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ABSTRACT 
A large amount of data is produced by mobile devices today. The 
rising computational abilities and sophisticated operating systems 
(OS) on these devices have allowed us to create applications that 
are able to leverage this data to deliver better services. But today’s 
mobile technology is heavily limited by low battery capacity and 
limited cooling capabilities, which has motivated a search for new 
ways to optimize for energy-efficiency. A challenge in conducting 
such optimizations for today’s mobile devices is to be able to make 
changes in complex OS and application software architectures. 
Middleware has been becoming an increasingly popular solution 
for inserting energy-efficient solutions and optimizations in a 
robust manner, without altering the OS or application code. This is 
because of the flexibility and standardization that can be achieved 
through middleware. In this paper, we discuss some powerful and 
promising developments in prototyping middleware for energy-
efficient and robust execution of a variety of applications on 
commodity mobile computing devices. 
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1. INTRODUCTION 
Over the past decade we have seen an increasing trend of people 

becoming dependent on mobile devices for communication and 
data access. A recent study [1] found that 99% of adults in the USA 
between 18-29 years of age own a smartphone. Another study from 
CISCO in 2016 [2] suggests that on an average 10.7 exabytes of 
mobile data traffic is offloaded each month from mobile phones to 
cloud datacenters (Figure 1). The study further forecasts that this 
value is set to increase 8-fold by 2021. This highlights an oppor-
tunity for software that is able to leverage the data being produced 
to deliver better services to the users of these devices. 

Mobile devices typically make use of lithium-ion polymer bat-
teries (LiPo) that have been used in portable electronics since the 
mid 1990’s. The number of charge/discharge cycles (cycle life) 
and performance for a battery is heavily affected by the materials 
used for the electrodes and electrolyte. Where early batteries used 
graphite anodes, newer batteries will use silicon nanoflake anodes 
[19] that can deliver up to 3.3× larger capacity than conventional 
graphite anodes. Although lithium-ion battery technology and ca-
pacity has improved over the years, it still cannot keep pace with 
the energy demands of today’s mobile devices (Figure 2). For ex-
ample, over a period of 7 years, the processing capability of the 
Samsung Galaxy S series has grown by ~20×, whereas, the battery 
capacity has grown only by ~2× [36]. Battery life limitations inev-
itably constrain performance for applications on mobile devices. 

 

 
Figure 1: Data traffic offloaded per month from various types 
of computing devices to cloud datacenters [3]. 

 

Another critical determinant of mobile application performance 
is the device’s thermal limitations. The heat produced by a mobile 
system-on-chip (SoC) must be removed efficiently by a cooling 
apparatus. As mobile devices cannot be equipped with bulky cool-
ing solutions (e.g., fans) that will hamper their slim/small form fac-
tors, there are limits on the maximum power that mobile SoCs can 
dissipate (called thermal design power or TDP). Figure 2 shows 
the gap between the thermal power limits and desired power dissi-
pation of mobile SoCs with respect to developments in mobile 
communication capabilities and chip technology. If application 
performance is to scale, such thermal limits must be overcome. 

While battery technology improvements and better cooling so-
lutions are slowly catching up to mobile requirements, OS based 
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software optimizations present an interesting opportunity for en-
ergy-efficient resource utilization. The most popular OS in 
smartphones today is Android that currently holds about 85% of 
the market share as of 2017 [3]. At the core of Android is a Linux 
kernel on top of which exist libraries written in C that serve as the 
Hardware Application Layer (HAL), and application software run-
ning on a framework that consists of Java-compatible libraries. An 
interesting aspect of this layered design is that often each layer can 
be developed independently and can be easily modified as per in-
dividual requirements of a device. This is especially true when the 
individual components in the software stack have vast amounts of 
code with high complexity. For example, the Linux kernel is con-
tinuously in development all year round, completely independent 
of other Android source code bases. Therefore, a modular and lay-
ered approach towards software allows for flexibility and rapid 
software deployment in mobile devices.  

 

 
Figure 2: Trends for power dissipation relative to battery and 
thermal limits in mobile devices over the past few decades [4]. 

Middleware represents an important software component that 
takes advantage of this layered design found in complex software 
systems. It is intended to provide a service or functionality to the 
application developer that is not already a part of the OS. It is often 
dubbed as the “software glue” [6] or “plumbing” [18] as it allows 
independent software components to communicate and bring them 
together to produce new functionality for applications. A salient 
feature of middleware is the abstraction level that it can create for 
the application layer. An application developer does not need to be 
aware of how different modules come together for a new service 
to work. This allows for rapid development of applications by re-
ducing the technical know-how required by app developers.  

Middleware first became popular in the 1980’s when it was used 
to interface newer applications to older legacy software. Today, it 
has found a widespread application in distributed systems and 
cloud based applications. One example is Microsoft Azure [18], 
that is a growing collection of integrated services (applications) 
and platforms (operating system) combined using middleware to 
deliver numerous services-on-demand in manner that is personal-
ized per user. It must be noted that the function a middleware per-
forms is heavily dependent on the context of the application and 
developer preference. They can also be used for security-authenti-
cation or creating completely new services by combining two or 
more existing services (e.g., merging database services and trans-
action processing services to enable transactional databases). 

Lately, middleware has found a unique niche on mobile devices.  
The abstraction advantage and modularity of middleware allows it 
to be a very good choice for researchers to swiftly create services 
or modify the existing behavior of a deployed OS. For example, in 
[5] a smartphone middleware is developed that captures events 

from body sensor networks and relays the information to the ap-
propriate mobile application. Throughout this paper, we look at 
various middleware solutions that lead to the rapid deployment of 
innovations in mobile devices with an intent to improve device en-
ergy-efficiency and performance robustness.  

 The rest of this paper is organized as follows. Section 2 dis-
cusses middleware for user-interaction aware execution of appli-
cations on mobile devices. Section 3 presents middleware that cap-
tures spatio-temporal context for various optimizations. Section 4 
discusses middleware to enable mobile-to-cloud offloading. Sec-
tion 5 explores middleware for mobile indoor localization. 

2. USER-INTERACTION AWARE DESIGN  
Mobile devices today are seen as a personal tool and their typical 
usage can vary across different users. OS- and hardware-driven en-
ergy-optimization techniques, such as CPU dynamic voltage and 
frequency scaling (DVFS), are not smart enough to make decisions 
based on the user’s behavior. To enable more aggressive energy 
optimizations in mobile devices, we developed a novel applica-
tion- and user-interaction aware energy management middleware 
framework (AURA) for mobile devices [7], [8]. AURA takes ad-
vantage of user idle time between interaction events of the fore-
ground application to optimize CPU and backlight energy con-
sumption. Most interestingly, AURA is able to adapt to changing 
behavior and learn from the individual user over time, to achieve 
longer battery lifetime without any user intervention. 

Many research efforts have attempted to create energy-efficient 
mobile solutions. Most of this prior work mainly focuses on the 
management of wireless interfaces. For instance, [34] first 
measures the energy consumptions of various wireless interfaces 
with the goal of finding the most energy-efficient interface for use. 
A few methods [10], [11] involve allowing a mobile device to dy-
namically enter low-power sleep states by predicting idle periods, 
much like AURA. But these techniques are conservative in the sav-
ings they achieve as they do not exploit unique user characteristics 
as AURA does through its middleware-based framework. 

In order to create an energy-efficient middleware solution, it is 
important to first identify the components of the mobile device that 
are major contributors towards battery life. Our preliminary anal-
ysis revealed that the display, the processing (CPU/GPU) subsys-
tem, and the various wireless radios (e.g., Wi-Fi, GPS, 4G/LTE) 
have a significant impact on battery life. Any framework that aims 
to optimize energy-efficiency must address the energy inefficien-
cies in these components. Our AURA framework [7], [8] was one 
of the first to reduce energy costs for both the display and the pro-
cessing subsystems in an integrated manner. The framework con-
sists of an app-aware and user-aware energy optimization middle-
ware that uses powerful machine learning techniques on user-de-
vice interaction data. More specifically, AURA includes a runtime 
monitor that captures data related to user-specific and app-specific 
interaction slack to reduce energy costs.  

Interaction slack (Figure 3 (a)) refers to the sum of the unused 
times between when a user first perceives a change on the display 
(perceptual slack) due to a previous interaction (e.g., a button on 
the screen changes color), then comprehends what the response 
“actually” represents (cognitive slack), and finally interacts with 
application again by touching the screen using his/her fingers (mo-
tor slack). By predicting this interaction slack interval on a per-app 
and per-user basis, AURA opportunistically reduce CPU volt-
age/frequency at the start of the interval and then increase the volt-
age/frequency just before the interval ends, to save energy without 
impacting user quality of service (QoS).  
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The Android OS allows for the creation of services that can run 
in the background. AURA’s middleware was prototyped as a ser-
vice that constantly runs in the background and creates an auto-
mated control system for CPU voltage/frequency scaling and dis-
play backlight modifications. The middleware consist of three 
main components: a runtime monitor, Bayesian app classifier, and 
a power manager. The runtime monitor (Figure 3 (b)) checks if the 
current foreground app has an entry in an ‘interaction database’, 
and if so then the interaction data (standard deviation and mean of 
a user’s observed slack values from previous interactions) in it can 
be used for slack prediction. If a database entry does not exist, the 
middleware creates a new entry and starts collecting interaction 
statistics. A Bayesian classifier is then used to classify the interac-
tion profile for the app using the collected data. Bayesian learning 
is a form of supervised machine learning that involves using evi-
dence or observations along with prior outcome probabilities to 
calculate the probability of an outcome. The power manager runs 
a MDP (Markov Decision Process) to classify the apps. The apps 
were classified into seven categories ranging from very-low-inter-
action to very-high-interaction. This class of the app decides how 
to opportunistically decrease CPU voltage/frequency in between 
slack intervals. MDPs are discrete time stochastic control pro-
cesses that are widely used as decision-making models for systems 
in which outcomes are partly random and partly controlled. 

 
 

(a) 
 

 
(b) 

Figure 3: (a) Interaction slack estimation; (b) AURA energy 
optimization middleware framework for mobile devices [7]. 
 

In [7], we explored two derivatives of the (normal) MDP to dy-
namically adapt to real-time user-interaction during each invoca-
tion of an application. The E-ADAPT variant is event-driven and 
uses the most recent window of events to predict future interaction 
events whereas T-ADAPT makes use of a moving average window 
of a predetermined size, to dynamically track and predict user in-
teraction events in a temporal context. In [8], we prototyped a new 
Q-learning based power manager. Q-Learning is a reinforcement 
learning technique that does not require a model of the environ-
ment and has the advantage that the next state probability distribu-
tions that are used in MDPs are not required. Using the Android 

services based modular middleware approach allowed us to the 
rapidly develop, update, deploy, and test new versions of AURA. 

The AURA middleware also exploits the idea of change blind-
ness [12], [35] as identified by research into human psychology 
and perception. Change blindness refers to the inability of humans 
to notice large changes in their environments, especially if changes 
occur in small increments. Multiple studies have shown this as a 
limitation of human perception– a majority of observers in one 
study failed to observe when a building in a photograph gradually 
disappeared over the course of 12 seconds; in another study, grad-
ual color changes over time to an oil painting went undetected by 
a majority of subjects but disruptive changes such as the sudden 
addition of an object were easily detected. We used a similar ap-
proach by gradually reducing screen brightness over time using 
user-device and app-specific interaction data. In doing so, the 
power manager in AURA is able to achieve higher energy-effi-
ciency without any noticeable loss in QoS. 

 

 
(a) 

 

 
(b) 

Figure 4: Real user study results on Google Nexus One [8]. 

We deployed our AURA middleware framework on several 
smartphones such as the HTC Dream and Google Nexus One. Fig-
ure 4 shows the results for energy savings and interaction slack 
prediction on the Google Nexus One smartphone across various 
common mobile applications, averaged for several real users. In 
addition to the four variants of AURA (with power managers based 
on NORMAL-MDP, E-ADAPT, T-ADAPT, and Q-LEARNING) 
we compare against Shye et al.’s algorithm, CHBL [14], which 
was the best known algorithm for energy savings on mobile de-
vices. It can be seen from Figure 4(a) that our user-aware and ap-
plication-aware algorithms (particularly Q-LEARNING) offer 
higher energy savings than CHBL because unlike CHBL they can 
dynamically adapt to the user-interaction patterns and take full ad-
vantage of user idle time. Figure 4(b) shows the average successful 
prediction rates for the real user interaction patterns. CHBL was 
not included in the results because it does not contain defined states 
or prediction mechanisms, making determining mispredictions im-
possible. The figures show high successful prediction rates with 
AURA that result in high QoS for users. Our extensive experi-
ments indicated 17% energy savings on average compared for 
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AURA to the baseline Android device manager and approx. 2.5× 
more energy savings over the best known prior work (CHBL [14]) 
on mobile CPU and display energy optimization. 

3. SPATIOTEMPORAL CONTEXT-AWARE   
DESIGN 

Today mobile devices come with a variety of wireless interfaces 
such as GPS, Wi-Fi and 3G/4G. Experimental analysis on the 
Google Nexus One Android smartphone [15] shown in Figure 5 
indicate that even when 3G, Wi-Fi, and GPS interfaces are all en-
abled and idle, they account for more than 25% of total system 
power dissipation. Furthermore, when only one of the interfaces is 
active, the other two idle interfaces still consume a non-negligible 
amount of power. This is the motivation behind efforts to enable 
intelligent management of such wireless interfaces. It is important 
to note that activation of wireless interfaces, for location or data, 
is directly correlated with the context of the device itself, e.g., the 
type of application running, device motion, Wi-Fi availability, 
time of day, location, etc. This observation opens up an oppor-
tunity to realize a context-aware solution that is able to more effi-
ciently manage wireless interfaces without human intervention. 

 
 

Figure 5: Google Nexus One mobile power distribution [15]. 

Our middleware framework in [16], [17] represents one of the 
first efforts towards seamless wireless interface energy manage-
ment in mobile devices. The first step in our approach is to collect 
and learn from the contextual data of the device, the user, as well 
as the state of wireless interfaces. Our framework is able to trans-
parently capture contextual data attributes such as temporal use 
data (e.g., day of week and time), spatial environment data (e.g., 
ambient light, Wi-Fi RSSI, 3G/4G signal strength), and device 
state (e.g., battery status, CPU utilization). To prune the massive 
amount of data captured, we employed Principal Component Anal-
ysis (PCA), a form of dimensionality reduction, by projecting the 
captured data from various sources onto a fewer number of opti-
mally selected eigenvectors, effectively reducing the attribute 
space to the (limited) number of eigenvectors, to enable efficient 
prediction on resource-constrained mobile devices. 

We then explored the use of five different classes of machine 
learning algorithms to learn from this contextual data. The algo-
rithms we considered included LDA (Linear Discriminant Analy-
sis), LLR (Linear Logistic Regression), NN (three variants of Neu-
ral Networks with number of hidden layers = 3, 9, and 18), KNN 
(K-Nearest Neighbor), and SVM (Support Vector Machines). 
These algorithms allowed us to predict user data/location usage re-
quirements (e.g., is data transfer needed? is coarse-grained loca-
tion needed? is fine-grained location needed?) based on the pruned 
spatiotemporal user and device context data collected.  

Figure 6 (b) illustrates the energy savings achieved by the indi-
vidual algorithms when deployed in the middleware layer of Gal-
axy Nexus mobile devices and evaluated with five different users. 
To get a view of the user’s satisfaction in the presence of the en-
ergy enhancements, we also analyzed context prediction accuracy 
for the techniques (Figure 6 (a)). We compared our algorithms 
against the VRL technique (Variable Rate Logging [9]) and the 
configuration prediction strategy presented in [13] (MVSOM – 
Missing Values Self-Organizing Map).  

From Figure 6(a), support vector machines and the application 
of neural networks with a number of hidden units of at least half 
the size of the attribute space (HH=9, 18) resulted in the highest 
prediction accuracy. K-nearest neighbor (KNN), linear logistic re-
gression (LLR), and linear discriminant analysis (LDA) also per-
formed fairly well, with prediction accuracies in the range of 60 – 
90 %. However these approaches were much more sensitive to the 
usage pattern. MVSOM performed the worst and had a high degree 
of variance in both the usage pattern and random training data se-
lection. Note that as VRL does not predict system state, results for 
its prediction accuracy are not shown. 

 

 
(a) 

 

 
(b) 

 

Figure 6: (a) Algorithm prediction accuracy and (b) percent 
energy savings on Galaxy Nexus for real users [17]. 

It is important to note that despite high prediction accuracy, the 
amount of potential energy savings is still highly dependent on the 
user’s device usage pattern and if the algorithms are positively or 
negatively predicting states where energy can be conserved. More 
complicated user patterns are more difficult for the algorithms to 
predict correctly. In addition, false predictions can cause either 
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more or less energy to be consumed. From the results for energy 
savings in Figure 6(b), some of the highest energy savings are 
achieved with LDA and LLR. However, these higher savings come 
at the cost of degraded user satisfaction (Figure 6(a)). SVM and 
KNN overall perform fairly well in terms of both prediction accu-
racy and energy savings potential, as does the nonlinear logistic 
regression with NN approach. With the latter, an important point 
to note is that prediction accuracy is proportional to the complexity 
of the neural network and indirectly proportional to the net energy 
savings. This outcome is expected as less complex neural networks 
will result in more generalized models relaxing the constraint for 
inaccurate predictions that result in higher energy savings. It is also 
important to note that although energy savings are small for heavy 
users, this comes as an artifact of our optimization technique – we 
are exploiting windows of opportunity, which are fewer for heavy 
users. MVSOM, with its low prediction rates, also led to instances 
of negative energy savings, as it often predicted higher energy 
states when the true target state was one of less energy consump-
tion. Thus we believe that the MVSOM approach is not very viable 
for use in mobile systems. VRL’s energy saving capability is con-
strained because it does not disable device interfaces (only deac-
tivates location logging or reduces logging rate), ignoring idle en-
ergy consumption.  

A comparison of the runtime of our proposed middleware layer 
machine learning algorithms on different mobile and non-mobile 
chipsets is shown in Table 1. The use of middleware based ap-
proach allowed us to quickly switch between different machine 
learning techniques without having to modify the system as a 
whole. KNN’s run time is several orders of magnitude larger than 
any of the other algorithms, because all computations are deferred 
until classification. Therefore, although KNN is as good as or bet-
ter than the support vector machine (SVM) and neural network 
(NN) based approaches in terms of energy savings and prediction 
accuracy, it is not the most practical for deployment on mobile de-
vices. Our SVM based middleware prototype provides good accu-
racy, good energy savings, and demonstrates the best adaptation to 
various unique user usage patterns, while maintaining a low im-
plementation overhead on mobile devices. 

 

Table 1: Average algorithm run times in seconds [17]. 

 
 

4. MOBILE-TO-CLOUD OFFLOADING 
The collection and processing of data on smartphones can signifi-
cantly hamper the battery lifetime of the device. A promising so-
lution that is being considered to support high end mobile data pro-
cessing applications is to offload mobile computations to the cloud 
[21]-[25]. Offloading is an opportunistic process that relies on 
cloud servers to execute the functionality of an application that 
typically runs on a mobile device. In many cases, such opportun-
istic offloading can not only improve energy-efficiency but also 
makes computation performance more robust. 

Kumar et al. [26] presented a mathematical analysis of offload-
ing. Broadly, the energy saved by computation offloading depends 
on the amount of computation to be performed (C), the amount of 

data to be transmitted (D), and the wireless network bandwidth 
(B). If (D/C) is low, then it was claimed that offloading can save 
energy. Our experiments have shown that this is a simplistic view 
of the problem, e.g., energy-efficiency is also highly effected by 
the type of wireless interface being used for the transmission. 
Cuervo et.al [21] proposed a framework called MAUI, based on 
code annotations to specify which methods from a software class 
can be offloaded to the cloud. Annotations are introduced in the 
source code by the developer during the development phase. At 
runtime, methods are identified by the MAUI profiler, which per-
forms the offloading of the methods, if the bandwidth of the net-
work and data transfer conditions are ideal. However, this annota-
tion method puts an extra burden on the already complex mobile 
application development process. A better approach would be to 
have a middleware that is able to automatically make intelligent 
offloading decisions on the fly, without manual annotations. 

 
Figure 7: Average battery consumption and response time on 
a mobile device for a torrent file download application [27]. 

In spite of existing research highlighting the potential of of-
floading in mobile devices, current offloading techniques are far 
from being adopted widely in mobile systems. This is mainly be-
cause of some of the challenges associated with offloading. The 
first challenge is to be able to recognize the energy spent by the 
mobile device in the offloading process before the computation 
takes place. The energy saved with offloading should always be 
greater than the energy spent establishing and realizing computa-
tions in the cloud, which is not straightforward to estimate. The 
second challenge is that the response time of the application should 
be maintained such that the user does not experience a drop in QoS. 
In the real world, the response time and offloading energy is im-
pacted by wireless network quality and the wireless interface in 
use. For example, 4G networks provide higher bandwidths than 3G 
but 4G also typically consumes more energy than 3G (and Wi-Fi). 
In other scenarios, poor Wi-Fi signal quality may make it more 
advantageous to use 4G for data transfers. The trade-off between 
3G, 4G, and Wi-Fi is in general highly dependent on network con-
ditions, which vary across locations and time of day. 

In [27], we proposed such a middleware framework for mobile 
devices that utilized various sources of data such as the application 
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communication/computation intensiveness, type and status of 
available wireless networks, and the capabilities of cloud servers, 
to make decisions on when and how to offload an application from 
the mobile device to the cloud, with the goal of improving energy-
efficiency and performance robustness. The middleware frame-
work was based on an unsupervised Q-learning machine learning 
technique that analyzed the data for the app type, network type, 
network conditions, and cloud capabilities to select the optimal 
network type and decide when and what to offload. 

Figure 7 shows an example of how the Android based torrent 
app Flud [28] can benefit from our middleware-based offloading 
framework. In this experiment, a cloud based service (Amazon 
Web Services EC2 instance) first downloads and aggregates the 
file to be received through torrent, and then the smartphone down-
loads the file in a single process. The experiment was conducted 
on an LG G3 Android smartphone. From the bars in the figure, it 
can be observed that different network types, the state of the net-
work, and data transfer sizes result in varying improvements in en-
ergy and response time. For instance, 4G performs slightly better 
than 3G in terms of energy consumption for higher data sizes (45-
85 MBs), but for smaller data sizes 3G is more efficient. The col-
ored lines in Figure 7 indicate the performance of our middleware 
framework (green line) and a framework based on fuzzy logic for 
making offloading decisions (red line) [24]. In all cases, it can be 
observed that our framework is able to provide better offloading 
performance and greater energy efficiency. This is because our 
framework employs a more sophisticated and powerful learning 
algorithm and considers many more variables related to device and 
network context when making decisions, than prior work. 

Our experiments with real smartphones showed savings of up to 
30% in battery life with up to 25% better response time when using 
our middleware framework compared to the state-of-the-art fuzzy 
logic based offloading approach from [24]. For certain applica-
tions, e.g., voice recognition, we found that offloading can also 
improve recognition robustness (accuracy) by approx. 10%.  

 

5. MOBILE INDOOR LOCALIZATION 
Location tracking has found various applications outdoors. One 
can not only use GPS based services for navigation purposes, but 
companies such as Google have been providing users location 
based services such as locating the best places to eat in their vicin-
ity, local news, local weather, reminders to get an item when near 
a grocery store [29], etc. The outdoor location based services avail-
able today are extremely helpful, yet, in most cases they are limited 
once a user moves indoors. For instance, in the previously sug-
gested example of reminders when near grocery stores, the appli-
cation can only remind a user to buy the item from the store but is 
unable to provide any guidance on how to locate that item within 
the store. There are several other use cases that remain unrealized, 
such as being reminded to go to a certain store within a large indoor 
mall, notifications to the user when they are close to specific 
items/aisles in a store, or navigation help to reach specific rooms 
in a large building. These and many other examples make a strong 
case for the creation of indoor localization solutions on devices 
that most people carry with them everywhere: their smartphones. 

Indoor localization is a challenge that cannot be resolved 
through a conventional outdoor solution such as GPS. This is be-
cause GPS signals are weak and ineffective in indoor environ-
ments, and the wireless signal-based infrastructure for indoor lo-
calization is diverse, prone to interference, and often entirely non-
existent [30]. A possible approach to overcome this challenge is 

fingerprinting, where the goal is to use data captured through 
smartphone radio interfaces and sensors to estimate the location of 
the user indoors (inside of buildings, caves, etc.) in real time. How-
ever, continuous monitoring of radio and sensor data drains battery 
life, thus indoor localization solutions must be energy-aware. 

 
Figure 8: Paths traced by indoor localization techniques along 
the Clark L2 North building benchmark path [31]. 

We devised the LearnLoc middleware framework for mobile de-
vices in [31] to improve indoor localization accuracy and energy 
efficiency in a variety of indoor environments. We capture Wi-Fi 
“fingerprint” data (signal strength, signal type, access point ID) in 
a continually updated database for indoor locales together with in-
ertial sensing readings (accelerometer, gyroscope, and magnetom-
eter sensor data) on mobile devices. This data is then analyzed and 
parsed with machine learning techniques to estimate location in 
real time. The framework is implemented as a middleware service 
to provide indoor location based updates and suggestions in a non-
intrusive and energy-efficient manner. The most important feature 
of our approach is that it does not require any additional hardware 
setup indoors, as Wi-Fi access points have become increasingly 
common in indoor public spaces which brings down the cost of 
realizing indoor localization.  

In [31], we prototyped and compared three variants of the 
LearnLoc framework that use Linear Regression (LR), non-linear 
neural networks (NL-NN) and K-nearest neighbor (KNN) tech-
niques. Figure 8 shows the paths traced with the three variants of 
LearnLoc and a conventional inertial navigation (Inertial_Nav) ap-
proach for an indoor path in the Clark L2 North building at Colo-
rado State University, with an HTC Sensation smartphone. It can 
be observed that the path traced by the Inertial_Nav technique 
greatly deviates from the actual path. This is due the accumulation 
of error overtime, whereas LearnLoc allows for recalibration by 
the use of Wi-Fi fingerprinting. The use of smart machine learning 
techniques helps LearnLoc significantly improve prediction accu-
racy and overcome noisy data readings compared to prior work. 

Figure 9 shows a comparison of energy consumption and local-
ization accuracy of the three variants of the LearnLoc framework 
with well-known techniques from prior work (Radar [32], Place-
Lab [33], Inertial_Nav [20]) along four indoor paths of 110m-
140m at Colorado State University. We observe that PlaceLab and 
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Radar consume much less energy but that comes at a price of ac-
curacy. The experimental results suggest that the KNN delivers the 
most accurate location estimates, but also consumes the most en-
ergy. The LR variant performs considerably well overall. It is also 
important to note that Wi-Fi scan interval also plays a significant 
role in accuracy and energy-efficiency. The lowest Wi-Fi scan in-
terval (1 second) delivers the best result, but a balance between 
energy consumption and accuracy can be achieved through the se-
lection of a balanced scan interval. By prototyping a middleware 
framework that enables trade-offs between energy and accuracy, 
our work has brought viable indoor localization solutions that can 
be implemented on commodity mobile devices closer to reality.  

 
(a) 

 

 
(b) 

Figure 9: Comparison of indoor localization techniques [31]. 

6. CONCLUSIONS 
We are witnessing the rise of the data-driven science paradigm, in 
which massive amounts of data is produced and processed by mo-
bile devices on a very strict power budget. These conditions call 
for energy-efficient software solutions that are able to help in the 
robust development of applications and services that can make the 
most out of available hardware resources. In this paper, we argue 
that the flexibility, scalability and abstraction level provided by a 
middleware based solution can lead to rapid prototyping of energy-
efficient and robust performing solutions required to enhance the 
capabilities of emerging smart mobile devices. 
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