its interdisciplinary 

characteristics, and because real signals could be sparse and dispersed in many different 

categories; in other words, tremendous noise seems to be inevitable in Boolean queries on this 

topic. 

4. Empirical Study: Discovering the Relevant Literature on the Risk Analysis of 

3D Printing in WOS 

To verify the analytical framework introduced, a promising emerging technology, 3D printing, 

is used as the case study (Rayna and Striukova 2016). The technology of 3D printing is still in 

its early stages (Laplume et al. 2016). Theoretically, the topic model for 3D printing should be 

built before the literature is retrieved; however, several topic terms clumped around 3D printing 

are still controversial.  

4.1 Data Collection 

To obtain more accurate topic terms on 3D printing, step 5 in Figure 2 is decoupled into several 

subsequent steps and depicted in Figure 3. 
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Figure 3. The flow of capturing the topic terms on 3D printing 

Based on the processing presented in Figure 3, topic keywords on 3D printing are 

determined, based on which the relevant query result is shown in Table 3. Although four 

subsequent steps in Figure 2 are processed, the bias could not be completely eliminated, and 

the set of topic keywords on 3D printing in Table 3 remains a compromise. 

Table 3. Boolean search formula for 3D Printing recommended by domain experts 

No Search formula in Web of Science Count Scope 

1# TS=("3D Printing" or "Solid Freeform Fabrication" 

or "Rapid Prototyping" OR "Additive Manufacturing" 

OR "Three Dimensional Printing" OR "3D 

Bioprinting" OR "Direct ink writing" OR "Direc-write 

assembly" OR "solvent-cast 3D printing" OR "UV-

assisted 3D printing" OR "radiation-assisted 3D 

printing" OR "liquid deposition modeling" OR "two-

photon polymerization" OR "4D printing") 

18,182 Indexes=SCI-EXPANDED, 

SSCI, A&HCI, CPCI-S, 

CPCI-SSH, BKCI-S, 

BKCI-SSH, ESCI, CCR-

EXPANDED, IC 

Timespan=1996-2016 

Additionally, the Boolean formula could cause debate to some extent for different expert 

groups or different perspectives. Based on the search strategy for 3D printing in Table 3, 18,182 

publications in the WOS between 1996 and 2016 seem relevant for 3D printing, and the control 

experiments through combining the “3D printing” terms with the topic of “risk analysis” are 

shown in Table 4. 

Table 4. Retrieval results combing 0# formula with 1# formula 

No 

Search 

formula 

Records Matched 

Records 

Accuracy Recall Utility  

(1=0.3, 2=0.7) 

SNR SGC 

2# 1# and 0# 2868 38 1.325% 100% 4.284%   
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Before Boolean querying the 2# experiment between risk analysis and 3D printing 

(although the noise data had been considered), such low accuracy and recall ratio are beyond 

the prior estimation. Additionally, the query result raises interesting questions: (1) Which topic 

keywords on risk analysis are actually helpful for this topic search, and which keywords 

generate primarily noise? (2) How can we describe the noted areas and most likely keep blank 

areas based on the subsequent experiments? and (3) Can the relevant Boolean formulas be 

refined to improve the search performance based on the quantitative criteria?  

To further explore these questions 38 matched publications are taken as the benchmark 

value. The 38 matched records identified by abstract reading could have biased judgments due 

to the authors’ knowledge background and personal cognitive habits; therefore, they are a 

relatively compromised benchmark value for the following experiments and discussions. 

4.2 Identifying the current noted areas on the risk analysis of 3D printing technology 

Clearly, in Table 4, the tremendous noise data show that some topic terms for risk analysis 

merely bring noise rather than actually relevant records, or offer relationships that we fail to 

discern. To further identify the noted and blank areas on the risk analysis of 3D printing, 

sequential Boolean queries are implemented by adding the topic keywords of risk analysis one 

by one, and the accumulated noise data and matched records are calculated. The sequential 

Boolean queries are shown in Table 5, and the result is shown in Figure 4. 

Table 5. Boolean queries for single keywords on risk analysis combined with 1# formula 

No 
Term of risk 

analysis 
Count 

Accu

mulat

ion 

Matc

hes 

Accumul

ated 

Matches 

Accuracy Recall SNR SGC 

3# 
1# and 

TS=risk* 
248 248 12 12 4.84% 31.58% 5.08% 19.67  

4# 
1# and TS= 

uncertainty 
108 356 1 13 0.93% 2.63% 0.93% 107.00  

5# 
1# and TS= 

terrori* 
4 360 0 13 0.00% 0.00% 0.00% - 

6# 
1# and TS = 

exposure 
276 636 3 16 1.09% 7.89% 1.10% 91.00  

7# 
1# and TS= 

vulnerability 
7 643 1 17 14.29% 2.63% 

16.67

% 
6.00  
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8# 
1# and TS= 

microbial 
20 663 0 17 0.00% 0.00% 0.00% - 

9# 
1# and TS= 

variability 
78 741 0 17 0.00% 0.00% 0.00% - 

10# 

1# and TS= 

“benchmark 

dose” 

0 741 0 17 - 0.00% - - 

11# 

1# and TS= 

“homeland 

security” 

3 744 0 17 0.00% 0.00% 0.00% - 

12# 
1# and TS= 

precautionary 
0 744 0 17 - 0.00% - - 

13# 

1# and TS= 

"climate 

chang*"  

3 747 0 17 0.00% 0.00% 0.00% - 

14# 

1# and TS= 

"expert 

judgment" 

0 747 0 17 - 0.00% - - 

15# 
1# and TS= 

"food safety"  
4 751 1 18 25.00% 2.63% 

33.33

% 
3.00  

16# 
1# and TS= 

epidemiolog* 
3 754 0 18 0.00% 0.00% 0.00% - 

17# 

1# and TS= 

"dose 

response" 

4 758 0 18 0.00% 0.00% 0.00% - 

18# 

1# and TS= 

"natural 

hazard*"  

0 758 0 18 - 0.00% - - 

19# 

1# and TS= 

"particulate 

matter" 

2 760 0 18 0.00% 0.00% 0.00% - 

20# 

1# and TS= 

"nuclear 

waste"  

1 761 0 18 0.00% 0.00% 0.00% - 

21# 

1# and TS= 

"invasive 

specie*" 

1 762 0 18 0.00% 0.00% 0.00% - 

22# 

1# and TS= 

"extreme 

event*" 

0 762 0 18 - 0.00% - - 

23# 
1#  and TS= 

"air pollution" 
0 762 0 18 - 0.00% - - 
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24# 

1# and TS= 

"cross 

contaminat*" 

1 763 0 18 0.00% 0.00% 0.00% - 

25# 
1# and TS= 

"ecolog*"  
28 791 1 19 3.57% 2.63% 3.70% 27.00  

26# 
1# and TS= 

"cancer"  
145 936 0 19 0.00% 0.00% 0.00% - 

27# 
1# and TS= 

"health*"  
273 1209 4 23 1.47% 10.53% 1.49% 67.25  

28# 
1# and TS= 

environment* 
1583 2792 11 34 0.69% 28.95% 0.70% 142.91  

29# 

1# and TS= 

"global 

warming"  

1 2793 0 34 0.00% 0.00% 0.00% - 

30# 
1# and 

TS=toxic* 
75 2868 4 38 5.33% 10.53% 5.63% 17.75  

To clearly present the query results in Table 5, the columns of Match and Accumulated 

Matches are shown in Figure 4. 

 

Figure 4. Matched and Accumulated Match results of the Boolean query in Table 5 

From the results depicted in Table 5 and Figure 4, in the set of topic keywords on risk 

analysis, several types of terms for the Boolean query of risk analysis on 3D printing could be 

classified, such as:  

(1) a complete noise term (CNT) that only adds noise in a Boolean query without any real 
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signal;  

(2) a high SGC term (HST), which could bring some matched records (real signal) 

accompanied by high costs (much more noise);  

(3) a relatively efficient term (RET), which brings a real signal with a relatively low cost 

(less noise); and  

(4) a double zero term (DZT), which cannot be matched to any record.  

The classification results based on the descriptions of the three types of CNT, HST, and RET 

are presented in Table 6. 

Table 6. Classification of the topic keywords on risk analysis based on Table 5 and Figure 3 

Type Terms Average SGC Matched records 

CNT “terrori*”, “microbial”, “variability”, “epidemiolog*”, "dose 

response", "particulate matter", "nuclear waste", "invasive 

specie*", "cross contaminat*", "cancer", "global warming" 

- 0 

HST “uncertainty”, “exposure”, "health*", “environment*” 102.04 19 

RET “risk*”, “vulnerability”, "ecolog*", "food safety", “toxic*” 14.68 19 

DZT “benchmark dose”, “precautionary, ”“expert judgment”, “natural 

hazard*”, “extreme event*”, “air pollution” 

- 0 

Based on the information presented in Table 6, although there are very few studies on the 

risk analysis of 3D printing, issues such as the environment, health, food safety, and toxicity 

are explored and discussed to some extent.  However, other aspects of risk analysis (e.g., 

terrorism, cross contamination, cancer, precautionary governance, etc.) could be blind spots at 

the current stage based on the WOS data. Although the keyword for “air pollution” is not 

explicitly found in the matched records, several publications noted that the “emission of ultra-

fine particles” of 3D printers could be considered in the relevant exploration.  

4.3 Refining the Boolean Query Formula based on the Risk Analysis of 3D printing 

technology 

Clearly, aiming at these four types of topic keywords noted in Table 6, to improve the 

performance of the Boolean query, handling strategies could be considered such as: (1) 

excluding CNT and DZT; and (2) refining HST based on the application context. Some attempts 
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to refine the Boolean query are shown in Table 7. 

Table 7.  Attempts to refine the Boolean query on risk analysis of 3D printing 

No Search formula Records Matches Accuracy Recall 
Utility (%) 

(1=0.3, 2=0.7) 

31# 

1# and TS=(risk* OR 

uncertainty OR exposure OR 

vulnerability OR "food safety" 

OR "ecolog*" OR "health*" OR 

"environment* impact" OR 

toxic* ) 

1095 38 3.47% 100.00% 10.70  

32# 

1# and TS=(risk* OR 

vulnerability OR "food safety" 

OR "ecolog*" OR "health*" OR 

"environment* impact" OR 

toxic*) 

733 34 4.64% 89.47% 13.79  

33# 

1# and TS=(risk* OR 

uncertainty OR exposure OR 

vulnerability OR "food safety" 

OR "environment* impact" OR 

toxic*) 

796 38 4.77% 100.00% 14.32  

34# 

1#AND TS=(risk* OR 

vulnerability OR "food safety" 

OR "environment* impact" OR 

toxic*) 

420 35 8.33% 92.11% 22.94  

 

To compare the query results presented in Table 7, several extra Boolean queries based on 

common-sense synonyms of risk are implemented and shown in Table 8. 

Table 8. Extra Boolean queries based on common-sense synonyms of risk 

No Search formula Records Matches Accuracy Recall 
Utility (%) 

(1=0.3, 2=0.7) 

35# 

1# and TS=(risk* OR uncertainty 

OR exposure OR vulnerability OR 

food OR ecolog* OR toxic* ) 

AND TS=( safe* OR health* OR 

environment*) 

193 15 7.77% 39.47% 17.75  

36# 

1# and TS=environment* and 

TS=(risk OR impact OR threat* 

OR influence) 

219 20 9.13% 52.63% 21.67  

37# 
1# and TS=environment* and 

TS=(risk OR impact OR threat* 
229 20 8.73% 52.63% 20.99  
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OR influence OR pollution OR 

contaminat*) 

38# 

1# and TS=(health* OR 

environment* OR safe* OR food 

OR air OR soil OR water) and 

TS=(risk OR impact OR threat* 

OR pollution OR contaminat* OR 

danger*) 

312 22 7.05% 57.89% 18.30  

39# 

1# and TS=(risk* OR exposure OR 

vulnerability OR "food safety" OR 

"environment* impact" OR 

"environment* perspective" OR 

toxic* OR threat* OR "cyber* 

security") 

720 31 4.31% 81.58% 12.78  

40# 

1# and TS=(risk* OR "pontential 

exposure" OR vulnerability OR 

"food safety" OR "environment* 

impact" OR toxic* OR "cyber* 

security" OR safety) 

592 28 4.73% 73.68% 13.71  

Identifying the relevant literature on risk analysis for a specific emerging technology is 

beyond the scope of a traditional topic query in the WOS or other academic databases. Here, 

through 40 query experiments, the topic keywords of risk analysis could be significantly helpful 

for finding the relevant studies on the risk analysis of 3D printing.  

5. Discussions and Limitations 

This article is simply inspired by the challenge of developing an ordinary query based on basic 

Boolean operators; however, the final work put into this article is far beyond our estimation. 

Even the literature retrieval in WOS based on simple Boolean computing and how to 

completely find the interdisciplinary studies that bring together two different topics remain a 

challenge, aiming at which some explorations are introduced in this article.  

 The paper offers some possible advances: 

(1) The topic terms on risk analysis and 3D printing are explored based on an integrated 

framework involving techniques such as co-word analysis, variation of TF*IDF, and the survey 

of domain experts. 

(2) Some metrics often utilized in computer science are proposed to evaluate the 

performance of a Boolean query of an interdisciplinary research literature. 
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(3) With the commercialization process of 3D printing, capturing the potential risk signals 

is critically important for anticipatory governance and the policy-makers involved. Based on 

the literature discovered in WOS, possible threats to the environment, human health, and social 

security (such as emissions of ultra-fine particles from some commercial 3D printers), the 

potential toxicity of 3D printed parts, the decryption of biological features, and the possible 

infringement of intellectual property warrant further monitoring and in-depth research. 

(4) The analytical framework proposed by this paper should seemingly generalize to 

similar explorations – e.g., how to discover the relevant studies on risk analysis of synthetic 

biology, or how to identify the relevant literature on the risk analysis of graphene technologies? 

Meanwhile, in addition to the possible meanings and implications noted, some limitations 

of this paper are significant and must be addressed: 

First, the risk analysis corpus could cause controversy concerning the data source, even 

though Risk Analysis is the leading relevant journal, because the concept of “leading” is fuzzy 

and disputed. However, Risk Analysis is a professional journal in the relevant area; therefore, 

the articles published in Risk Analysis should be a qualified, if not complete, data source for the 

corpus. Theoretically, the contrast corpus based on the basic sampling methods could be 

acceptable to some extent. An alternative solution for the contrast corpus could be developing 

an interface to access Google Scholar or a third-party, large, and authoritative corpus.  

Second, because the search strategies for 3D printing and risk analysis could be 

controversial and the publication data from WOS could be insufficient, the case study needs to 

be compared to other databases (e.g., Scopus and Google Scholar.) However, there is no 

combination of search criteria that can find all of the relevant literature based on Boolean 

operators. Therefore, obtaining uniform and undisputed term combinations on 3D printing 

should be explored in depth in future research.  

In terms of a specific emerging technology, capturing the risk signal and delivering the 

risk signal for policy-making remain very difficult for researchers and decision-makers. With 

regard to Kaplan’s theory of risk analysis (Kaplan 1997) and the latest relevant research 

(McComas 2011; Read et al. 2016), the discovery of risk scenarios is still the most difficult for 

all of the related issues compared to the other two elements: likelihoods and consequences. 

Occasionally, creative or innovative ideas, models, and techniques on risk scenarios are 
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necessary (Kaplan 1997). In this paper, an integrated framework based on traditional 

methodologies of bibliometrics and knowledge discovery is proposed to identify the risk signals 

of a specific emerging technology, which are scattered and hidden in many different disciplinary 

publications, particularly in the early stages. 
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Appendix 

Table 9. 38 publications related to the risk analysis of 3D printing 

Articles Main Categories of WOS 

Santos, A. L., Almeida, H. A., Bártolo, H., & Bártolo, P. J. (2012, July). A 

decision tool for green manufacturing while utilizing additive process. In 

ASME 2012 11th Biennial Conference on Engineering Systems Design and 

Analysis (pp. 155–161). American Society of Mechanical Engineers. 

Mechanical Engineering 

Baechler, C., DeVuono, M., & Pearce, J. M. (2013). Distributed recycling of 

waste polymer into RepRap feedstock. Rapid Prototyping Journal, 19(2), 

118–125. 

Mechanical Engineering 

Multidisciplinary Material 

Science 

Huang, S. H., Liu, P., Mokasdar, A., & Hou, L. (2013). Additive 

manufacturing and its societal impact: a literature review. The International 

Journal of Advanced Manufacturing Technology, 1–13. 

Automation & Control 

Engineering 

Manufacturing Engineering 

Stephens B., Azimi P., El Orch Z., et al. (2013). Ultrafine particle emissions 

from desktop 3D printers. Atmospheric Environment, 79:334–339. 

Environmental Sciences; 

Meteorology & Atmospheric 

Sciences 

Le Bourhis, F., Kerbrat, O., Hascoët, J. Y., & Mognol, P. (2013). Sustainable 

manufacturing: evaluation and modeling of environmental impacts in additive 

manufacturing. The International Journal of Advanced Manufacturing 

Technology, 69(9–12), 1927–1939. 

Automation & Control 

Engineering 

Manufacturing Engineering 

Kreiger, M., & Pearce, J. M. (2013). Environmental life cycle analysis of 

distributed three-dimensional printing and conventional manufacturing of 

Multidisciplinary chemistry 

Chemical engineering 
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polymer products. ACS Sustainable Chemistry & Engineering, 1(12), 1511–

1519. 

Green & Sustainable Science & 

Technology 

Kellens, K., Renaldi, R., Dewulf, W., Kruth, J. P., & Duflou, J. R. (2014). 

Environmental impact modeling of selective laser sintering processes. Rapid 

Prototyping Journal, 20(6), 459–470. 

Mechanical Engineering 

Multidisciplinary Material 

Science 

Short, D. B., Volk, D., Badger, P. D., Melzer, J., Salerno, P., & Sirinterlikci, 

A. (2014). 3D Printing (Rapid Prototyping) Photopolymers: An Emerging 

Source of Antimony to the Environment. 3D Printing and Additive 

Manufacturing, 1(1), 24–33. 

Manufacturing Engineering 

Mechanical Engineering 

Yoon, H. S., Lee, J. Y., Kim, H. S., Kim, M. S., Kim, E. S., Shin, Y. J., ... & 

Ahn, S. H. (2014). A comparison of energy consumption in bulk forming, 

subtractive, and additive processes: Review and case study. International 

Journal of Precision Engineering and Manufacturing-Green Technology, 

1(3), 261–279. 

Manufacturing Engineering 

Mechanical Engineering 

Green & Sustainable Science & 

Technology 

Depoorter, B. (2014). Intellectual property infringements & 3d printing: 

Decentralized piracy. Hastings Law Journal, 65(6), 1483–1503. 
Law 

Mani, M., Lyons, K. W., & Gupta, S. K. (2014). Sustainability 

characterization for additive manufacturing. Journal of research of the 

National Institute of Standards and Technology, 119, 419–428. 

Instrument & Instrumentation 

Applied Physics 

Short, D. B., Sirinterlikci, A., Badger, P., & Artieri, B. (2015). 

Environmental, health, and safety issues in rapid prototyping. Rapid 

Prototyping Journal, 21(1), 105–110. 

Mechanical Engineering 

Multidisciplinary Material 

Science 

Hu JF. (2015).Thoughts on 3D printing. Proceedings of the 2015 international 

conference on education, management, information and medicine (EMIM 

2015), 8:499–502. 

Business; Economics; 

Management 

Yampolskiy M., Schutzle L., Vaidya U., et al. (2015). Security challenges of 

additive manufacturing with metals and alloys. Critical Infrastructure 

Protection IX, 466:169–183. 

Computer Science 

Zhu F., Skommer J., Friedrich T., et al. (2015). 3D printed polymers toxicity 

profiling - A caution for biodevice applications. MICRO+NANO 

MATERIALS, DEVICES, AND SYSTEMS, 9668:1–7. 

Nanoscience & Nanotechnology 

Hunt EJ., Zhang CL., Anzalone N., et al. (2015). Polymer recycling codes for 

distributed manufacturing with 3-D printers. Resources Conservation and 

Recycling, 97: 24–30. 

Environmental Engineering & 

Sciences 

Kim Y., Yoon C., Ham S., et al. (2015). Emissions of Nanoparticles and 

Gaseous Material from 3D Printer Operation. Environmental Science & 

Technology, 49(20):12044–12053. 

Environmental Engineering; 

Environmental Sciences 

Afshar-Mohajer N., Wu CY., Ladun T., et al. (2015). Characterization of 

particulate matters and total VOC emissions from a binder jetting 3D printer. 

Building and Environment, 93:293–301. 

Construction & Building 

Technology; Environmental 

Engineering 

Zhu F., Friedrich T., Nugegoda D., et al. (2015). Assessment of the 

biocompatibility of three-dimensional-printed polymers using multispecies 

toxicity tests. BIOMICROFLUIDICS, 9(6):1–5. 

Biochemical Research Methods; 

Biophysics;  
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Flank S., Ritchie GE., Maksimovic R. (2015). Anticounterfeiting Options for 

Three-Dimensional Printing. 3D Printing and Additive Manufacturing, 

2(4):181–189. 

Manufacturing Engineering; 

Materials Science 

Oskui SM.,Diamante G., Liao CY., et al. (2016). Assessing and Reducing the 

Toxicity of 3D-Printed Parts. Environmental Science & Technology Letter 

3(1):1–6. 

Environmental Engineering; 

Environmental Sciences 

Vimal K., Vinodh S., Brajesh P., et al. (2016). Rapid prototyping process 

selection using multi criteria decision making considering environmental 

criteria and its decision support system. Rapid Prototyping Journal, 22(2): 

225–250. 

Mechanical Engineering 

Multidisciplinary Material 

Science 

Yi JH., LeBouf RF., Duling MG., et al. (2016). Emission of particulate matter 

from a desktop three-dimensional (3D) printer. Journal of Toxicology and 

Environmental Health-Part A-Current Issues, 79(11): 453–465. 

Environmental Sciences; 

Occupational Health; 

Toxicology 

Barron S., Cho YM., Hua A., et al. (2016). Systems-Based Cyber Security in 

the Supply Chain. Proceedings of 2016 IEEE Systems and Information 

Engineering Design Symposium (SIEDS), pp. 20–25. 

Computer Science 

Azimi P., Zhao D., Pouzet C., et al. (2016). Emissions of Ultrafine Particles 

and Volatile Organic Compounds from Commercially Available Desktop 

Three-Dimensional Printers with Multiple Filaments. Environmental Science 

& Technology, 50(3):1260–1268. 

Environmental Engineering; 

Environmental Sciences 

Zhang LY., Dong HW., El Saddik A. (2016). From 3D Sensing to Printing: A 

Survey. ACM Transactions on Multimedia Computing Communications and 

Applications, 12(2):1–23. 

Computer Science, 

Izdebska J., Zolek-Tryznowska Z. (2016). 3D food printing - facts and future. 

AGRO Food Industry Hi-Tech, 27(2):33–37. 

Biotechnology & Food Science 

& Technology 

Panda, B. N., Garg, A., & Shankhwar, K. (2016). Empirical investigation of 

environmental characteristic of 3-D additive manufacturing process based on 

slice thickness and part orientation. Measurement, 86, 293–300. 

Multidisciplinary Engineering 

Instruments & Instrumentation 

Galbally, J., & Satta, R. (2016). Three-dimensional and two-and-a-half-

dimensional face recognition spoofing using three-dimensional printed 

models. IET Biometrics, 5(2), 83–91. 

Computer science, Artificial 

intelligence 

Zeltmann SE.,Gupta N.,Tsoutsos NG., et al.(2016). Manufacturing and 

Security Challenges in 3D Printing. JOM, 68(7):1872–1881. 
Materials Science 

Do Q., Martini B., Choo KKR. (2016). A Data Exfiltration and Remote 

Exploitation Attack on Consumer 3D Printers. IEEE Transactions on 

Information Forensics and Security, 11(10):2174–2186. 

Computer Science 

Nagarajan, H. P., Malshe, H. A., Haapala, K. R., & Pan, Y. (2016). 

Environmental Performance Evaluation of a Fast Mask Image Projection 

Stereolithography Process Through Time and Energy Modeling. Journal of 

Manufacturing Science and Engineering, 138(10), 101004. 

Manufacturing engineering 

Mechanical engineering 

Neely, E. L. (2016). The Risks of Revolution: Ethical Dilemmas in 3D 

Printing from a US Perspective. Science and engineering ethics, 22(5), 1285–

1297. 

Multidisciplinary Sciences 

Multidisciplinary Engineering 

Ethics 
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History & Philosophy of 

Science 

Liu, Z., Ning, F., Cong, W., Jiang, Q., Li, T., Zhang, H., & Zhou, Y. (2016). 

Energy Consumption and Saving Analysis for Laser Engineered Net Shaping 

of Metal Powders. Energies, 9(10), 763. 

Energy & Fuels 

Tang, Y., Mak, K., & Zhao, Y. F. (2016). A framework to reduce product 

environmental impact through design optimization for additive 

manufacturing. Journal of Cleaner Production, 137, 1560–1572. 

Environmental engineering 

Environmental sciences 

Green & sustainable science & 

technology 

Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: 

an exploratory study of the advantages and challenges. Journal of Cleaner 

Production, 137, 1573–1587. 

Environmental engineering 

Environmental sciences 

Green & sustainable science & 

technology 
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