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Abstract—Despite the known benefits of simulations in the
study of mixed energy systems in the context of smart grid, the
lack of collaboration facilities between multiple domain experts
prevents a holistic analysis of smart grid operations. Current
solutions do not provide a unified tool-chain that supports a
secure and collaborative platform for not only the modeling
and simulation of mixed electrical energy systems, but also the
elastic execution of co-simulation experiments. To address above
limitations, this paper proposes a design studio that provides
an online collaborative platform for modeling and simulation of
smart grids with mixed energy resources.

Index Terms—Smart Grid, Modeling, Co-simulations, High-
level Architecture, Cloud Computing, Docker, Distributed Simu-
lations, Model Driven Engineering, Experimental Testbed, Com-
puter simulation, Systems simulation, Collaborative work , Power
system simulation, Cyber-Physical Systems

I. INTRODUCTION

With a rapid growth in mixed energy generation technolo-
gies such as wind and solar energy, the generation and distri-
bution of energy is moving from a centralized grid to a more
distributed paradigm. Traditionally, in the energy grid, the flow
of energy distribution was from the main power grid operator
to the consumers. However, due to increasing affordability of
renewable energy harvesting equipment such as solar panels,
there is an influx of energy produced by traditional utility
consumers, who are feeding the excess energy back to the
power grid. The presence of these new actors, also known
as prosumers, will only accelerate as the cost of generating
energy from these distributed energy resources (DER), such as
solar, wind, and biomass, further decreases with advancement
in efficient solar panels, energy storage technologies, and
related power systems techniques.

With the rise in these mixed sources of energy, the future
smart grid systems need to manage distribution of the power
flow around the system. The distribution system operators
(DSO), thus will play a crucial role and will need to in-
telligently manage the power demand and supply balance.
To provide the best service, a DSO needs to aggregate real-
time information about the local power demand and as such
needs resilient communication infrastructure to read from all
the smart energy meters and to have control on the network
flows. DSOs can also set billing rates depending on the power
demands. Market analysis thereby becomes more significant to
the DSO who will want to set dynamic pricing for the power,
in order to accommodate fluctuation in energy demands on a

daily and seasonal basis. Since DSOs also have the authority
to set prices to buy and sell power from the local prosumers,
the role of market regulator also becomes crucial, so as to
not have any DSO monopoly over the power market. Market
regulators are thus responsible for maintaining transparency
and competitiveness in the local energy market.

Thus, in the mixed energy smart grid system there are
many stakeholders, who are directly responsible in successful
operation of the smart grid system. Figure 1 illustrates some
of these stakeholders in the system. As can be seen, for
a successful smart grid system, domain experts representing
various stakeholders need to holistically analyze and study the
system.
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Fig. 1: Stakeholders in a Mixed Energy Smart Grid System

An approach to studying such large-scale complex systems
is by means of simulation. However, smart grid systems are
composed of multi-domain subsystems comprising security,
DER, cyber-communications, control systems and electric
grid. Thus, one needs a simulation and analysis tooling in-
frastructure that spans these multiple domains for designing
and simulating such large-scale systems. Despite advances in
the simulation tools, a single simulation tool is not able to
capture and simulate these various physical and other system
aspects of these multi-domain systems. Thus co-simulation or
coupled simulation have gained popularity in bringing together
simulation tools of different domains to simulate scenarios as
in the case of mixed energy smart grid system.



As there are multiple domain experts who would need to
design and analyze such complex system, there is a need for
efficient tools and facilities that enable real-time collaboration
between these participating actors. In addition, as these domain
experts work on business and sensitive processes who may
want to keep their work secure and private, these collaboration
tools must have a secure private storage for all collaborators.

Large-scale smart grid simulation execution is a highly
compute- and data-intensive activity. Thus, a large pool of
computing resources are required to support high performance
computing of these simulations.

To address the above requirements — co-simulation, real-
time collaboration, security, privacy, and high performance
computing, we present, in this paper, a design studio for
collaborative modeling and co-simulation of mixed energy
electrical systems.

The rest of the paper is organized as follows. Section II
provides a background on the co-simulation platform, the col-
laboration platform, the collaborative modeling environment,
and experiment execution in the cloud. Section III describes
the design and implementation of the design studio. Section
IV presents concluding remarks and future work.

II. BACKGROUND

In this section, we will briefly cover the four fundamental
technologies that enable our design studio. These include:
(1) the co-simulation platform, (ii) the collaboration platform,
(iii) the collaborative modeling web-bench, and (iv) simulation
executions in the cloud.

A. Co-Simulation Platform

Owing to the lack of simulation tools’ ability to cover
multi-domain simulation characteristics, co-simulations offer
an excellent alternative to analyze and simulate such multi-
domain simulations. Co-simulation approach integrates differ-
ent domain-specific simulators to provide a cohesive platform
for carrying out studies for scenarios such as the mixed energy
systems simulation for smart grids. High-level architecture
(HLA) [1] provides a standardized method to integrate differ-
ent simulators and execute them as a co-simulation. HLA pro-
vides information, synchronization, and coordination services
among participating simulators. In HLA terminology, each
of the participating simulator is called a federate. Different
federates communicate with each-other by exchanging data
according to their described publish and subscribe relation-
ships. These different federates are time-synchronized — a
crucial service for a distributed simulation. C2WT [2], devel-
oped at Vanderbilt University, is a heterogeneous simulation
integration framework. It provides a model-based integration
technology for rapid synthesis of distributed co-simulations
such as those required for multi-domain simulations of cyber-
physical systems (CPS). C2WT relies on the HLA standard
and utilizes its open-source implementation (or Run-Time
Infrastructure (RTI)) called Portico [3]. In this work, we are
building on top of the C2WT framework to support cloud-scale

simulations of mixed energy electrical systems in the context
of smart grids.

B. Collaboration Platform

The Cyber-Physical Systems Virtual Organization (CPS-
VO) [4] is a collaborative, web-based portal developed to
promote interaction between academia, government, and in-
dustry across multiple disciplines in the burgeoning field
of CPS. CPS-VO provides facilities for enabling repeatable,
verifiable, shareable experiments and results to the users. CPS-
VO supports multi-user collaboration communities with addi-
tional experimentation cloud, tools configuration, and a testing
framework, which enables rapid development of collaborative
design solutions.

To support this, the CPS-VO has a three key elements: tool
libraries, integrated tools, and design studios. Tool libraries are
searchable repositories of available software categorized by
multiple taxonomies. Integrated tools are software solutions
that are embedded within the CPS-VO and ready to be
utilized without having to setup a server, download, install,
or configure anything. Embedded tools run in the CPS-VO
cloud in order to retain the elasticity to accommodate changing
demand while maintaining the security and stability of the
CPS-VO. These capabilities of the CPS-VO are actively being
utilized for CPS education. As more tools are being added to
the CPS-VO, these elements are being increasingly utilized by
a diverse set of communities.

For our purposes, we will be employing each of these
features — listing the completed tool in the library, providing
a design studio interface for designing multi-domain co-
simulation experiments, as well as integrating a tool for
executing these experiments. Results from the experiments will
be retrieved from the cloud by the CPS-VO and securely made
available to the user, with an ability to download or delete as
needed.

C. Collaborative Modeling Web-Bench

Modeling is an important phase in the design of an ex-
periment. For co-simulation experiments, modeling enables
domain experts to design parameterized simulation models
for studying how they perform when they interact with other
simulation models participating in the co-simulation.

For collaborative modeling of co-simulation experiments,
a modeling environment should support the following: (1)
To enable multiple experts to collaborate and participate in
building the simulation models, the platform should support
collaborative modeling. (2) The modeling environment should
be able to support real-time editing and synchronization
of simulation models across different participating domain
experts. (3) Modeling environment should provide intuitive
visual interface so that it lowers the entry of barrier to utilizing
the new environment. This enable users to focus more on
developing models rather spending time in learning a new
toolsuite. (4) Provide tools for checking correctness of models
and flagging constraint violations during designing of large-
scale multi-model simulation experiments.



Taking these considerations into account, we selected the
WebGME [5] modeling environment developed at Vanderbilt
University. WebGME provides a web-based design and mod-
eling environment. WebGME enable users to leverage model
driven engineering techniques (MDE) [6] to develop large-
scale software systems [7]. It provides facilities such as ability
to create a visual domain specific modeling languages (DSML)
using metamodeling. It allows creating model interpreters that
are linked with the metamodels. Model interpreters enable
automated software synthesis in the form of code artifacts
and configurations, which are used by the domain experts to
write simulation models and business logic to be embedded
in the simulation models. WebGME supports checking model
correctness and ensuring its conformity to set of constraints
— a crucial while designing large-scale simulations. Visual
notifications are shown for design time violations.

D. Cloud-Hosted Experimentation Platform

Large-scale smart grid simulation models are highly
computation- and data-intensive. Thus, simulation models ex-
ecution can benefit from the large resource pool provided
by the cloud computing model. Cloud computing provides
an on-demand access to these compute resources for running
simulation execution experiments. Cloud computing has been
leveraged for running large-scale simulation execution [8], [9],
[10] in understanding and studying architectures for building
smart-city scale distributed systems.

Despite the advancement in the cloud computing systems,
the research community is faced with numerous challenges
in moving their simulation models to the cloud computing
environment. Executing in the cloud computing environment
needs understanding of the cloud-oriented configuration and
deployment tools [11]. Insufficient expertise in these tools
can lead to performance degradation of the executing pro-
cesses [12]. Another challenge in using cloud computing
is the difficulty in migrating simulation execution models
from the desktop or laptop based execution platform to the
distributed and scalable cloud platform environment. Another
important consideration when running execution in the cloud
environments is to avoid getting tied to a single cloud provider
or what is called as ’vendor lock-in’.

To address these challenges related to the deployment of
simulation executions in the cloud environment, we leverage
open-source technologies such as Openstack cloud hosting
[13] and linux container based Docker technology [14] to host
simulations. We will cover more details in the next section.

III. DESIGN AND IMPLEMENTATION OF DESIGN STUDIO

In this section we will cover the design and implementation
of the collaborative platform for modeling and simulation of
the mixed energy smart grid simulations.

A. Design And Architecture

Many building blocks are required to support collaborative
modeling, simulation, and execution of the co-simulation
experiments. Figure 2 showcases the main components of the

design studio platform. These components are described in
detail below.

1) CPS-VO: As discussed in II-B, the CPS-VO provides an
entry portal to the users of the design studio. It provides users
and user groups management functionality. This provides fea-
tures such as user authentication and permission management
to enable secure and private collaboration among users within
a group or community. User access to the community portal is
managed through a highly customized Drupal PHP based web
portal. Access to the WebGME based modeling environment
and the experimentation portal is channeled via the CPS-
VO portal. When transitioning from simulation modeling to
running an experiment, it facilitates access to the run-time
cloud infrastructure. Currently, the CPS-VO provides a naive
experiment scheduling policy by restricting the number of con-
current experiments to the total available execution computing
nodes. Experiment results are automatically retrieved by the
CPS-VO after the experiment has finished, and are stored and
made available according to the privacy settings the user has
selected, combined with group settings.

2) Simulator Federate Templates: This component provides
access to various types of federates which are simulator
specific. These includes C++, Java, Gridlab-D, and OMNET++
simulation engines. Users can build scenarios utilizing these
simulation engines to construct large-scale simulations. Using
these templates, one can construct an integration model of the
simulated scenario. This integration model represents different
federate type entities participating in the simulation. The
integration model also covers any interactions, shared objects
that may be exchanged between participating federates.

3) Courses Of Action Models: To conduct scenario-based
experimentation and conducting what-if analysis [15], we sup-
port a modeling construct called as Courses-of-Action (COA).
COAs are utilized to create various what-if analysis models
and to execute the corresponding alternative scenarios. COAs
act as an orchestrator of the time-coordinated execution of the
running simulations. These COAs are scenario models that
are created using several atomic elements such as: ACTION
— that injects an interaction into the running simulation,
OUTCOME - that waits for an interaction of the specified type
to be generated in the running simulation, FORK — that start
multiple branches in a scenario to start in parallel, and DUR —
that, when encountered in a COA execution, makes a running
simulation wait for the specified duration. A COA model is
created as a workflow like Directed Acyclic Graph (DAG) by
connecting the above-mentioned atomic elements with directed
edges. Detailed description of many other supported COA
elements can be found in [9].

4) Experiment Scenarios Models: Once the simulation inte-
gration model is designed with the constituent simulation fed-
erates, the data model for the data exchange among federates,
and the objects that capture various actors in the co-simulation,
the next step involves creating the experimental scenario
models. Experimental model enables creating scenarios that
comprise either some or all the federates from the integration
model created in the previous step. As such, for a given co-
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Fig. 2: Overview of the Cloud based Modeling and Co-simulation of Mixed Electrical Energy Systems

simulation scenario we could have more than one experiment
model.

5) Software Synthesis: To facilitate rapid development of
the co-simulation application, design studio features a code
generation and synthesis module. This module enables syn-
thesis of the integration code — software modules that bridge
target simulators with the underlying HLA RTI. This module
provides two key benefits. Firstly, it ensures the ’correct
by construction’ principle when generating the large boil-
erplate code required for such complex co-simulation RTI,
thereby avoiding errors that occur with manually written code.
Secondly, it lowers barrier to entry to the development of
co-simulation application, whereby the domain expert can
focus on writing simulation models and not worry about the
complexity to work with the underlying RTI.

Apart from above software synthesis components, code
generators also produce various experiment specific configu-
rations, which are specific to the experiment model discussed
earlier. These includes COA models, various federate configu-
ration specific to the experiment model using JSON [16] files,
and several initialization scripts.

6) Artifact Repository: All the artifacts that are part of
the co-simulations are stored in a secured centralized repos-
itory with user access control. These artifacts includes auto-
generated software codes, user supplied application programs,
simulator specific models, WebGME models, and various con-
figuration files associated with the co-simulation experiment.
Artifact repository provides storage facility to store these

co-simulation artifacts. The repository also features version
control mechanism, such that the artifacts can be associated
for a given version number and can optionally include labels
such as development, beta, and production ready tags.

7) Continuous Integration: Continuous integration is
widely used technique in the software development process for
creating automated software builds that run various tests that
validate whether the software compiles and builds successfully.
It can also include unit tests to ensure that the newly developed
simulation module meets certain functional requirements as
specified in the unit tests. Continuous integration enables au-
tomatic compilation and building of the source code generated
by the software synthesis module and storage of the compiled
artifacts to the artifact repository discussed earlier. Currently,
we are leveraging the Jenkins [17] build systems to trigger
automatic builds of the simulation software.

8) Experimentation Runtime: To support large-scale dis-
tributed simulation, which may exhibit different compute, in-
put/output, and/or network intensive workload characteristics,
a cloud environment provides a better execution infrastructure
to support these requirements. One of the requirements to sup-
port cross-platform executions is to enable running simulations
across heterogeneous run-time platforms. Docker container
technology [14] is utilized to meet this requirement. To enable
running simulators inside docker containers, we first have
to port the simulators to the docker run-time image. Once
this image is created, it is available to run simulator-specific
models. Currently, our design studio makes the C++, Java,
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Fig. 3: Sequence diagram showcasing modeling and experimentation activity in design studio

OMNeT++, and CPNTools docker images available for the
domain modelers.

9) Monitoring and Visualization: Live monitoring of co-
simulation experiments provides insights into how the sim-
ulation experiment is running in the cloud environment. We
are leveraging Grafana [18]) based visualization dashboards to
depict important events that arise in the running simulation.
Grafana dashboards also show the runtime system resource uti-
lization of the individual federates comprising a co-simulation
experiment run. Monitoring facility can thus be utilized for
profiling simulation runs, and could be used in the future for
making dynamic resource management decisions for running
the distributed co-simulation experiments.

B. Modeling and Experimentation Workflow

In this section we will cover the modeling and experimenta-
tion workflow in the design studio framework. Figure 3 shows
the two activities which the domain modeler performs in the
design studio framework: co-simulation modeling and running
co-simulations. Next, we will refer to the circle numbers as
they are shown in the sequence diagram. In (1), the domain
modeler first enters the design studio by authenticating with
the CPS-VO portal. Once authenticated, the domain modeler
has access to the WebGME modeling application. Next in step

@, the domain expert can first build the co-simulation design
model and configure various experiment scenarios. Once the
modeling activity is completed, software synthesis module
generates simulation specific code artifacts. These artifacts
are available to the modeler to download and update them
with application-specific code and/or models. In addition, the
software artifacts generated are passed to the continuous build
and integration system for running versioned builds. The mod-
eler can also upload custom simulation artifacts and updated
software artifacts to the artifact repository, which can then be
utilized accordingly for the co-simulation. Further, in step (3),
the user than selects one of the configured experiment model
from the previous step for executing on the experimentation
platform. Once the run experimentation option is selected,
the experiment controller then selects an appropriate runtime
platform server from the available cloud infrastructure, and
starts the experimental run sequence. During the startup of the
experiment, appropriate Docker federate images, as required
by the experiment, are downloaded from the docker registry
hosted within the CPS-VO environment. Furthermore, the
experiment specific federate code artifacts are downloaded
on the execution server from the artifact repository. Once
the required dependencies are downloaded, the co-simulation



execution can begin. The simulation proceeds and simulates
the experiment scenarios. Once the simulation criteria is met,
which is set by the user based on either the amount of
simulation time to execute or a specific simulation objective is
met, the simulation execution stops. The simulation gets the
execution trace and the generated results and logs are then
uploaded back to the CPS-VO for the offline analysis.

IV. CONCLUSIONS AND FUTURE WORK

This paper presents a cloud based secure, collaborative mod-
eling and co-simulation platform to support mixed electrical
energy systems simulation for smart grid operations. We have
described various building blocks of the integrated design
studio. We leverage the WebGME tool to provide a the web-
based modeling environment and the CPS-VO to provide the
central collaboration platform. Using continuous integration
technology the simulation artifacts are automatically built and
ready to be deployed to the cloud execution platform. Docker
technology provides a cross-platform sandboxed execution
environment for the co-simulations which can be executed on
the elastic cloud computing resource.

There is a general lack of integrated toolsuites that can
provide collaborative modeling and co-simulations facilities
for complex applications such as mixed energy electrical
systems. The presented design studio can enable various stake-
holders in the smart grid environment to effectively collaborate
with multi-user modeling of experiments, and to design and
build resilient and high-performance smart grid systems. In
future, we plan on adding support for efficient deployment
and configuration management for the distributed simulations
in the cloud environment [19], save and restore of the running
simulations, and tool support for wider range of simulators
such as EnergyPlus [20], and DIgSILENT [21].
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