Compiler-guided instruction-level clock scheduling
for timing speculative processors

Yuanbo Fan, Tianyu Jia, Jie Gu, Simone Campanoni, Russ Joseph
Department of Electrical Engineering and Computer Science
Northwestern University, Evanston, IL
{yuanbo,tianyujia2015}@u.northwestern.edu,jgu@northwestern.edu,{simonec,rjoseph}@eecs.northwestern.edu

ABSTRACT

Despite the significant promise that circuit-level timing speculation
has for enabling operation in marginal conditions, overheads as-
sociated with recovery prove to be a serious drawback. We show
that fine-grained clock adjustment guided by the compiler can be
used to stretch and shrink the clock to maximize benefits of timing
speculation and reduce the overheads associated with recovery. We
present a formulation for compiler-driven clock scheduling and ex-
plore the benefits in several scenarios. Our results show that there
are significant opportunities to exploit timing slack when there
are appropriate channels for the compiler to select clock period at
cycle-level.

1 INTRODUCTION

An explosion of ultra low-power applications raise the profile of
aggressive system-wide optimizations including techniques which
exploit dynamic timing slack [2, 3, 11, 12]. Dynamic timing slack
(DTS) refers to the unused portion of the clock period in which all
signals in the design have already propagated through logic paths
and wait until the clock edge. At any given cycle DTS will appear if
critical paths are not currently exercised. If there are enough contin-
uous cycles with non-zero DTS, there is an opportunity to lower the
supply voltage to decrease the system-wide energy without com-
promising performance. Given the emergence of applications with
extremely power constrained profiles in the wearable computing,
IoT, and implantable device spaces, there has been significant inter-
est in aggressive schemes like those which exploit DTS. There are a
variety of possible solutions to take advantage of DTS. Among these
solutions, circuit-level timing speculation proved to be promising.
Circuit-level Timing Speculation (TS) allows a system to simul-
taneously exploit DTS and eliminate process, voltage, and temper-
ature (PVT) margins, but may impose significant recovery costs.
Under timing speculation, the supply voltage can be lowered with-
out changing the clock frequency to improve the energy profile.
Because the system is operating outside of conventional design
margins, occasionally, signals arrive after the clock edge and the
incorrect values are latched, producing timing errors. Timing spec-
ulative systems must therefore include mechanisms to detect these
errors before they can be committed to visible state and recover so
that architecturally correct execution can resume. The area, energy,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC 18, June 24-29, 2018, San Francisco, CA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5700-5/18/06. .. $15.00

https://doi.org/10.1145/3195970.3196013

and performance overheads associated with recovery are the biggest
factors that have limited widespread adoption of timing speculation.
In this work, we describe a general framework for compiler guid-
ance of a fast digital phase-locked loop (PLL) for intelligent clock
generation which can be adjusted to reduce the total recovery cost
of low-power timing speculative pipelines. Our approach relies on
a programmable clock generator which can stretch and shrink the
clock period at a cycle-to-cycle granularity. Our compiler inserts
clock scaling instructions directly into the instruction stream to
match the activity in the pipeline. The scaling instructions can ei-
ther shrink the clock to convert extra timing slack into performance
improvements or stretch the clock to avoid timing errors and their
associated recovery costs. The compiler is guided by a mathematical
framework which considers the cost of inserting clock control into
the program and an algorithm which balances the benefits of clock
adjustment with undesirable impact of code growth. This approach
can be effective in statically scheduled pipelines commonly used in
low-power embedded systems. We make the following contributions:
(1) We introduce a novel scheme for compiler driven clock-control
which drastically lowers the effective error rate and improves the
efficiency of statically scheduled timing speculative pipelines; (2)
We propose a mathematical framework for clock scheduling which
casts the decisions as an optimization problem and considers the
costs and benefits of inserting instructions into program; (3) We
apply supervised learning to evaluate the error rates within the
compiler. We believe this is the first compiler based approach to use
machine learning to model properties of timing speculation.

2 BACKGROUND AND RELATED WORK

2.1 Timing Speculation

Timing speculative architectures have been proposed to reduce
many of the design margins that appear in conventional systems.
The significant impact that process, voltage, and temperature vari-
ations (PVT) have on logic delay demands that these margins be
quite wide. Consequently, these safeguards which guarantee reliable
operation in the worst case impose a severe tax on the efficiency
of the entire system and are unnecessary in the common case. The
Razor project [4, 5] is an influential example of a timing specu-
lative design. It introduced an in situ error detection mechanism
built around a special Razor Flip-flop. The original proposal was
applied to a low-power pipeline [5]. Subsequent work examined
ways to extend support aggressive superscalar pipelines [4]. These
designs explored a wide variety of ways to detect and recover from
errors. Given the significant cost for error recovery there have been
many proposals for either reducing the effective error rate through
both static and dynamic approaches [19]. Compiler support for tim-
ing speculative architectures has focused on ways to reduce error
rates [16].

Fixed clock

Fine-grained clock scaling

shrink stretch

Figure 1: Measured clock waveform with fine-grained clock
adjustment on the test chip.

2.2 Compiler Driven Clock Management

While most systems that apply Dynamic Voltage Scaling (DVEFS)
do so under guidance of the operating system, there are strong
arguments for having the compiler drive the voltage/frequency se-
lection. Different voltage and frequency operating points can be
appropriately matched to suit characteristics of long loops or pro-
gram phases resulting in good power/performance tradeoffs. Xie et
al examined the benefits and limitations of compile time DVFS [18].
Wu et al introduce a framework for run-time DVFS in dynamic
compilation system [17]. Dynamic compilation can be fine-grained
and responsive to changes in the run-time environment yielding
significant benefits not otherwise possible. These approaches are
all limited by inherent switching latencies associated with voltage
regulators and conventional PLLs which require thousands of clock
cycles to switch between voltage/frequency operating points [14].
In this work, we exploit phase selection with an ultra fast PLL (ap-
proximately sub-cycle response time), allowing us to stretch/shrink
the clock period at a cycle-to-cycle granularity as shown in Figure 1.
By adjusting the clock at orders of magnitude faster than DVEFS, we
can exploit instruction-level timing characteristics.

3 OVERVIEW AND MOTIVATION

Existing timing speculation systems typically rely on extra hard-
ware to detect errors. These systems recover from an error detected
by flushing the pipeline and replaying the related instructions in
a slow and safe recovery mode [4]. The large overhead associated
with recovery prevents the system from operating under more ag-
gressive voltage and/or clock frequency. Figure 2a shows the flow
of instructions in a simple timing speculative pipeline. The cmp in-
struction encounters a timing error during its execution. The error
is detected and the system recovers by replay. To ensure correct
operation and avoid any additional timing errors during replay, the
pipeline operates at half the clock frequency. This guarantees for-
ward progress and correct execution but makes recovery expensive.
However, if the supply voltage decreases beyond some point the
error rates increase sharply and the system spends too much time
in recovery. At this point the energy costs associated with recovery
dominate and negate the energy savings of operating at a lower
voltage.

Prior work has shown that dynamic timing slack and circuit-level
errors are correlated with specific instruction sequences and data
usage patterns [6, 10]. Therefore, instruction-level error models can
be built and used to estimate the likelihood of an error. A compiler
can then rely on such a model to analyze compiled code to identify
which instructions are most prone to errors. Moreover, models can
be parameterized to predict error rates under different operating
conditions.

0x9650 sub I, Ir, #1

0x9654 cmp 16,

0x9658 bgt 9688°<BZ2_blockSort+0x97c>
0x965¢c add r3, r5,|r2, Isl #2

90w >

Error detected — pipeline flush (Razorll), replay
Time (in cycles) P =

N

IFA T IDA 1 OFA EXAIVEMAWE L | 4 | P

! IFs: IDs ! OFs} EX8MEM WBs| IFs | IDs |
! IFc: IDc:OFc: EXc|f|ush ! IFc !

! ! IFo ! IDp | OFp}flush) ! L IFo

“reTIay limit” = 1

(a) Error detection and recovery in RazorIl pipeline.

E .
A _0x9650 _sub_lln#1_ _ _ _ _ predict
. 0x9654 _cmp _r6, r2_+ {clock stretch}) &

B
S
C: 0x9658 bgt 9688 <BZ2_blockSort+0x97c>
D: 0x965c add r3,r5,r2,Isl#2 \

Instructions

. stretch clock, avoid runtime error
Time (in cycles) il

12 »
S| IFa1 IDA_i OFa i EXa I ME Ba o g
S| ifIFe_i_IDs i OFs) EXs IMEMZI WBEY 1 |
9 | i IFc 1 IDc 1 OFc 1 EXc | MEMc | WBG| '
- 1

|

i i i IFo) Do WOFp | EXp IMEMoWBD
1 | | | . .

ipigiipipinpinindgigigh

(b) Error prediction and compiler-guided clock stretch

Figure 2: Compiler-guided clock scaling for predicted error.

A static compiler can influence the clock period by inserting
directions for the programmable PLL into the instruction stream.
At run-time, the hardware decodes the clock adjustment directives
and configures the PLL. The way that clock control directives are
encoded in the instruction stream will influence when and where it
is advantageous to scale the clock period. Extra instructions produce
memory traffic, consume cache capacity, and expend valuable fetch
and execute bandwidth. Consequently, the benefit of scaling the
clock at any given point in the program have to be weighed against
the cost. For example, architectures with sparse instruction encod-
ings represent the extreme case where controls can be embedded
at every instruction. By entirely embedding control information
within existing instructions there would be no overhead and the
benefits of clock adjustment would be maximized. On the other
hand, if the architecture encoding was denser, it would be necessary
to insert special clock adjustment operations into the instruction set.
At each point in the program where the compiler wanted to adjust
the clock, it would need to insert this special instruction. This would
consequently limit the compiler to adjust the clock only when it
provides large benefits.

Figure 2b shows what the same cmp instruction embedded with
a stretch clock attribute. In this instance, the compiler was able to
determine that this static instruction was likely to generate timing
error, and it uses fine-grained clock adjustment to avoid the error and
subsequent recovery operation. This directly improves execution
time and energy.

Overall, these capabilities increase the reach of timing speculation
and can foster significant energy reduction. With lower average
recovery cost per error, the system may operate at more aggressive
clock frequency or voltage, as shown in Figure 3.

Average recovery cost per error (in cycles): ——1 ——pipeDepth ——PipeDepthx2

. voltage reduction

3.75

w
N
]

Normalized totalenergy consumption
(Execution + Recovery)
~
S
bl
B &

~
]

S
]

&

o
S
3

0.95 1 1.05 11 115 12
Votlage (V)

Figure 3: Lowered voltage due to reduced recovery cost
per error for gcc. The recovery overhead per error in TS
pipeline [4] is between PipelineDepth and PipelineDepth X 2.

4 PROPOSED SCHEME

4.1 Problem Formulation

4.1.1 Problem: Previous work has shown that in many proces-
sor pipelines timing critical paths are not triggered on every clock
cycle [2, 3, 12]. Furthermore instructions within a pipeline have
different circuit-level timing requirements. This is a consequence of
varying degrees to which instructions stress critical paths in the de-
sign. In conventional designs, the clock frequency remains constant
over thousands or millions of cycles due to the slow response rate of
DVES. This results in dynamic timing slack from cycle to cycle. For
non-speculative systems, the fixed clock period is determined under
the worst-case circuit-timing analysis, which guarantees the correct
operation but wastes power and hurts performance. By contrast,
timing speculative systems can operate at a more aggressive voltage
level or clock frequency that is optimized for common cases. In prac-
tice, the steep error rate curves mean that designs can over-scale to
a very limited degree and often operate very close to the point of
fist failure (PoFF) [4, 5].

We assume a timing speculative in-order processor in which
the clock period can be scaled at a very fine granularity (cycle-
by-cycle). We then assume that the compiler can select the clock
period on a cycle-by-cycle basis by appropriately inserting control
information at some fixed cost per stretch/shrink of the clock. Then
the execution time of an input trace is function of its CPIL, the base
clock period, the error rates of instructions in the program, clock
control embedded by the compiler, and the recovery cost per error.
This allows us to formulate an optimization problem for minimizing
the total execution time for given program at specified voltage level
in the presence of timing errors.

4.1.2 Formulation: Given an instruction stream, clock assign-
ment for each static instruction can be found to minimize the total
execution time. G; is the overhead when switching from one clock
period to another. This is determined by the way the system im-
plements instruction-level clock scaling, including both the cost
associated with embedding control information into program and
the hardware overhead. For example, in an ideal case, if the control
information for clock scaling is embedded inside the instruction
without any extra cost, and the overhead of changing from one clock
period to another is negligible, G is 0. R; is defined as the overhead
(in cycles) associated with error recovery for an instruction. For
Razor-like TS processors, R o« Pipeline Depth and it may also be
related to the CPI. We define Err; as the error rate of instruction i
during program execution. Any error introduced by this instruction
in any stage is treated as an error produced by this instruction. For
a static program, dynamic execution sequence is mostly fixed due

to the fact that instructions are statically scheduled in in-order pro-
cessors. If the instruction has different preceding instructions due
to control flow convergence, we apply a conservative analysis. The
maximum error rate among all possible control flows within two
conditional branches is applied. Finally, wy, is a fraction which repre-
sents the frequency that instruction k is executed at runtime. To sum
up, the total execution of an instruction trace can be represented as

1.
N

T= min{Z(CPIi X pi + Gi(pi—1,pi) + Ri X Erri(p;)) X w;} (1)
pPeP i

For a given static instruction trace, values of P; which minimize
this equation provide the optimal execution time and implicitly
trade-off clock shrinking and stretching with the overhead of insert-
ing clock management instructions. Also, since this mechanism is
flexible about the length of trace, the clock management can be done
for a small piece of instruction sequence or large static program
depending on the overall benefit. Therefore, it works for complex
structures, such as nested loops or recursive functions.

4.2 Clock Scheduling Algorithm

Our Clock Scheduling Algorithm is used by the compiler to choose
optimal clock scheduling for the static instruction trace. Based on
the equation described before, the clock period selected for each
instruction affects both the transition cost from previous to current
clock (G;) and the error rate of the current instruction.

Algorithm 1 applies dynamic programming to solve this problem.
Assume that the program length is N (instructions) and the number
of available clock periods provided by the multi-phase ADPLL is M.
memo[k,p] represents the minimum execution time of instruction
sequence [k:N] while the previous clock period selected is p. The
complexity of this algorithm is O(NM?). Since M is usually small in
most of systems, the complexity can be practically treated as O(N).

Algorithm 1 Instrution-level Clock Scheduling Algorithm

1: procedure instr_exec_time(k, Pr._1, Py)

2 return CPI; X Py + Gp(Pr_1, Px) + R X Erri(Py)

3: end procedure

4: procedure min_total_exec_time

5: I: instruction sequence [1:N]

6 P: set of clock phases {Pi,Ps,...Pp}

7 C: default clock period

8 Initialize table memo[1...N, 1...M]

9: Vp € P,memo[N + 1,p] =0

10: fori = N to 1: do// from the last instr. to the first

11: fors = P; to Py do// all possible clock set before i
12: memol[i, s] = min;ep(instr_exec_time(i, s, j)

13: + memoli+1, j])

14: end for

15: end for

16: return memo(1, C] // min. exec. time for the trace

17: end procedure

4.3 Instruction-level Delay Model

The connection between certain high-level instruction patterns and
low-level circuit timing characteristics provides an opportunity to
effectively model errors in the design. In in-order processors, this
correlation is even stronger due to the fact that instruction sequence
directly determines the execution order in the pipelines. By taking

advantage of this property, supervised learning may be used to
extract important "features” from labeled data and build adaptive
error models automatically.

We specifically select features: (1) that are available at compile
time and (2) that may trigger errors in the circuit. One of our goals is
to be able to identify instruction-level program characteristics that
can be easily tracked by the compiler and yet correlate well to errors
which are rooted in circuit-level structure. One reasonable way to
do this is to use a recent segment from the instruction stream which
represents instructions that are currently present in the pipeline.

During the dynamic execution of an instruction stream, the se-
quence can be labeled as either "Error" (1) or "No Error" (0). As the
design is over-clocked step by step, different sequences are labeled in
each step. Based on this information, the delay range of instruction
sequences can be derived. Then, these labeled instruction sequences
are used as training dataset to build single/separate models with
supervised learning algorithm. This instruction timing data reflects
circuit-level timing characteristics of both hardware design and
real environment such as Process, Temperature and Voltage (PVT)
variations, thereby models that are trained by this data do not only
make predictions for delay introduced by program, but also dynamic
conditions that the program is currently running under. In our ex-
periments, we applied various algorithms (including Decision Tree,
Multi-Layer Perceptron and Support Vector Machine) for training
models. Among these, Decision Tree shows good accuracy with
relatively low training/testing cost, therefore, we decided to use
Decision Tree for the evaluations in Section 6.

With the guidance of the models, the compiler is able to iden-
tify both critical and non-critical instructions and schedule the
clock at cycle-level accordingly based on the micro-architectural
implementation of instructions. For cases that some instructions are
overlapping in the same cycle, the compiler selects the conservative
clock to avoid errors.

4.4 Code Portability under PVT variations

In this approach, a static compiler intervention is proposed to inte-
grate clock scheduling with the program stream for minimizing the
total execution time. Success depends on the quality of the model.
The optimized code should improve the system operation as long as
the model is a close match to the conditions observed at run-time.

As in the original Razor designs ([5] [4]), we assume that the
processor includes a simple hardware control loop which monitors
error rate and applies dynamic voltage scaling (DVS) to maintain a
low error rate (e.g. around 1%). In cases when the environmental
conditions do not match the target model (e.g. ambient temperature
rises or the process variation profile does not match the training
data), we would expect that the error rate would briefly spike. The
control logic would adjust the voltage to correct from the error and
the system would resume operation at a stable voltage and low error
rate. As we shown in Section 6.1, our models are fairly robust under
small to moderate variations. The feedback controller can help in
cases when the changes are more pronounced.

4.5 Optimization with 3-phase Clock
Scheduling

To illustrate the proposed approach, we optimize the program with

3-phase clock selection on a TS processor. There are three clock

periods that are available for the compiler to schedule, and they are
50%, 85% and 100% of the nominal clock period. Figure 4 shows the

350 pred error pred
300
250
200 clock clock stretch
150 shrink
100

50

0

1.6 17 1.8 1.85 19 1.95 2

Dynamic instructions (k)

Delay (ns)
Figure 4: 3-phase clock selection for basicmath.

Static Instr. Stream: Compiler

Error Model
o (i.e. decision tree)

Idr r4, [pc, #88]
mov Ir, #10
sub r2,r2, #48
Idr 13, [r0]
add r1,r3, #1
str r,[r0]
Idrb 13, [r3, #1]

i‘:pg :;3 M8~ B0k T ie—
l schedulmg_ | labeled timing data

=] E
? E

select

;,

Figure 5: Overview of the proposed scheme.

distribution of dynamic instruction delays for basicmath. As we can
see, the majority of dynamic instructions have circuit-level delay
less than 85% of the nominal, which is used as the default clock
period for the program execution. The mechanism that is used to
embed clock selection information into program is to insert a clock
selection instruction. In our evaluation, we assume that clock control
instructions consume fetch bandwidth and hence increase the run-
time of the program. However, if the clock selection information can
be directly embedded into the instruction or there is excess fetch
bandwidth, this overhead can be avoided.

We use supervised learning to build adaptive error models that
predict suitability of instructions to be clocked at 50%, 85%, and 100%
of the clock period. Based on these model, the compiler inserts clock
selection instructions to stretch or shrink the clock. For incorrectly
predicted errors, the overhead of the False Position (FP) prediction
will be wasted timing slack. For False Negatives (FN) (errors that
are not predicted), the full recovery (i.e. pipeline flush and replay)
is required to guarantee the correct execution.

5 METHODOLOGY
5.1 Processor and Workload

We evaluate our approach by modeling a six-stage single issue
ARMvV7 pipeline supporting timing speculation. This design is suit-
able for battery-power or energy-scavenging systems. The pipeline
closely models a 55nm test chip that that we fabricated to study the
potential for dynamic clock adjustment as proposed in this paper.
We build a gate-level model of the processor pipeline and capture
the gate-level simulation to study dynamic timing slack and timing
errors. We further validated our simulated model with the test-chip
to understand model fidelity.

We extend the LLVM-ARM backend [13] so that the compiler
is able to predict errors for instructions based on static sequences
and insert clock scaling instructions accordingly. The multi-phase
ADPLL is able to scale clock at cycle level, and the compiler selects
the conservative clock period for consecutive instructions. We cross-
compile and run several benchmarks from the MiBench [8] and the
SPEC benchmark suite [9] using LLVM with highest optimization
level. All phases in benchmarks are sampled by SimpPoint [15] with
interval size of 100M instructions. The overall benefit is weighted
by all phases.

5.2 Clocking Assumptions

We designed and evaluated a multi-phase All-Digital Phase-Locked
Loop (ADPLL) associated with the pipeline, as described in Figure 5.
The entire design is fabricated on a 55nm CMOS silicon chip. The
ADPLL provides fine-grained clock adjustment via phase selection,
as shown in Figure 1. Similar implementations of dynamic clock
phase selection were proposed in [1, 12]. We assume that clock
scaling directives come directly from instruction fetch and can be
evaluated directly by the ADPLL. We assume that the fetch band-
width remains the same as the baseline design and therefore the
overhead of each clock scaling instruction is one extra fetch cycle.

Our test chip includes the ADPLL, and we use validation of the
test chip to show the practicality of fine grained clock adjustment.
The entire ADPLL occupies only 2.48% of the total chip area, and is
able to provide the range from 60% to 150% of the reference clock
rate, and consumes less than 5% of the total power consumption in
the test chip.

6 EVALUATION
6.1 Model Accuracy

The error model plays an very important role in this scheme by
determining which instructions produce errors at compile time. The
prediction results include four categories: True Positive (TP), False
Positive (FP), True Negative (TN), and False Negative (FN). To be
more specific, the TP represents the correctly predicted "Error”,
while the TN is the correctly predicted "No Error". The accuracy of
model is defined as "correctly classified rate" (%), For
FN, the full recovery may be required in hardware and the overhead
is proportional to the depth of pipeline, while the overhead of FP
is only the stretched portion of clock period which is normally
around 20%. Therefore, the model is biased based on the overhead
of misclassification for FP and FN.

Figure 6 shows the classification breakdown of the model built
and tested under lowered voltage, and we can see that more than
95% of the instructions are correctly predicted by the model. Also,
compared to a "naive" model that always predicts "no error", the
model provides very low rates for high-overhead FN cases (« 1%),
which significantly lower the recovery cost associated with errors
through the clock stretching at runtime. To validate the model under
various scenarios, Figure 7 compares the accuracy among different
PVTs and features. "Diff-PVT" represents the case when the opti-
mization is targeted at PVTO (nominal): {Process: Typical, Voltage:
1.2V, Temperature: 25C}, but the scheme is applied under PVT1:
{Process: Slow, Voltage: 1.08V, Temperature: 125C}. We observed
that, the model accuracy depends heavily on the representativity
of training dataset. Fortunately, profiling with training inputs pro-
vides good datasets to build high-accuracy error models. Also, as
long as the instruction pattern has same label across different PVT

- 100% g o B B R R
2
2 95% HFN
©
Q
= FP
2 90%
S TP
5 85%
2 0 BTN
a
= 80%
o
RN AT A SR S SH S A PR VR0 K8
é"z} %Cb.*{f’é < \{\(} o“’é ,1\54, ?90 QI”Q ’bg‘?q- é\zQ%bbsz ’b"(b
Loy ¢ K7 R @ I
0 S (%)
o [\

Figure 6: Breakdown of classification results under PVTO.

B Diff-PVT M Diff-Test ™ 10-fold Cross Validation ™ |deal (w/ operand values)

Il iy I “ { !

£ S & 2
e & @ B S 58
& ¥ < &N o 3
L) N Q& ?
A \ 34 '\/ D" >
& &S LG
QQ o

100%

e
g
3
S 9%
c
o
®
i | | ‘ |
=
@
2
=
=
Q\

85%
@*
&

L
b‘*

Figure 7: Comparison with various conditions and features.

conditions, the model is able to make the correct prediction. We also
tested the model by using both separate dataset and 10-fold cross
validation. The results show that, the model can achieve better than
93% accuracy across all conditions. Since circuit-level timing also
has a strong correlation with the data usage, when operand values
are added as extra features to train/test the model, the accuracy can
be as high as 99.7%. This suggests that further improvements could
be made if the compiler had good knowledge about operand values
(e.g. through value profiling).

6.2 Optimization for Minimum Energy with
3-phase Clock Scheduling

We evaluated the energy savings with simple three-phase clock
scheduling. With the proposed error prediction at compile time
and clock stretch at runtime, the runtime error rates and recovery
overhead are dramatically reduced. This maximizes the overall ben-
efits of the TS pipeline and push it to operate at a more aggressive
voltage. As Table 1 shows, voltage level is further reduced by 12%
compared to 5% reduction of the point where the TS system has the
minimum energy consumption, with only averagely 0.2% runtime
error rate.

Clock stretching can effectively lower runtime error rates thereby
leading to the operation under a more aggressive voltage level. More-
over, clock shrinking improves performance by reducing unneces-
sary cycle time. As Figure 8 shows, the total energy saving is as
high as 36%, as normalized to the baseline design which assumes
a TS processor operates at nominal conditions (voltage and clock
frequency). Results for TS at the minimum energy point only shows
less than 12% on average due to the high recovery cost thereby
more conservative voltage. For some low recovery overhead TS
systems proposed recently ([7, 19]), it is possible to further push
the operating voltage. However, it normally comes with extra com-
plexity in the design (i.e. clock tree) as well as area and power cost.
Since the overhead associated with clock stretching is much lower

Table 1: Comparison of error rates under aggressive supply
voltage for minimum total energy consumption

Benchmark Vol. w/ TS Vol. w/ clk Err. w/o clk Err. w/ clk
V) sched. (V) sched. (%) sched. (%)
basicmath 1.12 1.08 3.13 0.62
CRC32 1.12 1.09 5.41 0.04
dijkstra 1.12 1.08 3.94 0.14
FFT 1.13 1.08 2.86 0.02
patricia 1.13 1.08 4.24 0.70
qsort 1.12 1.08 2.97 0.40
susan 1.12 1.08 2.32 0.05
400.perlbench 1.12 1.08 3.48 0.03
401.bzip2 1.13 1.08 9.27 <0.01
403.gcc 1.11 1.05 5.32 0.08
429.mcf 1.12 1.07 9.03 0.07
458.sjeng 1.13 1.08 4.03 0.57
464.h264ref 1.11 1.06 3.63 0.09
473.astar 1.11 1.06 8.83 0.19
HPOFF ®TS Stretching Shrinking
40%
35%
230%
= 25%
2. 20% i
5 15% 4 “
2l mm
il | \
0%
"N v & o Qv N
L P EIE S S
§ @QQ b{o

Figure 8: Our Energy savings compared to the PoFF.

(< 0.5 cycle), with the guidance of the error model and clock sched-
uling at compilation time, the average recovery cost is even lower
than the proposed low cost recovery. In this work, the hardware
model and baseline are designed based on conventional Razor style
systems ([4]). The proposed approach is independent of the error
detection and correction mechanisms. Moreover, different from pre-
vious works on TS which detects and recover errors on static paths,
this technique schedules clock with the consideration of program
dependent timing error and provides performance improvement by
reducing program introduced timing slack.

7 CONCLUSION

This work introduces a compiler guided scheme for fine-grained
clock period management of timing speculative processors. This
approach leverages a compiler with knowledge of instruction-level
dynamic timing slack with a fast, programmable PLL to enhance
the benefits of timing speculation. We introduce a mathematical
frameworks and algorithm that help the compiler decide when
and where to insert clock control information into the instruction
stream. With a simple three-phase clock scheduling approach our
technique achieves on average 27.3% energy savings over a range
of benchmarks.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under
grants CCF-1116610 and CCF-1618065.

REFERENCES

[1] K. A. Bowman, S. Raina, J. T. Bridges, D. J. Yingling, H. H. Nguyen, B. R. Appel,
Y. N. Kolla, J. Jeong, F. I. Atallah, and D. W. Hansquine. 2016. A 16 nm All-Digital
Auto-Calibrating Adaptive Clock Distribution for Supply Voltage Droop Tolerance
Across a Wide Operating Range. IEEE Journal of Solid-State Circuits 51, 1 (Jan
2016), 8-17. https://doi.org/10.1109/JSSC.2015.2473655

H. Cherupalli, R. Kumar, and J. Sartori. 2016. Exploiting Dynamic Timing Slack
for Energy Efficiency in Ultra-Low-Power Embedded Systems. In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA). 671-681.
https://doi.org/10.1109/ISCA.2016.64

[3] Jeremy Constantin, Lai Wang, Georgios Karakonstantis, Anupam Chattopadhyay,
and Andreas Burg. 2015. Exploiting Dynamic Timing Margins in Microprocessors
for Frequency-Over-Scaling with Instruction-Based Clock Adjustment. Proceed-
ings of the 2015 Design, Automation & Test in Europe (2015), 381-386.

[4] S. Das, C. Tokunaga, S. Pant, W. H. Ma, S. Kalaiselvan, K. Lai, D. M. Bull, and
D. T. Blaauw. 2009. Razorll: In Situ Error Detection and Correction for PVT
and SER Tolerance. IEEE Journal of Solid-State Circuits 44, 1 (Jan 2009), 32-48.
https://doi.org/10.1109/JSSC.2008.2007145

[5] Dan Ernst, Nam Sung Kim, Shidhartha Das, Sanjay Pant, Rajeev Rao, Toan Pham,
Conrad Ziesler, David Blaauw, Todd Austin, Krisztian Flautner, Trevor Mudge, Beal
Ave, and Ann Arbor. 2003. Razor : A Low-Power Pipeline Based on Circuit-Level
Timing Speculation. December (2003).

[6] Yuanbo Fan and Russ Joseph. 2017. D2M: Data-driven Model for Fast and Accurate
Timing Error Simulation in Statically Scheduled Microprocessors. In Proceedings of
the Summer Simulation Multi-Conference (SummerSim ’17). Society for Computer
Simulation International, San Diego, CA, USA, Article 4, 13 pages. http://dl.acm.
org/citation.cfm?id=3140065.3140069

[7] M. Fojtik, D. Fick, Y. Kim, N. Pinckney, D. Harris, D. Blaauw, and D. Sylvester. 2012.
Bubble Razor: An architecture-independent approach to timing-error detection
and correction. In 2012 IEEE International Solid-State Circuits Conference. 488-490.
https://doi.org/10.1109/ISSCC.2012.6177103

[8] M.R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown.
2001. MiBench: A Free, Commercially Representative Embedded Benchmark
Suite. In Proceedings of the Workload Characterization, 2001. WWC-4. 2001 IEEE
International Workshop (WWC °01). IEEE Computer Society, Washington, DC,
USA, 3-14. https://doi.org/10.1109/WWC.2001.15

[9] John L. Henning. 2006. SPEC CPU2006 Benchmark Descriptions. SIGARCH
Comput. Archit. News 34, 4 (Sept. 2006), 1-17. https://doi.org/10.1145/1186736.
1186737

[10] Giang Hoang, Robby Bruce Findler, and Russ Joseph. 2011. Exploring Cir-
cuit Timing-aware Language and Compilation. In Proceedings of the Sixteenth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS XVI). ACM, New York, NY, USA, 345-356.
https://doi.org/10.1145/1950365.1950405

[11] T.Jia, Y. Fan, R. Joseph, and J. Gu. 2016. Exploration of associative power man-
agement with instruction governed operation for ultra-low power design. In
2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1-6. https:
//doi.org/10.1145/2897937.2898021

[12] T. Jia, R. Joseph, and Jie Gu. 2017. Greybox design methodology: A program

driven hardware co-optimization with ultra-dynamic clock management. In 2017

54th ACM/EDAC/IEEE Design Automation Conference (DAC). 1-6. https://doi.org/
10.1145/3061639.3062255

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Life-

long Program Analysis & Transformation. In Proceedings of the 2004 International

Symposium on Code Generation and Optimization (CGO’04). Palo Alto, California.

S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N. Chang. 2013. Accurate

Modeling of the Delay and Energy Overhead of Dynamic Voltage and Frequency

Scaling in Modern Microprocessors. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems 32, 5 (May 2013), 695-708. https://doi.org/10.
1109/TCAD.2012.2235126

[15] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood,

and Brad Calder. 2003. Using SimPoint for Accurate and Efficient Simulation.

SIGMETRICS Perform. Eval. Rev. 31, 1 (June 2003), 318-319. https://doi.org/10.

1145/885651.781076

John Sartori and Rakesh Kumar. 2012. Compiling for Energy Efficiency on Timing

Speculative Processors. In Proceedings of the 49th Annual Design Automation

Conference (DAC ’12). ACM, New York, NY, USA, 1301-1308. https://doi.org/10.

1145/2228360.2228602

Qiang Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Youfeng Wu, Jin

Lee, and D. Brooks. 2006. Dynamic-Compiler-Driven Control for Microprocessor

Energy and Performance. IEEE Micro 26, 1 (Jan 2006), 119-129. https://doi.org/10.

1109/MM.2006.9

Fen Xie, Margaret Martonosi, and Sharad Malik. 2003. Compile-time Dynamic

Voltage Scaling Settings: Opportunities and Limits. In Proceedings of the ACM

SIGPLAN 2003 Conference on Programming Language Design and Implementation

(PLDI "03). ACM, New York, NY, USA, 49-62. https://doi.org/10.1145/781131.

781138

J. XinandR. Joseph. 2011. Identifying and predicting timing-critical instructions to

boost timing speculation. In 2011 44th Annual IEEE/ACM International Symposium

on Microarchitecture (MICRO). 128-139.

S

[13

[14

[16

ey
=

[18

[19

