2017 IEEE Computer Society Annual Symposium on VLSI

Memristor-Based Clock Design and Optimization with In-situ Tunability

Shuyu Kong, Jie Gu, and Hai Zhou
EECS Department, Northwestern University, Evanston, IL, U.S.A.

Abstract—Process variation is the dominating factor for performance
degradation in modern IC chips. The conventional guard-band design
methodology leads to significant performance penalty. This paper
utilizes an emerging non-volatile resistive device, memristor, with
timing violation detectors to dynamically achieve local recovery from
timing violation during the runtime, eliminating the necessity of testing
phase. It develops a systematic self-tuning mechanism that globally
adjusts the clock skew scheduling to compensate the timing violation,
and determines the tunability of the memristor-based self-tunable
circuits. It also proposes an algorithmic memristor placement across
the clock tree to balance the tradeoff between hardware cost and system
tunability. Experimental results show that our approach can improve
the yield from 90% to 98% with only 4% overhead in average.

I. INTRODUCTION

With aggressive scaling down of feature sizes in VLSI fab-
rication, process variation has become a critical issue on the
integrated circuit design. Traditional design achieves the timing
yield specification by allocating adequate design margin in the pre-
silicon design stage, which restricts the frequency scaling in high
performance circuits. To relieve the pessimistic restriction imposed
on the pre-silicon design phase, Post-Silicon-Tunable Buffer was
proposed [1] and has been widely accepted as a promising solution
to adjust the clock skew scheduling in the post-silicon stage, thus
mitigating the impact of process variation on circuit performance.
Previous research on PST Buffer can be categorized into two
directions: (1) improving the PST buffer design to support the
variation aware capability [2]; (2) exploring clock tree synthesis
optimization, PST buffer placement strategy, and tuning methodol-
ogy [3]-[5]. However, CMOS based PST not only incurs large area
overhead for storage of configuration bit but also requires repeating
calibration and tuning whenever chip is powered up. In addition,
there was no online detection reported in previous PST approach
and thus it does not provide the necessary improvement for timing
violation within local circuits.

Recently, the fourth passive circuit element found by Chua [6]
has raised significant attention from the IC design community.
The unique property of memristor, that it is able to permanently
store its resistance value, makes it a perfect candidate device
in non-volatile solid-state memory design [7]. Gu and Li [8]
explored the memristor application in self-resilient design and
demonstrated a novel memristor-based self-tunable circuit that can
perform runtime timing violation detection and dynamic tuning.
The design borrows the self resilience concept from Razor [9].
However, the Razor approach requires continuous detection and
flush of pipeline to remove the impact of errors, and thus does
not provide a “removal” method for the variation source compared
with the proposed scheme in this paper. On the other hand, [8] is
based on experimental analysis and lacks of a systematic way of
solving the detection and tuning sequence.

The biggest challenge in self-tunable circuits is how to design a
systematic tuning mechanism that can detect infeasible clock peri-

2159-3477/17 $31.00 © 2017 IEEE
DOI 10.1109/ISVLSI.2017.81

427

ods. The basic idea of self-tuning is to borrow time among different
flipflop stages. A clock period is doomed to be infeasible if there
exists at least one cycle formed by flipflop stages whose average
delay (i.e. the total delay divided by the number of flipflops) is
larger than the clock period. The local tuning method [8] cannot
detect this situation. Since the timing error detection circuit cannot
identify the source flipflop of the timing error, the idea of finding
the infeasibility by identifying such a cycle does not work either.

We discover that a systematic self-tuning is similar to a con-
current algorithm for longest path on the circuit timing graph. By
exploring the similarity, we developed a self-tuning mechanism
that can detect infeasible clock periods. Our mechanism can also be
extended to self-tunable circuits where the memristor-based tunable
buffers are located in the clock tree. In this situation, a buffer
can affect the clock latency of multiple flipflops. We developed
the logic circuit to control each tunable buffer and compare the
overhead with the original circuits.

We also investigate the memristor placement and sizing problem
using the pre-silicon statistical delay information. Here the goal is
to minimize the total number of memristor used while maintain
a target yield. Our approach is based on Statistical Static Timing
Analysis (SSTA) and the results are confirmed using Monte-Carlo
simulations.

Our contribution in this paper is as follows:

o To the best of our knowledge, it is the first work to study the
systematic tuning strategy for memristor-based circuits with
clock tree.

o We propose a heuristic but effective methodology to place
tunable buffers with memristors by analyzing FF criticality
based on SSTA with redefined statistical operations to improve
analysis accuracy.

II. MEMRISTOR BASED TUNABLE CIRCUIT

This section reviews the error-detection circuits similar to razor
flipflop [9] and the proposed tunable clock buffers as basic units
in our work. Figure 2 shows the conceptual view of the proposed
memristor-based circuit with clock tree for setup time resilience.
The circuit structure of tunable buffer and emergency detector is
demonstrated in Figure 1. Each critical FF is connected with an
emergency detector. The memristor is implemented in a Veriloga
model integrated into Cadence Virtuoso circuit schematics and we
assume a tuning resistance between 50 ohm to 100k ohm [8].
One tunable buffer can add up to approximately 100ps delay.
Cascading multiple tunable buffers can achieve more tunable delay.
The maximum detectable timing violation amount is determined
by the length of detection window in the emergency detector. In
every clock cycle, the detector will feed the “violation” signal into
the tuning control logic generating “Tune” signal. By tuning the
resistance value of the memristor in the buffer, a tunable delay
can be generated. Ideally, the detecting and tuning will proceed in

_IEEE
@) computer
- soclety

—_—
[Emergency Detector
vdd |
| Delayed_CLK Tune
D NI N2 N3 |
“,

En_Tune Detection Np |
.Delayed_CLK Window — |
g 5 =y
En_Tune |

Tunable Buffer FF with Emergency Detector i
vdd vdd vdd

Detector

Tunable
Buffer

Combinational
Circuit

Figure 2. Conceptual memristor-based circuit with clock tree

every cycle until the setup time violations are fully removed. The
tuning can be achieved In-Situ and does not need to be applied
continuously or repetitively as in the case of previous PST. The
proposed buffer leads to significant area saving, tuning energy as
well as system operation time compared with previous Razor FF
or PST.

Similar sequential circuit for hold-time resilience can be con-
structed by placing tunable buffer in the data path. We realize that
adjusting clock skew scheduling does not help when combinational
paths from one flipflop to another simultaneously violate setup
and hold time constraint. However, if extra delay is inserted on
the short path to avoid hold time violation while not affecting the
long path, setup time constraint can be satisfied by increasing the
clock latency of the destination flipflop. In this sense, this paper
only leverages the setup time healing mechanism and assumes the
hold time constraint can always be solved by delay insertion or
padding [10].

III. PROBLEM FORMULATION

The setup time constraint of a sequential circuit is modeled with
a set of inequalities as follows.

<Tclk_0j +tj (1)

Where V is the set of all F'F's in the sequential circuit. ¢; and t;
are the clock skew for F'F' ¢ and j respectively, 6; is the setup time
for j, i ~~ j representing there are combinational paths from ¢ to 7,

Vi,j € V and i ~ j,t; + D"

428

among all of which D;;“* is the delay of the longest path. In the
memristor-based tunable circuit, the clock skew of every flipflop
consists of two components as illustrated below:

VieV,ti =t +L; (2)

where ¢; and L; are the static and dynamic clock skew for F'F
¢ respectively. Since buffers are placed on the clock trees, L;
is equivalent to the total tuning amount of buffers controlling 7,
explicitly expressed as:

VieViLi= > I

ke AM;

3)

where AM; consists of all the ancestor buffers for 7 and the buffer
at the same node as ¢ if any. [, is the tuning amount of buffer
k. The memristor in the buffer does not support backward tuning,
thus:

Vk e Ml >0 (4)

where M is the set of all the buffers placed on the clock tree.
From hardware point of view, setup time constraint is interpreted
as 1 bit information, whether there is timing violation or not. The
exact timing slack for a F'F' cannot be measured. Based on the
aforementioned, we formulate the main problem as follows.

Problem 1 (Placement Problem). Given a circuit with clock tree,
optimize the memristor-based tunable buffer placement to minimize
the total number of memristors while maintaining the target yield.

Problem 2 (Tuning Problem). Given circuit with memristor-based
tunable buffer placed on the clock tree, utilize emergency detectors
and buffers to determine the tunability of the given circuit and
adjust the clock skew scheduling under the tuning constraint (2)-
(4) to remove setup time violations if the circuit is tunable.

We first discuss tuning problem in Section IV. Then we present
our approach to place the buffers on the clock tree in Section V.

IV. IN-SITU SELF-TUNING MECHANISM

Our goal in this section is to decide a hardware strategy to self-
tune the circuits and determine the conditions under which the
circuit is considered failing the recovery of timing violation with
the given clock period.

A. Basic Tuning

Given a circuit with delay information under a fixed clock period,
the clock skew scheduling to eliminate all the timing violations can
be obtained mathematically. But in practice, it’s unrealistic for a
circuit to perform online self-measurement of the precise setup
timing violation amount. The information that can be extracted
from the violation detector is just 1 bit: either there is timing
violation or not. So we aim to implement a hardware tuning
algorithm that can dynamically control the tuning and detecting
phase so that the tuning result will match the theoretical results
as much as possible. For simplicity, we start from the following
assumptions:

1) Memristor-based tunable buffers are placed at the leaf node
of the clock tree so that every buffer can only affect the
clock latency of one flipflop. Let buffer ¢ tunes the FF i so
that Vi € V:Li =1

2) The memristor has a tuning resolution, which is the minimal
amount of latency it can tune in one step, defined as d.

3) The allowed initial maximum setup time violation is d * d,
which means any single violation can be tuned correctly in
at most § cycles.

4) The tunable ranges provided by buffers are large enough to
not become a limiting factor in the tuning process.

Based on the above assumptions, we present a basic tuning
algorithm, Leaf FF Tuning Algorithm.

Algorithm 1 Leaf FF Tuning

procedure TUNING PROCEDURE
cycle @ 0
Vie M,l; =0
for cycle @ 1 to |M| 4§ do
if 3¢ € V, ¢ detects setup time violation then
Vi € V' with violation, tune clk skew of i by d
else
return tuning success
cycle @ [M|xd+1
if 3¢ € V, i detects setup time violation then
return tuning failure

1:
2
3
4
5:
6.
7
8
9

10:
11:

Each iteration in Leaf FF Tuning Algorithm is one clock cycle
of tuning. All the violation flipflops are tuned concurrently. The
dynamic clock skew [for the flipflops not controlled by buffers are
fixed at 0. The circuit is tunable if and only if there exists dynamic
clock skew assignments, each of which is integer multiples of d,
such that constraints from equations (1)-(4) are all satisfied. The
validity of the algorithm is based on Theorem 1.

Theorem 1. [f there exists feasible tuning to eliminate all the setup
timing violation , The Leaf FF Tuning Algorithm can find it within
|M| % & clock cycles, where | M| is the total number of buffers.

The correctness proof of theorem 1 is based on the intuition that
after every ¢ clock cycles, the tuning amount of at least one more
buffer is fixed and needs not to be tuned again if the whole circuit
is tunable. Theorem 1 implies if there is still violation after | M |*§
clock cycles, the violated circuit is not tunable and a tuning failure
should be reported. The untunability discovered by our algorithm is
either a result of unavoidable overtuning under the given memristor
tuning resolution or due to the existence of negative timing slack
cycles in the circuits. In our proposed algorithm, we tune the buffer
by memristor tuning resolution d. Alternatively, a larger tuning
amount A\d, A > 1, can be selected in every tuning operation to
speed up the tuning process, but at the risk of losing tunability.

Figure 3 shows an example to better illustrate our Leaf FF
Tuning Algorithm. There are 6 F'F's in the circuit and all the
combinational paths are represented by arrows with delay values.
Here we assume every F'F' with emergency detector(F F'2, FF'3,
FF4, FF5)is connected to a memristor-based tunable buffer while
the skew of normal F'F's (F'F'1, FF6) is fixed at 0. Since there are
4 buffers in total and the initial max violation is 2, circuit should
be tuned successfully within 8 clock cycles and in this case, only 6
clock cycles are needed. The tuning procedure showing the skew of
each F'F in every clock cycle is listed. If the delay between F'F'5
and F'F'2 increases by 1, tuning will not finish after 8th clock
cycle and tuning failure will be reported. This is consistent with

429

ters tere ters tera tees trrs

4 22 5 Cycle0: 0 0 000
FF1 [~ "|FF2 ["|FF8["|FF6| Cycle1: 0 0 1 1 1 0
14 22 Cycle2: 0 0 2 2 2 O

v
Cycle3: 0 0 2 3 3 O

FF FF4
5| 22 Cycled: 0 0 2 4 4 0
clock period = 20 Cycle5: 0 0 2 4 5 0

one-step tuning amount = 1

Cycle6: 0 0 2 4 6 O

Figure 3. memristor tuning example

the theoretical results since there is a path cycle constructed by
FF2, FF3, FF4 and F'F5 with negative overall timing slack.
Intuitively, our tuning algorithm provides a criterion indicating
when to stop due to the tuning infeasibility. If we instead apply
the simple tuning mechanism described in [8] on circuits with
untunable timing violations, we have to keep adjusting the clock
skews of violated F'F's forever and never realize that it is a waste
of effort.

B. Generic Tuning

Leaf Tuning Algorithm only deals with the situation where all
the buffers are on the leaves of the clock tree. However, if buffer
reduction technique is applied, some buffers can be placed on the
non-leaf nodes of the clock tree. We propose a more complex
hardware mechanism to tune the circuit with more general buffer
placement.

Similar with the previous tuning algorithm, we intend to increase
the clock latency by d in every cycle for each F'F' that has
timing violation. However, because there is no one-to-one mapping
between F'F' and buffer, some buffers may affect the clock skews of
more than one F'F's. In certain violation situations, we can not tune
the violating F'F's without affecting the non-violating F'F's. One
straightforward strategy is to tune the greatest common ancestor
buffer of all the violating F'F's. However, such method is very
likely to result in overtuning. An proper tuning mechanism to reach
the feasible clock scheduling, if any, should tune violating F'F's in
every cycle while affecting non-violating F'F's as less as possible.

We define a term DC' associated with every buffer, where DC;
is the the set of the F'F's that either is on the same clock tree node
as buffer 7, or does not have buffer on the same leaf node but has
¢ as its least ancestor. Every F'F' in DC' is “directly connected”
with 4, meaning there is no intermediate buffer between them. The
tuning signal for every buffer is given as follows.

sel; = \/ violation ;
JEDC;
tune; = sel; A —(\/
JEAM;\i
violation; = 3j € V, Lj +t§ + dji +0; > Li + 1] + T

sel;)

In every cycle, we want to increase the clock arrival time of
any F'F' with timing violation only by a latency of d to avoid
overtuning. Therefore, all the ancestor buffers of such F'F's are the
potential candidates to be tuned. In our methodology, we prioritize
to tune the least ancestor of the violating FF. We call such buffer
as “selected” buffer. All the “selected” buffers have sel equal to
TRUE at current clock cycle. A selected buffer will not be tuned

only if at least one of its ancestor buffers is also “selected”. This
ensures no F'F' has clock skew delayed by a latency greater than
d in every cycle. The described tuning logic also guarantees to
tune the smallest subset of the non-violating F'F's. Therefore, if
any non-violating F'F' is tuned, it is an inevitable step to reach the
feasible clock skew scheduling.

SourceICIock

g sely =iolatiofg
tuney=sel, /\tunej N

6

1

5

7

Figure 4. tuning logic for tunable memristors on clock tree

An example of tuning logic design is shown in Figure 4. Note
that the tune signals of buffer @ and d are not dependent on
the tune signal of any other buffers because they do not have
ancestor buffers on the clock tree. Among the 4 buffers, only ¢
“directly connects” with more than 1 F'F's, which is reflected in
the expression of sel..

Algorithm 2 Clock Tree Tuning

procedure TUNING PROCEDURE
cycle @ 0
Vie M,1l; =0
for cycle @ 1 to |M|*d do
if 3i € M, tune; = TRUE then
Vi € M with tune; = TRUE, l; < l; + d:
else
return tuning success
cycle @ [M|*d+1
if 3i € M, tune; = TRUE then
return tuning failure

1:
2
3
4:
5:
6
7
8
9

10:
11:

Again, the correctness of Clock Tree Tuning Algorithm is based
on the following theorem.

Theorem 2. Given buffer placement on clock tree, if there exists
feasible tuning to eliminate all the setup timing violation, Clock
Tree Tuning Algorithm can find it within |M| % & clock cycles,
where |M]| is the total number of buffers.

Up to now, we still maintain the assumption that all the buffers on
clock tree have enough memristors so that the tuning range is not a
restriction in approaching the feasible clock skew scheduling. But
if a more general and realistic placement is concerned, we have to
take the tunable range at each node of clock tree into consideration.
Accordingly, the tuning logic design should be revised because sel
signal becomes more complex. If the selected buffer is already
tuned to the upper range bound, we have to select its least ancestor
where tunable range is not used up. This process can been viewed
as the upward propagation of selection. To explain the revised
tuning logic, we define a new set DM for every buffer. DM; is
the set of buffers whose least ancestor buffer is <. In addition, we
introduce another three signals for every buffer: SAIR, SAOR
and CBT. SAIR, is true if and only if buffer 7 is selected and
has not used up its tuning range. SAOR); is true if and only if 7 is
selected but already tuned to its upper bound r; so that it will

430

propagate selection upward to its ancestors. C'BT; is TRUE
if and only if at least one ancestor buffer of ¢ is determined to
be tuned in the current cycle. To describe the C'BT', we define
LAM/ (i) as the least ancestor buffer of 7. Note if buffer ¢ does not
have ancestors, then CBT; = FALSEFE by default.

SAIR; = (\/ wiolation; v \/ SAOR;) A (I; < i)

JEDC, JjEDM;
SAOR; = (\/ wiolation; v \/ SAOR;) A (I; =r;)
JEDC; jEDM;

CBT; = CBTrany Y TUNEL M (i)
TUNE; = SAIR; N -CBT;

Intuitively, SAITR can be treated as same as the sel signal in the
previous tuning algorithm where tuning range is not considered.

Similarly, we claim that if the circuits is tunable, there is no
timing violation any more after |M|*§ clock cycles. Applying the
similar reasoning we used for the previous two tuning algorithms,
we can prove the correctness of this more generic and comprehen-
sive tuning algorithm(we leave all the formal proof out due to the
space limitation).

V. TUNABLE BUFFER PLACEMENT OPTIMIZATION

In this section, we propose a methodology to place tunable
buffers with memristors based on SSTA. We first place buffers
on the leaves of the clock tree according to the F'F' timing
criticality. Then, we apply a heuristic technique to reduce total
memristor numbers.

A. Placement With SSTA

To overcome the tuning range limit, a tunable buffer may be
embedded with multiple memristors to control a self-healing F'F'.
Now the question is how to assign memristors to different buffers
that controls different F'F's? The proper memristor allocation
strategy should take the “timing criticality” and potential timing
violation amount of diffrent F'F's into consideration, that is, the
F'F with higher probability to have larger violation amount should
be provided with larger tunable range to compensate the negative
slack. That requires us to apply statistical timing analysis (SSTA)
to evaluate the “timing criticality” of each F'F. In SSTA, every
combinational path delay is represented as a Gaussian random
variable. Our goal is to estimate the distribution of the latest arrival
time for every FF.

During the SSTA, we have to repeatedly apply two fundamen-
tal operations: maz and sum. The sum operation is relatively
easy and exact. The max of two Gaussian distributions can be
approximated to another Gaussian distribution as in [11] [12]. We
deploy Clark Approximation [13] to obtain the first and second
moment of the maax. During the calculation, we find that most max
operations are over a constant and a Gaussian random variable. A
constant value can also be represented by a Gaussian distribution
with o = 0. However, we realize that the results obtained through
such approximation are too inaccurate. Therefore, we introduce a
tuple to represent timing variable. The tuple, e.g. {(u, o), C},
refers to the max of the Gaussian variable (¢, o) and a constant
C'. With this new representation included, we derive the max and
sum operations between tuples to replace the orignal operations.

{(ra,04),Ca} +{(pB,08),Cp} = {(us,05),Ca + Cp}

maw({(/”'Av O—A)v CA}7 {(/U'B: UB)v CB}) = {(I—Lm7 a'm)vmaw(CAr CB)}

where (us,0s) and (pm, om) are derived to be the maz of some
gaussian distributions shown below, and can be computed with
Clark Approximation.

(s, 05) = maz((pa + ps, 0,24+0—23)7(HA+0370'A)’

(uB +Ca,0B))
(bm,om) = maz((pa,oa), (LB, 0B))

By applying the redefined operations, we can estimate the latest
arrival time for every F'F' and allocate memristors to provide
tuning range accordingly. As illustrated in our memristor placement
algorithm, |V'| — 1 iterations are needed to calculate the arrival
time distributions for all F'F's. This is because violation amount
can accumulate and propagate across multiple stages. One iteration
of calculation can only capture the delay information in one
combinational path. The worst case is when all F'F's are pipelined
and the latest arrival time distribution of the last /"'F' may not get
stable until |V |—1 iterations of the calculation. In practice, far less
iterations are needed for the calculation to converge if the clock
period is not too aggressive. Heuristically, we run the Monte Carlo
simulation for circuits without memristors and find a proper clock
period resulting in reasonable yield(e.g. 90%).

Given the stabilized arrival time distribution for all F'F's and
the target timing yield 7Y;, we can calculate the tuning amount
needed for each F'F' according to the following theorem:

Theorem 3. Assuming a low dependence between the arrival time
of all the critical FFA]", the yield P every F'F' should achieve is

Vel

approximated by T'Y,''°', where |V¢| is the number of critical F'F.

We define the critical F'F" as those F'F's with static clock skew
t° and latest arrival time distribution {(u, o), C'} that satisfy either
t* < Cort® < p+3o0. It is reasonable to maintain the assumption
in Theorem 3 because under a proper clock period, there are only
few critical F'F's which are most likely far apart from each other
and not sharing common path.

Following the convention, we only consider assigning tunable
buffers to critical F'F's. The tuning amount the tunable buffer
should provide to a critical F'F' is maz{C, Pt Apo} —t°, where

A is the value to achieve yield P = T'Y;'"*! in standard normal
distribution. This would ensure the individual critical ['F to be
tunable with a high probability of approximately TYtWC'. Then,
based on Theorem 3, we can achieve the target yield of the whole

circuit.
B. Memristor Reduction Method

Algorithm 3 only allocate memristors to the tunable buffers on
the leaf node. Advanced memristor reduction technique can be
performed to minimize hardware cost. We apply a greedy method
which moves memristors upward as much as possible. For example,
if N1 and No memristors are allocated to two buffers at different
child nodes of the clock tree and N1 > N, then Ny memristors
can be assigned to the buffer at the parent node so that the number
of the memristors on both child nodes will decrease by No. The
overall effect reduces No memristors. The reduction operation can
be iteratively applied until no more memristors can be moved up.
Such reduction method serves the purpose of minimizing the total
memristor number. Meanwhile, we realize our method neglects the

431

Algorithm 3 Placement Algorithm

1: a;: the clock arrival time for ¢ in a tuple form

2: a}: the clock arrival time for 4 in next iteration.

3: rp: maximum tuning range for a single memristor

4: n;: the number of memristors needed to tune F'F' 1

5: procedure

6 Initialize all flipflop arrival time:

7 VieV, a; = {(—00,0),t}

8 for count from 1 to |V]| — 1 do

9: VieV

10: a; = maz(a;, max (a; +dj —T +t5 —tf))
VieV,j~1i

11: if Vi € V,a; ~ a; then

12: stop iteration

13: Vi € V. estimate n; based on a;, |Ve|,rm and TY;

clock arrival time correlation between different 'F's and may end
up deteriorating the overall tunability of the circuit.

VI. EXPERIMENTAL RESULTS
A. Implementation Discussion

We implement our tuning and memristor placement algorithm in
C++ and conduct experiments on ISCAS89 circuit benchmarks. All
experiments are conducted on a 2.7Hz Linux machine with 8GB
RAM. Mean delay of each gate is assigned based on the fanout.
The delay variance is randomly generated but restricted within 10%
of the delay mean. For each benchmark, we run 1000 iterations of
Monte Carlo Simulation and apply placement and tuning algorithm
on the circuit with the simulated delay information.

100%

o 95% ‘ ‘ ¥ no mem

| |

S

@ 90% = brute-force,

E ‘ ‘ dtune=1

= 85% our leaf

placement,

80% tune_q

5298 5400 59234 538584 All bench

Figure 5. yield comparison: our placement vs brute-force placement.

We implement 3 versions of memristor placement. Two versions
are based on our placement algorithm and the only difference is
one doesn’t apply memristor reduction technique so that all the
memristors are on the leaf while the other one does. For compari-
son, we include a brute force leaf placement which uses the same
number of memristors as our strategy without memristor reduction
technique and allocate every FF same number of memristors. This
brute-force placement is the natural choice for design in [8] where
no memristor placement strategy is proposed. We also have three
versions of generic tuning algorithm with different normalized one-
step tuning amount d = 1,50 and 100 where 1 is the assumed to
be the minimum tuning amount for memristor. The max tuning
amount for one memristor is assigned as 100.

B. Experimental Result Analysis

Figure 5 illustrates the benefit of memristor tuning, which in
average achieves 8% yield improvement over conventional design
with non tuning mechanism. The observation that the yield im-
provement with our memristor placement methodology in general
doubles the improvement with brute force placement shows our

100.00% m i ® no mem
98.00% i ~]
- 96.00% [= leaf, dtune_q
£ 94.00% l
B0/ 92:00% | m non-leaf,
'E 90.00% gtune_q
+ 88.00%
86.00% non-leaf,
84.00% drune=so
82.00% : . m non-leaf,
s510 s832 s5378 538417 All bench dtune=100

Figure 6. yields for different placements and tuning strategies.

strategy is much more capable of capturing the FF criticality
information. Combining Figure 6 with Table I, we find when
memristors are inserted on non-leaf nodes of the clock tree, total
number of memristors is significantly reduced while losing trivial
amount of timing yield, which further validates the advantage of
our memristor placement and reduction algorithm.

—e—avg cycle == timing yield

S5378 S38417 All bench
cycle cycle
15 Emeeng, 100%| 25 i 100%
12 TS 90% 20 90%
9 80% 15 80%
6 70% 10 70%
3 60% 5 60%
O 1 50 100 %% 0 ¢ s 100 3 1 50 100 50%

normalized onc-step
tuning amount

normalized onc-step

" normalized one-step
tuning amount

tuning amount

Figure 7. average tuning cycles along with timing yield for different
one-step tuning amount

To study the trade-off between tuning cost and timing yield,
we obtain the average cycles for all cases that successfully tune
the setup time violations with different one-step tuning amount.
As shown in Figure 6, if one-step tuning amount d‘“"¢ is lower,
the tuning resolution is higher and it is less likely to overtune the
circuit, thus achieving a higher timing yield. On the other hand,
Figure 7 shows that as one-step tuning amount increases, the tuning
cycles decreases much faster than the timing yield in most cases.
We conclude that tuning the minimum resolution is generally too
conservative to be the optimal solution and a relatively larger one-
step tuning amount with no overtuning will dramatically speed up
the tuning process and meanwhile maintain high timing yield.

total memristor number

\

60% 70% 80% 90%
original yield w/o tunable buffer

control logic circuit overhead
8%
6%
4%
2%

460
420
400
380
360
320

—_

60% 70% 80% 90%
original yield w/o tunable buffer

Figure 8. impact of clock period on the placement overhead in average
of 30 ISCASS89 circuit benchmarks

Control logic overhead is estimated based on basic gate counting.
We realize that the overhead in practice can be higher due to
global routing. According to Figure 8, the overhead is impacted
by the clock period. If the yield without tuning is low, meaning
the clock period is aggressive, then more memristors and control
logic gates are needed to maintain a target yield after tuning. In
addition, Table I shows that overhead varies between different

432

Overhead % Num of Memristors
circuit leaf non-leaf |leaf non-leaf
s713 5.43 5.94 12 10
s1423 8.47 7.59 48 40
s13207 2.72 2.94 215 162
$35932 19.1 16.10 7946 4705
s38417 8.88 10.16 4196 2666
All bench |3.97 4.26 571.4 358.4

Table I. Overhead of implementing tuning logic circuit and number of
memristors for different placements given original yield=90%

circuit benchmarks. Overhead is below 10% for most of the
benchmarks. However, s35932 has overhead close to 20%, which
is due to relatively high portion of critical paths in the circuits.

VII. CONCLUSION AND ACKNOWLEDGEMENT

In this paper, we present a memristor tuning and allocating
methodology for a proposed self-healing circuit design. Our tuning
algorithm provides circuits with the intelligence of judging the
overall tunability. Our memristor placement algorithm efficiently
finds the critical F'F's and reduces the number of memristors on
the clock tree while maintaining the timing yield as shown in the
experimental results.

This work is partially supported by NSF under CNS-1441695
and CCF-1533656, and by SRC under 2014-TS-2559.

REFERENCES

[1] S. Rusu and S. Tam, “Clock generation and distribution for the
first ia-64 microprocessor,” JSSC, 2000.

V. B. Suresh and W. P. Burleson, “Variation aware design of post-
silicon tunable clock buffer,” ISVLSI, 2014.

J. Tsai, D. Baik, C. C. Chen, and K. K. Saluja, “A yield
improvement methodology using pre- and post-silicon statistical
clock scheduling,” ICCAD, 2004.

J. Tsai, Z. Lizheng, and C. C. Chen, “Statistical timing analysis
driven post-silicon-tunable clock-tree synthesis,” ICCAD, 2005.
M. Kaneko, “Timing-test scheduling for constraint-graph based
post-silicon skew tuning,” /ICCD, 2012.

L. Chua, “Memristor-the missing circuit element,” /EEE Trans-
actions on Circuit Theory, vol. 18, pp. 507-519, 1971.

R. Williams, “How we found the missing memristor,” /EEE
Spectrum, vol. 45, no. 12, 2008.

J. Gu and J. Li, “Exploration of self-healing circuits for timing
resilient design using emerging memristor devices,” ISCAS, 2015.
S. Das, C. Tokunaga, S. Pant, W. Ma, S. Kalaiselvan, K. Lai,
D. Bull, and D. Blaauw, “Razorii: In situ error detection and
correction for pvt and ser tolerance,” IEEE Journal of Solid-state
Circuits, vol. 44, no. 1, pp. 32-48, Jan 2009.

N. V. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Minimum padding to satisty short path constraints,” in /ICCAD,
1993.

C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker,
S. Narayan, D. K. Beece, J. Piaget, N. Venkateswaran, and J. G.
Hemmett, “First-order incremental block-based statistical timing
analysis,” in IEEE TCAD, 2006.

H. Chang and S. Sapatnekar, “Statisitical timing analysis consid-
ering spatial correlations using a single PERT-like traversal,” in
ICCAD, San Jose, CA, Nov. 2003, pp. 621-625.

C. E. Clark, “The Greatest of a Finite Set of Random Variables,”
Operations Research, vol. 9, no. 2, pp. 145-162, 1961.

[2]
[3]

[4

—

[5]

[6]

(7]

[8]

[9]

[10]

(11]

[12]

[13]

