
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Design and Synthesis of Self-Healing Memristive
Circuits for Timing Resilient Processor Design

Shuyu Kong , Hai Zhou, Senior Member, IEEE, and Jie Gu, Member, IEEE

Abstract—Modern microprocessors suffer from significant
on-chip variation at the advanced technology nodes. The devel-
opment of CMOS-compatible memristive devices has brought
nonvolatile capability into silicon technology. This paper explores
new applications for memristive devices to resolve performance
degradations that result from process variation. Novel self-healing
flip-flop and clock buffers are developed to automatically detect
timing violation and to perform timing recovery by tuning the
resistance values of memristor devices. To incorporate the circuit
techniques into VLSI circuits design, novel device placement and
tuning algorithms have been developed. The proposed design
methodology is demonstrated in a 45-nm fast Fourier transform
processor design. Our test results show that performance gains
of up to 20% can be achieved using the proposed self-healing
circuits, with only 1% area

Index Terms—Memristor, process variation, self-healing,
sequential circuits, timing resilient.

I. INTRODUCTION

AS CMOS devices are scaling down into the 10-nm regime
and beyond, extremely small feature size has introduced

major difficulty in controlling the power and performance of
transistors, leading to significant process variations [1], [2].
For planar transistors, e.g., 22 nm and above, the major
phenomena that contribute to the variability of transistors
include random dopant fluctuation (RDF), oxide thickness
variation, and line-edge roughness (LER), and so on [3], [4].
Fig. 1(a) shows a threshold voltage variation through the gen-
erations of CMOS technology [5]. As can be seen in Fig. 1(a),
the variability continuously increases through the technology
nodes. Such an exacerbated variability has posed major chal-
lenges in the design and manufacturing of modern micro-
processors. Fig. 1(b) shows the amount of power required to
cope with the threshold voltage variation in order to maintain
a constant speed target, based on the simple power calculation
P = αCV2

dd. For more recent FinFET technology, the RDF has
been reported to be significantly reduced due to the use of an
intrinsic silicon channel [6]. However, several other effects,
e.g., metal gate granularity and LER, start to dominate the
random process variation [7], [8]. The variability remains as
a major challenge to the technology.

Manuscript received September 2, 2017; revised January 12, 2018 and
March 10, 2018; accepted April 25, 2018. This work was supported in part
by NSF under Grant CNS-1441695 and Grant CCF-1533656 and in part by
SRC under Grant 2014-TS-2559. (Corresponding author: Shuyu Kong.)
The authors are with the Department of Electrical Engineering and

Computer Science, Northwestern University, Evanston, IL 60208 USA
(e-mail: shuyukong2020@u.northwestern.edu).
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TVLSI.2018.2834827

Fig. 1. (a) Threshold voltage variation in recent generations of CMOS
technology [5]. (b) Associated power overhead due to process variation that is
required to maintain the target speed of the devices. (c) Foundry spending on
different technology nodes. (d) Yield from different technology nodes [14].

Alongside variability, several other effects, such as aging
and supply noise variation, also introduce significant per-
formance uncertainty in modern CMOS chips. The most
common mechanisms of aging-induced reliability degradation
include negative bias temperature instability (NBTI), hot
carrier injection (HCI), and time-dependent dielectric break-
down (TDDB) [10]–[13]. NBTI and HCI introduce a threshold
voltage increase, while TDDB can lead to more catastrophic
functionality failure. To deal with the aging-induced threshold
voltage increase, a constant design margin (5%∼10%) has
been traditionally allocated to account for the degradation
over the lifetime of the microprocessor. Unlike the static
process variation, reliability degradation happens over time
and thus cannot be detected during production tests. It must
thus be either compensated in real time or budged with a most
conservative estimation.
Besides the ever-rising performance variation of silicon

chips, manufacturing costs also escalate in each generation
of the CMOS technology. Fig. 1(c) and (d) shows the manu-
facturing costs and yield loss in the 90–10-nm scale. Lower
yield of chip fabrication is converted into a further increase of
the developing cost and a waste of natural resources [14].

1063-8210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

All of the above-mentioned technology-induced uncer-
tainty points to a critical missing feature of existing silicon
technology, i.e., a “self-healing” technique that allows the
hardware to detect and recover from its defective performance
degradation. To enable such a “self-healing” capability, three
basic capabilities must be present in a technology: 1) a detec-
tion capability which allows defect discovery; 2) a recovery
capability which offers a repair of defects; and 3) a nonvolatile
memory capability which allows the repair to be memorized
and permanently deployed. Conventional CMOS technology
has been partially equipped with the first two capabilities, e.g.,
detection and recovery, while the third, nonvolatile memory,
has not been realized. One example of existing detection
and recovery operation is the well-known Razor technique,
where the performance degradation is detected and recovered
by a flush operation in the pipeline [15], [16]. Although the
Razor technique has introduced an intelligent self-detection
and correction mechanism, there are significant limitations on
its usage. First, the error detection and correction can only fix
a sparse timing violation event, for instance, that results from
a sudden supply drop. If the emergent condition continues to
exist, for example, due to the aging-induced delay increase,
there is no correction that can improve the situation. Second,
the technique is more suitable for a CPU design with flush
and replay capability for error correction, which may not be
presented for general application-specific integrated circuits
designs. Third, as the error detection and correction action
must be constantly ON, significant power is consumed during
the process of detection. In addition, all the error correction
effort is lost when the power is OFF, and hence, there is no
“healing” of existing problems. Standard CMOS technology
is thus still missing an important nonvolatile memory fea-
ture that could be used to permanently “heal” a defective
chip.
Fortunately, recent development in CMOS-compatible

nonvolatile memory devices, e.g., memristor or resistive
RAM (RRAM), provides a strong extension to the existing
chip technology. Currently, most memristor applications reside
in the design of memory and neuromorphic circuits where the
reconfigurability and nonvolatility of the device lead to sig-
nificant power saving and processing enhancement [17], [18].
In addition, several nonmemory or nonneuromorphic usages of
memristors are being proposed. For instance, Rose et al. [19]
proposed a new reconfigurable logic family using memris-
tors. Cong and Xiao [20] proposed to use a fully integrated
memristor to build a field-programmable gate array (FPGA)
to reduce the storage overhead of the conventional FPGA.
It has been shown that an area saving of five times can be
achieved to replace the SRAM with the memristor in an FPGA
design. Shin et al. [21] proposed to build a programmable
gain amplifier for analog application. Göknar et al. [22] and
Werner and Gregory [23] proposed a modulator design
based on the frequency response of the memristor device.
Laiho et al. [24] proposed an analog arithmetic com-
puting unit to extend the potential application of the
device.
Leveraging the unique features of a memristive device,

i.e., tunable resistance and permanent memory of its tuning

state, this paper explores a fundamentally new application,
a “self-healing” capability, toward the goal of healing timing
violations introduced by the random process variation, which
is currently difficult to be globally compensated through
existing voltage or clock scaling, e.g., dynamic voltage and
frequency scaling. Our contributions in this paper include:
1) the design and implementation of novel healing circuits,
including self-healing flip-flop (FF) circuits and self-healing
clock buffers using memristive devices to provide the required
detection, recovery, and memory features for self-healing
functionality; 2) the development of a complete synthesis
flow and placement method to implement the circuit tech-
niques in a realistic processor design; and 3) the development
of a generic CAD algorithm that optimizes the placement
and tuning process of the memristive device, leading to a
robust and efficient healing operation. Our proposed tech-
niques are demonstrated in a 45-nm design with the use
of memristors fully integrated into the traditional design
flow.
The novelty of this paper is: 1) to the best of our knowledge,

this is the first work that leverages RRAM technology to
perform self-healing against design variation in modern chips;
2) this is also the first work to analyze and discuss the
online global tunability in the circuit and provide a theoretical
threshold beyond, which the circuit is considered “doomed”;
and 3) we present a novel heuristic placement algorithm based
on the statistical static timing analysis (SSTA) to efficiently
allocate tunable-buffers on the clock tree.

II. MODEL OF MEMRISTOR AND PCELL DESIGN

The so-called fourth fundamental element, i.e., “memristor,”
was first introduced from HP Lab in 2009 [25], [26]. The
development of the memristor device completed the search for
a missing element, which relates magnetic flux with the charge
through a conductor. Mathematically, it can be expressed
as

dϕ = M(ρ)dq (1)

V (t) = M(ρ)I (t) (2)

where ϕ is the flux or the time integral of voltage, q is the
charge or the time integral of current, and M is the memresis-
tance. As a result, unlike other passive components, such as
resistor, capacitor, or inductor, memristor shows a continuous
hysteresis effect where the present state of the device depends
on the operating history of the device. The hysteresis can be
used as a memory, which stores the information represented
by the current state (resistance) of the device. Unlike binary
memory devices, such as MRAM and RRAM, memristor can
have continuous states and thus can be continuously tuned to
a desirable resistance value. Fig. 2 shows the drawing of the
two-terminal device configuration using titanium dioxide films
as the active layer and platinum as the contact. The resistance
of a memristor is determined from the simplified equations

M(ρ) = (1− ρ) · RL + ρ · RH (3)
dρ(t)

dt
= μv · V (t)

M(ρ)
· RL
h2

(4)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KONG et al.: DESIGN AND SYNTHESIS OF SELF-HEALING MEMRISTIVE CIRCUITS 3

Fig. 2. Basic memristor device structure and spice model used in this paper.

where M(ρ) is the memristance, p is the relative doping
front positions between 0 and 1, μv is the equivalent mobility
of dopants, and h is the thickness of the thin film. When
the voltage across the memristor is beyond its threshold,
the doping front position will shift changing the resistive value
of the device. By applying pulses to the device, the device can
be tuned with a resistance between RH and RL , with a large
tunable range from a few hundreds of ohms to a few hundreds
of kilo-ohms or megaohms.
To be able to correctly quantify the transient behavior of our

device within a CMOS circuit, we performed the following
tasks. First of all, the VerilogA model was derived based
on the previous publication from the HP Lab that has been
verified with measurement [27]. The VerilogA model can
be simulated in Cadence Virtuoso to quantify the resistance
change under the influence of voltages. The detailed spice
model, model equations, and used parameters in this paper
are provided in Fig. 2. Note that an ideal capacitor Cx is used
to provide the hysteresis behavior of the device. The size of
the active junction region of our memristor is 50 nm×50 nm.
Fig. 3 shows simulated switching waveforms of the model
used in this paper, validating the dynamic behavior of our
model that aligns with what has been shown in the previous
publication [27].
We also implemented the parametric cell (PCELL) in

a 45-nm CMOS technology to perform a layout exercise of
our design. Because a memristor can be inserted between any
metal layers in the backend process [28], [29], we placed our
memristor between metal 3 and metal 4 in the design, as shown
in the layout example in Fig. 8. The developed PCELL allows
the users to choose metal layers for memristor insertion and
the X–Y dimension of the memristor. As can be seen from the
layout, the memristor and supporting transistors can be made
extremely compact due to the fact that the memristor stays on
the top of the active layer. With the supporting PCELL and
the spice model, we can simulate the real-time behavior of the

Fig. 3. Simulated transient behavior of our spice model.

proposed memristor-based “self-healing” circuits as discussed
in Section III.

III. SELF-HEALING FLIP-FLOP DESIGN

The self-healing feature requires a fine-tuning capability in
the circuits. Although discrete time steps can be programmed
into a timing critical circuit, such programmability incurs
large overhead and is volatile with power recycling. Instead,
we propose to use the “resistive” nature of the memristor
to fine-tune the delay of timing sensitive circuits and use
the “memory” nature of the memristor to store the tuning
state effectively removing the overhead of programmability.
In this section, we discuss the proposed self-healing FF,
which features timing detection and timing recovery using
memristor devices. The proposed FFs are able to automatically
detect a timing “emergency” condition where the data and
clock edges fall into the predefined hazardous window. Upon
detection, the device will tune itself by increasing data path
delay or clock delay to avoid a timing failure to happen.
It is worth highlighting the difference between the proposed
design and the existing Razor FFs. The Razor FFs could
detect a timing emergency but rely on a system pipeline
reissue to recover the failure. In addition, the detection has
to be constantly enabled. In contrast, in the proposed design,
the tuning operation is only activated for a short period to
allow the circuit to perform detection and recovery. After the
tuning operation, the circuit has been “healed,” and no more
detection is needed, thus saving the power overhead of the
detection operation. In the proposed design, the timing failure
is permanently removed as compared with the detection only
operation from the Razor technique. The tuning operation can
be issued at the chip startup or reissued by the system under
a significant operating condition change, e.g., temperature.
Fig. 4 shows the design of the self-healing FF for hold

resilience. A tunable memristor is deployed at the input of the
data path. The memristor is set into its lowest resistance at the
startup to avoid additional delay. In the tuning mode which is
activated by the “En_Tune” signal, when a timing emergency
condition is detected, a pulse derived from the clock signal
is provided to continuously increase the delay of the data
path until no more timing emergency exists. The detection of
hazardous timing condition is realized by a dynamic transition
detector, as shown in Fig. 4. The Tune_clk derived from

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 4. Proposed hold-healing FF.

Fig. 5. Simulated waveforms of the hold-healing operation.

the clock signal provides a detection window. If D1–D3,
a delayed version of the input data, toggle within the prede-
fined window, the timing is considered not reliable, and thus,
a “tune” pulse is issued to inject current into the memristor.
As a result, the increased resistance of the memristor slows
down the data path and fixes a hold violation. The detection
window is generated by the delay of an inverter chain and
determines the maximum amount of timing violation that this
circuit can detect. Fig. 5 shows a simulated waveform with
a 75-ps hold violation. The simulation was performed at
0.95 V, −40 C, and slow corner in a 45-nm CMOS technology.
At the end of the operation, the hold violation is removed
by tuning the memristor from 6 to 44 k�. Despite that a
polarity change at D input (N_Rmem or P_Rmem) is generated
to tune the memristor, there is no impact to the internal
data value of the FF, as the data input is gated by the first
latch when the clock is high. Essentially, by automatically
tuning the resistance on the data buffer inside the FFs, we can
permanently “heal” the hold timing violation.

Fig. 6. Proposed setup-healing FF.

Fig. 7. Simulated waveforms of the setup-healing operation.

Figs. 6 and 7 show the similar design of the self-healing FF
for setup resilience and its operating waveforms under
an 85-ps setup violation. The tunable device is placed in the
clock buffer instead of the data buffer as in the hold fixing FF.
At the end of tuning, the setup violation has been removed
with a memristor resistance increased to 45 k�. Overall,
our simulation shows that for hold healing, a maximum of
110-ps tunable delay can be produced from the tuning circuit.
Considering the variation of detection circuit itself based on
Monte Carlo simulation, a worst case of 70-ps hold violation
can be recovered. For setup FF, a maximum of 140-ps delay
compensation can be produced. Considering the variation of
the detection circuit, a worst case of 100-ps setup violation
can be recovered. Fig. 8(a) shows the layout comparison of
the proposed self-healing setup FF with the standard cell
design FF. Embedded memristor PCELL is also pointed out
in the layout. Due to the inclusion of the emergency detector,
the area has doubled from the conventional design. The area
impact to the overall design will be assessed in Section VII.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KONG et al.: DESIGN AND SYNTHESIS OF SELF-HEALING MEMRISTIVE CIRCUITS 5

Fig. 8. (a) Layout comparison between conventional FF and self-healing
FF (setup). (b) Layout comparison between conventional clock buffer and
self-healing clock buffer.

Fig. 9. Cell delay sensitivity to variation with respect to the resistance of
the memristor.

Fig. 9 demonstrates the sensitivity of circuit delay to drift
of resistance by qualifying the delay increase in term of ps
versus the percentage of resistance change. It shows that at low
resistance state, the sensitivity is very small, because the delay
is more dominated by transistors rather than the memristor.
But at high resistance state, this variation increases. At system
level, we can consider this drift overtime and reissue a tuning
process based on this sensitivity information.
Overall, we believe our scheme is much less susceptible to

process variation compared with other applications, such as
analog neuromporphic computing. This is because we have
a feedback-based tuning setting and we perform incremental
tuning. Our tuning algorithm discussed later in Section VII
makes a reasonable assumption on the tuning steps and
changes at each cycle based on our device model presented
in Section II (characterized with measurement result in the
literature and simulated in spice as shown in Fig. 5). We also
set a threshold for the maximum tuning cycles, beyond which
we decide that the circuit is untunable. That threshold is
applicable as long as the memristance will increase, and
there is a guaranteed minimum resistance increase in every

Fig. 10. Self-healing clock buffers used in a clock tree.

tuning cycle. In addition, tuning can be performed several
times to set back the resistance if drift happens over a
certain amount time. Therefore, the RRAM variability will
not significantly impact our generic algorithm.

IV. SELF-HEALING CLOCK BUFFER DESIGN

In previous discussions, the tunable cell is implemented
together with the corresponding FF to achieve timing
resilience. This is essentially similar as placing buffers on the
leaf node of the clock tree. To obtain further optimization,
cells with tuning capability can also be implemented across
clock trees, that is, tunable buffers can be allocated on the
nonleaf nodes of the clock tree. Compared with the self-
healing FF design, implementing tunable timing cells across
clock tree has the following benefits: 1) the tunable clock cells
can be shared by placing the cells into higher levels of the tree
leading to a saving of area; 2) tunable clock cells do not reside
on the critical timing paths of the design and hence have less
impact on the timing closure of the design; and 3) more tuning
range can be achieved by cascading multiple clock cells.
To explore the capability of the self-healing clock buffer

design, we use the tunable clock buffers, as shown in Fig. 6.
The emergency detector is located in the leaf FF and is similar
as what has been used in the FF design in Section III. In addi-
tion, each tunable clock buffer consists of two regular inverters
with tunable memristor sandwiched in between to create
tunable delay. The tuning enable signal is issued from the
emergency detector at the FF along with a central controller.
One tunable buffer can provide approximately up to 100-ps
delay. Cascading multiple tunable buffers can achieve more
tunable delay. Fig. 10 shows the conceptual view of the self-
healing clock tree design. In every clock cycle, the detector
will feed the “violation” signal into the tuning control logic,
which generates the “tune” signal. By tuning the resistance
value of the memristor in the buffer, a tunable delay can be
generated. The detection and tuning will proceed in every
cycle until the setup time violations are fully removed.

V. SYNTHESIS OF SELF-HEALING CIRCUITS

As the tuning operation of the circuits effectively changes
the timing of the entire processor, a sophisticated design

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 11. Design flow of the proposed self-healing circuits.

flow has to be adopted to cope with the stochastic nature
of the design. Fig. 11 shows the overview of our proposed
design flow to synthesize the use of self-healing FFs and self-
healing clocks. During presilicon design phase, the SSTA is
used to assess the variability of the design and help optimize
the placement of self-healing circuits. A novel algorithm,
which will be discussed in Section VI, has been developed
to place the tunable FF or clock buffers at optimal locations
of the design. During postsilicon operation, self-tuning can be
launched during the operation of the chip. A special tuning
algorithm, which will be discussed in Section VII, is used
to rebalance the timing among stages of the pipeline of the
processor design. In the tuning algorithm, the tuning decision
is based on the timing violation situation and placement
of the self-healing buffer. In other words, the memristor
placement in the presilicon phase will decide the tunabil-
ity of the circuit in the postsilicon online tuning process.
It is worth highlighting that, compared with the conventional
flow, which pessimistically assigns a design margin to handle
the worst case unpredictable variation, our proposed design
flow removes the design margins. After the healing process,
the memristor-powered self-healing circuits compensate the
random process variation and allow the processor to operate
at a more optimized condition with balanced delay among
pipeline stages. As a result, significant performance gain can
be achieved by removing pessimism from the conventional
design methodology.

VI. PROBLEM FORMULATION FOR PLACEMENT

AND TUNING OF SELF-HEALING CIRCUITS

Without a proper tuning mechanism, FF-based self-healing
can only guarantee recovery of local timing violations. The
basic idea of self-tuning is to borrow time among different
FF stages. However, if there exists at least one cycle formed
by FF stages whose average delay (i.e., the total delay divided
by the number of FFs) is larger than the target clock period,
the whole circuit is doomed to be untunable, and the given
clock period is regarded as infeasible. However, the local self-
healing cannot detect the infeasible clock period but keeps
recovering every reported timing violation. This requires us to
develop a strong tuning mechanism that dynamically adjusts
the clock skew scheduling and decides the feasibility of the
clock period as accurate as possible.

Moreover, FF-based self-healing only considers allocating
memristor-based tunable buffers on the leaf nodes of the clock
tree. But if we allocate some buffers on the nonleaf nodes,
the new placement may achieve better performance or smaller
area overhead. Meanwhile, it is important to consider the
circuit tunability when assigning memristors and allocating
buffers in order to maintain high yield. All these factors
should be put into analysis to obtain an optimal placement.
Note that in some special situations, it is difficult to fix
timing violations. For instance, when combinational paths
from one FF to another simultaneously violate setup and hold
time constraint, both setup time and hold time self-healing
trigger but contradict with each other. However, if extra delay
is inserted on the short path to avoid hold time violation while
not affecting the long path, setup time self-healing can remove
the setup time violation by increasing the clock latency of the
destination FF. In this sense, we only leverage the setup time
healing mechanism and assumes that the hold time constraint
can always be solved by delay insertion or padding.
The setup time constraint of a sequential circuit is modeled

with a set of inequalities as follows:

∀i, j ∈ V and i → j, ti + Dmax
i j < Tclk − θ j + t j (5)

where V is the set of all FFs in the sequential circuit, ti and
t j are the clock skew for FF i and j , respectively, and θ j is
the setup time for j , i → j representing that there are
combinational paths from i to j , among all of which Dmax

i j is
the delay of the longest path. In the memristor-based tunable
circuit, the clock skew of every FF consists of two components
as illustrated in the following:

∀i ∈ V , ti = tsi + Li (6)

where tsi and Li are the static and dynamic clock skews
for FFi, respectively. Since buffers are placed on the clock
trees, Li is equivalent to the total tuning amount of buffers
controlling i , explicitly expressed as

∀i ∈ V , Li =
∑

k∈AMi

lk (7)

where AMi consists of all the ancestor buffers for i and the
buffer at the same node as i if any and lk is the tuning amount
of buffer k. The memristor in the buffer does not support
backward tuning, and thus

∀k ∈ M, lk ≥ 0 (8)

where M is the set of all the buffers placed on the clock tree.
Based on the above, we formulate the main problem as

follows.
Problem 1 (Placement Problem): Given a circuit with clock

tree, optimize the memristor-based tunable buffer placement
to minimize the total number of memristors while maintaining
the target yield.
Problem 2 (Tuning Problem): Given circuit with the

memristor-based tunable buffer placed on the clock tree, utilize
emergency detectors and buffers to determine the tunability of
the given circuit and adjust the clock skew scheduling under
the tuning constraint (6)–(8) to remove setup time violations
if the circuit is tunable.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KONG et al.: DESIGN AND SYNTHESIS OF SELF-HEALING MEMRISTIVE CIRCUITS 7

Algorithm 1 Leaf FF Tuning

We first discuss the tuning problem in Section VII. Then,
we present our approach to place the self-healing circuits in
Section VIII. We also evaluate our algorithms for both the
problems in Section IX.

VII. SELF-TUNING MECHANISM

Our goal in this section is to decide a hardware strategy
to self-tune the circuits and determine the conditions under
which the circuit is considered failing the recovery of timing
violation with the given clock period.

A. Basic Tuning

Given a circuit timing graph and a fixed clock period, it is
not hard to calculate the clock skew scheduling that satisfies
setup time. But in practice, circuits are unable to perform
online self-measurement of the precise setup timing violation
amount. The information that can be extracted from the viola-
tion detector is just 1 bit: either there is timing violation or not.
Therefore, we aim to implement a hardware tuning algorithm
that can dynamically control the tuning and detecting phase
so that the tuning result will match the theoretical results as
much as possible. Intuitively speaking, our tuning mechanism
should fully leverage the tunability of the self-healing circuit.
For simplicity, we start from the following basic cases.
1) Memristor-based tunable buffers are placed at the leaf

node of the clock tree so that every buffer can only affect
the clock latency of one FF. Let buffer i tune the FF i
so that ∀i ∈ V , Li = li .

2) There is a minimal amount of latency memristor that
can tune in one step, defined as d .

3) The allowed initial maximum setup time violation is
within d ∗ δ, which must be smaller than the detection
window of the emergency detector. Thus, any single
violation can be tuned correctly in at most δ cycles.

4) The tunable ranges provided by buffers are large enough
to not become a limiting factor in the tuning process.

Based on the above-mentioned assumptions, we present
a basic tuning algorithm, leaf FF tuning algorithm
(see Algorithm 1).
Each iteration in a leaf FF tuning algorithm is one clock

cycle of tuning. All the violation FFs are tuned concurrently.
The dynamic clock skew l for the FFs not controlled by buffers

Fig. 12. Memristor tuning example.

is fixed at 0. The circuit is tunable if and only if there exist
dynamic clock skew assignments, all of which are integer
multiples of d , such that constraints from (5)–(8) are satisfied.
The validity of the algorithm is based on Theorem 1.
Theorem 1: If there exists feasible tuning to eliminate all the

setup timing violation, the leaf FF tuning algorithm can find
it within |M| ∗ δ clock cycles, where |M| is the total number
of buffers.
The correctness proof of Theorem 1 is based on the intuition

that after every δ clock cycle, the tuning amount of at least
one more buffer is fixed and needs not to be tuned again if
the whole circuit is tunable. Theorem 1 implies that if there
is still violation after |M| ∗ δ clock cycles, the violated circuit
is not tunable and a tuning failure should be reported. The
untunability discovered by our algorithm is either a result of
unavoidable overtuning under the given memristor minimum
tuning amount or due to the existence of negative timing slack
cycles in the circuits.
Fig. 12 shows an example to better illustrate our leaf

FF tuning algorithm. There are six FFs in the circuit, and
all the combinational paths are represented by arrows with
delay values. Here, we assume that every FF with an emer-
gency detector (FF2, FF3, FF4, and FF5) is connected to a
memristor-based tunable buffer while the skew of normal FFs
(FF1 and FF6) is fixed at 0. Since there are four buffers in total
and the initial max violation is 2, the circuit should be tuned
successfully within eight clock cycles, and in this case, only
six clock cycles are needed. The tuning procedure showing
the skew of each FF in every clock cycle is listed. If the delay
between FF5 and FF2 increases by 1, tuning will not finish
after eighth clock cycle and tuning failure will be reported.
This is consistent with the theoretical results, since there is
a path cycle constructed by FF2, FF3, FF4, and FF5 with
negative overall timing slack. Intuitively, our tuning algorithm
provides a criterion indicating when to stop due to the tuning
infeasibility.

B. Generic Tuning

Leaf FF tuning algorithm only deals with the situation where
self-healing is inside the FF, meaning that all the buffers
are on the leaves of the clock tree. However, if a buffer
reduction technique is applied, some buffers can be placed
on the nonleaf nodes of the clock tree. We propose a more
complex hardware mechanism to tune the circuit with more

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

general buffer placement. This tuning mechanism covers not
only the case where self-healing buffers with memristors are
embedded in the FFs, but also the scenario where buffers are
allocated outside the FF on the clock tree.
Similar to the leaf FF tuning algorithm, we intend to

increase the clock latency by d in every cycle for each FF
that has timing violation. However, because there is no one-
to-one mapping between FF and buffer, some buffers may
affect the clock skews of more than one FFs. In certain
violation situations, we cannot tune the violating FFs without
affecting the nonviolating FFs. One straightforward strategy
is to tune the greatest common ancestor buffer of all the
violating FFs. However, such a method is very likely to result
in overtuning. A proper tuning mechanism to reach the feasible
clock scheduling, if any, should tune violating FFs in every
cycle while affecting nonviolating FFs as less as possible.
We define a term DC associated with every buffer, where

DCi is the set of the FFs that either is on the same clock
tree node as buffer i , or does not have buffer on the same leaf
node but has i as its least ancestor. Every FF in DC is “directly
connected” with i , meaning that there is no intermediate buffer
between them. The tuning signal for every buffer is given as
follows:

seli =
∨
j∈DCi

violation j

tunei = seli ∧ ¬
⎛
⎝ ∨

j∈AMi\i
sel j

⎞
⎠

violationi = ∃ j ∈ V , L j + tsj + d j i + θi > Li +tsi +T .

In every cycle, we want to increase the clock arrival time
of any FF with timing violation only by a latency of d
to avoid overtuning. Therefore, all the ancestor buffers of
such FFs are the potential candidates to be tuned. In our
methodology, we prioritize to tune the least ancestor of the
violating FF. We call such a buffer as a “selected” buffer. All
the “selected” buffers have sel equal to TRUE at current clock
cycle. A selected buffer will not be tuned only if at least one
of its ancestor buffers is also “selected.” This ensures that
no FF has clock skew delayed by a latency greater than d in
every cycle. The described tuning logic also guarantees to tune
the smallest subset of the nonviolating FFs. Therefore, if any
nonviolating FF is tuned, it is an inevitable step to reach the
feasible clock skew scheduling.
An example of tuning logic design is shown in Fig. 13. Note

that the tune signals of buffer a and d are not dependent on
the tune signal of any other buffers, because they do not have
ancestor buffers on the clock tree. Among the four buffers,
only c “directly connects” with more than 1 FFs, which is
reflected in the expression of selc.
Again, the correctness of the clock tree tuning algorithm

(see Algorithm 2) is based on the following theorem.
Theorem 2: Given buffer placement on clock tree, if there

exists feasible tuning to eliminate all the setup timing viola-
tion, clock tree tuning algorithm can find it within |M| ∗ δ
clock cycles, where |M| is the total number of buffers.

Algorithm 2 Clock Tree Tuning

Fig. 13. Tuning logic for tunable memristors on clock tree.

Up to now, we maintain the assumption that all the buffers
on the clock tree have enough memristors so that the tuning
range is not a restriction in approaching the feasible clock
skew scheduling. But if a more general and realistic placement
is concerned, we have to take the tunable range at each node
of clock tree into consideration. Accordingly, the tuning logic
design should be revised, because sel signal becomes more
complex. If the selected buffer is already tuned to the upper
range bound, we have to select its least ancestor where the
tunable range is not used up. This process can be viewed as the
upward propagation of selection. To explain the revised tuning
logic, we define a new set DM for every buffer. DMi is the
set of buffers whose least ancestor buffer is i . In addition, we
introduce another three signals for every buffer: SAIR, SAOR,
and CBT. SAIRi is true if and only if buffer i is selected and
has not used up its tuning range. SAORi is true if and only
if i is selected but already tuned to its upper bound ri so that
it will propagate selection upward to its ancestors. CBTi is
TRUE if and only if at least one ancestor buffer of i is deter-
mined to be tuned in the current cycle. To describe the CBT,
we define LAM(i) as the least ancestor buffer of i . Note that
if buffer i does not have ancestors, then CBTi = FALSE by
default

SAIRi =
⎛
⎝ ∨

j∈DCi
violation j ∨

∨
j∈DMi

SAOR j

⎞
⎠ ∧ (li < ri)

SAORi =
⎛
⎝ ∨

j∈DCi
violation j ∨

∨
j∈DMi

SAOR j

⎞
⎠ ∧ (li = ri)

CBTi = CBTLAM(i) ∨ TUNELAM(i)

TUNEi = SAIRi ∧ ¬CBTi .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KONG et al.: DESIGN AND SYNTHESIS OF SELF-HEALING MEMRISTIVE CIRCUITS 9

Intuitively, SAIR can be treated as similar as the sel signal
in the previous tuning algorithm, where the tuning range is
not considered.
Similarly, we claim that if the circuits are tunable, there

is no timing violation any more after |M| ∗ δ clock cycles.
Applying the similar reasoning we used for the previous two
tuning algorithms, we can prove the correctness of this more
generic and comprehensive tuning algorithm (we leave all the
formal proof out due to the space limitation).

C. Nonideal Tuning Effect

In the previous discussions, we are applying a constant
tuning amount d in every cycle. That requires the memristor
resistance to increase linearly to the tuning time. However, due
to process variation, it is almost impossible to achieve such
ideal tuning. In the real circuit model, memristor resistance
may increase superlinearly to the tuning time. In other words,
the tuning amount becomes larger as tuning proceeds. Such
trend increases the chance of overtuning. On the other hand,
it can accelerate the tuning process and results in a shorter
overall self-healing time.
Instead of being treated as a constant, d is now regarded

as the initial tuning amount, which is also a minimum tuning
amount during the whole tuning process in a real circuit model
as discussed earlier. Besides, d is a controllable parameter and
can be used to adjust the balance between the tuning speed
and tunablity. Specifically, a larger initial tuning amount d can
be used to speed up the tuning process but at the risk of losing
tunability.

VIII. TUNABLE BUFFER PLACEMENT OPTIMIZATION

In this section, we propose a methodology to place tunable
buffers with memristors based on SSTA. We first place buffers
on the leaves of the clock tree according to the FF timing
criticality. Then, we apply a heuristic technique to reduce total
number of memristors.

A. Placement With SSTA

To overcome the tuning range limit, a tunable buffer may
be embedded with multiple memristors to control a self-
healing FF. Now, the question is how to assign memristors to
different buffers that controls different FFs? The proper mem-
ristor allocation strategy should take the “timing criticality”
and potential timing violation amount of different FFs into
consideration, that is, the FF with higher probability to have
larger violation amount should be provided with the larger tun-
able range to compensate the negative slack. This requires us
to apply SSTA to evaluate the “timing criticality” of each FF.
In SSTA, every combinational path delay is represented as
a Gaussian random variable. Our goal is to estimate the
distribution of the latest arrival time for every FF.
During the SSTA, we have to repeatedly apply two fun-

damental operations: max and sum. The sum operation is
relatively easy and exact. The max of two Gaussian distri-
butions can be approximated to another Gaussian distribution
as in [30] and [31]. We deploy Clark approximation [9] to
obtain the first and second moment of the max. During the

calculation, we find that most max operations are over a
constant and a Gaussian random variable. A constant value
can also be represented by a Gaussian distribution with σ = 0.
However, we realize that the results obtained through such
approximation are too inaccurate. Therefore, we introduce a
tuple to represent timing variable. The tuple, e.g., {(μ, σ), C},
refers to the max of the Gaussian variable (μ, σ) and a
constant C . With this new representation included, we derive
the max and sum operations between tuples to replace the
original operations

{(μA, σA),CA} + {(μB, σB),CB} = {(μs, σs),CA + CB}
max({(μA, σA),CA}, {(μB, σB),CB})

={(μm, σm),max(CA,CB)}
where (μs, σs) and (μm , σm) are derived to be the max of
some Gaussian distributions shown in the following and can
be computed with the Clark approximation:

(μs, σs) = max
((

μA + μB,

√
σ 2A + σ 2B

)
, (μA + CB , σA),

(μB + CA, σB)
)

(μm, σm) = max((μA, σA), (μB , σB)).

By applying the redefined operations, we can estimate the
latest arrival time for every FF and allocate memristors to
provide the tuning range accordingly. As illustrated in our
memristor placement algorithm, |V | − 1 iterations are needed
to calculate the arrival time distributions for all FFs. This is
because violation amount can accumulate and propagate across
multiple stages. One iteration of calculation can only capture
the delay information in one combinational path. The worst
case is when all FFs are pipelined and the latest arrival time
distribution of the last FF may not get stable until the |V |− 1
iterations of the calculation. In practice, far less iterations are
needed for the calculation to converge if the clock period
is not too aggressive. Heuristically, we run the Monte Carlo
simulation for circuits without memristors and find a proper
clock period resulting in reasonable yield (e.g., 90%).
Given the stabilized arrival time distribution for all FFs and

the target timing yield TYt , we can calculate the tuning amount
needed for each FF according to the following theorem.
Theorem 3: Assuming a low dependence between the arrival

time of all the critical FFs, the yield P that every FF should
achieve is approximated by TY(1/|Vc|)

t , where |Vc| is the
number of critical FFs.
We define the critical FF as those FFs with static clock

skew ts and latest arrival time distribution {(μ, σ),C} that
satisfy either ts < C or ts < μ + 3σ . It is reasonable to
maintain the assumption in Theorem 3, because under a proper
clock period, there are only few critical FFs, which are most
likely far apart from each other and not sharing the common
path.
Following the convention, we only consider assigning tun-

able buffers to critical FFs. The tuning amount that the tunable
buffer should provide to a critical FF is max{C, μ+λpσ }− ts ,
where λp is the value to achieve yield P = TY(1/|Vc|)

t in
standard normal distribution. This would ensure the individual

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Algorithm 3 Placement Algorithm

critical FF to be tunable with a high probability of approxi-
mately TY(1/|Vc|)

t . Then, based on Theorem 3, we can achieve
the target yield of the whole circuit.

B. Memristor Reduction Method

Algorithm 3 only allocates memristors to the tunable buffers
on the leaf node. Advanced memristor reduction technique can
be performed to minimize hardware cost. We apply a greedy
method, which moves memristors upward as much as possible.
For example, if N1 and N2 memristors are allocated to two
buffers at different child nodes of the clock tree and N1 > N2,
then N2 memristors can be assigned to the buffer at the parent
node so that the number of the memristors on both child nodes
will decrease by N2. The overall effect reduces N2 memristors.
The reduction operation can be iteratively applied until no
more memristors can be moved up. Such a reduction method
serves the purpose of minimizing the total memristor number.
Meanwhile, we realize that our method neglects the clock
arrival time correlation between different FFs, and may end
up deteriorating the overall tunability of the circuit.

IX. TUNING AND PLACEMENT EVALUATION

We implement our tuning and memristor placement algo-
rithm in C++ and conduct experiments on ISCAS89 circuit
benchmarks. All experiments are conducted on a 2.7-Hz
Linux machine with 8-GB RAM. Mean delay of each gate is
assigned based on the fan-out. The delay variance is randomly
generated but restricted within 10% of the delay mean. For
each benchmark, we run 1000 iterations of the Monte Carlo
Simulation and apply placement and tuning algorithm on the
circuit with the simulated delay information.
We implement three versions of memristor placement. Two

versions are based on our placement algorithm, and the only
difference is one that does not apply the memristor reduction
technique so that all the memristors are on the leaf while
the other one does. For comparison, we include a brute-force
leaf placement, which uses the same number of memristors
as our strategy without the memristor reduction technique,
and allocate every FF the same number of memristors.

Fig. 14. Yield comparison: our placement versus brute-force placement.

Fig. 15. Yields for different placements and tuning strategies.

TABLE I

OVERHEAD OF IMPLEMENTING TUNING LOGIC CIRCUIT AND

NUMBER OF MEMRISTORS FOR DIFFERENT PLACEMENTS
GIVEN ORIGINAL YIELD = 90%

We also have three versions of generic tuning algorithm
with different normalized one-step tuning amount d = 1, 50,
and 100, where 1 is assumed to be the minimum tuning amount
for the memristor. The max tuning amount for one memristor
is assigned as 100.
Fig. 14 shows the benefit of memristor tuning, which in

average achieves 8% yield improvement over the conven-
tional design with nontuning mechanism. The observation
that the yield improvement with our memristor placement
methodology in general doubles the improvement with brute-
force placement shows that our strategy is much more capa-
ble of capturing the FF criticality information. Combining
Fig. 15 with Table I, we find that when memristors are
inserted on nonleaf nodes of the clock tree, the total number of
memristors is significantly reduced while losing trivial amount
of timing yield, which further validates the advantage of our
memristor placement and reduction algorithm.
To study the tradeoff between tuning cost and timing

yield, we obtain the average cycles for all cases that
successfully tune the setup time violations with different
one-step tuning amount. As shown in Fig. 16, if one-step
tuning amount d tune is lower, it is less likely to overtune the
circuit, thus achieving a higher timing yield. On the other hand,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KONG et al.: DESIGN AND SYNTHESIS OF SELF-HEALING MEMRISTIVE CIRCUITS 11

Fig. 16. Average tuning cycles along with timing yield for different one-step
tuning amount.

Fig. 17. Impact of clock period on the placement overhead in average
of 30 ISCAS89 circuit benchmarks.

Fig. 16 shows that as one-step tuning amount increases,
the tuning cycle decreases much faster than the timing yield
in most cases. We conclude that a relatively larger one-step
tuning amount with no overtuning will dramatically speed up
the tuning process and meanwhile maintain high timing yield.
Control logic overhead is estimated based on basic gate

counting. We realize that the overhead in practice can be
higher due to global routing. According to Fig. 17, the over-
head is impacted by the clock period. If the yield without
tuning is low, meaning that the clock period is aggressive,
then more memristors and control logic gates are needed to
maintain a target yield after tuning. In addition, Table I shows
that overhead varies between different circuit benchmarks.
Overhead is below 10% for most of the benchmarks. However,
s35932 has overhead close to 20%, which is due to high
portion of critical paths in the circuits.

X. DEMONSTRATION OF PROCESSOR DESIGN

USING SELF-HEALING CIRCUITS

To verify the proposed scheme, a 64-point 8-bit highly
pipelined fast Fourier transform (FFT) processor was
implemented using commercial synthesis and backend tools in
a 45-nm technology with a nominal voltage of 1.1 V. Synthesis
and place and route were carried out at 0.95 V, −40 C,
and slow corner. Fig. 18 shows the FFT processor’s layout
and design specifications. The FFT processor is synthesized
at 1 GHz and operates up to 900 MHz due to on-chip random
process variations.
We first demonstrate the operation of the proposed self-

healing FFs by performing spice level simulation on extracted
critical paths from the FFT processor. Top 50 critical paths
from both setup and hold timing closures were physically
extracted from Encounter and imported back into Cadence
Spectre for Monte Carlo simulation. Each critical path has
a self-healing FF converted. Figs. 19 and 20 show the

Fig. 18. FFT processor layout and design specifications.

Fig. 19. Hold violation distribution before and after healing.

Fig. 20. Setup violation distribution before and after healing.

distribution of the critical paths for setup and hold analysis
before and after the self-healing process. The timing histogram
shows that the conventional corner-based static timing analysis
does not capture the random process violation and hence
optimistically estimates the performance of the critical paths.
As a result, a slack of −40 to −100 ps is observed in
spice level Monte Carlo simulation. For each violated case,
the proposed self-healing FF can effectively recover the timing
violation upon detection of the timing emergency. As a result,
all timing violations have been removed leading to a 10%
speed up of the performance.
The above-mentioned test validates the functionality and

operation of the proposed self-healing circuits. To further
maximize the performance gain, we applied the placement

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 21. Numbers of memristor-based circuits placed into the FFT processor
based on the target performance (clock period).

Fig. 22. Area overhead and performance improvement using the proposed
self-healing design in the FFT processor.

algorithm in Section VI into the FFT processor. Fig. 21 shows
the number of memristor-based circuits to be deployed with
different performance targets, i.e., clock period. Both the basic
leaf placement, which puts the tuning circuit at the leaf FF, and
the memristor reduction technique, which pushes the tuning
circuits into higher level of clock trees, are evaluated. As clock
speed is set more aggressively beyond 0.85 ns, the number
of required memristor devices dramatically increases so as to
reach the healing limitation. However, the nonleaf placement
outperforms the leaf placement with 3.5 times less number of
memristor devices at a maximum frequency target due to the
efficient usage of high-level clock buffers.
Fig. 22 shows the overhead of the proposed self-healing

design and performance improvement compared with the
conventional design. With the proposed self-healing design,
the performance has been significantly improved up to 25%.
The area overhead remains as small as only 1% when the
performance is up to 20%, and increases significantly to 5%
when performance is pushed to its limit.

XI. CONCLUSION

Modern microprocessors face significant timing closure
challenges due to on-chip process variation. When dealing
with the exaggerated timing issues in advanced technologies,
conventional use of design margin significantly trade offs the
performance. The recent development of emerging nonvolatile
memristive devices provides a new capability in solving the
current design dilemma, i.e., balance between performance
and design margin. This paper proposes the designs of self-
healing FF and clock buffers using memristors to automatically
recover the loss of performance due to process variations.

New design flow and algorithms are proposed to integrate the
proposed circuits to VLSI circuits. A pipelined FFT processor
in a 45-nm technology was implemented as a demonstration
of the proposed circuits and design methodology. Results
shows that the proposed self-healing method can bring 20%
performance improvement with only 1% overhead.

REFERENCES

[1] J. Warnock, “Circuit and PD challenges at the 14 nm technology node,”
in Proc. Int. Symp. Phys. Design, 2013, pp. 66–67.

[2] S. Saxena et al., “Variation in transistor performance and leakage in
nanometer-scale technologies,” IEEE Trans. Electron Devices, vol. 55,
no. 1, pp. 131–144, Jan. 2008.

[3] Y. Ye, F. Liu, M. Chen, S. Nassif, and Y. Cao, “Statistical modeling
and simulation of threshold variation under random dopant fluctuations
and line-edge roughness,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 19, no. 6, pp. 987–996, Jun. 2011.

[4] G. Leung and C. O. Chui, “Variability impact of random dopant
fluctuation on nanoscale junctionless FinFETs,” IEEE Electron Device
Lett., vol. 33, no. 6, pp. 767–769, Jun. 2012.

[5] G. Panagopoulos and K. Roy, “A physics-based three-dimensional
analytical model for RFD-induced threshold voltage variation,” IEEE
Trans. Electron Devices, vol. 58, no. 2, pp. 392–403, Feb. 2011.

[6] A. Loke, “The journey to FinFETs,” in Proc. IEEE Int. Midwest Symp.
Circuits Syst., Aug. 2015.

[7] X. Jiang et al., “A device-level characterization approach to quantify the
impacts of different random variation sources in FinFET technology,”
IEEE Electron Device Lett., vol. 37, no. 8, pp. 962–965, Aug. 2016.

[8] S. Markov, A. S. M. Zain, B. Cheng, and A. Asenov, “Statistical
variability in scaled generations of n-channel UTB-FD-SOI MOSFETs
under the influence of RDF, LER, OTF and MGG,” in Proc. IEEE Int.
SOI Conf., Oct. 2012, pp. 1–2.

[9] C. E. Clark, “The greatest of a finite set of random variables,” Oper.
Res., vol. 9, no. 2, pp. 145–162, 1961.

[10] W. Wang et al., “The impact of NBTI on the performance of combina-
tional and sequential circuits,” in Proc. Design Autom. Conf., Jun. 2007,
pp. 364–369.

[11] A. Kerber, M. Rohner, T. Pompl, R. Duschl, and M. Kerber, “Lifetime
prediction for CMOS devices with ultra thin gate oxides based on
progressive breakdown,” in Proc. IEEE Int. Rel. Phys. Symp., Apr. 2007,
pp. 217–220.

[12] J. B. Velamala, V. Reddy, R. Zheng, S. Krishnan, and Y. Cao, “On the
bias dependence of time exponent in NBTI and CHC effects,” in Proc.
IEEE Int. Rel. Phys. Symp., May 2010, pp. 650–654.

[13] R. Arora and J. D. Cressler, “Operating voltage constraints in 45-nm SOI
nMOSFETs and cascode cores,” IEEE Trans. Electron Devices, vol. 60,
no. 1, pp. 132–139, Jan. 2013.

[14] (2013). Entegris Analyst Report. [Online]. Available: http://investor.
entegris.com/node/15166/html

[15] S. Das et al., “RazorII: In situ error detection and correction for PVT and
SER tolerance,” IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 32–48,
Jan. 2009.

[16] K. A. Bowman et al., “A 45 nm resilient microprocesor core for
dynamic variation tolerance,” IEEE J. Solid-State Circuits, vol. 45, no. 1,
pp. 194–208, Jan. 2011.

[17] D. Niu, Y. Chen, and Y. Xie, “Low-power dual-element memristor based
memory design,” in Proc. Int. Symp. Low Power Electron. Design, 2010,
pp. 25–30.

[18] M. Soltiz, D. Kudithipudi, C. Merkel, G. S. Rose, and R. E. Pino,
“Memristor-based neural logic blocks for nonlinearly separable func-
tions,” IEEE Trans. Comput., vol. 62, no. 8, pp. 1597–1606, Aug. 2013.

[19] G. S. Rose, J. Rajendran, H. Manem, R. Karri, and R. E. Pino,
“Leveraging memristive systems in the construction of digital logic
circuits,” Proc. IEEE, vol. 100, no. 6, pp. 2033–2049, Jun. 2012.

[20] J. Cong and B. Xiao, “mrFPGA: A novel FPGA architecture with
memristor-based reconfiguration,” in Proc. IEEE Int. Symp. Nanosci.
Architecutre (NANOARCH), Jun. 2011, pp. 1–8.

[21] S. Shin, K. Kim, and S.-M. Kang, “Memristor applications for pro-
grammable analog ICs,” IEEE Trans. Nanotechnol., vol. 10, no. 2,
pp. 266–274, Mar. 2011.

[22] I. C. Göknar, F. Öncül, and E. Minayi, “New memristor applications:
AM, ASK, FSK, and BPSK modulators,” IEEE Antennas Propag. Mag.,
vol. 55, no. 2, pp. 304–313, Apr. 2013.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KONG et al.: DESIGN AND SYNTHESIS OF SELF-HEALING MEMRISTIVE CIRCUITS 13

[23] D. H. Werner and M. D. Gregory, “The memristor in reconfigurable
radio frequency devices,” in Proc. IEEE Antenna Propag. Soc. Int.
Symp. (APSURSI), Jul. 2012, pp. 1–2.

[24] M. Laiho, E. Lehtonen, and W. Lu, “Memristive analog arithmetic
within cellular arrays,” in Proc. Int. Symp. Circuits Syst. (ISCAS), 2012,
pp. 2665–2668.

[25] D. B. Strukov, G. S. Snider, D. R. Stewart, and S. R. Williams,
“The missing memristor found,” Nature, vol. 453, pp. 80–83, Jun. 2008.

[26] R. S. Williams, “How we found the missing memristor,” IEEE Spectrum,
vol. 45, no. 12, pp. 28–35, Dec. 2008.

[27] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, “Memristor
SPICE model and crossbar simulation based on devices with nanosec-
ond switching time,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Aug. 2013, pp. 1–7.

[28] S. Dubosi. Crossbar Resistive RAM (RRAM): The Future Technology
for Data Storage. Accessed: Dec. 12, 2017. [Online]. Available:
http://www.snia.org/sites/default/orig/DSI2014/presentations/HotTopics/
SylvainDuBoise_Future_Technology_final.pdf

[29] Crossbar. ReRAM Advantages. Accessed: Dec. 12, 2017. [Online]. Avail-
able: https://www.crossbar-inc.com/en/technology/reram-advantages/

[30] C. Visweswariah et al., “First-order incremental block-based statistical
timing analysis,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 25, no. 10, pp. 2170–2180, Oct. 2006.

[31] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering
spatial correlations using a single PERT-like traversal,” in Proc. Int.
Conf. Comput. Aided Design (ICCAD), 2003, pp. 621–625.

Shuyu Kong received the B.S. degree in electri-
cal engineering from the University of Michigan,
Ann Arbor, MI, USA, in 2015. He is currently
working toward the Ph.D. degree at the Department
of Electrical Engineering and Computer Science,
Northwestern University, Evanston, IL, USA.
His current research interests include statisti-

cal timing analysis, formal verification, security
information flow analysis, and hardware logic
encryptions.

Hai Zhou (SM’04) received the B.S. and M.S.
degrees in computer science and technology from
Tsinghua University, Beijing, China, and the Ph.D.
degree in computer sciences from The University of
Texas at Austin, Austin, TX, USA.
He is currently an Associate Professor of Electrical

Engineering and Computer Science at the Depart-
ment of Electrical Engineering and Computer Sci-
ence, Northwestern University, Evanston, IL, USA.
His current research interests include security, very
large-scale integration computer-aided design, algo-

rithm design, and formal methods.
Dr. Zhou was a recipient of the CAREER Award from the National Science

Foundation in 2003.

Jie Gu (M’10) received the B.S. degree from
Tsinghua University, Beijing, China, the M.S. degree
from Texas A&M University, College Station, TX,
USA, and the Ph.D. degree from the University of
Minnesota, Minneapolis, MN, USA.
He was an IC Design Engineer at Texas Instru-

ments, Dallas, TX, USA from 2008 to 2010, where
he was involved in ultralow-voltage mobile proces-
sor design and integrated power management tech-
niques. From 2011 to 2014, he was a Senior Staff
Engineer at Maxlinear, Inc., Carlsbad, CA, USA,

where he was involved in low-power mixed-signal broadband SoC design.
He is currently an Assistant Professor at Northwestern University, Evanston,
IL, USA. His current research interests include ultralow power mixed-signal
VLSI circuit design, hardware and software co-design with integrated power
clock management, and emerging device/technology integration.
Dr. Gu has served as the Program Committee and Conference Co-Chair for

numerous low-power design conference and journals, such as the International
Symposium on Low Power Electronics and Design, the Design Automation
Conference, the International Conference on Computer Aided Design, and the
International Conference on Computer Design.

