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ABSTRACT 
Indoor localization is emerging as an important application do-
main for enhanced navigation (or tracking) of people and assets in 
indoor locales such as buildings, malls, and underground mines. 
Most indoor localization solutions proposed in prior work do not 
deliver good accuracy without expensive infrastructure (and even 
then, the results may lack consistency). Ambient wireless received 
signal strength indication (RSSI) based fingerprinting using smart 
mobile devices is a low-cost approach to the problem. However, 
creating an accurate ‘fingerprinting-only’ solution remains a chal-
lenge. This paper presents a novel approach to transform Wi-Fi 
signatures into images, to create a scalable fingerprinting frame-
work based on Convolutional Neural Networks (CNNs). Our pro-
posed CNN based indoor localization framework (CNN-LOC) is 
validated across several indoor environments and shows improve-
ments over the best known prior works, with an average localiza-
tion error of < 2 meters. 
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1. INTRODUCTION 
Existing outdoor location based services have transformed how 

people navigate, travel, and interact with the world around them. 
Now, indoor localization techniques are emerging that have the 
potential to extend this outdoor experience across indoor locales. 
Industry is beginning to provide indoor location-based services to 
improve customer experience. For instance, Google can suggest 
products to its users through targeted indoor location based ad-
vertisements [1]. Stores such as Target in the USA are beginning 
to provide indoor localization solutions to help customers locate 
products in a store and find their way to these products [2]. Ser-
vices provided by these companies combine GPS, cell towers, and 
Wi-Fi data to estimate the user’s location. However, in the indoor 
environment where GPS signals cannot penetrate building walls, 
the accuracy of these geo-location services can be in the range of 
tens of meters, which is insufficient in many cases [3].  

Many of the latest indoor localization techniques exploit radio 
signals, such as Bluetooth, UWB (Ultra-Wide Band) [4], RFID (Ra-
dio Frequency Identification) [5], [6], or other customized radios. 
The key idea is to use characteristics of radio signals (e.g., signal 
strength or triangulation) to estimate user location relative to a 
radio beacon (wireless access point). But these techniques suffer 
from multipath effects, signal attenuation, and noise-induced in-
terference [8]. Also, as these techniques require specialized wire-
less radio beacons to be installed in indoor locales, they are costly 
and thus lack scalability for wide-scale deployment. 

Wi-Fi based fingerprinting is perhaps the most popular radio-
signal based indoor localization technique being explored today. 
Wi-Fi is an ideal radio signal source for indoor localization as most 
public or private buildings are pre-equipped with Wi-Fi access 
points (APs). Lightweight middleware-based fingerprinting 
frameworks have been shown to run in the background to deliver 
location based updates on smartphones [29]. Fingerprinting with 
Wi-Fi works by first recording the strength of Wi-Fi radio signals 
in an indoor environment at different locations. Then, a user with 
a smartphone can capture Wi-Fi received signal strength indica-
tion (RSSI) data in real-time and compare it to previously recorded 
(stored) values to estimate their location in that environment. Fin-
gerprinting techniques can deliver an accuracy of 6 to 8 meters 
[28], with accuracy improving as the density of APs increases. 
However, in many indoor environments, noise and interference in 
the wireless spectrum (e.g., due to other electronic equipment, 
movement of people, operating machinery, etc.) can reduce this 
accuracy. Combining fingerprinting-based frameworks with dead 
reckoning can improve this accuracy somewhat [8]. Dead reckon-
ing refers to a class of techniques where inertial sensor data (e.g., 
from accelerometer, gyroscope) is used along with the previously 
known position data to determine the current location. But dead 
reckoning is known to suffer from error accumulation (in inertial 
sensors) over time. Also, these techniques are not effective for peo-
ple using wheelchairs or moving walkways.  

The intelligent use of machine learning (ML) techniques can 
help to overcome noise and uncertainty during fingerprinting-
based localization [8]. While traditional ML techniques work well 
at approximating simpler input-output functions, computationally 
intensive deep learning models are capable of dealing with more 
complex input-output mappings and can deliver better accuracy. 
Middleware-based offloading [30] and energy enhancement 
frameworks [31], [32] may be a route to explore for computation 
and energy-intensive indoor localization services on smartphones. 
Furthermore, with the increase in the available computational 
power on mobile devices, it is now possible to deploy deep learn-
ing techniques such as Convolutional Neural Networks (CNNs) on 
smartphones. A CNN is a special type of Deep Neural Network 
(DNN) that is geared towards image matching and recognition. 
The most popular aspect of CNN is that it can automatically iden-
tify essential input features that make the most impact towards 
the correctness of the final output. This process is known as fea-
ture learning. Prior to deep learning, feature learning was an ex-
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pensive and time intensive process that had to be conducted man-
ually. CNN has been extremely successful in complex image clas-
sification problems and is finding applications in many emerging 
domains, e.g., self-driving cars [27]. 

In this paper, we propose a new and efficient framework that 
uses CNN-based Wi-Fi fingerprinting to deliver a superior level of 
indoor localization accuracy to a user with a smartphone. Our ap-
proach utilizes widely available Wi-Fi APs without requiring any 
customized/expensive infrastructure deployments. The frame-
work works on a user’s smartphone, within the computational ca-
pabilities of the device, and utilizes the radio interfaces for effi-
cient fingerprinting-based localization. The main novel contribu-
tions of this paper can be summarized as follows: 

 

 We developed a new technique to extract images out of location 
fingerprints, which are then used to train a CNN designed to 
improve indoor localization robustness and accuracy; 

 We implemented a hierarchical architecture to scale the CNN, 
so that our framework can be used in the real world where 
buildings can have large numbers of floors and corridors;  

 We performed extensive testing of our algorithms with the 
state-of-the-art across different buildings and indoor paths, to 
demonstrate the effectiveness of our proposed framework. 

2. RELATED WORK 
Several efforts aim to address the challenges in the domain of 

indoor localization. Here we summarize some of the key efforts. 
Several RFID [5], [6] based indoor localization solutions that 

use proximity-based estimation techniques have been proposed. 
But the hardware expenses of these efforts increase dramatically 
with increasing accuracy requirements. Also, these approaches 
cannot be used with smartphones and require the use of special-
ized hardware. Indoor localization systems that use UWB [4] and 
ultrasound [10] have similar requirements for additional (costly) 
infrastructure, and a lack of compatibility for use with commodity 
smartphones. 

Triangulation based methods, such as [11], use multiple anten-
nas to locate a person or object. But these techniques require sev-
eral antennas and regular upkeep of the associated hardware. Most 
techniques therefore favor using the more lightweight fingerprint-
ing approach, often with Wi-Fi signals. UJIIndoorLoc [7] describes 
a technique to create a Wi-Fi fingerprint database and employs a 
KNN (K-Nearest Neighbor) based model to predict location. Their 
average accuracy using KNN is 7.9 meters. Dead reckoning tech-
niques use the accelerometer to estimate the number of steps, a 
gyroscope for orientation, and a magnetometer to determine the 
heading direction. Such techniques have been employed in [12] 
and [26], but have shown to deliver poor localization accuracy re-
sults when used alone. 

Radar [12] and Indoor Atlas [26] proposed using hybrid indoor 
localization techniques. Radar [12] combines inertial sensors (dead 
reckoning) with Wi-Fi signal propagation models, whereas Indoor 
Atlas [26] combines information from several sensors such as 
magnetic, inertial, and camera sensors, for localization. LearnLoc 
[8] combines non-deep ML models, dead reckoning techniques, 
and Wi-Fi fingerprinting to trade-off indoor localization accuracy 
and energy efficiency during localization on smartphones.   

A few efforts have begun to consider deep learning to assist 
with indoor localization. The work in [13] presents an approach 
that uses DNNs with Wi-Fi fingerprinting. The accuracy of the 
DNN is improved by using a Hidden Markov Model (HMM). The 
HMM takes temporal coherence into account and maintains a 
smooth transition between adjacent locations. But our analysis 
shows that the fine location prediction with the HMM fails in cases 

such as when moving back on the same path or taking a sharp 
turn. HMM predictions are also based on the previous position ac-
quired through the DNN and hence, can be prone to error accu-
mulation. DeepFi [14] and ConFi [15] propose approaches that use 
the Channel State Information (CSI) of Wi-Fi signals to create fin-
gerprints. But the CSI information in these approaches was ob-
tained through the use of specialized hardware attached to a lap-
top. None of the mobile devices available today have the ability to 
capture CSI data. Due to this limitation, it is not feasible to imple-
ment these techniques on smartphones. Deep Belief Networks 
(DBN) [16] have also been used for indoor localization, but the 
technology is based on custom UWB beacons that lead to very 
high implementation cost. 

In summary, most of the above-mentioned frameworks either 
require additional costly infrastructure or cannot be deployed on 
smart mobile devices. Our implementation-based analysis shows 
that these frameworks can become slow and resource intensive if 
used for large buildings with multiple floors and corridors.  

Our proposed framework in this paper, CNN-LOC, overcomes 
the shortcomings of these state-of-the-art indoor localization ap-
proaches. CNN-LOC creates input images by using RSSI of Wi-Fi 
signals that are then used to train a CNN model, without requiring 
any specialized hardware/infrastructure. CNN-LOC is easily de-
ployable on current smartphones. The framework also integrates 
a hierarchical scheme to enable scalability for large buildings with 
multiple floors and corridors/aisles. 

3. CONVOLUTIONAL NEURAL NETWORKS 
Convolutional Neural Networks (CNNs) are specialized DNNs 

with a focus on image classification. They are highly resilient to 
noise in the input data and have shown to deliver excellent results 
for complex image classification tasks. The smallest unit of any 
neural network (NN) is a perceptron and is inspired by the biolog-
ical neuron present in the human brain. A perceptron is defined 
by the following equation:  

ݕ =  ෍ݓ௜ݔ௜

௡

௜ୀଵ

 ଴ݓ +

Here y is the output, which is a weighted sum of the inputs ݔ௜ , 
with a weighted bias (ݓ଴). NNs have inter-connected layers, and 
in each layer, there are several perceptrons, each with its own tun-
able weights and biases. Each layer receives some input, executes 
a dot product and passes it to the output layer or the hidden layer 
in front of it [17]. This output is often applied to an activation 
function that gives an input-output mapping defined by logistic 
regression. The most common activation functions used are sig-
moid and tanh functions. The goal of an NN is to approximate a 
functional relationship between a set of inputs and outputs (train-
ing phase). The resulting NN then represents the approximated 
function that is used to make predictions for any given input (test-
ing phase). 

While an NN often contains a small number of hidden layers 
sandwiched between the input and output layer, a Deep Neural 
Network (DNN) has a very large number of hidden layers. DNNs 
have a much higher computational complexity but in turn are also 
able to deliver very high accuracy. CNNs are a type of DNN that 
include several specialized NN layers, where each layer may serve 
a unique function. CNN classifiers are used to map input data to a 
finite set of output classes. For instance, given different animal 
pictures, a CNN model can be trained to categorize them into dif-
ferent classes such as cats, dogs, etc. CNNs also make use of Rec-
tified Linear Units (ReLUs) as their activation function, which al-
lows them to handle non-linearity in the data.                                

In the training phase, our CNN model uses a feed forward deep 

 (1) 
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learning algorithm. To update the weights during the training 
phase, a Stochastic Gradient Descent (SGD) algorithm is used. 
Adam [18], an optimized version of SGD, is used to optimize the 
learning process. The algorithm is designed to take advantage of 
two well-known techniques: RMSprop [19] and AdaGrad [20]. 
SGD maintains a constant learning rate for every weight update 
in the network. In contrast, Adam employs an adaptive learning 
rate for each network weight; with the learning rate being adapted 
as the training progresses. RMSprop uses the mean (first-order 
moment) of past squared gradients and adjusts the weights based 
on how fast the gradient changes. Adam, to optimize the process, 
uses the variance (second-order moment) of past gradients and ad-
justs the weights accordingly.  

 
Figure 1: CNN architecture 

 

 The structure of the CNN in CNN-LOC is inspired from the 
well-known CNN architectures, LeNet [21] and AlexNet [22]. Our 
CNN architecture is shown in figure 1. The first hidden layer is 
partially connected to the input layer. This hidden layer only looks 
at a specific region of the input image at a time, and this region is 
known as a filter. The filter is shown by a rectangle (red-dotted 
lines). Each layer performs a convolution of a small region of the 
input image with the filter and feeds the result to the ReLu activa-
tion function. Therefore, we refer to each layer as [Conv-ReLu]. 
To capture more details from the input image we can use a larger 
number of filters. For each filter, we get a feature map. For the first 
layer of [Conv-ReLU], we used 32 filters to create a set of 32 fea-
ture maps. We used five hidden layers of [Conv-ReLU], but only 
two are shown for brevity. The number of filters and layers are 
derived through empirical analysis as discussed in section 4.4. A 
‘stride’ parameter determines the quantity of pixels that a filter 
will shift, to arrive at a new region of the input image to process. 
The stride and other ‘hyperparameters’ of our CNN are further 
discussed in section 4.4. In the end, a fully connected layer helps 
in identifying the individual class scores (in our case each class is 
a unique location). The class with the highest score is selected as 
the output. In this layer, all the neurons are connected to the neu-
rons in the previous layer (green-dotted-lines). 

In a conventional CNN, a pooling layer is used to down-sample 
the image when the size of the input image is too big. In our case, 
the input image is small and therefore we do not need this step. 
We want our CNN to learn all the features from the entire image. 

4. CNN-LOC FRAMEWORK: OVERVIEW 
4.1 Overview 

An overview of our CNN-LOC indoor localization framework is 
shown in figure 2. In the framework, we utilize the available Wi-
Fi access points (APs) in an indoor environment to create an RSSI 
fingerprint database. Our framework is divided into two phases. 
The first phase involves RSSI data collection, cleaning, and pre-
processing. This pre-processed data is used to create a database of 
images. Each image represents a Wi-Fi RSSI based signature that 
is unique to a location (i.e., x-y co-ordinate). This database of im-
ages is used to train a CNN model. The trained model is deployed 
on a smartphone. In the second phase, real time AP data is con-
verted into an image and then fed to the trained CNN model to 

predict the location of the user. The CNN model predicts the clos-
est block that was sampled as the users’ location. A detailed de-
scription of the pre-processing is described in the next section. 

4.2 Pre-processing of RSSI Data 
The process of image database creation begins with the collec-

tion of RSSI fingerprints as shown in the top half of figure 2. The 
RSSI for various APs are captured along with the corresponding x 
and y coordinates at the training locations. We only maintain in-
formation for known Wi-Fi APs and hence clean the captured data. 
This ensures that our trained model is not polluted by unstable 
Wi-Fi APs. On the RSSI scale, values typically range between -95 
dB (lowest) to -0 dB (highest). We normalize the RSSI values on a 
scale from 0 and 100, where 0 represents the weak or null signal, 
and 100 represents the strongest signal.  

 
 

Figure 2: An overview of the CNN-LOC framework 
Assume that while fingerprinting an indoor location, a total of 

K APs are discovered at N unique locations. These combine to 
form a two-dimensional matrix of size ܰ × -Then the normal .ܭ
ized RSSI fingerprint at the Nth location, denoted as lN, is given by 
a row vector [r1, r2, …, rK], denoted by RN. Therefore, each column 
vector, [w1, w2,…, wN] would represent the normalized RSSI values 
of the Kth AP at all N locations, denoted by WK. We calculate the 
Pearson Correlation Coefficient (PCC) [23] between each column 
vector WK and the location vector [l1, l2, …, lN]. The result is a vec-
tor of correlation values denoted as C. PCC is useful in identifying 
the most significant APs in the database that impact localization 
accuracy. The coefficient values range across a scale of -1 to +1. If 
the relationship is -1, it represents a strong negative relationship, 
whereas +1 represents a strong positive relationship, and 0 implies 
that the input and output have no relationship.  

 

 
Figure 3: Unique images created for locations l1 and l2. The 

green icons represent locations that are fingerprinted along an in-
door path. The two locations shown are 10 meters apart. 

We only consider the magnitude of the correlation as we are 
only concerned with the strength of the relationship. APs with 
very low correlation with the output coordinates are not useful for 
the purpose of indoor localization. Therefore, we can remove APs 
whose correlation to the output coordinates is below a certain 
threshold (|PCC| < 0.3). This removes inconsequential APs from 
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the collected Wi-Fi data and helps reduce the computational work-
load of the framework. The normalized RSSI data from the remain-
ing high-correlation APs is used to create an RSSI image database, 
as explained in the next section. 

4.3 RSSI Image Database 
In this section, we present our approach to convert RSSI data 

for a given location into a greyscale image. A collection of these 
images for all fingerprinted locations forms the RSSI Image Data-
base. To form greyscale images, a Hadamard Product (HP) [24] is 
calculated for each R and C. HP is defined as an element wise mul-
tiplication of two arrays or vectors:  

ܲܪ = ෍ܴ௜ ∘ ܥ
ே

௜ୀଵ

 

The dimension of each HP is 1 × -Then, the HP matrix is re .ܭ
shaped into a ݌ ×  matrix, which represents a 2D image as shown ݌
in figure 3. The HP is padded with zeros in the case that K is less 
than p2. Therefore, we now have a set of N images of size ݌ ×  in ݌
our database. These images are used to train the CNNs.  

Figure 3 shows two images (IMG_l1 and IMG_l2) of size 7×7 cre-
ated for two unique fingerprints (signatures) associated with two 
different locations. Each pixel value is scaled on a scale of 0 to 255. 
The patterns in each of these images will be unique to a location 
and change slightly as we move along an indoor path.  

In equation (2), the product of PCC and normalized RSSI value 
for each AP is used to form a matrix. Its purpose is to promote the 
impact of the APs that are highly correlated to fingerprinted loca-
tions. Even though there may be attenuation of Wi-Fi signals due 
to multipath fading effects, the image may fade but will likely still 
have the pattern information retained. These patterns that are 
unique to every location can be easily learned by a CNN. The hy-
perparameters and their use in CNN-LOC is discussed next. 

4.4 Hyperparameters 
The accuracy of the CNN model depends on the optimization 

of the hyperparameters that control its architecture which is the 
most important factor in the performance of CNN. A smaller net-
work may not perform well and a larger network may be slow and 
prone to overfitting. There are no defined rules in deep learning 
that help in estimating the appropriate hyperparameters. Identify-
ing the optimal values for the CNN hyperparameters is an empir-
ical process and requires several iterations of experimentation and 
analysis. The estimated values are also highly dependent on the 
input dataset. Below, we discuss results of our analysis of CNN 
hyperparameters for our indoor localization problem domain. 

 

 Number of hidden layers: A large number of hidden layers lead 
to longer execution times and conversely, fewer hidden layers 
may produce inaccurate results. We found that 5 layers of 
[Conv-ReLU] works best for our domain. 

 Size of filter: This defines the image area that the filter considers 
at a time, before moving to the next region of the image. A large 
filter size might aggregate a large chunk of information in one 
pass. The optimum filter size in our case was found to be 2×2. 

 Stride size: The amount of pixels a filter moves by is dictated by 
the stride size. We set it to 1 because the size of our image is 
very small and we do not wish to lose any information. 

 Number of filters: Each filter extracts a distinct set of features 
from the input to construct different feature maps. Each feature 
map holds unique information about the input image. The best 
results were obtained if we started with a lower number of fil-
ters and increased them in the successive layers to capture 
greater uniqueness in the patterns. There were 32 filters in the 

first layer and were doubled for each subsequent layer up to 256 
filters such that both the fourth and fifth layer had 256 filters. 

4.5 Integrating Hierarchy for Scalability  
Our CNN-LOC framework is designed to scale up to larger prob-

lem sizes than that handled by most prior efforts. For this purpose, 
we enhanced CNN-LOC by integrating a hierarchical classifier. 
The resulting hierarchical classifier employs a combination of 
smaller CNN modules, which work together to deliver a location 
prediction. Figure 4 shows the hierarchical decision structure of 
the framework. Each CNN module has a label that starts with C. 
The CNN in the first layer (C1) classifies the floor numbers, and 
then in the next layer, C20 or C21 identify the corridor on that 
floor. Once the corridor is located, one of the CNNs from the third 
layer (C30 – C35) will predict the fine-grain location of the user. It 
is important to note that the CNN models in the third layer actu-
ally represent two models each, i.e., C30 includes both CNN mod-
els for the x and y axis. In this manner, we avoid using the hierar-
chal classifier twice for each axis. 

 

 
Figure 4: A general architecture for the hierarchical classifier 

5. EXPERIMENTS 
5.1 Experimental Setup 

 This section describes the CNN-LOC implementation and ex-
perimental results. The experiments were conducted on 3 separate 
indoor paths as described in Table 1. The corridors on the path are 
divided into a grid and labelled sequentially from 1 to N. Each 
square in the grid has an area of 1 m2 and represents a “class”. This 
allows us to treat indoor localization as a classification problem 
for CNN. Figure 5 shows an example of a path covered in the li-
brary building with labeled squares. Each label further translates 
into an x-y coordinate. Five Wi-Fi scans were conducted at each 
square during the fingerprinting (training) phase. 

 

Table 1: Indoor paths used in experiments 
Building Path Length (m) Shape 
Library 30 U shape 
Clark A 35 Semi-octagonal 
Physics 28 Square shape 

 

 
Figure 5: Library building path divided into a grid, with squares 

along the path labeled sequentially from 1 to 30  

 (2) 
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5.2 Smartphone Implementation 
An Android application was built to collect Wi-Fi fingerprints 

(i.e., RSSI samples from multiple APs at each location) and for test-
ing. The application is compatible with Android 6.0 and was tested 
on a Samsung Galaxy S6. After fingerprint data collection, the data 
was pre-processed as described in the previous section for the 
CNN model. The entire data set is split into training and testing 
samples, so we can check how well our models perform. We used 
1/5th of the total samples for testing and 4/5th of the samples were 
used for training. Also, we implemented different CNN models for 
location estimation along different axes. Thus, we use a dedicated 
CNN model to predict the x coordinate of a location. Similarly, a 
separate CNN model predicts the y coordinates. The output from 
these models is combined to get the final results. 

 

5.3 Experimental Results 
We compared our CNN-LOC indoor localization framework 

with three other indoor localization frameworks from prior work. 
The first work we implemented is based on the approach in [25] 
and employs Support Vector Regression (SVR). The approach 
forms one or more hyperplanes in a multidimensional space seg-
regating similar data points, which are then used for regression. 
The second work is based on the KNN technique from [8], which 
is a non-parametric approach that is based on the idea that similar 
input will have similar outputs. Lastly, we compare our work 
against a DNN based approach [13] that improves upon conven-
tional NNs by incorporating a very large number of hidden layers. 
All of these techniques supplement the Wi-Fi fingerprinting ap-
proach with a machine learning model to provide robustness 
against noise and interference effects. Our experiments in the rest 
of this section first discusses the localization accuracy results for 
the techniques. Subsequently, we also discuss results for the scala-
bility of our framework using a hierarchical classification en-
hancement approach. Lastly, we contrast the accuracy of CNN-
LOC with that reported by other indoor localization techniques.  

 

5.3.1 Indoor Localization Accuracy Comparison 
Figure 6 shows the paths predicted by the four techniques, for 

the indoor path in the Clark building. The green dots along the 
path represent the points where Wi-Fi RSSI fingerprint samples 
were taken to create the training dataset. The distance between 
each of the green dots is 1 meter. In the training dataset, each 
green dot is converted into an image. The testing phase consists of 
the user walking along this path, and the red lines in Figure 6 show 
the paths predicted by the four techniques. It is observed that KNN 
[8] and SVR [25] stray off the actual path the most, whereas DNN 
and CNN-LOC perform much better. This is likely because KNN 
and SVR are both regression based techniques where the predic-
tion is impacted by neighboring data points. In cases where the 
sampled points are very close to each other, there may not be 
enough variation across neighboring samples for the regression-
based techniques to work properly. The transition from one loca-
tion to another is smoother for CNN as it is able to distinguish 
between closely spaced sampling locations due to our RSSI-to-
image conversion technique. From figure 6, it is evident that CNN-
LOC produces stable predictions for the Clark path.  

Figure 7 shows a bar graph that summarizes the average loca-
tion estimation error for the various techniques on the three dif-
ferent indoor paths considered. We found that the KNN approach 
is the least reliable among all techniques with a mean error of 5.5 
meters and large variations across the paths. The SVR-based ap-
proach has a similar mean error as the KNN approach. The DNN 
based approach shows lower error across all of the paths. But, it 
does not perform consistently across all of the paths and the mean 
error is always higher than that for CNN-LOC. This may be due to 

the fact that the filters in CNN are set up to focus on the image 
with a much finer granularity than the DNN approach is capable 
of. We also observe that all techniques perform the worst in the 
Physics department. This is due to the fact that the path in the 
Physics department is near the entrance of the building and has a 
lower density of Wi-Fi APs as compared to the other paths. The 
Library and Clark paths have a higher density of Wi-Fi APs pre-
sent; hence, better accuracy can be achieved. Our proposed CNN-
LOC framework is the most reliable framework with the lowest 
mean error of less than 2 meters.  

 
Figure 6: Path traced using different techniques 

 

5.3.2 CNN-LOC Scalability Analysis 
We discuss results for the hierarchal CNN-LOC (Section 4.5) 

here. We consider a scenario when CNN-LOC is required to predict 
a location inside a building with two floors and with three corri-
dors on each floor. The length of each corridor is approximately 
30 meters. We combined several small CNNs (in our case 9 small 
CNNs), such that a smaller number of weights are associated with 
each layer in the network than if a single larger CNN was used.  

 
Figure 7: Comparison of indoor localization techniques 

We first analyzed the accuracy of predictions, for our CNN-LOC 
framework with and without the hierarchical classifier. For the 
first and second layer of the hierarchical classifier (shown in Fig-
ure 4), the accuracy is determined by the number of times the sys-
tem predicts the correct floor and corridor. We found that floors 
and corridors were accurately predicted 99.67% and 98.36% of 
times, respectively. For the final layer, we found that there was no 
difference in accuracy between the hierarchal and the non-hierar-
chal approach. This is because in the last level both the approaches 
use the same model.  
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Figure 8 shows the benefits in terms of time taken to generate a 
prediction with the hierarchical versus the non-hierarchical CNN-
LOC framework. We performed our experiment for four walking 
scenarios (“runs”) in the indoor environment (building with two 
floors and with three corridors on each floor). We found that the 
hierarchical CNN-LOC model only takes 2.42ms to make a predic-
tion on average, whereas the non-hierarchical CNN-LOC takes 
longer (3.4ms). Thus, the hierarchical classifier represents a prom-
ising approach to reduce prediction time due to the fewer number 
of weights in the CNN layers in the hierarchical approach, which 
leads to fewer computations in real-time.  

 
Figure 8: Execution time for Hierarchical CNN  

5.3.3 Accuracy Analysis with Other Approaches 
Our experimental results in the previous sections have shown 

that CNN-LOC delivers better localization accuracy over the KNN 
[8], DNN [13] and SVR [25] frameworks. The UJIIndoorLoc [7] 
framework is reported to have an accuracy of 4 to 7 meters. Our 
average accuracy is also almost twice that of RADAR [12].  If we 
consider frameworks that used CSI (DeepFi [14] and ConFi [15]), 
our accuracy is very close to both at just under 2 meters. However, 
[14] and [15] use special equipment to capture CSI and cannot be 
used with mobile devices. In contrast, our proposed CNN-LOC 
framework is easy to deploy on today’s smartphones, does not re-
quire any specialized infrastructure (e.g., custom beacons), and can 
be used in buildings wherever Wi-Fi infrastructure pre-exists.  

6. CONCLUSIONS 
In this paper, we presented the CNN-LOC framework that uses 

Wi-Fi fingerprints and convolutional neural networks (CNNs) for 
accurate and robust indoor localization. We compared our work 
against three different state-of-the-art indoor localization frame-
works from prior work. Our framework outperforms these ap-
proaches and delivers localization accuracy under 2 meters. CNN-
LOC has the advantage of being easily implemented without the 
overhead of expensive infrastructure and is smartphone compati-
ble. We also demonstrated how a hierarchical classifier can im-
prove the scalability of this framework. CNN-LOC represents a 
promising framework that can deliver reliable and accurate indoor 
localization for smartphone users.  
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