
Memristor-Based Clock Design and Optimization with In-situ Tunability

Shuyu Kong, Jie Gu, and Hai Zhou

EECS Department, Northwestern University, Evanston, IL, U.S.A.

Abstract—Process variation is the dominating factor for performance
degradation in modern IC chips. The conventional guard-band design
methodology leads to significant performance penalty. This paper
utilizes an emerging non-volatile resistive device, memristor, with
timing violation detectors to dynamically achieve local recovery from
timing violation during the runtime, eliminating the necessity of testing
phase. It develops a systematic self-tuning mechanism that globally
adjusts the clock skew scheduling to compensate the timing violation,
and determines the tunability of the memristor-based self-tunable
circuits. It also proposes an algorithmic memristor placement across
the clock tree to balance the tradeoff between hardware cost and system
tunability. Experimental results show that our approach can improve
the yield from 90% to 98% with only 4% overhead in average.

I. INTRODUCTION

With aggressive scaling down of feature sizes in VLSI fab-

rication, process variation has become a critical issue on the

integrated circuit design. Traditional design achieves the timing

yield specification by allocating adequate design margin in the pre-

silicon design stage, which restricts the frequency scaling in high

performance circuits. To relieve the pessimistic restriction imposed

on the pre-silicon design phase, Post-Silicon-Tunable Buffer was

proposed [1] and has been widely accepted as a promising solution

to adjust the clock skew scheduling in the post-silicon stage, thus

mitigating the impact of process variation on circuit performance.

Previous research on PST Buffer can be categorized into two

directions: (1) improving the PST buffer design to support the

variation aware capability [2]; (2) exploring clock tree synthesis

optimization, PST buffer placement strategy, and tuning methodol-

ogy [3]–[5]. However, CMOS based PST not only incurs large area

overhead for storage of configuration bit but also requires repeating

calibration and tuning whenever chip is powered up. In addition,

there was no online detection reported in previous PST approach

and thus it does not provide the necessary improvement for timing

violation within local circuits.

Recently, the fourth passive circuit element found by Chua [6]

has raised significant attention from the IC design community.

The unique property of memristor, that it is able to permanently

store its resistance value, makes it a perfect candidate device

in non-volatile solid-state memory design [7]. Gu and Li [8]

explored the memristor application in self-resilient design and

demonstrated a novel memristor-based self-tunable circuit that can

perform runtime timing violation detection and dynamic tuning.

The design borrows the self resilience concept from Razor [9].

However, the Razor approach requires continuous detection and

flush of pipeline to remove the impact of errors, and thus does

not provide a “removal” method for the variation source compared

with the proposed scheme in this paper. On the other hand, [8] is

based on experimental analysis and lacks of a systematic way of

solving the detection and tuning sequence.

The biggest challenge in self-tunable circuits is how to design a

systematic tuning mechanism that can detect infeasible clock peri-

ods. The basic idea of self-tuning is to borrow time among different

flipflop stages. A clock period is doomed to be infeasible if there

exists at least one cycle formed by flipflop stages whose average

delay (i.e. the total delay divided by the number of flipflops) is

larger than the clock period. The local tuning method [8] cannot

detect this situation. Since the timing error detection circuit cannot

identify the source flipflop of the timing error, the idea of finding

the infeasibility by identifying such a cycle does not work either.

We discover that a systematic self-tuning is similar to a con-

current algorithm for longest path on the circuit timing graph. By

exploring the similarity, we developed a self-tuning mechanism

that can detect infeasible clock periods. Our mechanism can also be

extended to self-tunable circuits where the memristor-based tunable

buffers are located in the clock tree. In this situation, a buffer

can affect the clock latency of multiple flipflops. We developed

the logic circuit to control each tunable buffer and compare the

overhead with the original circuits.

We also investigate the memristor placement and sizing problem

using the pre-silicon statistical delay information. Here the goal is

to minimize the total number of memristor used while maintain

a target yield. Our approach is based on Statistical Static Timing

Analysis (SSTA) and the results are confirmed using Monte-Carlo

simulations.

Our contribution in this paper is as follows:

• To the best of our knowledge, it is the first work to study the

systematic tuning strategy for memristor-based circuits with

clock tree.

• We propose a heuristic but effective methodology to place

tunable buffers with memristors by analyzing FF criticality

based on SSTA with redefined statistical operations to improve

analysis accuracy.

II. MEMRISTOR BASED TUNABLE CIRCUIT

This section reviews the error-detection circuits similar to razor

flipflop [9] and the proposed tunable clock buffers as basic units

in our work. Figure 2 shows the conceptual view of the proposed

memristor-based circuit with clock tree for setup time resilience.

The circuit structure of tunable buffer and emergency detector is

demonstrated in Figure 1. Each critical FF is connected with an

emergency detector. The memristor is implemented in a Veriloga

model integrated into Cadence Virtuoso circuit schematics and we

assume a tuning resistance between 50 ohm to 100k ohm [8].

One tunable buffer can add up to approximately 100ps delay.

Cascading multiple tunable buffers can achieve more tunable delay.

The maximum detectable timing violation amount is determined

by the length of detection window in the emergency detector. In

every clock cycle, the detector will feed the “violation” signal into

the tuning control logic generating “Tune” signal. By tuning the

resistance value of the memristor in the buffer, a tunable delay

can be generated. Ideally, the detecting and tuning will proceed in

2017 IEEE Computer Society Annual Symposium on VLSI

2159-3477/17 $31.00 © 2017 IEEE
DOI 10.1109/ISVLSI.2017.81

427

Figure 1. Basic component of memristor-based circuit

Figure 2. Conceptual memristor-based circuit with clock tree

every cycle until the setup time violations are fully removed. The

tuning can be achieved In-Situ and does not need to be applied

continuously or repetitively as in the case of previous PST. The

proposed buffer leads to significant area saving, tuning energy as

well as system operation time compared with previous Razor FF

or PST.

Similar sequential circuit for hold-time resilience can be con-

structed by placing tunable buffer in the data path. We realize that

adjusting clock skew scheduling does not help when combinational

paths from one flipflop to another simultaneously violate setup

and hold time constraint. However, if extra delay is inserted on

the short path to avoid hold time violation while not affecting the

long path, setup time constraint can be satisfied by increasing the

clock latency of the destination flipflop. In this sense, this paper

only leverages the setup time healing mechanism and assumes the

hold time constraint can always be solved by delay insertion or

padding [10].

III. PROBLEM FORMULATION

The setup time constraint of a sequential circuit is modeled with

a set of inequalities as follows.

∀i, j ∈ V and i � j, ti +Dmax
ij < Tclk − θj + tj (1)

Where V is the set of all FF s in the sequential circuit. ti and tj
are the clock skew for FF i and j respectively, θj is the setup time

for j, i � j representing there are combinational paths from i to j,

among all of which Dmax
ij is the delay of the longest path. In the

memristor-based tunable circuit, the clock skew of every flipflop

consists of two components as illustrated below:

∀i ∈ V, ti = tsi + Li (2)

where tsi and Li are the static and dynamic clock skew for FF
i respectively. Since buffers are placed on the clock trees, Li

is equivalent to the total tuning amount of buffers controlling i,
explicitly expressed as:

∀i ∈ V, Li =
∑

k∈AMi

lk (3)

where AMi consists of all the ancestor buffers for i and the buffer

at the same node as i if any. lk is the tuning amount of buffer

k. The memristor in the buffer does not support backward tuning,

thus:

∀k ∈ M, lk ≥ 0 (4)

where M is the set of all the buffers placed on the clock tree.

From hardware point of view, setup time constraint is interpreted

as 1 bit information, whether there is timing violation or not. The

exact timing slack for a FF cannot be measured. Based on the

aforementioned, we formulate the main problem as follows.

Problem 1 (Placement Problem). Given a circuit with clock tree,
optimize the memristor-based tunable buffer placement to minimize
the total number of memristors while maintaining the target yield.

Problem 2 (Tuning Problem). Given circuit with memristor-based
tunable buffer placed on the clock tree, utilize emergency detectors
and buffers to determine the tunability of the given circuit and
adjust the clock skew scheduling under the tuning constraint (2)-
(4) to remove setup time violations if the circuit is tunable.

We first discuss tuning problem in Section IV. Then we present

our approach to place the buffers on the clock tree in Section V.

IV. IN-SITU SELF-TUNING MECHANISM

Our goal in this section is to decide a hardware strategy to self-

tune the circuits and determine the conditions under which the

circuit is considered failing the recovery of timing violation with

the given clock period.

A. Basic Tuning

Given a circuit with delay information under a fixed clock period,

the clock skew scheduling to eliminate all the timing violations can

be obtained mathematically. But in practice, it’s unrealistic for a

circuit to perform online self-measurement of the precise setup

timing violation amount. The information that can be extracted

from the violation detector is just 1 bit: either there is timing

violation or not. So we aim to implement a hardware tuning

algorithm that can dynamically control the tuning and detecting

phase so that the tuning result will match the theoretical results

as much as possible. For simplicity, we start from the following

assumptions:

1) Memristor-based tunable buffers are placed at the leaf node

of the clock tree so that every buffer can only affect the

clock latency of one flipflop. Let buffer i tunes the FF i so

that ∀i ∈ V, Li = li

428

2) The memristor has a tuning resolution, which is the minimal

amount of latency it can tune in one step, defined as d.

3) The allowed initial maximum setup time violation is d ∗ δ,

which means any single violation can be tuned correctly in

at most δ cycles.

4) The tunable ranges provided by buffers are large enough to

not become a limiting factor in the tuning process.

Based on the above assumptions, we present a basic tuning

algorithm, Leaf FF Tuning Algorithm.

Algorithm 1 Leaf FF Tuning

1: procedure TUNING PROCEDURE

2: cycle @ 0

3: ∀i ∈ M , li = 0
4: for cycle @ 1 to |M | ∗ δ do
5: if ∃i ∈ V, i detects setup time violation then
6: ∀i ∈ V with violation, tune clk skew of i by d
7: else
8: return tuning success

9: cycle @ |M | ∗ δ + 1
10: if ∃i ∈ V, i detects setup time violation then
11: return tuning failure

Each iteration in Leaf FF Tuning Algorithm is one clock cycle

of tuning. All the violation flipflops are tuned concurrently. The

dynamic clock skew l for the flipflops not controlled by buffers are

fixed at 0. The circuit is tunable if and only if there exists dynamic

clock skew assignments, each of which is integer multiples of d,

such that constraints from equations (1)-(4) are all satisfied. The

validity of the algorithm is based on Theorem 1.

Theorem 1. If there exists feasible tuning to eliminate all the setup
timing violation , The Leaf FF Tuning Algorithm can find it within
|M | ∗ δ clock cycles, where |M | is the total number of buffers.

The correctness proof of theorem 1 is based on the intuition that

after every δ clock cycles, the tuning amount of at least one more

buffer is fixed and needs not to be tuned again if the whole circuit

is tunable. Theorem 1 implies if there is still violation after |M |∗δ
clock cycles, the violated circuit is not tunable and a tuning failure

should be reported. The untunability discovered by our algorithm is

either a result of unavoidable overtuning under the given memristor

tuning resolution or due to the existence of negative timing slack

cycles in the circuits. In our proposed algorithm, we tune the buffer

by memristor tuning resolution d. Alternatively, a larger tuning

amount λd, λ > 1, can be selected in every tuning operation to

speed up the tuning process, but at the risk of losing tunability.

Figure 3 shows an example to better illustrate our Leaf FF

Tuning Algorithm. There are 6 FF s in the circuit and all the

combinational paths are represented by arrows with delay values.

Here we assume every FF with emergency detector(FF2, FF3,

FF4, FF5) is connected to a memristor-based tunable buffer while

the skew of normal FF s (FF1, FF6) is fixed at 0. Since there are

4 buffers in total and the initial max violation is 2, circuit should

be tuned successfully within 8 clock cycles and in this case, only 6

clock cycles are needed. The tuning procedure showing the skew of

each FF in every clock cycle is listed. If the delay between FF5
and FF2 increases by 1, tuning will not finish after 8th clock

cycle and tuning failure will be reported. This is consistent with

FF3

FF4FF5

 22

22

 22

14

FF6FF1
 5 4

 tFF1 tFF2 tFF3 tFF4 tFF5 tFF6
Cycle 0: 0 0 0 0 0 0

Cycle 1: 0 0 1 1 1 0

Cycle 2: 0 0 2 2 2 0

Cycle 3: 0 0 2 3 3 0

Cycle 4: 0 0 2 4 4 0

Cycle 5: 0 0 2 4 5 0

Cycle 6: 0 0 2 4 6 0

T= 20
d= 1

FF2

clock period = 20
one-step tuning amount = 1

Figure 3. memristor tuning example

the theoretical results since there is a path cycle constructed by

FF2, FF3, FF4 and FF5 with negative overall timing slack.

Intuitively, our tuning algorithm provides a criterion indicating

when to stop due to the tuning infeasibility. If we instead apply

the simple tuning mechanism described in [8] on circuits with

untunable timing violations, we have to keep adjusting the clock

skews of violated FF s forever and never realize that it is a waste

of effort.

B. Generic Tuning

Leaf Tuning Algorithm only deals with the situation where all

the buffers are on the leaves of the clock tree. However, if buffer

reduction technique is applied, some buffers can be placed on the

non-leaf nodes of the clock tree. We propose a more complex

hardware mechanism to tune the circuit with more general buffer

placement.

Similar with the previous tuning algorithm, we intend to increase

the clock latency by d in every cycle for each FF that has

timing violation. However, because there is no one-to-one mapping

between FF and buffer, some buffers may affect the clock skews of

more than one FF s. In certain violation situations, we can not tune

the violating FF s without affecting the non-violating FF s. One

straightforward strategy is to tune the greatest common ancestor

buffer of all the violating FF s. However, such method is very

likely to result in overtuning. An proper tuning mechanism to reach

the feasible clock scheduling, if any, should tune violating FF s in

every cycle while affecting non-violating FF s as less as possible.
We define a term DC associated with every buffer, where DCi

is the the set of the FF s that either is on the same clock tree node
as buffer i, or does not have buffer on the same leaf node but has
i as its least ancestor. Every FF in DC is “directly connected”
with i, meaning there is no intermediate buffer between them. The
tuning signal for every buffer is given as follows.

seli =
∨

j∈DCi

violationj

tunei = seli ∧ ¬(
∨

j∈AMi\i
selj)

violationi = ∃j ∈ V, Lj + tsj + dji + θi > Li + tsi + T

In every cycle, we want to increase the clock arrival time of

any FF with timing violation only by a latency of d to avoid

overtuning. Therefore, all the ancestor buffers of such FF s are the

potential candidates to be tuned. In our methodology, we prioritize

to tune the least ancestor of the violating FF. We call such buffer

as “selected” buffer. All the “selected” buffers have sel equal to

TRUE at current clock cycle. A selected buffer will not be tuned

429

only if at least one of its ancestor buffers is also “selected”. This

ensures no FF has clock skew delayed by a latency greater than

d in every cycle. The described tuning logic also guarantees to

tune the smallest subset of the non-violating FF s. Therefore, if

any non-violating FF is tuned, it is an inevitable step to reach the

feasible clock skew scheduling.

Figure 4. tuning logic for tunable memristors on clock tree

An example of tuning logic design is shown in Figure 4. Note

that the tune signals of buffer a and d are not dependent on

the tune signal of any other buffers because they do not have

ancestor buffers on the clock tree. Among the 4 buffers, only c
“directly connects” with more than 1 FF s, which is reflected in

the expression of selc.

Algorithm 2 Clock Tree Tuning

1: procedure TUNING PROCEDURE

2: cycle @ 0

3: ∀i ∈ M , li = 0
4: for cycle @ 1 to |M | ∗ δ do
5: if ∃i ∈ M , tunei = TRUE then
6: ∀i ∈ M with tunei = TRUE, li ← li + d:

7: else
8: return tuning success

9: cycle @ |M | ∗ δ + 1
10: if ∃i ∈ M , tunei = TRUE then
11: return tuning failure

Again, the correctness of Clock Tree Tuning Algorithm is based

on the following theorem.

Theorem 2. Given buffer placement on clock tree, if there exists
feasible tuning to eliminate all the setup timing violation, Clock
Tree Tuning Algorithm can find it within |M | ∗ δ clock cycles,
where |M | is the total number of buffers.

Up to now, we still maintain the assumption that all the buffers on
clock tree have enough memristors so that the tuning range is not a
restriction in approaching the feasible clock skew scheduling. But
if a more general and realistic placement is concerned, we have to
take the tunable range at each node of clock tree into consideration.
Accordingly, the tuning logic design should be revised because sel
signal becomes more complex. If the selected buffer is already
tuned to the upper range bound, we have to select its least ancestor
where tunable range is not used up. This process can been viewed
as the upward propagation of selection. To explain the revised
tuning logic, we define a new set DM for every buffer. DMi is
the set of buffers whose least ancestor buffer is i. In addition, we
introduce another three signals for every buffer: SAIR, SAOR
and CBT . SAIRi is true if and only if buffer i is selected and
has not used up its tuning range. SAORi is true if and only if i is
selected but already tuned to its upper bound ri so that it will

propagate selection upward to its ancestors. CBTi is TRUE
if and only if at least one ancestor buffer of i is determined to
be tuned in the current cycle. To describe the CBT , we define
LAM(i) as the least ancestor buffer of i. Note if buffer i does not
have ancestors, then CBTi = FALSE by default.

SAIRi = (
∨

j∈DCi

violationj ∨
∨

j∈DMi

SAORj) ∧ (li < ri)

SAORi = (
∨

j∈DCi

violationj ∨
∨

j∈DMi

SAORj) ∧ (li = ri)

CBTi = CBTLAM(i) ∨ TUNELAM(i)

TUNEi = SAIRi ∧ ¬CBTi

Intuitively, SAIR can be treated as same as the sel signal in the

previous tuning algorithm where tuning range is not considered.

Similarly, we claim that if the circuits is tunable, there is no

timing violation any more after |M | ∗ δ clock cycles. Applying the

similar reasoning we used for the previous two tuning algorithms,

we can prove the correctness of this more generic and comprehen-

sive tuning algorithm(we leave all the formal proof out due to the

space limitation).

V. TUNABLE BUFFER PLACEMENT OPTIMIZATION

In this section, we propose a methodology to place tunable

buffers with memristors based on SSTA. We first place buffers

on the leaves of the clock tree according to the FF timing
criticality. Then, we apply a heuristic technique to reduce total

memristor numbers.

A. Placement With SSTA

To overcome the tuning range limit, a tunable buffer may be

embedded with multiple memristors to control a self-healing FF .

Now the question is how to assign memristors to different buffers

that controls different FF s? The proper memristor allocation

strategy should take the “timing criticality” and potential timing

violation amount of diffrent FF s into consideration, that is, the

FF with higher probability to have larger violation amount should

be provided with larger tunable range to compensate the negative

slack. That requires us to apply statistical timing analysis (SSTA)

to evaluate the “timing criticality” of each FF . In SSTA, every

combinational path delay is represented as a Gaussian random

variable. Our goal is to estimate the distribution of the latest arrival

time for every FF.

During the SSTA, we have to repeatedly apply two fundamen-
tal operations: max and sum. The sum operation is relatively
easy and exact. The max of two Gaussian distributions can be
approximated to another Gaussian distribution as in [11] [12]. We
deploy Clark Approximation [13] to obtain the first and second
moment of the max. During the calculation, we find that most max
operations are over a constant and a Gaussian random variable. A
constant value can also be represented by a Gaussian distribution
with σ = 0. However, we realize that the results obtained through
such approximation are too inaccurate. Therefore, we introduce a
tuple to represent timing variable. The tuple, e.g. {(μ, σ), C},
refers to the max of the Gaussian variable (μ, σ) and a constant
C. With this new representation included, we derive the max and
sum operations between tuples to replace the orignal operations.

{(μA, σA), CA}+ {(μB , σB), CB} = {(μs, σs), CA + CB}
max({(μA, σA), CA}, {(μB , σB), CB}) = {(μm, σm),max(CA, CB)}

430

where (μs, σs) and (μm, σm) are derived to be the max of some
gaussian distributions shown below, and can be computed with
Clark Approximation.

(μs, σs) = max((μA + μB ,

√
σ2
A + σ2

B), (μA + CB , σA),

(μB + CA, σB))

(μm, σm) = max((μA, σA), (μB , σB))

By applying the redefined operations, we can estimate the latest

arrival time for every FF and allocate memristors to provide

tuning range accordingly. As illustrated in our memristor placement

algorithm, |V | − 1 iterations are needed to calculate the arrival

time distributions for all FF s. This is because violation amount

can accumulate and propagate across multiple stages. One iteration

of calculation can only capture the delay information in one

combinational path. The worst case is when all FF s are pipelined

and the latest arrival time distribution of the last FF may not get

stable until |V |−1 iterations of the calculation. In practice, far less

iterations are needed for the calculation to converge if the clock

period is not too aggressive. Heuristically, we run the Monte Carlo

simulation for circuits without memristors and find a proper clock

period resulting in reasonable yield(e.g. 90%).

Given the stabilized arrival time distribution for all FF s and

the target timing yield TYt, we can calculate the tuning amount

needed for each FF according to the following theorem:

Theorem 3. Assuming a low dependence between the arrival time
of all the critical FF s, the yield P every FF should achieve is

approximated by TY
1

|Vc|
t , where |Vc| is the number of critical FF .

We define the critical FF as those FF s with static clock skew

ts and latest arrival time distribution {(μ, σ), C} that satisfy either

ts < C or ts < μ+3σ. It is reasonable to maintain the assumption

in Theorem 3 because under a proper clock period, there are only

few critical FF s which are most likely far apart from each other

and not sharing common path.

Following the convention, we only consider assigning tunable

buffers to critical FF s. The tuning amount the tunable buffer

should provide to a critical FF is max{C, μ+λpσ}− ts, where

λp is the value to achieve yield P = TY
1

|Vc|
t in standard normal

distribution. This would ensure the individual critical FF to be

tunable with a high probability of approximately TY
1

|Vc|
t . Then,

based on Theorem 3, we can achieve the target yield of the whole

circuit.

B. Memristor Reduction Method

Algorithm 3 only allocate memristors to the tunable buffers on

the leaf node. Advanced memristor reduction technique can be

performed to minimize hardware cost. We apply a greedy method

which moves memristors upward as much as possible. For example,

if N1 and N2 memristors are allocated to two buffers at different

child nodes of the clock tree and N1 > N2, then N2 memristors

can be assigned to the buffer at the parent node so that the number

of the memristors on both child nodes will decrease by N2. The

overall effect reduces N2 memristors. The reduction operation can

be iteratively applied until no more memristors can be moved up.

Such reduction method serves the purpose of minimizing the total

memristor number. Meanwhile, we realize our method neglects the

Algorithm 3 Placement Algorithm

1: ai: the clock arrival time for i in a tuple form

2: a′
i: the clock arrival time for i in next iteration.

3: rm: maximum tuning range for a single memristor

4: ni: the number of memristors needed to tune FF i
5: procedure
6: Initialize all flipflop arrival time:

7: ∀i ∈ V , ai = {(−∞, 0), tsi}
8: for count from 1 to |V | − 1 do
9: ∀i ∈ V

10: a′
i = max(ai, max

∀j∈V,j�i
(aj + dji − T + tsj − tsi))

11: if ∀i ∈ V, a′
i ≈ ai then

12: stop iteration

13: ∀i ∈ Vc estimate ni based on ai, |Vc|,rm and TYt

clock arrival time correlation between different FF s and may end

up deteriorating the overall tunability of the circuit.

VI. EXPERIMENTAL RESULTS

A. Implementation Discussion

We implement our tuning and memristor placement algorithm in

C++ and conduct experiments on ISCAS89 circuit benchmarks. All

experiments are conducted on a 2.7Hz Linux machine with 8GB

RAM. Mean delay of each gate is assigned based on the fanout.

The delay variance is randomly generated but restricted within 10%
of the delay mean. For each benchmark, we run 1000 iterations of

Monte Carlo Simulation and apply placement and tuning algorithm

on the circuit with the simulated delay information.

Figure 5. yield comparison: our placement vs brute-force placement.

We implement 3 versions of memristor placement. Two versions

are based on our placement algorithm and the only difference is

one doesn’t apply memristor reduction technique so that all the

memristors are on the leaf while the other one does. For compari-

son, we include a brute force leaf placement which uses the same

number of memristors as our strategy without memristor reduction

technique and allocate every FF same number of memristors. This

brute-force placement is the natural choice for design in [8] where

no memristor placement strategy is proposed. We also have three

versions of generic tuning algorithm with different normalized one-

step tuning amount d = 1, 50 and 100 where 1 is the assumed to

be the minimum tuning amount for memristor. The max tuning

amount for one memristor is assigned as 100.

B. Experimental Result Analysis

Figure 5 illustrates the benefit of memristor tuning, which in

average achieves 8% yield improvement over conventional design

with non tuning mechanism. The observation that the yield im-

provement with our memristor placement methodology in general

doubles the improvement with brute force placement shows our

431

Figure 6. yields for different placements and tuning strategies.

strategy is much more capable of capturing the FF criticality

information. Combining Figure 6 with Table I, we find when

memristors are inserted on non-leaf nodes of the clock tree, total

number of memristors is significantly reduced while losing trivial

amount of timing yield, which further validates the advantage of

our memristor placement and reduction algorithm.

Figure 7. average tuning cycles along with timing yield for different
one-step tuning amount

To study the trade-off between tuning cost and timing yield,

we obtain the average cycles for all cases that successfully tune

the setup time violations with different one-step tuning amount.

As shown in Figure 6, if one-step tuning amount dtune is lower,

the tuning resolution is higher and it is less likely to overtune the

circuit, thus achieving a higher timing yield. On the other hand,

Figure 7 shows that as one-step tuning amount increases, the tuning

cycles decreases much faster than the timing yield in most cases.

We conclude that tuning the minimum resolution is generally too

conservative to be the optimal solution and a relatively larger one-

step tuning amount with no overtuning will dramatically speed up

the tuning process and meanwhile maintain high timing yield.

Figure 8. impact of clock period on the placement overhead in average
of 30 ISCAS89 circuit benchmarks

Control logic overhead is estimated based on basic gate counting.

We realize that the overhead in practice can be higher due to

global routing. According to Figure 8, the overhead is impacted

by the clock period. If the yield without tuning is low, meaning

the clock period is aggressive, then more memristors and control

logic gates are needed to maintain a target yield after tuning. In

addition, Table I shows that overhead varies between different

Overhead % Num of Memristors

circuit leaf non-leaf leaf non-leaf

s713 5.43 5.94 12 10

s1423 8.47 7.59 48 40

s13207 2.72 2.94 215 162

s35932 19.1 16.10 7946 4705

s38417 8.88 10.16 4196 2666

All bench 3.97 4.26 571.4 358.4

Table I. Overhead of implementing tuning logic circuit and number of
memristors for different placements given original yield=90%

circuit benchmarks. Overhead is below 10% for most of the

benchmarks. However, s35932 has overhead close to 20%, which

is due to relatively high portion of critical paths in the circuits.

VII. CONCLUSION AND ACKNOWLEDGEMENT

In this paper, we present a memristor tuning and allocating

methodology for a proposed self-healing circuit design. Our tuning

algorithm provides circuits with the intelligence of judging the

overall tunability. Our memristor placement algorithm efficiently

finds the critical FF s and reduces the number of memristors on

the clock tree while maintaining the timing yield as shown in the

experimental results.

This work is partially supported by NSF under CNS-1441695

and CCF-1533656, and by SRC under 2014-TS-2559.

REFERENCES

[1] S. Rusu and S. Tam, “Clock generation and distribution for the
first ia-64 microprocessor,” JSSC, 2000.

[2] V. B. Suresh and W. P. Burleson, “Variation aware design of post-
silicon tunable clock buffer,” ISVLSI, 2014.

[3] J. Tsai, D. Baik, C. C. Chen, and K. K. Saluja, “A yield
improvement methodology using pre- and post-silicon statistical
clock scheduling,” ICCAD, 2004.

[4] J. Tsai, Z. Lizheng, and C. C. Chen, “Statistical timing analysis
driven post-silicon-tunable clock-tree synthesis,” ICCAD, 2005.

[5] M. Kaneko, “Timing-test scheduling for constraint-graph based
post-silicon skew tuning,” ICCD, 2012.

[6] L. Chua, “Memristor-the missing circuit element,” IEEE Trans-
actions on Circuit Theory, vol. 18, pp. 507–519, 1971.

[7] R. Williams, “How we found the missing memristor,” IEEE
Spectrum, vol. 45, no. 12, 2008.

[8] J. Gu and J. Li, “Exploration of self-healing circuits for timing
resilient design using emerging memristor devices,” ISCAS, 2015.

[9] S. Das, C. Tokunaga, S. Pant, W. Ma, S. Kalaiselvan, K. Lai,
D. Bull, and D. Blaauw, “Razorii: In situ error detection and
correction for pvt and ser tolerance,” IEEE Journal of Solid-state
Circuits, vol. 44, no. 1, pp. 32–48, Jan 2009.

[10] N. V. Shenoy, R. K. Brayton, and A. L. Sangiovanni-Vincentelli,
“Minimum padding to satisfy short path constraints,” in ICCAD,
1993.

[11] C. Visweswariah, K. Ravindran, K. Kalafala, S. G. Walker,
S. Narayan, D. K. Beece, J. Piaget, N. Venkateswaran, and J. G.
Hemmett, “First-order incremental block-based statistical timing
analysis,” in IEEE TCAD, 2006.

[12] H. Chang and S. Sapatnekar, “Statisitical timing analysis consid-
ering spatial correlations using a single PERT-like traversal,” in
ICCAD, San Jose, CA, Nov. 2003, pp. 621–625.

[13] C. E. Clark, “The Greatest of a Finite Set of Random Variables,”
Operations Research, vol. 9, no. 2, pp. 145–162, 1961.

432

