Exploration of Associative Power Management with
Instruction Governed Operation for Ultra-low Power
Design

Tianyu Jia, Yuanbo Fan, Russ Joseph, and Jie Gu

Department of Electrical Engineering and Computer Science
Northwestern University, Evanston, IL, USA
{tianyujia2015, yuanbofan2012}@u.northwestern.edu, rjoseph@eecs.northwestern.edu, jgu@northwestern.edu

ABSTRACT

This paper explores a novel associative low power operation where
instructions govern the operation of on-chip regulators in real time.
Based on explicit association between long delay instruction
patterns and hardware performance, an instruction based power
management scheme is developed with energy models formulated
for deriving the energy efficiency of the associative operation. The
proposed system scheme is demonstrated using a low power
microprocessor design with an integrated switched capacitor
regulator in 45nm CMOS technology. Simulations on benchmark
programs show a power saving of around 14% from the proposed
scheme. A novel compiler optimization strategy is also proposed to
further improve the energy efficiency.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based
Microprocessor/microcomputer applications.

systems]:

General Terms
Design, Management, Experimentation.

Keywords
Energy efficient computing, integrated power management, low
power design, switching regulator, compiler optimization

1. INTRODUCTION

The technology scaling of CMOS integrated circuits (IC) has
slowed down in recent years as the conventional CMOS technology
approaches its fundamental limit [1]. As the benefits of technology
scaling become more expensive to realize, innovative systematic
approaches for low power design become crucial to solve the
energy bottleneck of many emerging applications, such as wearable
electronics, Internet-of-Things, and biomedical devices [2].
Because the power consumption of conventional Very Large Scale
Integrated (VLSI) circuits are mainly determined by the operating
voltages, supply voltage scaling has been used as a primary method
for achieving low power operation. For example, to achieve ultra-
low power consumption, tremendous efforts have been put into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

DAC '16, June 05-09, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-4236-0/16/06 $15.00
DOI: http://dx.doi.org/10.1145/2897937.2898021

designing circuits operating at sub-threshold or near-threshold
voltages where an optimum energy consumption can be achieved
[3-4]. Other advanced circuit techniques such as Razor use error
detection mechanisms to remove design margin for runtime
variation achieving a 10~30% power saving beyond conventional
low power design techniques [5-6].

At the system level, dynamic voltage and frequency scaling
(DVFS) has been widely utilized to explore the optimal tradeoff
between performance and power [7]. In traditional DVFS, highly
efficient switching voltage regulators are deployed on the board
shared among multiple chips in order to reduce the silicon costs of
electronic components. The traditional switching regulator, buck
regulator or switched capacitor regulators normally operate at a
switching frequency of several hundreds of kHz to a few MHz
limiting its response time to microseconds [8]. As a result, previous
DVFS schemes are only controlled at the system level with coarsely
defined power states and thus are not capable of performing DVFS
down at program level with fine granularity [9]. In recent years, the
new trend of integrating numerous on-chip regulators for multi-
core processors provides significant flexibility for energy
optimization. For example, 48 fast response (sub-ns) regulators
with 2 regulators for each logic core and cache were deployed in
the 12 cores of IBM Power 8 processor to achieve fast DVFS [10].
Meanwhile, highly efficient on-chip switching regulators have been
demonstrated with high configurability and fast response within
2~3ns or even sub-ns [11-12]. Such a fine grid on-chip voltage
scaling capability introduces new opportunities for low power
electronic design. For example, a physical model and optimization
methodology for on-chip switched capacitor regulator was
developed to optimize the deployment of on-chip regulators for
higher energy efficiency [13]. An ultra-dynamic scheme was
proposed to change supply voltage in a multi-Vaa configuration
using different power switches, which allows the supply voltage to
switch within a few nanoseconds leading to enhanced flexibility for
DVES [14]. However, that scheme requires generation and routing
of multiple supply voltages to the digital logic and generates large
design overhead. While the majority of current energy optimization
methodology for power management has remained at system level,
a few previous works also explored architecture and circuit level
co-optimization based on sophisticated insight into software
programs. For example, a previous study shows that significant
amount of resonant noise can be removed if the existence of critical
instructions can be predicted in a pipeline leading to 10%
performance improvement [15]. A Razor based scheme was
proposed to reduce timing error rate based on instruction type
leading to 80% performance penalty in timing error recovery [16].

Different from the above work, this paper, for the first time,
proposes to engage the control of on-chip regulator with the
individual instructions inside the software program for ultra-low

voltage operation. Because a typical clock period of 10~100ns at
near-threshold operation exceeds the response speed of several
nanoseconds from an on-chip switching regulators, an instruction
driven voltage scaling scheme can be utilized to achieve extra
energy saving unobtainable from existing low power techniques.
This work uses an ARM processor design to evaluate the design
tradeoff and energy benefits for the proposed associative power
management scheme. The contribution of this work is summarized
below: (1) Based on large amount of instruction level timing
analysis, a classification of critical instructions was developed to
interpret the performance variation of software instructions; (2) An
instruction governed power management scheme with supporting
circuits was designed to take advantage of the significant amount
of instruction level performance variation; (3) An energy model
verified by transistor level simulation was derived to quantify the
energy saving as well as overhead from the proposed scheme; (4)
A novel compiler assisted program optimization method is also
proposed to further improve the energy saving benefit.

2. INSTRUCTION AND PERFORMANCE
ASSOCIATION

2.1 Preliminary Performance Observation on Low
Power Microprocessor

ARM processor has been widely used in low power computing
platforms. A single-issue ARMvS5 processor is used in this paper as
our test vehicle for the proposed scheme due to its popularity in low
power applications and its relatively simple structure [17]. The
pipeline architecture of ARMvVS processor used in this paper is
shown in Fig. 1, which has pipeline stages including instruction
fetch (IF), instruction decode (ID), operand fetch (OF), execution
(EX), Memory (MEM) and write back (WB). Because this work
only focuses on energy improvement of the logic circuits,
behavioral models for instruction and data caches are used.
Following the Instruction Set Architecture (ISA) defined for
ARMVS architecture, the target pipeline is designed and
synthesized using commercial EDA design tools in a 45nm CMOS
technology. The design has a nominal supply of 1.1V, operating
speed of 1GHz and dynamic power consumption of 54mW. The
design is then evaluated at ultra-low voltage condition of
0.5~0.55V using both spice level simulation and static timing
analysis with timing library characterized at low voltages. For
cycle-by-cycle performance evaluation, the timing is checked with
Synopsys VCS gate level simulation which is run alongside the
GemS5 simulator [18]. Our workload includes programs in MiBench
from every category (automotive, networking, consumer, office,
security, and telecommunication) to evaluate the performance of
the proposed scheme [19].

ARM Pipeline Structure

Instr. Data
Cache Cache

Figure 1. Pipeline architecture used in this experiment.

Fig. 2(a) shows the observation of the instruction timing
distributions, i.e. circuit delay, at each pipeline stage in benchmark
program “stringsearch” at 0.5V. Although the design has been
synthesized with the same critical path delay among pipeline
stages, a more than 3X of delay variation for individual instructions
is observed at every pipeline stage. Similar wide spread of delay is
also observed at nominal voltage of 1.1V leading to the hypothesis

that different instructions exercise different paths within the
pipeline and shows considerably different performance. Other
observations include: (1) the instruction delay occurring at EX
stage presents the longest delay in the pipeline mostly due to the
complex operations in ALU; (2) only a very small number of
instructions exercise the longest critical paths. For example, the
long delay instructions beyond 14ns occupies only 7.3% of all valid
instruction at EX stage, and only 4.5% at IF stage. Overall, 14.3%
of total instructions experience delay beyond 14ns although the
critical path delay is at 18ns which determines the minimum clock
speed. MEM and WB stages in our design do not contribute long
timing paths and thus are not included in the results in this paper.

The above observation reveals a drawback of the conventional
design strategy where only the worst-case delay is considered even
though only 14.3% of instructions exercise the critical paths. If the
performance requirement of each instruction could be predicted and
associated with the required supply voltages, significant energy
saving could be achieved. In this design, we roughly choose 14ns
as a critical mask. All instructions at every stage with delay beyond
14ns are considered as “long delay instructions”, and further
studied and classified in Section 2.2. In our design, additional 10%
timing margin is applied to cover the other process-temperature-
voltage variations similar to conventional design.

Fig. 2(b) shows the timing distributions of some common
instructions at specific stage. It is observed that although there is
significant delay variation, some specific instructions or instruction
patterns are more likely to produce longer delay. For example, cmp
and subs at EX stage exercise the longest paths beyond 16ns. The
reason for this instruction timing variation is primarily rooted in the
architecture definition of the processor and will be explained in the

following section.
15%

§10% L IF stage|
= 5%l M I I .5
©
5 0%
2 15% D stage]
o 10% H
0/ L
sal
° (]
3 15%¢ O stece
o 1] 3
8 5% ;
S 0% —
S 1on o oo
g 10% E 1

5%
0%

8 9 10 11 12 13 14 15 16 17 18

Time (ns)
(a)
70%
[Jbranch (IF)
60% I shift (IF) | |
—_ I push (OF)
X 50% { =Idr(EX)
add (EX)
%40% [subs (EX) | |
T 30% (. oo EX)
@
gzo% I
o
10%-|
0%
8 9 10 11 12 13 14 15 16 17 18
Time (ns)
(b)

Figure 2. Instruction timing distributions for benchmark
program stringsearch. (a) Distribution at each pipeline stage;
(b) Specific instruction distribution at specific stage.

2.2 Classification of Instructions
We performed extensive data and circuit analysis for all long
delay instructions and correlated the instruction behaviors with the

gate level netlists in the synthesized design of the ARM core. The
root causes of long delay instructions are summarized and
classified into the following four main categories.

Category 1: Instruction from long execution in single stage

In this ARM processor, compare (cmp), subtraction set (subs),
reverse subtraction set (rsbs) and multiply (mul) are the most
critical long delay instructions. An example of the long delay from
cmp, subs, rsbs, is shown in Fig. 3(a). An extra-long critical path
inside EX stage is exercised by both ALU operation and
computation of conditional flags. As a result, such instructions
deterministically take longer time than regular ALU instructions
such as add, sub, etc, even though their delay varies with the
operand values during the operation.

Category 2: Instruction from long inter-stage operation

The majority of long delay instructions in this category is
associated with branch instructions (beq, bne, blt, bgt, etc.). When
branch instructions reach the EX stage, they evaluate the
conditional flags. Depending on the evaluated result, the logic
recomputes the program counter (PC) and delivers a new PC
address, as shown in the critical path for branch in Fig. 3(b). These
branch instructions introduce delayed operations of PC resulting in
late arrival of data at fetch stage. We also observed that long
execution of branch is likely to happen if the branch is not taken
because the PC needs to be rerouted. However, as the branch
outcome is difficult to predict, we pessimistically classify all
branch operation as long delay instructions.

Some complex instructions defined in ARM ISA need two or
more clock cycles to complete such as instructions with shift /s/,
Isr, push and pop, or load/store instructions with special offset /dr
r1, [pc] #, etc. For these instructions, the ARM processor will split
them into several micro instructions after ID stage and introduce a
“stall” at IF stage to prevent the PC from incrementing. Such a
stalled instruction has high probability of producing long delay at
IF stage because it invokes critical paths from both ID and IF
stages, as shown in Fig. 3(b).

Category 3: Instruction with data dependency

Instructions which use values produced by the previous
instructions are said to have read-after-write (RAW) dependencies.
The data dependency will likely cause a long delay at OF stage.
Fig. 3(c) shows such an example when add at EX stage writes the
results into register ri, the following mov at OF stage requests the
r1 content immediately. When such a data dependency is observed,
the pipeline forwards from EX stage to OF stage leading to longer
operation at OF stage, as the critical path shown in Fig. 3(c).

Critical Path for data

- SZBitZero: T -
Detect/Comp;

(@) (c)
Critical Path for branch

OF --

iy g 4

Critical Path for stall
(b)

Figure 3. Some typical hardware critical paths that cause long
delay instructions. (a) Critical path for EX stage, e.g. cmp; (b)
Critical path for branch and stalled operation; (c) Critical path
related to the data dependency.

Category 4: Instruction with instruction sequence dependency

Occasionally long delay instructions at IF and OF stage can be
caused by specific instruction sequences at ID stage. This happens
when decoded instructions trigger long operations such as PC stall
or operand forwarding. In some cases, even though such a
condition, e.g. stall or forwarding is not eventually formed, a
critical path may still be exercised due to switching of sequential
logic inside the pipeline. Such special critical paths are only
executed from a combination of instruction sequences. This
category of long delay instructions is not well defined in ISA but is
highly related to the way the synthesis tools optimize the design
and thus is highly design dependent. Fortunately, only small and
highly predictive numbers of instruction sequences are observed in
our analysis. For a specific CPU design, this category of
instructions needs to be carefully scrutinized based on the processor
physical design rather than the ISA.

2.3 Instruction Performance Association and
Prediction Efficiency

Based on the classification of each long delay instruction
category and extensive gate level simulation of long delay
instructions, we identify 100% of long delay instructions with
pessimism, i.e. potential long instruction is always marked as “long
instruction”. Table 1 lists summary of benchmark “stringsearch”
with most representative instruction sets and their prediction
accuracy, which is defined as the number of true long delay
instructions over the total pessimistically predicted long delay
instructions. It is observed that the prediction accuracy for branch
instructions in Category 2 and Category 3 is low due to the delay
dependency of operand values or branch conditions. Meanwhile,
for the Category 1, 4, and majority of stall instructions in Category
2, the prediction accuracy could be higher than 45%. Overall, the
total long delay instructions is 14.29% out of all valid instruction
in program “stringsearch”. The proposed instruction categories
could cover all of these long delay instructions with the prediction
accuracy 46.51%. In other words, we could pessimistically mark all
critical long instructions with ~100% overhead.

Table 1. Critical instruction sets with their prediction accuracy
in stringsearch.

Instruction | Stage | Category | Percentage | Prediction
/ Pattern out of total | Accuracy
cmp/subs/
rsbs/mul EX 1 7.19% 46.28%
Branch IF 2 0.71% 23.15%
Stall instr. IF 2 1.94% 52.51%
Push/Pop IF 2 1.66% 69.57%
Data
dependency OF 3 1.03% 40.58%
Instruction
Sequence IF 4 0.93% 55.39%
Overall All stage/category 14.29% 46.51%

3. INSTRUCTION ASSOCIATIVE POWER
MANAGEMENT

3.1 Proposed Overall System Design

The overall diagram of the proposed system is illustrated in
Fig. 4, which including ARM core processor (pipeline),
programmable regulator, optimized compiler, and control units. In
a deviation from conventional compiler operation, the compiler in
our proposed scheme uses the performance association outcome in
Section 2 to generate a 2-bit regulator control value encoded into
each individual instruction. After the instruction arrives at ID stage,
the 2-bit regulator control is decoded and sent to the voltage

controller, which issues the regulator to raise supply by either
25mV or 50mV. This 2-bit voltage control encoded in the current
instruction set presents a forward-looking voltage setting for the
instructions two cycles after and only triggers action of the
regulator one clock cycle after it is decoded.

To encode the per instruction voltage level controls, a new
operating mode to the ARMVS instruction set is added, which takes
advantage of underutilized ARM condition codes by remapping
them to encode the low voltage mode operations. The instruction
stream hence contains all of the voltage control information without
requiring additional memory footprint or drastic modification to the
rest of the ISA. In rare cases when the additional condition codes
are actually needed, the compiler may insert a mode switch into the
instruction stream as is available in later revisions of the ARM ISA
to enable/disable execution of Thumb instructions. This scheme
allows us to achieve the benefits of voltage control with negligible
impact on overall hardware cost. This is similar to the previous
study where benign binary modification techniques have been used
to encode information directly into the instruction stream [20-21].

Vdd

SV

ARM Pipeline

0.525V

Program

Optimized
Compiler

A
y Programmable
Controller Regulator

Figure 4. Overall diagram of the proposed system design.

3.2 Integrated Switched Capacitor Regulator

Fig. 5 shows the schematic of the 4-phase time interleaved
switched capacitor (SWCAP) regulators used in the paper. The
regulator is designed at transistor level in Cadence Virtuoso in
45nm technology and consists of a multi-phase clock generator,
four 2-to-1 SWCAP cores and programmable references generators
with 25mV resolution. The proposed regulator which supplies
power for the ARM core runs from 1.2V supply voltage and can
generate output voltages from 0.45V to 0.575V with 25mV
resolution with a 200MHz clock. The regulation of output voltage
was provided from the activation of switching activity of each
SWCAP core based on the voltage comparator output results. The
capacitors (~200pF) and switch sizes used in the regulator are
optimized to support a maximum of 2.3mA current to the ARM
core with nominal usage of 1.65mA current at 0.55V.

N\

N

N

Vout for
processor

£~/ Programmable
- Reference Ve

]
T
I

.
o
3

Clock Generator
Figure 5. Implementation of the 4-phase 2-to-1 switched
capacitor power regulator.

The simulated regulator output waveforms driving ARM core
using transistor level schematic is shown in Fig. 6 with voltage
level ramping up and down between 0.5V and 0.55V. Under the
current regulator configuration and loading with ARM core, it takes

approximate half clock cycle (tup.25mv=7ns) to raise the supply by
25mV and one clock cycle (tdown.2smv=14ns) to drop the supply back
by 25mV. The supply rise of 50mV requires around twice of the
time for 25mV. Such a lead time requires action to be taken at least
a clock earlier before long delay instruction reaches its critical
pipeline stages. The energy delivery efficiency is also simulated for
each output voltage level in the proposed regulator, as listed in
Table 2. Although the efficiency generally improves with higher
voltage due to less voltage drops across capacitors, when output at
0.55V, the switching loss happens more frequently and dominates
the total power loss causing the regulator efficiency to drop.

540 T T
s 505 []
g 510 W\A'E_ t do V —
~ 495 t
5 560 F
S saf
232 uP t tdo
120 160 200 240
Tlme (ns)

Figure 6. Simulated waveforms of output voltage transition
between 0.5-0.525V (AV=25mV) and 0.5-0.55V (AV=50mYV).

Table 2. Regulator efficiency for each voltage level.
Vout 0.5V 0.525V 0.55V
Efficiency (1) 71.81% 72.52% 69.65%

3.3 Energy Model of Proposed Associative Operation
For conventional SC regulator circuit, there are several energy
delivery loss portion contributing to the total energy loss, including
switch conduction loss Egg,, fly capacitors charging and
discharging loss E¢fy, parasitic loss from bottom capacitance
E¢ pote» @and the switch gate capacitance loss E¢ gqe, Which could
be expressed by equations below for one switching activity [13]:

Eloss = Epsw + ECfly + Ecpore + EC,gate (D

these corresponding terms could be derived as following for the
proposed SC regulator:

= p _Row _n
Est - Po 4RL fow ECfly - (1 + mt) 8fswcflyfsw (2)
E¢pott = Cbott%zi EC,gate = sw,gateVsav 3)

where Ry, and f, correspond to the switch resistance and
switching frequency, and P, and k;,; stand for the output power
and clock interleaving number.

In order to quantify the regulator output voltage transition loss,
the regulator switching activities during the voltage transition time
tup and tgyoy should be analyzed. At different output voltage level,
the regulator ripple magnitude could be addressed by:

(Vag—2Vp)Cy
kint(C1+C2)+Croaa (4)
in which term I;t;,, stands for the charge delivered from load
within short charging time after each switching. The equation also
shows ripple magnitude becomes smaller at higher output voltage
level. In order to achieve voltage transition AV, define ny,, is the
regulator switching times during voltage rising time t,,;,, which
normally could be estimated as the integer of transition voltage AV
over the average regulator steps AVy.;pe. After that, the regulator
voltage transition time t,;, and tg,y, are expressed as:

AV _ (Vdd_ZVo)Q_ILthp -
ipple — ~
Tiop kint(C1+C2)+Cioaa

n

tyy = ——= 5

Y2 Kinef ik ©)
(AVCayRy,

t = k? 6

down int Vo +AV /2 ()

During each voltage transition activity, the extra energy loss
in comparison with regular V,=0.5V operation could be derived as:

AEloss,trans = [nsw - (tup + tdown)fsw,vg]Eloss

(Vo+Av/2)? VLZ] (tup+taown)
Nvo+av/2 Nvg R

(N

Equation (7) shows the extra energy loss during the voltage
transition comes from both more frequently switching loss and the
extra energy consuming at higher output voltage (0.5+AV)V, in
which the second part dominant more out of the total transition loss.

L

Based on the ARM instruction observations before, dynamic
power strategy is assigned, as listed in Table 3. As long execution
instructions at EX stage (category 1) mostly take longer than 16ns,
a higher voltage level of 0.55V needs to be utilized based on spice
level simulation. For the other categories of long delay instructions
which take 14~16ns, a voltage level of 0.525V is applied. The rest
of instructions with less than 14ns will use low voltage 0.5V to save
power. Thus the dynamic 0.5V low energy saving benefit could be
obtained comparing with regular 0.55V operation, as (8):

Vs XPo.5/Mo.51 Vi 525 XPo.s25/Mo.s25+Viss XPo.ss/Mo.ss
2 (®)
Vo.ss/Mo.ss
in which p is the percentage of operation at each voltage level and
n is power efficiency at that voltage level. In addition, when the
dynamic voltage transition loss AE},gs ¢1qns 1S taken into account,
the actual power saving will be updated as:

Esave(%) =1-

_ _ AEloss,transxptrans

Esave,lossy(%) - Esave(%) (tup"'tdown)f:sw,vo Finve (9)
in which pyqns 1 the percentage of time a voltage transition of
25/50mV happens, and Ejp, ,, is the input energy at voltage baseline

V,=0.5V within one switching activity.

Table 3. Dynamic power assignment strategy for different long
delay instruction categories in stringsearch.

Voltage level 0.55V 0.525V 0.5V
instr. category | Category 1 | Category 2/3/4 | rest instr.
instr. time 16~18ns 14~15ns <l4ns
Percentage (p) 15.63% 15.09% 69.28%

3.4 Complier Optimization for Associative Power
Management

In conventional design strategy, the instruction is bounded by
the worst critical path delay on the chip and thus most instructions
are treated equally in term of performance and energy from
compiler point of view. On the contrary, this work introduces a
compiler optimization scheme under which long delay instruction
can be replaced by shorter ones to save energy consumption.

In ARMVS5 ISA, the checking of “equal to” relationship could
be implemented using either cmp or feq instructions. They are
equivalent semantically, while implementation-wise are quite
different. teq sets the zero status register if two operands are equal,
which is commonly implemented using XORs, while cmp checks
the relationship of greater, equal or less than between two values
generally requires subtraction using adders. As a result, teq can be
operated much faster than cmp as no subtraction is involved. Give
such timing characteristics, our compiler replaces teq with cmp
whenever it is possible without changing semantic of program.

4. SIMULATION RESULTS

Six benchmark programs under each Mibench category are
simulated at gate level to verify the proposed system scheme for
30,000 cycles. Fig. 7 shows the long delay instruction distribution
at each pipeline stage for these programs. The long delay
instructions vary within 13~18% out of total for different programs,
with a majority occurring at IF or EX stages. The long delay
instructions vary from 5~15% at IF stage and 3~8% at EX stage.

The long delay instructions at OF and ID are only less than 2%. All
100% long delay instructions are pessimistically identified in these
benchmarks. The instruction category distribution are shown in Fig.
8(a), with their prediction accuracy for each category given in Fig.
8(b). As expected, the accuracy of branch (category 2) and data
dependence (category 3) is mostly lower than 40% as it highly
depends on the instruction content or operand. The other two
instruction prediction categories could achieve better prediction
accuracy between 40~60%, or even higher in some benchmark. The
overall long delay instruction prediction accuracy for each
benchmark is summarized in Fig. 9. The instructions actual beyond
14ns are around 12~19% out of total instructions, and the overall

instruction prediction accuracy is above 40% for all benchmarks.
20%

1

6%

AN O O B

8% .

49 .

g
®
I
I}
2
e
o
-
>
o
]
=)
s
8
c
@
o
=4
o
o

9

Office/ Telecom/ Security/ Auto/ Consumer/Network/
i FFT i i jpeg patricia

I ¥ stage [1D stage [] OF stage [EX stage

Figure 7. Long delay instruction distributions at each stage.
100%

— 80%

@

=]

xX
L

40%-|

Percentage (%

20% -

0%~

Office/ Telecom/ ity/ Auto/ C
string: FFT i i jpeg patricia
I Category 1 [Category 2] Category 3 [l Category 4
(@
70%
Q
& 60% { g W
>
S 50% -
d
H]
FEes En f R R B AR
< 30% |
L
B 20%
'S 10%+
o
0%+

Office/ Telecom/ Security/ Auto/ Consumer/MNetwork/
stringsearch FFT blowfishbasicmath jpeg patricia

[Category 1 [l Category 2 [| Category 3 [l Category 4
(b)
Figure 8. Long delay instruction category distributions (a) and

their prediction accuracy (b).
80%

80%

—a— Actual long delay instr.
—e— Predicted long delay instr.
60% —o— Overall prediction accuracy 60%

40% i 40%
e —

—

)
J

20% 4{\ 20%

— "

Percentage out of total (%
Prediction Accuracy (%)

0% %
Office/ Telecom/Security/ Auto/ ConsumerNetwork/
string: FFT i jpeg patricia

Figure 9. Overall instruction pattern prediction accuracy for
each benchmark.

Based on these instruction prediction, the proposed dynamic
power management scheme is implemented on each benchmarks.
The power saving benefit is obtained by comparing the proposed
dynamic power strategy with regular 0.55V operation, as the
original power saving in Fig. 10. Another interesting observation is

many long delay instructions are adjacent or compatible predicted.
As example shown in Fig. 11, instructions Idr, cmp, Isr, bne are
adjacent predicted as “long delay instructions”, and /sr at IF stage
and /dr at OF stage are compatible predicted within same clock
cycle 5. This kind combination of instruction prediction saves
voltage transition loss and reduce total predicted instruction
number, which contributes around 2% additional power saving.
Besides, with current optimized compiler replacing 3~9% long
delay instructions (cmp) with shorter instruction (feq), another
1.5~2.8% power saving is gained. Overall, around 14% power
saving is achieved from the proposed scheme. The proposed system
is simulated in the Cadence Virtuoso AMS mixed-signal
environment with full transistor level schematic of ARM pipeline
and regulator. The prediction and dynamic adjustment is realized
by a voltage controller controlling the regulator references. In order
to avoid process variation and noise effects, 10% clock margin is
added as the conventional clock strategy. As shown in Fig. 11, the
ARM core power Vdd has been successfully adjusted based on the
critical instructions in the pipeline stages. Loop instruction cases
are also observed which request repeatable voltage changing.

[original power saving

[__]after prediction combination
16% after compiler optimization

Power saving (%)

0%~
Office/ Telecom/ Security/ Auto/ Consumer/ Network/
stringsearch FFT blowfish basicmath jpeg patricia

Figure 10. Overall power benefit from the proposed scheme
and the improvement from the compiler optimization.

Instruction Loop Loop:
- 1. cmp
>
£ g mov
; 3. ldr (IF)
; AN 7 . P —_1 cmp (]‘,X)
450 feio b o Idr cmp Isr bne beq push push 5. Isr (IF);
(EX) (IF) (IF) (IF) (EX) (IF) (IF) (IF) (OF) (IF) ldr (OF)
00 6. bne (IF)
0 02 04 06 08 1 12 14 16 1.8 2 22 24 0.bnel
Time (us) .

Figure 11. Spice level simulation of the proposed power scheme,
with loop instructions case shown.

5. CONCLUSION

In this paper, a novel instruction governed real-time ultra-low
power management scheme is proposed and explored. Based on the
extensive instruction timing analysis, an association between
instruction patterns and hardware performance was established,
long delay instruction prediction accuracy achieves higher than
40%. Fully integrated circuit level simulation with optimized
switching regulator and dedicated instruction controller was
performed in a 45nm CMOS technology to verify the proposed
scheme in ultra-low power operation at near-threshold regime.
Implementation on benchmark programs with an ARM
microprocessor design showed an extra energy saving of about
14% using the proposed dynamic power scheme. A novel compiler
assisted program optimization was also introduced to further
improve the efficiency of the proposed scheme by 2~3%.

6. ACKNOWLEDGMENTS
This work is partially supported by NSF grants CCF-1116610 and
CCF-1533656.

7. REFERENCES

[1] International Technology Roadmap for Semiconductor
(ITRS) report, http://www.itrs.net/home.html

[2] D. Sylvester, et al., “IoT Design Space Challenges: Circuits
and Systems”, Symposium on VLSI Technology, 2014.

[3] Srinivasa R. Sridhara, et al., “Microwatt embedded processor
platform for medical system-on-chip applications,” in Proc.
IEEE Symp. VLSI Circuit, pp.15-16, 2010.

[4] Alice Wang and Anantha P. Chandrakasan, “A 180 mV FFT
processor using subthreshold circuit technologies,” in Proc.
IEEE Int. Solid-State CircuitsConf., pp. 292293, 2004.

[5] Shidhartha Das, et al., “A Self-Tuning DVS Processor Using
Delay-Error Detection and Correction”, [EEE Journal of
Solid-State Circuits, vol. 41, no. 4, pp. 792-804, Apr. 2006.

[6] Shidhartha Das, et al., “Razorll: In Situ Error Detection and
Correction for PVT and SER Tolerance”, IEEE Journal of
Solid-State Circuits, vol. 44, no. 1, pp. 32-48, Jan. 2009.

[7] Hugh Mair, et al, “A 65-nm Mobile Multimedia
Applications Processor with an Adaptive Power
Management Scheme to Compensate for Variations”, /EEE
Symposium of VLSI Circuits, pp. 224-225, 2007.

[8] Online resource, TI white paper, “Choosing the Right
Variable Frequency Buck Regulator Control Strategy”,
https://www.ti.com/seclit/wp/slup319/slup319.pdf

[9] Gordon Gammie, et al., “A 45nm 3.5G Baseband-and-
Multimedia Application Processor using Adaptive Body-
Bias and Ultra-Low-Power Techniques”, International
Conference on Solid-State Circuits, pp. 258-259, 2008.

[10] Z. Toprak-Deniz, et al., “Distributed System of Digitally
Controlled Microregulators Enabling Per-Core DVFS for the
POWERS8 Microprocessor”, International Solid-State
Circuits Conference (ISSCC), pp. 98-99, Feb. 2014.

[11] Rinkle Jain, et al., “A 0.45-1V Fully-Integrated Distributed
Switched Capacitor DC-DC Converter with High Density
MIM Capacitor in 22nm Tri-Gate CMOS,” Journal of Solid-
State Circuits, vol. 49, no. 4, pp. 917-927, 2014.

[12] Hanh-Phuc Le, John Crossley, Seth R. Sanders, Elad Alon,
“A Sub-ns Response Fully Integrated Battery-Connected
Switched-Capacitor ~ Voltage Regulator Delivering
0.19W/mm? at 73% Efficiency”, International Solid-State
Circuits Conference (ISSCC), pp. 372-373, Feb. 2013.

[13] Pinggiang Zhou, et al., “Optimization of On-Chip Switched-
Capacitor DC-DC Converters for High-Performance
Applications”, IEEE International Conference on Computer-
Aided Design (ICCAD), 2012.

[14] Benton H. Calhoun and Kyle Craig, “Flexible On-Chip Power
Delivery for Energy Efficient Heterogenous Systems”, Design
Automation Conference, 2013.

[15] Meeta S. Gupta, et al., “An Event-Guided Approach to

Reducing Voltage Noise in Processors”, Design, Automation
Test in Europe Conference & Exhibition, pp. 160-165, 2009.

[16] Jing Xin, Russ Joseph, “Identifying and Predicting Timing-
Critical Instructions to Boost Timing Speculation,” MICRO,
pp. 74-85,2011.

[17] Online resource, ARM, “ARMvVS Architecture Reference
Manual”,
https://silver.arm.com/download/download.tm?pv=1073121

[18] Online resource, http://www.gem5.org/Main_Page

[19] Online Resource: http://wwweb.eecs.umich.edu/mibench

[20] A.J. Zambreno, et al., “Flexible software protection using
hardware/software codesign techniques” In Design,
Automation and Test in Europe Conference and Exhibition,
pp. 626-641, 2004.

[21] A. Meixner, et al., "Argus: Low-cost, comprehensive error
detection in simple cores." In Microarchitecture, 2007.
MICRO 2007. 40th Annual IEEE/ACM International
Symposium on, pp. 210-222. IEEE, 2007.

