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Abstract — A very large amount of data is produced by mobile and
Internet-of-Thing (IoT) devices today. Increasing computational
abilities and more sophisticated operating systems (OS) on these
devices have allowed us to create applications that are able to
leverage this data to deliver better services. But today’s mobile
and IoT solutions are heavily limited by low battery capacity and
limited cooling capabilities. This motivates a search for new ways
to optimize for energy-efficiency. Advanced data analytics and
machine-learning techniques are becoming increasingly popular
to analyze and extract meaning from Big Data. In this paper, we
make the case for designing and deploying data analytics and
learning mechanisms to improve energy-efficiency in IoT and
mobile devices with minimal overheads. We focus on middleware
for inserting energy-efficient data analytics-driven solutions and
optimizations in a robust manner, without altering the OS or
application code. We discuss several case studies of powerful and
promising developments in deploying data analytics middleware
for energy-efficient and robust execution of a variety of
applications on commodity mobile devices.

Keywords: data analytics, middleware, mobile computing,
Internet-of-Things (IoT), energy-efficiency, robustness
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We are well into the era of ‘Big Data’, with several zetta-
bytes (ZB) of data being handled by datacenters annually,
and the volume of this data expected to double every two
years [1]. The increase in data over the past decade has been
fueled by the proliferation of embedded Internet of Things
(IoT) devices and smart mobile computing. For instance, a
study from CISCO in 2016 [2] suggests that on an average
10.7 exabytes of mobile data traffic is offloaded each month
from mobile phones to cloud datacenters. The study further
forecasts that this value is set to increase 8-fold by 2021.

The generated Big Data can be structured (e.g., financial
records), semi-structured (e.g., tweets), unstructured (e.g.,
audio, video), or real-time (e.g., monitoring logs). All of
these types of data have the potential to provide invaluable
insights, if organized and analyzed appropriately. The anal-
yses of such large and diverse datasets is fast emerging as
an indispensable tool for innovations in various domains
such as healthcare, business process optimization, and so-
cial-network-based recommendations.

Unfortunately, the sheer volume of Big Data and its pro-
jected growth in the coming years will largely outpace fore-
seeable improvements in the cost, reliability, energy-effi-
ciency, and performance of computing infrastructure such
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as mobile platforms and IoT devices. Thus, the design of
these computing platforms requires significant innovations
in the near future, to overcome increased energy costs due
to the high computational power when processing and ana-
lyzing large datasets. As an example of the severity of the
problem, consider the battery life of mobile and IoT devices.
Although lithium-ion battery technology and capacity has
improved over the years, it still cannot keep pace with the
energy demands of today’s mobile devices. Figure 1 shows
the battery limits, thermal power limits, and desired power
dissipation of mobile chipsets with respect to developments
in mobile communication capabilities and chip technology.
The gap between desired power (to meet growing perfor-
mance needs) and battery limits is only getting larger, e.g.,
over a period of seven years, the processing capability of the
Samsung Galaxy S series mobile device has grown by ~20x,
whereas, the battery capacity has grown only by ~2x [3].
Battery life limitations today inevitably constrain perfor-
mance for most applications on mobile devices.
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Figure 1: Trends for power dissipation as compared to battery and ther-
mal limits in mobile devices since 1990 [4]
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Fortunately, system designers that are today grappling
with the challenge of efficiently supporting large datasets
and data analytics workloads can themselves benefit from
data analytics techniques to architect better computing plat-
forms. For instance, in mobile computing, massive amount
of data is typically collected about user-device interactions
and usage. Can this data be analyzed to improve energy ef-
ficiency and robustness of applications executing on the
mobile device? Even if it is possible to intelligently analyze
and perform optimizations with the knowledge of such data,
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where exactly in the software stack should the data analytics
techniques be implemented: in the apps, OS, or elsewhere?

The answer to the latter question may lie with middle-
ware, which is becoming an increasingly important compo-
nent in modern mobile and IoT device software stacks [5].
Middleware is intended to provide services or functionali-
ties to the application developer that are not already a part
of the OS. A salient feature of middleware is the abstraction
level that it can create for the application layer. An applica-
tion developer does not need to be aware of how different
modules come together in the middleware for a new service
to work. Thus middleware has been growing in popularity,
and has especially found widespread application in distrib-
uted and cloud based applications. An example is Microsoft
Azure [6], that is a growing collection of integrated services
(applications) and platforms (operating system) combined
using middleware to deliver numerous services-on-demand
in manner that is personalized per user.

In this paper, we explore the design and implementation
of intelligent data-analytics based middleware for mobile
and IoT devices that can assist with improving the energy-
efficiency and robustness of these devices. The abstraction
advantage and modularity of middleware allows it to be a
very good solution to swiftly create and deploy services that
enhance the existing features of an OS. Several case studies
of powerful and promising developments in prototyping
data analytics middleware for energy-efficient and robust
execution of a variety of applications on commodity mobile
computing devices are discussed in this paper.

The rest of this paper is organized as follows. Section 2
discusses middleware to enable mobile-to-cloud offloading.
Section 3 discusses middleware for user-interaction aware
execution of applications on mobile devices. Section 4 pre-
sents middleware that captures spatio-temporal context for
various optimizations. Section 5 explores middleware for
mobile indoor localization.

II.

The collection and processing of data on smartphones can
significantly hamper the battery lifetime of the device. A
promising solution that is being considered to support high
end mobile data processing applications is to offload mobile
computations to the cloud [7]-[9]. Offloading is an oppor-
tunistic process that relies on cloud servers to execute the
functionality of an application that typically runs on a mo-
bile device. In many cases, such opportunistic offloading
can not only improve energy-efficiency but also makes
computation performance more robust.

Kumar et al. [8] presented a mathematical analysis of of-
floading. Broadly, the energy saved by computation of-
floading depends on the amount of computation to be per-
formed (C), the amount of data to be transmitted (D), and
the wireless network bandwidth (B). If (D/C) is low, then it
was claimed that offloading can save energy. Our experi-
ments have shown that this is a simplistic view of the prob-
lem, e.g., energy-efficiency is also highly effected by the

MOBILE-TO-CLOUD OFFLOADING

239

type of wireless interface being used for the transmission.
Cuervo et.al [7] proposed a framework called MAUI, based
on code annotations to specify which methods from a soft-
ware class can be offloaded to the cloud. Annotations are
introduced in the source code by the developer during the
development phase. At runtime, methods are identified by
the MAUI profiler, which performs the offloading of the
methods, if the bandwidth of the network and data transfer
conditions are ideal. However, this annotation method puts
an extra burden on the already complex mobile application
development process. A better approach would be to have a
middleware that is able to automatically make intelligent of-
floading decisions on the fly, without manual annotations.

Mobile applications
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Figure 2. Reinforcement Learning (RL) based middleware framework
for efficient application offloading from mobile device to the cloud [10]

In [10], we proposed a novel middleware framework for
mobile devices that utilized various sources of data such as
the app communication/computation intensiveness, type
and status of available wireless networks, and capabilities
of cloud servers, to dynamically make decisions on when
and how to offload an application from the mobile device to
the cloud, with the goal of improving energy-efficiency and
performance robustness. Figure 2 shows an overview of our
data analytics decision engine on the mobile device that
works together with a clone virtual machine (VM) of the
mobile software environment to execute apps on cloud serv-
ers. The middleware was deployed on the Android OS, and
ran in the background as an Android service. The frame-
work utilized an unsupervised Q-learning machine learning
technique that analyzed the data for the app type, network
type, network conditions, and cloud capabilities to select the
optimal network type and decide when and what to offload.

Figure 3 shows an example of how the Android based tor-
rent app Flud [11] can benefit from our middleware-based
offloading framework. In this experiment, a cloud based
service (Amazon Web Services EC2 instance) first down-
loads and aggregates the file to be received through torrent,
and then the smartphone downloads the file in a single pro-
cess. The experiment was conducted on an LG G3 Android
smartphone. From the bars in the figure, it can be observed
that different network types, the state of the network, and
data transfer sizes result in varying improvements in energy
and response time. For instance, 4G performs slightly better



than 3G in terms of energy consumption for higher data
sizes (45-85 MBs), but for smaller data sizes 3G is more
efficient. The colored lines in Figure 3 indicate the perfor-
mance of our middleware framework (green line) and a
framework based on fuzzy logic for making offloading de-
cisions (red line) [9]. In all cases, it can be observed that our
framework is able to provide better offloading performance
and greater energy efficiency. This is because our frame-
work employs a more sophisticated and powerful data ana-
lytics-based learning algorithm and considers many more
variables related to device and network context when mak-
ing decisions, than prior work. Our experiments with real
smartphones showed savings of up to 30% in battery life
with up to 25% better response time when using our mid-
dleware framework compared to a state-of-the-art fuzzy
logic based offloading approach [9]. For certain applica-
tions, e.g., voice recognition, offloading also improved
recognition robustness (accuracy) by approx. 10%.
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Mobile devices today are seen as a personal tool and their
typical usage can vary across different users. OS- and hard-
ware-driven energy-optimization techniques, such as CPU
dynamic voltage and frequency scaling (DVFS), are not
smart enough to make decisions based on the user’s behav-
ior. To enable more aggressive energy optimizations in mo-
bile devices, we developed a novel application- and user-
interaction aware energy management middleware frame-
work (AURA) for mobile devices [12], [13]. AURA takes
advantage of user idle time between interaction events of
the foreground application to optimize CPU and backlight
energy consumption. Most interestingly, AURA is able to

USER-INTERACTION AWARE OPTIMIZATIONS

240

adapt to changing behavior and learn from the individual
user over time, to achieve longer battery lifetime without
any user intervention.

To create an energy-efficient middleware solution, it is
important to first identify the components of the mobile de-
vice that are major contributors towards battery life. Our
preliminary analysis revealed that the display, the pro-
cessing (CPU/GPU) subsystem, and the various wireless ra-
dios (e.g., Wi-Fi, GPS, 4G/LTE) have a significant impact
on battery life. Any framework that aims to optimize en-
ergy-efficiency must address the energy inefficiencies in
these components. Our AURA framework [12], [13] was
one of the first to reduce energy costs for both the display
and the processing subsystems in an integrated manner. The
framework consists of an app-aware and user-aware energy
optimization middleware that uses powerful machine learn-
ing techniques on user-device interaction data. More specif-
ically, AURA includes a runtime monitor that captures data
related to user-specific and app-specific interaction slack to
reduce energy costs.

Interaction slack refers to the sum of the unused times be-
tween when a user first perceives a change on the display
(perceptual slack) due to a previous interaction (e.g., a but-
ton on the screen changes color), then comprehends what
the response “actually” represents (cognitive slack), and fi-
nally interacts with application again by touching the screen
using his/her fingers (motor slack). By predicting this inter-
action slack interval on a per-app and per-user basis, AURA
opportunistically reduce CPU voltage/frequency at the start
of the interval and then increase the voltage/frequency just
before the interval ends, to save energy without impacting
user quality of service (QoS).

AURA’s middleware was prototyped as a service that
constantly runs in the background and creates an automated
control system for CPU voltage/frequency scaling and dis-
play backlight modifications. The middleware consist of
three main components: a runtime monitor, a Bayesian app
classifier, and a power manager. The runtime monitor
checks if the current foreground app has an entry in an ‘in-
teraction database’, and if so then the interaction data
(standard deviation and mean of a user’s observed slack val-
ues from previous interactions) in it can be used for slack
prediction. If a database entry does not exist, the middle-
ware creates a new entry and starts collecting interaction
statistics. A Bayesian classifier is then used to classify the
interaction profile for the app using the collected data.
Bayesian learning is a form of supervised machine learning
that involves using evidence or observations along with
prior outcome probabilities to calculate the probability of an
outcome. The power manager runs a MDP (Markov Deci-
sion Process) to classify the apps. All apps were classified
into seven categories ranging from very-low-interaction to
very-high-interaction. The class of an app decides how to
opportunistically decrease CPU voltage/frequency in be-
tween slack intervals. MDPs are discrete time stochastic
control processes that are widely used as decision-making



models for systems in which outcomes are partly random
and partly controlled.

In [12], we explored two derivatives of the (normal) MDP
to dynamically adapt to real-time user-interaction during
each invocation of an application. The E-ADAPT variant is
event-driven and uses the most recent window of events to
predict future interaction events whereas T-ADAPT makes
use of a moving average window of a predetermined size,
to dynamically track and predict user interaction events in a
temporal context. In [13], we prototyped a new Q-learning
based power manager. Q-Learning does not require a model
of the environment and has the advantage that the next state
probability distributions that are used in MDPs are not re-
quired. Using the Android services based middleware ap-
proach allowed us to the rapidly develop, update, deploy,
and test new versions of AURA.

The AURA middleware also exploits the idea of change
blindness [14] as identified by research into human psychol-
ogy and perception. Change blindness refers to the inability
of humans to notice large changes in their environments, es-
pecially if changes occur in small increments. Multiple stud-
ies have shown this as a limitation of human perception,
e.g., a majority of observers in one study failed to observe
when a building in a photograph gradually disappeared over
the course of 12 seconds. We used a similar approach by
gradually reducing screen brightness over time using user-
device and app-specific interaction data. In doing so, the
power manager in AURA is able to achieve higher energy-
efficiency without any noticeable loss in QoS.
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Figure 4: Real user study results on HTC Dream mobile device [13]

We deployed our AURA middleware framework on sev-
eral smartphones such as the HTC Dream and Google
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Nexus One. Figure 4 shows the results for energy savings
and interaction slack prediction on the HTC Dream
smartphone across various common mobile applications,
averaged for several real users. In addition to the four vari-
ants of AURA (with power managers based on NORMAL-
MDP, E-ADAPT, T-ADAPT, and Q-LEARNING) we
compare against Shye et al.’s algorithm, CHBL [15], which
was the best known algorithm for energy savings on mobile
devices. It can be seen from Figure 4(a) that our user-aware
and application-aware algorithms (particularly Q-LEARN-
ING) offer higher energy savings than CHBL because un-
like CHBL they can dynamically adapt to the user-interac-
tion patterns and take full advantage of user idle time. Fig-
ure 4(b) shows the average successful prediction rates for
the real user interaction patterns. CHBL was not included in
the results because it does not contain defined states or pre-
diction mechanisms, making determining mispredictions
impossible. The figures show high successful prediction
rates with AURA that result in high QoS for users. Our ex-
tensive experiments indicated 17% energy savings on aver-
age for AURA compared to the baseline Android device
manager and approximately 2.5% more energy savings over
the best known prior work (CHBL [15]) on mobile CPU and
display energy optimization.

Iv.

Today mobile devices come with a variety of wireless in-
terfaces such as GPS, Wi-Fi and 3G/4G. Our experimental
analysis on various smartphones [16] indicated that even
when 3G/4G, Wi-Fi, and GPS interfaces are all enabled and
idle, they account for more than 25% of total system power
dissipation. Furthermore, when only one of the interfaces is
active, the other idle interfaces still consume a non-negligi-
ble amount of power. This is the motivation behind efforts
to enable intelligent management of such wireless inter-
faces. It is important to note that activation of wireless in-
terfaces, for location or data, is directly correlated with the
context of the device itself, e.g., the type of application run-
ning, device motion, Wi-Fi availability, time of day, loca-
tion, etc. This observation opens up an opportunity to realize
a context-aware solution that is able to more efficiently
manage wireless interfaces without human intervention.

Our middleware framework in [17], [18] represents one
of the first efforts towards seamless wireless interface en-
ergy management in mobile devices. The first step in our
approach is to collect and learn from the contextual data of
the device, the user, as well as the state of wireless inter-
faces. Our framework is able to transparently capture con-
textual data attributes such as temporal use data (e.g., day of
week and time), spatial environment data (e.g., ambient
light, Wi-Fi RSSI, 3G/4G signal strength), and device state
(e.g., battery status, CPU utilization). To prune the massive
amount of data captured, we employed Principal Compo-
nent Analysis (PCA), a form of dimensionality reduction,
by projecting the captured data from various sources onto a
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fewer number of optimally selected eigenvectors, effec-
tively reducing the attribute space to the (limited) number
of eigenvectors, to enable efficient prediction on resource-
constrained mobile devices.

We then explored the use of five different classes of ma-
chine learning algorithms to learn from this contextual data.
The algorithms we considered included LDA (Linear Dis-
criminant Analysis), LLR (Linear Logistic Regression), NN
(Shallow and Deep Neural Networks), KNN (K-Nearest
Neighbor), and SVM (Support Vector Machines). These al-
gorithms allowed us to predict user data/location usage re-
quirements (e.g., is data transfer needed? is coarse-grained
location needed? is fine-grained location needed?) based on
the spatiotemporal user and device context data collected.

We found that SVM and deeper NNs (with more hidden
layers) resulted in the highest context prediction accuracy
(85 — 99%). KNN, LLR, and LDA also performed fairly
well, with prediction accuracies in the range of 60 — 90 %.
The highest energy savings were achieved with LDA and
LLR. However, these higher savings come at the cost of de-
graded user satisfaction (highlighted by their lower context
prediction accuracy). SVM and KNN overall performed
fairly well in terms of both prediction accuracy and energy
savings potential, as did the NN approach. But KNN’s run
time on a mobile device is several orders of magnitude
larger than any of the other algorithms, because all compu-
tations are deferred until its classification phase. Therefore,
although KNN is as good as or better than the SVM and NN
based approaches in terms of energy savings and prediction
accuracy, it is not the most practical for deployment on mo-
bile devices. Our SVM based middleware prototype pro-
vides good accuracy, good energy savings, and demon-
strates the best adaptation to various unique user usage pat-
terns, while maintaining a low implementation overhead on
mobile devices. We showed approximately 85% energy
savings with SVM for minimally active users

V. MOBILE INDOOR LOCALIZATION

Location tracking has found various applications out-
doors. One can not only use GPS based services for naviga-
tion purposes, but companies such as Google have been
providing users location based services such as locating the
best places to eat in their vicinity, local news, local weather,
reminders to get an item when near a grocery store [19], etc.
The outdoor location based services available today are ex-
tremely helpful, yet, in most cases they are limited once a
user moves indoors. For instance, in the previously sug-
gested example of reminders when near grocery stores, the
application can only remind a user to buy the item from the
store but is unable to provide any guidance on how to locate
that item within the store. There are several other use cases
that remain unrealized, such as being reminded to go to a
certain store within a large indoor mall, notifications to the
user when they are close to specific items/aisles in a store,
or navigation help to reach specific rooms in a large build-
ing. These and many other examples make a strong case for
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the creation of indoor localization solutions on devices that
most people carry with them everywhere: smartphones.
Indoor localization is a challenge that cannot be resolved
through a conventional outdoor solution such as GPS. This
is because GPS signals are weak and ineffective in indoor
environments, and the wireless signal-based infrastructure
for indoor localization is diverse, prone to interference, and
often entirely non-existent [20]. A possible approach to
overcome this challenge is fingerprinting, where the goal is
to use data captured through smartphone radio interfaces
and sensors to estimate the location of the user indoors (in-
side of buildings, caves, etc.) in real time. However, contin-
uous monitoring of radio and sensor data drains battery life,
thus indoor localization solutions must be energy-aware.
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Figure 5: Comparison of indoor localization techniques [21].

We devised the LearnLoc middleware framework for mo-
bile devices in [21] to improve indoor localization reliability
(accuracy) and energy efficiency in a variety of indoor en-
vironments. We capture Wi-Fi “fingerprint” data (signal
strength, signal type, access point ID) in a continually up-
dated database for indoor locales together with inertial sens-
ing readings (accelerometer, gyroscope, and magnetometer
sensor data) on mobile devices. This data is then analyzed
and parsed with machine learning techniques to estimate lo-
cation in real time. The framework is implemented as a mid-
dleware service on mobile devices to provide indoor loca-
tion based updates and suggestions in a non-intrusive and
energy-efficient manner. The most important feature of our
approach is that it does not require any additional hardware
setup indoors, as Wi-Fi access points have become increas-
ingly common in indoor public spaces which brings down
the cost of realizing indoor localization.



In [21], we prototyped and compared three variants of the
LearnLoc framework that use Linear Regression (LR), non-
linear neural networks (NL-NN) and K-nearest neighbor
(KNN) techniques. The use of smart machine learning tech-
niques helps LearnLoc significantly improve prediction ac-
curacy and overcome noisy data readings compared to prior
work. Figure 5 shows a comparison of energy consumption
and localization accuracy of the three variants of the
LearnLoc framework with well-known techniques from
prior work (Radar [22], PlaceLab [23], Inertial Nav [24])
along four indoor paths of 110m-140m lengths in various
buildings at Colorado State University. We observed that
PlaceLab and Radar consumed much less energy but that
comes at a price of accuracy. The experimental results sug-
gest that KNN delivers the most accurate location estimates,
but also consumes the most energy. The LR and NL-NN
variants perform considerably well overall. It is also im-
portant to note that Wi-Fi scan interval also plays a signifi-
cant role in accuracy and energy-efficiency. The lowest Wi-
Fi scan interval (1 second) delivers the best result, but a bal-
ance between energy consumption and accuracy can be
achieved through the selection of a balanced scan interval.
By prototyping a middleware framework that enables trade-
offs between energy and accuracy, our work has brought vi-
able indoor localization solutions that can be implemented
on commodity mobile devices closer to reality.

VI. CONCLUSIONS

The rise of the data-driven science paradigm, in which
massive amounts of data are produced and processed by mo-
bile and IoT devices on a very strict power budget, requires
new solutions to sustainably use these devices. Energy-effi-
cient and robust data analytics approaches can help make
the most out of available hardware resources. In this paper,
we have shown, through various real-world case studies,
that the flexibility and capabilities provided by such smart
data analytics and machine learning middleware solutions
can make a significant impact towards enhancing energy-
efficiency, reliability, and performance robustness in a vari-
ety of mobile and IoT devices.
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