
Energy-Efficient and Robust Middleware Prototyping
for Smart Mobile Computing

 Saideep Tiku
Department of Electrical and Computer Engineering
Colorado State University, Fort Collins, CO, 80523

saideep@rams.colostate.edu

Sudeep Pasricha
Department of Electrical and Computer Engineering
Colorado State University, Fort Collins, CO, 80523

sudeep@colostate.edu

ABSTRACT
A large amount of data is produced by mobile devices today. The
rising computational abilities and sophisticated operating systems
(OS) on these devices have allowed us to create applications that
are able to leverage this data to deliver better services. But today’s
mobile technology is heavily limited by low battery capacity and
limited cooling capabilities, which has motivated a search for new
ways to optimize for energy-efficiency. A challenge in conducting
such optimizations for today’s mobile devices is to be able to make
changes in complex OS and application software architectures.
Middleware has been becoming an increasingly popular solution
for inserting energy-efficient solutions and optimizations in a
robust manner, without altering the OS or application code. This is
because of the flexibility and standardization that can be achieved
through middleware. In this paper, we discuss some powerful and
promising developments in prototyping middleware for energy-
efficient and robust execution of a variety of applications on
commodity mobile computing devices.

CCS CONCEPTS
• Computing methodologies → Machine learning • Computer
systems organization → Embedded and cyber-physical systems •
Computer systems organization → Dependable and fault-
tolerant systems and networks • Hardware → Power and energy

KEYWORDS
Middleware, mobile computing, energy-efficiency, robustness

ACM Reference format:
Saideep Tiku, Sudeep Pasricha 2017. Energy-efficient and robust
middleware prototyping for smart mobile computing. In Proceedings of the
28th International Symposium of Rapid System Prototyping (RSP’17).
ACM, Seoul, Republic of Korea, October 2017, 7 pages.
DOI: 10.1145/3130265.3138855

1. INTRODUCTION
Over the past decade we have seen an increasing trend of people

becoming dependent on mobile devices for communication and
data access. A recent study [1] found that 99% of adults in the USA
between 18-29 years of age own a smartphone. Another study from
CISCO in 2016 [2] suggests that on an average 10.7 exabytes of
mobile data traffic is offloaded each month from mobile phones to
cloud datacenters (Figure 1). The study further forecasts that this
value is set to increase 8-fold by 2021. This highlights an oppor-
tunity for software that is able to leverage the data being produced
to deliver better services to the users of these devices.

Mobile devices typically make use of lithium-ion polymer bat-
teries (LiPo) that have been used in portable electronics since the
mid 1990’s. The number of charge/discharge cycles (cycle life)
and performance for a battery is heavily affected by the materials
used for the electrodes and electrolyte. Where early batteries used
graphite anodes, newer batteries will use silicon nanoflake anodes
[19] that can deliver up to 3.3× larger capacity than conventional
graphite anodes. Although lithium-ion battery technology and ca-
pacity has improved over the years, it still cannot keep pace with
the energy demands of today’s mobile devices (Figure 2). For ex-
ample, over a period of 7 years, the processing capability of the
Samsung Galaxy S series has grown by ~20×, whereas, the battery
capacity has grown only by ~2× [36]. Battery life limitations inev-
itably constrain performance for applications on mobile devices.

Figure 1: Data traffic offloaded per month from various types
of computing devices to cloud datacenters [3].

Another critical determinant of mobile application performance
is the device’s thermal limitations. The heat produced by a mobile
system-on-chip (SoC) must be removed efficiently by a cooling
apparatus. As mobile devices cannot be equipped with bulky cool-
ing solutions (e.g., fans) that will hamper their slim/small form fac-
tors, there are limits on the maximum power that mobile SoCs can
dissipate (called thermal design power or TDP). Figure 2 shows
the gap between the thermal power limits and desired power dissi-
pation of mobile SoCs with respect to developments in mobile
communication capabilities and chip technology. If application
performance is to scale, such thermal limits must be overcome.

While battery technology improvements and better cooling so-
lutions are slowly catching up to mobile requirements, OS based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than ACM must be honored. Ab-
stracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

RSP'17, October 15–20, 2017, Seoul, Republic of Korea
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5418-9/17/10…$15.00
https://doi.org/10.1145/3130265.3138855

Invited Paper

2

 2

RSP’17, October 15-20, 2017, Seoul, Republic of Korea S. Tiku et al.

software optimizations present an interesting opportunity for en-
ergy-efficient resource utilization. The most popular OS in
smartphones today is Android that currently holds about 85% of
the market share as of 2017 [3]. At the core of Android is a Linux
kernel on top of which exist libraries written in C that serve as the
Hardware Application Layer (HAL), and application software run-
ning on a framework that consists of Java-compatible libraries. An
interesting aspect of this layered design is that often each layer can
be developed independently and can be easily modified as per in-
dividual requirements of a device. This is especially true when the
individual components in the software stack have vast amounts of
code with high complexity. For example, the Linux kernel is con-
tinuously in development all year round, completely independent
of other Android source code bases. Therefore, a modular and lay-
ered approach towards software allows for flexibility and rapid
software deployment in mobile devices.

Figure 2: Trends for power dissipation relative to battery and
thermal limits in mobile devices over the past few decades [4].

Middleware represents an important software component that
takes advantage of this layered design found in complex software
systems. It is intended to provide a service or functionality to the
application developer that is not already a part of the OS. It is often
dubbed as the “software glue” [6] or “plumbing” [18] as it allows
independent software components to communicate and bring them
together to produce new functionality for applications. A salient
feature of middleware is the abstraction level that it can create for
the application layer. An application developer does not need to be
aware of how different modules come together for a new service
to work. This allows for rapid development of applications by re-
ducing the technical know-how required by app developers.

Middleware first became popular in the 1980’s when it was used
to interface newer applications to older legacy software. Today, it
has found a widespread application in distributed systems and
cloud based applications. One example is Microsoft Azure [18],
that is a growing collection of integrated services (applications)
and platforms (operating system) combined using middleware to
deliver numerous services-on-demand in manner that is personal-
ized per user. It must be noted that the function a middleware per-
forms is heavily dependent on the context of the application and
developer preference. They can also be used for security-authenti-
cation or creating completely new services by combining two or
more existing services (e.g., merging database services and trans-
action processing services to enable transactional databases).

Lately, middleware has found a unique niche on mobile devices.
The abstraction advantage and modularity of middleware allows it
to be a very good choice for researchers to swiftly create services
or modify the existing behavior of a deployed OS. For example, in
[5] a smartphone middleware is developed that captures events

from body sensor networks and relays the information to the ap-
propriate mobile application. Throughout this paper, we look at
various middleware solutions that lead to the rapid deployment of
innovations in mobile devices with an intent to improve device en-
ergy-efficiency and performance robustness.

 The rest of this paper is organized as follows. Section 2 dis-
cusses middleware for user-interaction aware execution of appli-
cations on mobile devices. Section 3 presents middleware that cap-
tures spatio-temporal context for various optimizations. Section 4
discusses middleware to enable mobile-to-cloud offloading. Sec-
tion 5 explores middleware for mobile indoor localization.

2. USER-INTERACTION AWARE DESIGN
Mobile devices today are seen as a personal tool and their typical
usage can vary across different users. OS- and hardware-driven en-
ergy-optimization techniques, such as CPU dynamic voltage and
frequency scaling (DVFS), are not smart enough to make decisions
based on the user’s behavior. To enable more aggressive energy
optimizations in mobile devices, we developed a novel applica-
tion- and user-interaction aware energy management middleware
framework (AURA) for mobile devices [7], [8]. AURA takes ad-
vantage of user idle time between interaction events of the fore-
ground application to optimize CPU and backlight energy con-
sumption. Most interestingly, AURA is able to adapt to changing
behavior and learn from the individual user over time, to achieve
longer battery lifetime without any user intervention.

Many research efforts have attempted to create energy-efficient
mobile solutions. Most of this prior work mainly focuses on the
management of wireless interfaces. For instance, [34] first
measures the energy consumptions of various wireless interfaces
with the goal of finding the most energy-efficient interface for use.
A few methods [10], [11] involve allowing a mobile device to dy-
namically enter low-power sleep states by predicting idle periods,
much like AURA. But these techniques are conservative in the sav-
ings they achieve as they do not exploit unique user characteristics
as AURA does through its middleware-based framework.

In order to create an energy-efficient middleware solution, it is
important to first identify the components of the mobile device that
are major contributors towards battery life. Our preliminary anal-
ysis revealed that the display, the processing (CPU/GPU) subsys-
tem, and the various wireless radios (e.g., Wi-Fi, GPS, 4G/LTE)
have a significant impact on battery life. Any framework that aims
to optimize energy-efficiency must address the energy inefficien-
cies in these components. Our AURA framework [7], [8] was one
of the first to reduce energy costs for both the display and the pro-
cessing subsystems in an integrated manner. The framework con-
sists of an app-aware and user-aware energy optimization middle-
ware that uses powerful machine learning techniques on user-de-
vice interaction data. More specifically, AURA includes a runtime
monitor that captures data related to user-specific and app-specific
interaction slack to reduce energy costs.

Interaction slack (Figure 3 (a)) refers to the sum of the unused
times between when a user first perceives a change on the display
(perceptual slack) due to a previous interaction (e.g., a button on
the screen changes color), then comprehends what the response
“actually” represents (cognitive slack), and finally interacts with
application again by touching the screen using his/her fingers (mo-
tor slack). By predicting this interaction slack interval on a per-app
and per-user basis, AURA opportunistically reduce CPU volt-
age/frequency at the start of the interval and then increase the volt-
age/frequency just before the interval ends, to save energy without
impacting user quality of service (QoS).

3

RSP’17, October 15-20, 2017, Seoul, Republic of Korea Energy-Efficient and Robust Middleware Prototyping

The Android OS allows for the creation of services that can run
in the background. AURA’s middleware was prototyped as a ser-
vice that constantly runs in the background and creates an auto-
mated control system for CPU voltage/frequency scaling and dis-
play backlight modifications. The middleware consist of three
main components: a runtime monitor, Bayesian app classifier, and
a power manager. The runtime monitor (Figure 3 (b)) checks if the
current foreground app has an entry in an ‘interaction database’,
and if so then the interaction data (standard deviation and mean of
a user’s observed slack values from previous interactions) in it can
be used for slack prediction. If a database entry does not exist, the
middleware creates a new entry and starts collecting interaction
statistics. A Bayesian classifier is then used to classify the interac-
tion profile for the app using the collected data. Bayesian learning
is a form of supervised machine learning that involves using evi-
dence or observations along with prior outcome probabilities to
calculate the probability of an outcome. The power manager runs
a MDP (Markov Decision Process) to classify the apps. The apps
were classified into seven categories ranging from very-low-inter-
action to very-high-interaction. This class of the app decides how
to opportunistically decrease CPU voltage/frequency in between
slack intervals. MDPs are discrete time stochastic control pro-
cesses that are widely used as decision-making models for systems
in which outcomes are partly random and partly controlled.

(a)

(b)

Figure 3: (a) Interaction slack estimation; (b) AURA energy
optimization middleware framework for mobile devices [7].

In [7], we explored two derivatives of the (normal) MDP to dy-
namically adapt to real-time user-interaction during each invoca-
tion of an application. The E-ADAPT variant is event-driven and
uses the most recent window of events to predict future interaction
events whereas T-ADAPT makes use of a moving average window
of a predetermined size, to dynamically track and predict user in-
teraction events in a temporal context. In [8], we prototyped a new
Q-learning based power manager. Q-Learning is a reinforcement
learning technique that does not require a model of the environ-
ment and has the advantage that the next state probability distribu-
tions that are used in MDPs are not required. Using the Android

services based modular middleware approach allowed us to the
rapidly develop, update, deploy, and test new versions of AURA.

The AURA middleware also exploits the idea of change blind-
ness [12], [35] as identified by research into human psychology
and perception. Change blindness refers to the inability of humans
to notice large changes in their environments, especially if changes
occur in small increments. Multiple studies have shown this as a
limitation of human perception– a majority of observers in one
study failed to observe when a building in a photograph gradually
disappeared over the course of 12 seconds; in another study, grad-
ual color changes over time to an oil painting went undetected by
a majority of subjects but disruptive changes such as the sudden
addition of an object were easily detected. We used a similar ap-
proach by gradually reducing screen brightness over time using
user-device and app-specific interaction data. In doing so, the
power manager in AURA is able to achieve higher energy-effi-
ciency without any noticeable loss in QoS.

(a)

(b)

Figure 4: Real user study results on Google Nexus One [8].

We deployed our AURA middleware framework on several
smartphones such as the HTC Dream and Google Nexus One. Fig-
ure 4 shows the results for energy savings and interaction slack
prediction on the Google Nexus One smartphone across various
common mobile applications, averaged for several real users. In
addition to the four variants of AURA (with power managers based
on NORMAL-MDP, E-ADAPT, T-ADAPT, and Q-LEARNING)
we compare against Shye et al.’s algorithm, CHBL [14], which
was the best known algorithm for energy savings on mobile de-
vices. It can be seen from Figure 4(a) that our user-aware and ap-
plication-aware algorithms (particularly Q-LEARNING) offer
higher energy savings than CHBL because unlike CHBL they can
dynamically adapt to the user-interaction patterns and take full ad-
vantage of user idle time. Figure 4(b) shows the average successful
prediction rates for the real user interaction patterns. CHBL was
not included in the results because it does not contain defined states
or prediction mechanisms, making determining mispredictions im-
possible. The figures show high successful prediction rates with
AURA that result in high QoS for users. Our extensive experi-
ments indicated 17% energy savings on average compared for

4

 4

RSP’17, October 15-20, 2017, Seoul, Republic of Korea S. Tiku et al.

AURA to the baseline Android device manager and approx. 2.5×
more energy savings over the best known prior work (CHBL [14])
on mobile CPU and display energy optimization.

3. SPATIOTEMPORAL CONTEXT-AWARE
DESIGN

Today mobile devices come with a variety of wireless interfaces
such as GPS, Wi-Fi and 3G/4G. Experimental analysis on the
Google Nexus One Android smartphone [15] shown in Figure 5
indicate that even when 3G, Wi-Fi, and GPS interfaces are all en-
abled and idle, they account for more than 25% of total system
power dissipation. Furthermore, when only one of the interfaces is
active, the other two idle interfaces still consume a non-negligible
amount of power. This is the motivation behind efforts to enable
intelligent management of such wireless interfaces. It is important
to note that activation of wireless interfaces, for location or data,
is directly correlated with the context of the device itself, e.g., the
type of application running, device motion, Wi-Fi availability,
time of day, location, etc. This observation opens up an oppor-
tunity to realize a context-aware solution that is able to more effi-
ciently manage wireless interfaces without human intervention.

Figure 5: Google Nexus One mobile power distribution [15].

Our middleware framework in [16], [17] represents one of the
first efforts towards seamless wireless interface energy manage-
ment in mobile devices. The first step in our approach is to collect
and learn from the contextual data of the device, the user, as well
as the state of wireless interfaces. Our framework is able to trans-
parently capture contextual data attributes such as temporal use
data (e.g., day of week and time), spatial environment data (e.g.,
ambient light, Wi-Fi RSSI, 3G/4G signal strength), and device
state (e.g., battery status, CPU utilization). To prune the massive
amount of data captured, we employed Principal Component Anal-
ysis (PCA), a form of dimensionality reduction, by projecting the
captured data from various sources onto a fewer number of opti-
mally selected eigenvectors, effectively reducing the attribute
space to the (limited) number of eigenvectors, to enable efficient
prediction on resource-constrained mobile devices.

We then explored the use of five different classes of machine
learning algorithms to learn from this contextual data. The algo-
rithms we considered included LDA (Linear Discriminant Analy-
sis), LLR (Linear Logistic Regression), NN (three variants of Neu-
ral Networks with number of hidden layers = 3, 9, and 18), KNN
(K-Nearest Neighbor), and SVM (Support Vector Machines).
These algorithms allowed us to predict user data/location usage re-
quirements (e.g., is data transfer needed? is coarse-grained loca-
tion needed? is fine-grained location needed?) based on the pruned
spatiotemporal user and device context data collected.

Figure 6 (b) illustrates the energy savings achieved by the indi-
vidual algorithms when deployed in the middleware layer of Gal-
axy Nexus mobile devices and evaluated with five different users.
To get a view of the user’s satisfaction in the presence of the en-
ergy enhancements, we also analyzed context prediction accuracy
for the techniques (Figure 6 (a)). We compared our algorithms
against the VRL technique (Variable Rate Logging [9]) and the
configuration prediction strategy presented in [13] (MVSOM –
Missing Values Self-Organizing Map).

From Figure 6(a), support vector machines and the application
of neural networks with a number of hidden units of at least half
the size of the attribute space (HH=9, 18) resulted in the highest
prediction accuracy. K-nearest neighbor (KNN), linear logistic re-
gression (LLR), and linear discriminant analysis (LDA) also per-
formed fairly well, with prediction accuracies in the range of 60 –
90 %. However these approaches were much more sensitive to the
usage pattern. MVSOM performed the worst and had a high degree
of variance in both the usage pattern and random training data se-
lection. Note that as VRL does not predict system state, results for
its prediction accuracy are not shown.

(a)

(b)

Figure 6: (a) Algorithm prediction accuracy and (b) percent
energy savings on Galaxy Nexus for real users [17].

It is important to note that despite high prediction accuracy, the
amount of potential energy savings is still highly dependent on the
user’s device usage pattern and if the algorithms are positively or
negatively predicting states where energy can be conserved. More
complicated user patterns are more difficult for the algorithms to
predict correctly. In addition, false predictions can cause either

5

RSP’17, October 15-20, 2017, Seoul, Republic of Korea Energy-Efficient and Robust Middleware Prototyping

more or less energy to be consumed. From the results for energy
savings in Figure 6(b), some of the highest energy savings are
achieved with LDA and LLR. However, these higher savings come
at the cost of degraded user satisfaction (Figure 6(a)). SVM and
KNN overall perform fairly well in terms of both prediction accu-
racy and energy savings potential, as does the nonlinear logistic
regression with NN approach. With the latter, an important point
to note is that prediction accuracy is proportional to the complexity
of the neural network and indirectly proportional to the net energy
savings. This outcome is expected as less complex neural networks
will result in more generalized models relaxing the constraint for
inaccurate predictions that result in higher energy savings. It is also
important to note that although energy savings are small for heavy
users, this comes as an artifact of our optimization technique – we
are exploiting windows of opportunity, which are fewer for heavy
users. MVSOM, with its low prediction rates, also led to instances
of negative energy savings, as it often predicted higher energy
states when the true target state was one of less energy consump-
tion. Thus we believe that the MVSOM approach is not very viable
for use in mobile systems. VRL’s energy saving capability is con-
strained because it does not disable device interfaces (only deac-
tivates location logging or reduces logging rate), ignoring idle en-
ergy consumption.

A comparison of the runtime of our proposed middleware layer
machine learning algorithms on different mobile and non-mobile
chipsets is shown in Table 1. The use of middleware based ap-
proach allowed us to quickly switch between different machine
learning techniques without having to modify the system as a
whole. KNN’s run time is several orders of magnitude larger than
any of the other algorithms, because all computations are deferred
until classification. Therefore, although KNN is as good as or bet-
ter than the support vector machine (SVM) and neural network
(NN) based approaches in terms of energy savings and prediction
accuracy, it is not the most practical for deployment on mobile de-
vices. Our SVM based middleware prototype provides good accu-
racy, good energy savings, and demonstrates the best adaptation to
various unique user usage patterns, while maintaining a low im-
plementation overhead on mobile devices.

Table 1: Average algorithm run times in seconds [17].

4. MOBILE-TO-CLOUD OFFLOADING
The collection and processing of data on smartphones can signifi-
cantly hamper the battery lifetime of the device. A promising so-
lution that is being considered to support high end mobile data pro-
cessing applications is to offload mobile computations to the cloud
[21]-[25]. Offloading is an opportunistic process that relies on
cloud servers to execute the functionality of an application that
typically runs on a mobile device. In many cases, such opportun-
istic offloading can not only improve energy-efficiency but also
makes computation performance more robust.

Kumar et al. [26] presented a mathematical analysis of offload-
ing. Broadly, the energy saved by computation offloading depends
on the amount of computation to be performed (C), the amount of

data to be transmitted (D), and the wireless network bandwidth
(B). If (D/C) is low, then it was claimed that offloading can save
energy. Our experiments have shown that this is a simplistic view
of the problem, e.g., energy-efficiency is also highly effected by
the type of wireless interface being used for the transmission.
Cuervo et.al [21] proposed a framework called MAUI, based on
code annotations to specify which methods from a software class
can be offloaded to the cloud. Annotations are introduced in the
source code by the developer during the development phase. At
runtime, methods are identified by the MAUI profiler, which per-
forms the offloading of the methods, if the bandwidth of the net-
work and data transfer conditions are ideal. However, this annota-
tion method puts an extra burden on the already complex mobile
application development process. A better approach would be to
have a middleware that is able to automatically make intelligent
offloading decisions on the fly, without manual annotations.

Figure 7: Average battery consumption and response time on
a mobile device for a torrent file download application [27].

In spite of existing research highlighting the potential of of-
floading in mobile devices, current offloading techniques are far
from being adopted widely in mobile systems. This is mainly be-
cause of some of the challenges associated with offloading. The
first challenge is to be able to recognize the energy spent by the
mobile device in the offloading process before the computation
takes place. The energy saved with offloading should always be
greater than the energy spent establishing and realizing computa-
tions in the cloud, which is not straightforward to estimate. The
second challenge is that the response time of the application should
be maintained such that the user does not experience a drop in QoS.
In the real world, the response time and offloading energy is im-
pacted by wireless network quality and the wireless interface in
use. For example, 4G networks provide higher bandwidths than 3G
but 4G also typically consumes more energy than 3G (and Wi-Fi).
In other scenarios, poor Wi-Fi signal quality may make it more
advantageous to use 4G for data transfers. The trade-off between
3G, 4G, and Wi-Fi is in general highly dependent on network con-
ditions, which vary across locations and time of day.

In [27], we proposed such a middleware framework for mobile
devices that utilized various sources of data such as the application

6

 6

RSP’17, October 15-20, 2017, Seoul, Republic of Korea S. Tiku et al.

communication/computation intensiveness, type and status of
available wireless networks, and the capabilities of cloud servers,
to make decisions on when and how to offload an application from
the mobile device to the cloud, with the goal of improving energy-
efficiency and performance robustness. The middleware frame-
work was based on an unsupervised Q-learning machine learning
technique that analyzed the data for the app type, network type,
network conditions, and cloud capabilities to select the optimal
network type and decide when and what to offload.

Figure 7 shows an example of how the Android based torrent
app Flud [28] can benefit from our middleware-based offloading
framework. In this experiment, a cloud based service (Amazon
Web Services EC2 instance) first downloads and aggregates the
file to be received through torrent, and then the smartphone down-
loads the file in a single process. The experiment was conducted
on an LG G3 Android smartphone. From the bars in the figure, it
can be observed that different network types, the state of the net-
work, and data transfer sizes result in varying improvements in en-
ergy and response time. For instance, 4G performs slightly better
than 3G in terms of energy consumption for higher data sizes (45-
85 MBs), but for smaller data sizes 3G is more efficient. The col-
ored lines in Figure 7 indicate the performance of our middleware
framework (green line) and a framework based on fuzzy logic for
making offloading decisions (red line) [24]. In all cases, it can be
observed that our framework is able to provide better offloading
performance and greater energy efficiency. This is because our
framework employs a more sophisticated and powerful learning
algorithm and considers many more variables related to device and
network context when making decisions, than prior work.

Our experiments with real smartphones showed savings of up to
30% in battery life with up to 25% better response time when using
our middleware framework compared to the state-of-the-art fuzzy
logic based offloading approach from [24]. For certain applica-
tions, e.g., voice recognition, we found that offloading can also
improve recognition robustness (accuracy) by approx. 10%.

5. MOBILE INDOOR LOCALIZATION
Location tracking has found various applications outdoors. One
can not only use GPS based services for navigation purposes, but
companies such as Google have been providing users location
based services such as locating the best places to eat in their vicin-
ity, local news, local weather, reminders to get an item when near
a grocery store [29], etc. The outdoor location based services avail-
able today are extremely helpful, yet, in most cases they are limited
once a user moves indoors. For instance, in the previously sug-
gested example of reminders when near grocery stores, the appli-
cation can only remind a user to buy the item from the store but is
unable to provide any guidance on how to locate that item within
the store. There are several other use cases that remain unrealized,
such as being reminded to go to a certain store within a large indoor
mall, notifications to the user when they are close to specific
items/aisles in a store, or navigation help to reach specific rooms
in a large building. These and many other examples make a strong
case for the creation of indoor localization solutions on devices
that most people carry with them everywhere: their smartphones.

Indoor localization is a challenge that cannot be resolved
through a conventional outdoor solution such as GPS. This is be-
cause GPS signals are weak and ineffective in indoor environ-
ments, and the wireless signal-based infrastructure for indoor lo-
calization is diverse, prone to interference, and often entirely non-
existent [30]. A possible approach to overcome this challenge is

fingerprinting, where the goal is to use data captured through
smartphone radio interfaces and sensors to estimate the location of
the user indoors (inside of buildings, caves, etc.) in real time. How-
ever, continuous monitoring of radio and sensor data drains battery
life, thus indoor localization solutions must be energy-aware.

Figure 8: Paths traced by indoor localization techniques along
the Clark L2 North building benchmark path [31].

We devised the LearnLoc middleware framework for mobile de-
vices in [31] to improve indoor localization accuracy and energy
efficiency in a variety of indoor environments. We capture Wi-Fi
“fingerprint” data (signal strength, signal type, access point ID) in
a continually updated database for indoor locales together with in-
ertial sensing readings (accelerometer, gyroscope, and magnetom-
eter sensor data) on mobile devices. This data is then analyzed and
parsed with machine learning techniques to estimate location in
real time. The framework is implemented as a middleware service
to provide indoor location based updates and suggestions in a non-
intrusive and energy-efficient manner. The most important feature
of our approach is that it does not require any additional hardware
setup indoors, as Wi-Fi access points have become increasingly
common in indoor public spaces which brings down the cost of
realizing indoor localization.

In [31], we prototyped and compared three variants of the
LearnLoc framework that use Linear Regression (LR), non-linear
neural networks (NL-NN) and K-nearest neighbor (KNN) tech-
niques. Figure 8 shows the paths traced with the three variants of
LearnLoc and a conventional inertial navigation (Inertial_Nav) ap-
proach for an indoor path in the Clark L2 North building at Colo-
rado State University, with an HTC Sensation smartphone. It can
be observed that the path traced by the Inertial_Nav technique
greatly deviates from the actual path. This is due the accumulation
of error overtime, whereas LearnLoc allows for recalibration by
the use of Wi-Fi fingerprinting. The use of smart machine learning
techniques helps LearnLoc significantly improve prediction accu-
racy and overcome noisy data readings compared to prior work.

Figure 9 shows a comparison of energy consumption and local-
ization accuracy of the three variants of the LearnLoc framework
with well-known techniques from prior work (Radar [32], Place-
Lab [33], Inertial_Nav [20]) along four indoor paths of 110m-
140m at Colorado State University. We observe that PlaceLab and

7

RSP’17, October 15-20, 2017, Seoul, Republic of Korea Energy-Efficient and Robust Middleware Prototyping

Radar consume much less energy but that comes at a price of ac-
curacy. The experimental results suggest that the KNN delivers the
most accurate location estimates, but also consumes the most en-
ergy. The LR variant performs considerably well overall. It is also
important to note that Wi-Fi scan interval also plays a significant
role in accuracy and energy-efficiency. The lowest Wi-Fi scan in-
terval (1 second) delivers the best result, but a balance between
energy consumption and accuracy can be achieved through the se-
lection of a balanced scan interval. By prototyping a middleware
framework that enables trade-offs between energy and accuracy,
our work has brought viable indoor localization solutions that can
be implemented on commodity mobile devices closer to reality.

(a)

(b)

Figure 9: Comparison of indoor localization techniques [31].

6. CONCLUSIONS
We are witnessing the rise of the data-driven science paradigm, in
which massive amounts of data is produced and processed by mo-
bile devices on a very strict power budget. These conditions call
for energy-efficient software solutions that are able to help in the
robust development of applications and services that can make the
most out of available hardware resources. In this paper, we argue
that the flexibility, scalability and abstraction level provided by a
middleware based solution can lead to rapid prototyping of energy-
efficient and robust performing solutions required to enhance the
capabilities of emerging smart mobile devices.

ACKNOWLEDGMENTS
This work was supported by grants from the National Science
Foundation (ECCS- 1646562, CCF-1252500).

REFERENCES
[1] ‘Pew Research Center’, 2017 [Online] Available: http://www.pewglobal.org

/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-
in-emerging-economies/

[2] Cisco Global Cloud Index: Forecast and Methodology, 2015–2020, White
paper, [Accessed: 30 July 2017]

[3] ‘IDC: Smartphone OS Market Share’, 2017 [online] Available:
http://www.idc.com/promo/smartphone-market-share/os

[4] ‘System level Power Budgeting’, 2017 [Online] Available: http://chipdesi-
gnmag.com/sld/blog/2014/03/12/system-level-power-budgeting/ [Accessed:
30 July 2017]

[5] C. Seeger, K. Van Laerhoven and A. Buchmann, "MyHealthAssistant: An
Event-driven Middleware for Multiple Medical Applications on a
Smartphone-Mediated Body Sensor Network," Journal of Biomedical and
Health Informatics, vol. 19, no. 2, pp. 752-760, March 2015.

[6] ‘Middleware: The Glue of Applications’, 2017 [online] Available:
https://www.gartner.com/doc/300144/middleware-glue-modern-
applications/ [Accessed: 6 September 2017]

[7] B. Donohoo, C. Ohlsen, S. Pasricha, “AURA: An Application and User
Interaction Aware Middleware Framework for Energy Optimization in
Mobile Devices”, IEEE ICCD 2011, Oct. 2011.

[8] B. Donohoo, C. Ohlsen, S. Pasricha, “A Middleware Framework for
Application-aware and User-specific Energy Optimization in Smart Mobile
Devices”, Journ. Pervasive and Mobil Comp., vol. 20, pp. 47-63, Jul 2015.

[9] C. Lee, M. Lee, and D. Han, “Energy efficient location logging for mobile
device,” in Proc. SAINT, Seoul, Korea, Oct. 2010, p. 84.

[10] A.W. Min, R. Wang, J. Tsai, M.A. Ergin, T.C. Tai, “Improving energy
efficiency for mobile platforms by exploiting low-power sleep states”, in:
CF’12, 2012, pp. 133–142.

[11] L. Huang, “Optimal sleep-wake scheduling for energy harvesting smart
mobile devices”, in: WiOpt’13, May 2013, pp. 484–491

[12] D.J. Simons, S.L. Franconeri, R.L. Reimer, “Change blindness in the absence
of a visual disruption”, Perception 29:1143–1154, 2000.

[13] L. Batyuk, C. Scheel, S. A. Camtepe, and S. Albayrak, “Contextaware device
self-configuration using self-organizing maps,” Proc. OC, 2011, pp. 13–22.

[14] A. Shye, B. Scholbrock and G. Memik, "Into the wild: Studying real user
activity patterns to guide power optimizations for mobile architectures,"
IEEE/ACM Int. Sym. on Microarchitecture (MICRO), pp. 168-178, 2009.

[15] “Google Nexus One Tech Specs” [Online]. Available: http://www.htc.com/
us/support/nexus-one-google/tech-specs

[16] B. Donohoo, C. Ohlsen, S. Pasricha, C. Anderson, “Exploiting
Spatiotemporal and Device Contexts for Energy-Efficient Mobile Embedded
Systems”, IEEE/ACM DAC 2012, Jul. 2012.

[17] B. Donohoo, C. Ohlsen, S. Pasricha, C. Anderson, Y. Xiang, “Context-Aware
Energy Enhancements for Smart Mobile Devices”, IEEE Trans. on Mobile
Computing (TMC), 13(8):1720-1732, 2014.

[18] ‘Microsoft Azure, [online], Available: https://azure.microsoft.com/en-
us/overview/what-is-middleware/

[19] T. Kasukabe, et al. “Beads-Milling of Waste Si Sawdust into High-
Performance Nanoflakes for Lithium-Ion Batteries.” Science Reports 7,
article num. 42734, 2017.

[20] J. Á. B. Link, P. Smith, N. Viol and K. Wehrle, "FootPath: Accurate map-
based indoor navigation using smartphones," IPIN 2011.

[21] E. Cuervo, A. Balasubramanian, D. K. Cho, A.Wolman, S. Saroiu, R.
Chandra, and P. Bahl, “Maui: making smartphones last longer with code
offload,” in Proc. ACM Mobisys, 2010.

[22] H. Flores and S. Srirama, “Mobile code offloading: should it be a local
decision or global inference?” Proc. ACM Mobisys, 2013.

[23] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair: Dynamic
resource allocation and parallel execution in the cloud for mobile code
offloading,” Proc. IEEE INFOCOM, 2012.

[24] H. R. Flores and S. Srirama, “Adaptive code offloading for mobile cloud
applications: Exploiting fuzzy sets and evidence-based learning,” Proc. ACM
Mobisys, 2013.

[25] A. Khairy, et al., “Smartphone energizer: Extending smartphone's battery life
with smart offloading,” in IEEE IWCMC, 2013.

[26] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can offloading
computation save energy?” Computer, vol. 43, 2010.

[27] A. Khune, S. Pasricha, “Mobile Network-Aware Middleware Framework for
Energy Efficient Cloud Offloading of Smartphone Applications”, to appear,
IEEE Consumer Electronics, 2017.

[28] ‘Fuld – Torrent Downloader app’, 2016, [Online]. Available: Android App
Store, [Accessed: 3 Nov 2016].

[29] ‘Guide to Google Cards, 2017 [Online] Available: https://www.android
central.com/ultimate-guide-google-now-cards

[30] C. Langlois, S. Tiku, S. Pasricha, “Indoor localization with smartphones”, to
appear, IEEE Consumer Electronics, 2017.

[31] S. Pasricha, V. Ugave, Q. Han and C. Anderson, “LearnLoc: A Framework
for Smart Indoor Localization with Embedded Mobile Devices,” ACM/IEEE
CODES+ISSS, Oct 2015.

[32] P. Bahl, and V. Padmanabhan, “RADAR: An in-building RF-based user
location and tracking system,” IEEE INFOCOM. 2000.

[33] A. LaMarca, et al., “Place Lab: Device Positioning Using Radio Beacons in
the Wild,” Proc. PERCOM, 2005, pp. 116-133.

[34] M. Segata, B. Bloessl, C. Sommer, F. Dressler, “Towards energy efficient
smart phone applications: Energy models for offloading tasks into the cloud”,
in: IEEE International Conference on Communications, ICC, 2014.

[35] D.J. Simons, R.A. Rensink, “Change blindness: Past, present, and future”,
Trends Cogn. Sci. 9 (1) (2005).

[36] ‘Samsung Galaxy S specifications’, [Online], Available: https://www.phone
arena.com/phones/Samsung-Galaxy-S_id4522

8

