


As there are multiple domain experts who would need to

design and analyze such complex system, there is a need for

efficient tools and facilities that enable real-time collaboration

between these participating actors. In addition, as these domain

experts work on business and sensitive processes who may

want to keep their work secure and private, these collaboration

tools must have a secure private storage for all collaborators.

Large-scale smart grid simulation execution is a highly

compute- and data-intensive activity. Thus, a large pool of

computing resources are required to support high performance

computing of these simulations.

To address the above requirements – co-simulation, real-

time collaboration, security, privacy, and high performance

computing, we present, in this paper, a design studio for

collaborative modeling and co-simulation of mixed energy

electrical systems.

The rest of the paper is organized as follows. Section II

provides a background on the co-simulation platform, the col-

laboration platform, the collaborative modeling environment,

and experiment execution in the cloud. Section III describes

the design and implementation of the design studio. Section

IV presents concluding remarks and future work.

II. BACKGROUND

In this section, we will briefly cover the four fundamental

technologies that enable our design studio. These include:

(i) the co-simulation platform, (ii) the collaboration platform,

(iii) the collaborative modeling web-bench, and (iv) simulation

executions in the cloud.

A. Co-Simulation Platform

Owing to the lack of simulation tools’ ability to cover

multi-domain simulation characteristics, co-simulations offer

an excellent alternative to analyze and simulate such multi-

domain simulations. Co-simulation approach integrates differ-

ent domain-specific simulators to provide a cohesive platform

for carrying out studies for scenarios such as the mixed energy

systems simulation for smart grids. High-level architecture

(HLA) [1] provides a standardized method to integrate differ-

ent simulators and execute them as a co-simulation. HLA pro-

vides information, synchronization, and coordination services

among participating simulators. In HLA terminology, each

of the participating simulator is called a federate. Different

federates communicate with each-other by exchanging data

according to their described publish and subscribe relation-

ships. These different federates are time-synchronized – a

crucial service for a distributed simulation. C2WT [2], devel-

oped at Vanderbilt University, is a heterogeneous simulation

integration framework. It provides a model-based integration

technology for rapid synthesis of distributed co-simulations

such as those required for multi-domain simulations of cyber-

physical systems (CPS). C2WT relies on the HLA standard

and utilizes its open-source implementation (or Run-Time

Infrastructure (RTI)) called Portico [3]. In this work, we are

building on top of the C2WT framework to support cloud-scale

simulations of mixed energy electrical systems in the context

of smart grids.

B. Collaboration Platform

The Cyber-Physical Systems Virtual Organization (CPS-

VO) [4] is a collaborative, web-based portal developed to

promote interaction between academia, government, and in-

dustry across multiple disciplines in the burgeoning field

of CPS. CPS-VO provides facilities for enabling repeatable,

verifiable, shareable experiments and results to the users. CPS-

VO supports multi-user collaboration communities with addi-

tional experimentation cloud, tools configuration, and a testing

framework, which enables rapid development of collaborative

design solutions.

To support this, the CPS-VO has a three key elements: tool

libraries, integrated tools, and design studios. Tool libraries are

searchable repositories of available software categorized by

multiple taxonomies. Integrated tools are software solutions

that are embedded within the CPS-VO and ready to be

utilized without having to setup a server, download, install,

or configure anything. Embedded tools run in the CPS-VO

cloud in order to retain the elasticity to accommodate changing

demand while maintaining the security and stability of the

CPS-VO. These capabilities of the CPS-VO are actively being

utilized for CPS education. As more tools are being added to

the CPS-VO, these elements are being increasingly utilized by

a diverse set of communities.

For our purposes, we will be employing each of these

features – listing the completed tool in the library, providing

a design studio interface for designing multi-domain co-

simulation experiments, as well as integrating a tool for

executing these experiments. Results from the experiments will

be retrieved from the cloud by the CPS-VO and securely made

available to the user, with an ability to download or delete as

needed.

C. Collaborative Modeling Web-Bench

Modeling is an important phase in the design of an ex-

periment. For co-simulation experiments, modeling enables

domain experts to design parameterized simulation models

for studying how they perform when they interact with other

simulation models participating in the co-simulation.

For collaborative modeling of co-simulation experiments,

a modeling environment should support the following: (1)

To enable multiple experts to collaborate and participate in

building the simulation models, the platform should support

collaborative modeling. (2) The modeling environment should

be able to support real-time editing and synchronization

of simulation models across different participating domain

experts. (3) Modeling environment should provide intuitive

visual interface so that it lowers the entry of barrier to utilizing

the new environment. This enable users to focus more on

developing models rather spending time in learning a new

toolsuite. (4) Provide tools for checking correctness of models

and flagging constraint violations during designing of large-

scale multi-model simulation experiments.



Taking these considerations into account, we selected the

WebGME [5] modeling environment developed at Vanderbilt

University. WebGME provides a web-based design and mod-

eling environment. WebGME enable users to leverage model

driven engineering techniques (MDE) [6] to develop large-

scale software systems [7]. It provides facilities such as ability

to create a visual domain specific modeling languages (DSML)

using metamodeling. It allows creating model interpreters that

are linked with the metamodels. Model interpreters enable

automated software synthesis in the form of code artifacts

and configurations, which are used by the domain experts to

write simulation models and business logic to be embedded

in the simulation models. WebGME supports checking model

correctness and ensuring its conformity to set of constraints

– a crucial while designing large-scale simulations. Visual

notifications are shown for design time violations.

D. Cloud-Hosted Experimentation Platform

Large-scale smart grid simulation models are highly

computation- and data-intensive. Thus, simulation models ex-

ecution can benefit from the large resource pool provided

by the cloud computing model. Cloud computing provides

an on-demand access to these compute resources for running

simulation execution experiments. Cloud computing has been

leveraged for running large-scale simulation execution [8], [9],

[10] in understanding and studying architectures for building

smart-city scale distributed systems.

Despite the advancement in the cloud computing systems,

the research community is faced with numerous challenges

in moving their simulation models to the cloud computing

environment. Executing in the cloud computing environment

needs understanding of the cloud-oriented configuration and

deployment tools [11]. Insufficient expertise in these tools

can lead to performance degradation of the executing pro-

cesses [12]. Another challenge in using cloud computing

is the difficulty in migrating simulation execution models

from the desktop or laptop based execution platform to the

distributed and scalable cloud platform environment. Another

important consideration when running execution in the cloud

environments is to avoid getting tied to a single cloud provider

or what is called as ’vendor lock-in’.

To address these challenges related to the deployment of

simulation executions in the cloud environment, we leverage

open-source technologies such as Openstack cloud hosting

[13] and linux container based Docker technology [14] to host

simulations. We will cover more details in the next section.

III. DESIGN AND IMPLEMENTATION OF DESIGN STUDIO

In this section we will cover the design and implementation

of the collaborative platform for modeling and simulation of

the mixed energy smart grid simulations.

A. Design And Architecture

Many building blocks are required to support collaborative

modeling, simulation, and execution of the co-simulation

experiments. Figure 2 showcases the main components of the

design studio platform. These components are described in

detail below.

1) CPS-VO: As discussed in II-B, the CPS-VO provides an

entry portal to the users of the design studio. It provides users

and user groups management functionality. This provides fea-

tures such as user authentication and permission management

to enable secure and private collaboration among users within

a group or community. User access to the community portal is

managed through a highly customized Drupal PHP based web

portal. Access to the WebGME based modeling environment

and the experimentation portal is channeled via the CPS-

VO portal. When transitioning from simulation modeling to

running an experiment, it facilitates access to the run-time

cloud infrastructure. Currently, the CPS-VO provides a naive

experiment scheduling policy by restricting the number of con-

current experiments to the total available execution computing

nodes. Experiment results are automatically retrieved by the

CPS-VO after the experiment has finished, and are stored and

made available according to the privacy settings the user has

selected, combined with group settings.

2) Simulator Federate Templates: This component provides

access to various types of federates which are simulator

specific. These includes C++, Java, Gridlab-D, and OMNET++

simulation engines. Users can build scenarios utilizing these

simulation engines to construct large-scale simulations. Using

these templates, one can construct an integration model of the

simulated scenario. This integration model represents different

federate type entities participating in the simulation. The

integration model also covers any interactions, shared objects

that may be exchanged between participating federates.

3) Courses Of Action Models: To conduct scenario-based

experimentation and conducting what-if analysis [15], we sup-

port a modeling construct called as Courses-of-Action (COA).

COAs are utilized to create various what-if analysis models

and to execute the corresponding alternative scenarios. COAs

act as an orchestrator of the time-coordinated execution of the

running simulations. These COAs are scenario models that

are created using several atomic elements such as: ACTION

– that injects an interaction into the running simulation,

OUTCOME – that waits for an interaction of the specified type

to be generated in the running simulation, FORK – that start

multiple branches in a scenario to start in parallel, and DUR –

that, when encountered in a COA execution, makes a running

simulation wait for the specified duration. A COA model is

created as a workflow like Directed Acyclic Graph (DAG) by

connecting the above-mentioned atomic elements with directed

edges. Detailed description of many other supported COA

elements can be found in [9].

4) Experiment Scenarios Models: Once the simulation inte-

gration model is designed with the constituent simulation fed-

erates, the data model for the data exchange among federates,

and the objects that capture various actors in the co-simulation,

the next step involves creating the experimental scenario

models. Experimental model enables creating scenarios that

comprise either some or all the federates from the integration

model created in the previous step. As such, for a given co-



Fig. 2: Overview of the Cloud based Modeling and Co-simulation of Mixed Electrical Energy Systems

simulation scenario we could have more than one experiment

model.

5) Software Synthesis: To facilitate rapid development of

the co-simulation application, design studio features a code

generation and synthesis module. This module enables syn-

thesis of the integration code – software modules that bridge

target simulators with the underlying HLA RTI. This module

provides two key benefits. Firstly, it ensures the ’correct

by construction’ principle when generating the large boil-

erplate code required for such complex co-simulation RTI,

thereby avoiding errors that occur with manually written code.

Secondly, it lowers barrier to entry to the development of

co-simulation application, whereby the domain expert can

focus on writing simulation models and not worry about the

complexity to work with the underlying RTI.

Apart from above software synthesis components, code

generators also produce various experiment specific configu-

rations, which are specific to the experiment model discussed

earlier. These includes COA models, various federate configu-

ration specific to the experiment model using JSON [16] files,

and several initialization scripts.

6) Artifact Repository: All the artifacts that are part of

the co-simulations are stored in a secured centralized repos-

itory with user access control. These artifacts includes auto-

generated software codes, user supplied application programs,

simulator specific models, WebGME models, and various con-

figuration files associated with the co-simulation experiment.

Artifact repository provides storage facility to store these

co-simulation artifacts. The repository also features version

control mechanism, such that the artifacts can be associated

for a given version number and can optionally include labels

such as development, beta, and production ready tags.

7) Continuous Integration: Continuous integration is

widely used technique in the software development process for

creating automated software builds that run various tests that

validate whether the software compiles and builds successfully.

It can also include unit tests to ensure that the newly developed

simulation module meets certain functional requirements as

specified in the unit tests. Continuous integration enables au-

tomatic compilation and building of the source code generated

by the software synthesis module and storage of the compiled

artifacts to the artifact repository discussed earlier. Currently,

we are leveraging the Jenkins [17] build systems to trigger

automatic builds of the simulation software.

8) Experimentation Runtime: To support large-scale dis-

tributed simulation, which may exhibit different compute, in-

put/output, and/or network intensive workload characteristics,

a cloud environment provides a better execution infrastructure

to support these requirements. One of the requirements to sup-

port cross-platform executions is to enable running simulations

across heterogeneous run-time platforms. Docker container

technology [14] is utilized to meet this requirement. To enable

running simulators inside docker containers, we first have

to port the simulators to the docker run-time image. Once

this image is created, it is available to run simulator-specific

models. Currently, our design studio makes the C++, Java,



Fig. 3: Sequence diagram showcasing modeling and experimentation activity in design studio

OMNeT++, and CPNTools docker images available for the

domain modelers.

9) Monitoring and Visualization: Live monitoring of co-

simulation experiments provides insights into how the sim-

ulation experiment is running in the cloud environment. We

are leveraging Grafana [18]) based visualization dashboards to

depict important events that arise in the running simulation.

Grafana dashboards also show the runtime system resource uti-

lization of the individual federates comprising a co-simulation

experiment run. Monitoring facility can thus be utilized for

profiling simulation runs, and could be used in the future for

making dynamic resource management decisions for running

the distributed co-simulation experiments.

B. Modeling and Experimentation Workflow

In this section we will cover the modeling and experimenta-

tion workflow in the design studio framework. Figure 3 shows

the two activities which the domain modeler performs in the

design studio framework: co-simulation modeling and running

co-simulations. Next, we will refer to the circle numbers as

they are shown in the sequence diagram. In 1�, the domain

modeler first enters the design studio by authenticating with

the CPS-VO portal. Once authenticated, the domain modeler

has access to the WebGME modeling application. Next in step

2�, the domain expert can first build the co-simulation design

model and configure various experiment scenarios. Once the

modeling activity is completed, software synthesis module

generates simulation specific code artifacts. These artifacts

are available to the modeler to download and update them

with application-specific code and/or models. In addition, the

software artifacts generated are passed to the continuous build

and integration system for running versioned builds. The mod-

eler can also upload custom simulation artifacts and updated

software artifacts to the artifact repository, which can then be

utilized accordingly for the co-simulation. Further, in step 3�,

the user than selects one of the configured experiment model

from the previous step for executing on the experimentation

platform. Once the run experimentation option is selected,

the experiment controller then selects an appropriate runtime

platform server from the available cloud infrastructure, and

starts the experimental run sequence. During the startup of the

experiment, appropriate Docker federate images, as required

by the experiment, are downloaded from the docker registry

hosted within the CPS-VO environment. Furthermore, the

experiment specific federate code artifacts are downloaded

on the execution server from the artifact repository. Once

the required dependencies are downloaded, the co-simulation



execution can begin. The simulation proceeds and simulates

the experiment scenarios. Once the simulation criteria is met,

which is set by the user based on either the amount of

simulation time to execute or a specific simulation objective is

met, the simulation execution stops. The simulation gets the

execution trace and the generated results and logs are then

uploaded back to the CPS-VO for the offline analysis.

IV. CONCLUSIONS AND FUTURE WORK

This paper presents a cloud based secure, collaborative mod-

eling and co-simulation platform to support mixed electrical

energy systems simulation for smart grid operations. We have

described various building blocks of the integrated design

studio. We leverage the WebGME tool to provide a the web-

based modeling environment and the CPS-VO to provide the

central collaboration platform. Using continuous integration

technology the simulation artifacts are automatically built and

ready to be deployed to the cloud execution platform. Docker

technology provides a cross-platform sandboxed execution

environment for the co-simulations which can be executed on

the elastic cloud computing resource.

There is a general lack of integrated toolsuites that can

provide collaborative modeling and co-simulations facilities

for complex applications such as mixed energy electrical

systems. The presented design studio can enable various stake-

holders in the smart grid environment to effectively collaborate

with multi-user modeling of experiments, and to design and

build resilient and high-performance smart grid systems. In

future, we plan on adding support for efficient deployment

and configuration management for the distributed simulations

in the cloud environment [19], save and restore of the running

simulations, and tool support for wider range of simulators

such as EnergyPlus [20], and DIgSILENT [21].

ACKNOWLEDGMENTS

This work was supported in part by National Science

Foundation (NSF) under Award CNS-1521617. Any opinions,

findings, and conclusions or recommendations expressed in

this material are those of the author(s) and do not necessarily

reflect the views of NSF.

REFERENCES

[1] “IEEE Std 15162010, IEEE Standard for Modeling and Simulation
(M&S) High Level Architecture (HLA)- Framework and Rules,” pp.
1–38, 2010.

[2] G. Hemingway, H. Neema, H. Nine, J. Sztipanovits, and G. Karsai,
“Rapid synthesis of high-level architecture-based heterogeneous simu-
lation: a model-based integration approach,” Simulation, vol. 88, no. 2,
pp. 217–232, 2012.

[3] “Portico,” Feb. 2018. [Online]. Available: https://github.com/openlvc/
portico

[4] “Cyber-Physical Systems Virtual Organization (CPS-VO),” Feb. 2018.
[Online]. Available: https://cps-vo.org

[5] M. Maróti, R. Kereskényi, T. Kecskés, P. Völgyesi, and A. Lédeczi,
“Online collaborative environment for designing complex computational
systems,” Procedia Computer Science, vol. 29, pp. 2432–2441, 2014.

[6] D. C. Schmidt, “Model-driven engineering,” COMPUTER-IEEE COM-
PUTER SOCIETY-, vol. 39, no. 2, p. 25, 2006.

[7] Y. D. Barve, P. Patil, and A. Gokhale, “A cloud-based immersive learning
environment for distributed systems algorithms,” in Computer Software
and Applications Conference (COMPSAC), 2016 IEEE 40th Annual,
vol. 1. IEEE, 2016, pp. 754–763.

[8] H. Neema, J. Sztipanovits, M. Burns, and E. Griffor, “C2WT-TE: A
model-based open platform for integrated simulations of transactive
smart grids,” in Modeling and Simulation of Cyber-Physical Energy
Systems (MSCPES), 2016 Workshop on. IEEE, 2016, pp. 1–6.

[9] X. KoutsouKos, G. Karsai, A. Laszka, H. Neema, B. Potteiger, P. Vol-
gyesi, Y. Vorobeychik, and J. Sztipanovits, “SURE: A modeling and
simulation integration platform for evaluation of secure and resilient
cyber–physical systems,” Proceedings of the IEEE, vol. 106, no. 1, pp.
93–112, 2018.

[10] Y. Barve, P. Patil, A. Bhattacharjee, and A. Gokhale, “Pads: Design and
implementation of a cloud-based, immersive learning environment for
distributed systems algorithms,” IEEE Transactions on Emerging Topics
in Computing, 2017.

[11] A. Bhattacharjee, Y. D. Barve, T. Kuroda, and A. Gokhale, “Cloudcamp:
A model-driven generative approach for automating cloud application
deployment and management,” Institute for Software Integrated Systems,
Vanderbilt University, Nashville, Report, 2017.

[12] S. Shekhar, Y. Barve, and A. Gokhale, “Understanding performance
interference benchmarking and application profiling techniques for
cloud-hosted latency-sensitive applications,” in Proceedings of the10th
International Conference on Utility and Cloud Computing, ser. UCC
’17. New York, NY, USA: ACM, 2017, pp. 187–188. [Online].
Available: http://doi.acm.org/10.1145/3147213.3149453

[13] “OpenStack,” Feb. 2018. [Online]. Available: https://www.openstack.org
[14] “Docker,” Feb. 2018. [Online]. Available: https://www.docker.com
[15] H. Neema, G. Karsai, and A. H. Levis, “Next-generation command

and control wind tunnel for courses of action simulation,” Institute for
Software-Integrated Systems, Vanderbilt University, Tech. Rep. no. ISIS-
15-119, 2015.

[16] “JavaScript Object Notation (JSON),” Feb. 2018. [Online]. Available:
https://www.json.org

[17] “Jenkins,” Feb. 2018. [Online]. Available: https://www.jenkins.io
[18] “Grafana,” Feb. 2018. [Online]. Available: https://www.grafana.com
[19] Y. D. Barve, H. Neema, A. Gokhale, and S. Janos, “Model-driven

automated deployment of large-scale cps co-simulations in the cloud
(poster),” in ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems, Austin, TX, 09/2017 2017.

[20] D. B. Crawley, L. K. Lawrie, F. C. Winkelmann, W. F. Buhl, Y. J.
Huang, C. O. Pedersen, R. K. Strand, R. J. Liesen, D. E. Fisher, M. J.
Witte et al., “Energyplus: creating a new-generation building energy
simulation program,” Energy and buildings, vol. 33, no. 4, pp. 319–331,
2001.

[21] A. D. Hansen, C. Jauch, P. Sørensen, F. Iov, and F. Blaabjerg, “Dynamic
wind turbine models in power system simulation tool digsilent,” Report
Risoe, pp. 1–80, 2003.


	Introduction
	Background
	Co-Simulation Platform
	Collaboration Platform
	Collaborative Modeling Web-Bench
	Cloud-Hosted Experimentation Platform

	Design and Implementation of Design Studio
	Design And Architecture
	CPS-VO
	Simulator Federate Templates
	Courses Of Action Models
	Experiment Scenarios Models
	Software Synthesis
	Artifact Repository
	Continuous Integration
	Experimentation Runtime
	Monitoring and Visualization

	Modeling and Experimentation Workflow

	Conclusions And Future Work
	References

