BLEAK: Automatically Debugging
Memory Leaks in Web Applications

John Vilk
University of Massachusetts Amherst, USA
jvilk@cs.umass.edu

Abstract

Despite the presence of garbage collection in managed lan-
guages like JavaScript, memory leaks remain a serious prob-
lem. In the context of web applications, these leaks are espe-
cially pervasive and difficult to debug. Web application mem-
ory leaks can take many forms, including failing to dispose
of unneeded event listeners, repeatedly injecting iframes
and CSS files, and failing to call cleanup routines in third-
party libraries. Leaks degrade responsiveness by increasing
GC frequency and overhead, and can even lead to browser
tab crashes by exhausting available memory. Because previ-
ous leak detection approaches designed for conventional C,
C++ or Java applications are ineffective in the browser envi-
ronment, tracking down leaks currently requires intensive
manual effort by web developers.

This paper introduces BLEAK (Browser Leak debugger),
the first system for automatically debugging memory leaks in
web applications. BLEAK’s algorithms leverage the observa-
tion that in modern web applications, users often repeatedly
return to the same (approximate) visual state (e.g., the in-
box view in Gmail). Sustained growth between round trips
is a strong indicator of a memory leak. To use BLEAK, a
developer writes a short script (17-73 LOC on our bench-
marks) to drive a web application in round trips to the same
visual state. BLEAK then automatically generates a list of
leaks found along with their root causes, ranked by return
on investment. Guided by BLEAK, we identify and fix over 50
memory leaks in popular libraries and apps including Airbnb,
Angular]S, Google Analytics, Google Maps SDK, and jQuery.
BLEAK’s median precision is 100%; fixing the leaks it identi-
fies reduces heap growth by an average of 94%, saving from
0.5 MB to 8 MB per round trip. We believe BLEAK’s approach
to be broadly applicable beyond web applications, including
to GUI applications on desktop and mobile platforms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5698-5/18/06...$15.00
https://doi.org/10.1145/3192366.3192376

Emery D. Berger
University of Massachusetts Amherst, USA
emery@cs.umass.edu

CCS Concepts - Software and its engineering — Soft-
ware testing and debugging;

Keywords Memory leaks, debugging, leak detection, web
development, JavaScript

ACM Reference Format:

John Vilk and Emery D. Berger. 2018. BLEAK: Automatically De-
bugging Memory Leaks in Web Applications. In Proceedings of 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI'18). ACM, New York, NY, USA, 24 pages.
https://doi.org/10.1145/3192366.3192376

1 Introduction

Browsers are one of the most popular applications on both
smartphones and desktop platforms [3, 53]. They also have
an established reputation for consuming significant amounts
of memory [26, 38, 43]. To address this problem, browser
vendors have spent considerable effort on shrinking their
browsers’ memory footprints [13, 23, 39, 47, 75] and build-
ing diagnostic tools that track the memory consumption of
specific browser components [21, 42].

Memory leaks in web applications only exacerbate the sit-
uation by further increasing browser memory footprints.
These leaks happen when the application references un-
needed state, preventing the garbage collector from collect-
ing it. Web application memory leaks can take many forms,
including failing to dispose of unneeded event listeners, re-
peatedly injecting iframes and CSS files, and failing to call
cleanup routines in third-party libraries. Leaks are a serious
concern for developers since they lead to higher garbage
collection frequency and overhead. They reduce application
responsiveness and can even trigger browser tab crashes by
exhausting available memory [6, 24, 31, 40, 49].

Despite the fact that memory leaks in web applications
are a well-known and pervasive problem, there are no effec-
tive automated tools that can find them. The reason is that
existing memory leak detection techniques are ineffective
in the browser: leaks in web applications are fundamentally
different from leaks in traditional C, C++, and Java programs.
Staleness-based techniques assume leaked memory is rarely
touched [8, 25, 48, 52, 74], but web applications regularly
interact with leaked state (e.g., via event listeners). Growth-
based techniques assume that leaked objects are uniquely
owned or that leaked objects form strongly connected compo-
nents in the heap graph [41, 74]. In web applications, leaked

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

objects frequently have multiple owners, and the entire heap
graph is often strongly connected due to widespread refer-
ences to the global scope (window). Finally, techniques that
depend on static type information [28] do not work for web
applications because JavaScript is dynamically typed.

Faced with this lack of automated tool support, devel-
opers are currently forced to manually inspect heap snap-
shots to locate objects that the application incorrectly re-
tains [6, 31, 40, 49]. Unfortunately, these snapshots do not
necessarily provide actionable information (see §2.2). They
simultaneously provide too much information (every single
object on the heap) and not enough information to actually
debug these leaks (no connection to the code responsible for
leaks). Since JavaScript is dynamically typed, most objects
in snapshots are simply labeled as Objects or Arrays, which
provides little assistance in locating the source of leaks. The
result is that even expert developers are unable to find leaks:
for example, a Google developer closed a Google Maps SDK
memory leak (with 99 stars and 51 comments) because it was
“infeasible” to fix as they were “not really sure in how many
places [it’s] leaking” [16].

We address these challenges with BLEAK (Browser Leak
debugger), the first system for automatically debugging mem-
ory leaks in web applications. BLEAK leverages the following
fact: over a single session, users repeatedly return to the
same visual state in modern web sites, such as Facebook,
Airbnb, and Gmail. For example, Facebook users repeatedly
return to the news feed, Airbnb users repeatedly return to
the page listing all properties in a given area, and Gmail
users repeatedly return to the inbox view.

We observe that these round trips can be viewed as an oracle
to identify leaks. Because visits to the same (approximate)
visual state should consume roughly the same amount of
memory, sustained memory growth between visits is a strong
indicator of a memory leak. BLEAK builds directly on this
observation to find memory leaks in web applications, which
(as §6 shows) are both widespread and severe.

To use BLEAK, a developer provides a short script (17-73
LOC on our benchmarks) to drive a web application in a loop
that takes round trips through a specific visual state. BLEAK
then proceeds automatically, identifying memory leaks, rank-
ing them, and locating their root cause in the source code.
BLEAK first uses heap differencing to locate locations in the
heap with sustained growth between each round trip, which
it identifies as leak roots. To directly identify the root causes
of growth, BLEAK employs JavaScript rewriting to target leak
roots and collect stack traces when they grow. Finally, when
presenting the results to the developer, BLEAK ranks leak
roots by return on investment using a novel metric called
LeakShare that prioritizes memory leaks that free the most
memory with the least effort by dividing the “credit” for re-
taining a shared leaked object equally among the leak roots
that retain them. This ranking focuses developer effort on
the most important memory leaks first.

John Vilk and Emery D. Berger

class Preview extends PureComponent {

1
2 // Runs when Preview is added to GUI

3 componentDidMount() {

4 const { codeMirror } = this.props.editor;

5 const wrapper = codeMirror.getWrapperElement();

6 codeMirror.on("scroll", this.onScroll);

7 wrapper.addEventListener("mouseover", this._mover);
8 wrapper.addEventListener("mouseup"”, this._mup);

9 wrapper.addEventListener("mousedown", this._mdown);
10 }

1 }

Figure 1. This code from Firefox’s debugger (truncated for
readability) leaks 0.5MB every time a developer opens a
source file (§2). Leak detectors that rely on staleness metrics
would fail to find these leaks because the leaked objects
(event listeners) are frequently touched. BLEAK finds all these
leaks automatically.

Guided by BLEAK, we identify and fix over 50 memory
leaks in popular JavaScript libraries and applications includ-
ing Airbnb, Angular]S, jQuery, Google Analytics, and the
Google Maps SDK. BLEAK has a median precision of 100%
(97% on average). Its precise identification of root causes of
leaks makes it relatively straightforward for us to fix nearly
all of the leaks we identify (all but one). Fixing these leaks
reduces heap growth by 94% on average, saving from 0.5 MB
to 8 MB per return trip to the same visual state. We have
submitted patches for all of these leaks to the application
developers; at the time of writing, 16 have already been ac-
cepted and 4 are in the process of code review.

Contributions
This paper makes the following contributions:

e It introduces novel techniques for automatically lo-
cating, diagnosing, and ranking memory leaks in web
applications (§3), and presents algorithms for each (§4).

o It presents BLEAK, an implementation of these tech-
niques. BLEAK’s analyses drive websites using Chrome
and a proxy that transparently rewrites JavaScript code
to diagnose leaks, letting it operate on unmodified web-
sites (including over HTTPS) (§5).

e Using BLEAK, we identify and fix numerous memory
leaks in widely used web applications and JavaScript
libraries (§6).

2 Background

Before presenting BLEAK and its algorithms, we first describe
a representative memory leak we discovered using BLEAK
(see Figure 1), and discuss why prior techniques and existing
tools fall short when debugging leaks in web applications.
This memory leak is in Firefox’s debugger, which is a pure
HTMLS5 application that runs as a normal web application
in all browsers. Lines 6-9 register four event listeners on

BLEAk: Automatically Debugging Memory Leaks in Web Applications

Summary ¥ Class filter Objects allocated between Snapshot 1 and Snap

Constructor Distance | Objects Count | Shallow Size Retained Size

» Array 4 3143 100 576 31 099 584
» (array) 4 6190 24 387 568 24 497 176
» BranchChunk 5 592 33152 7 496 720
» LeafChunk 5 2382 114 336 7 385 168
» Line 4 59 549 4287 528 6717 288
» (string) 5 3823 4761 800 4761 800
> (sliced string) 5 55931 2237240 2237 240
» Doc 3 1 200 1965 840
» Preview 6 1 200 489 016

(a) A truncated heap snapshot of the Firefox debugger, filtered using
the three snapshot technique. The only relevant item is Preview,
which appears low on the list underneath non-leaking objects.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Constructor Distance | Objects Count | Shallow Size Retained Size

¥ Preview 6 1 200 489 016

[sPrevieve 6 | 200 0% 49016 0%]
Retainers

Object Distance | Shallow Size | Retained Size

vbound_this in native_bind() @4001:
» [0] in Array @700847
»0 in (object elements)[] @285977 32 32
»onScroll in Preview @400119 200 489 016

5 48 0%

4

5

6
vthis in system / Context @397635 5 56 56

4

3

2

1

32 64

48 0%

vcontext in () @387667 72 160
vnative in HTMLDivElement @362¢ 40 400
v [97] 0 0

1 in (Document DOM trees) 0 0

in Document DOM tree /

(b) The retaining paths for Preview, the primary leaking object in the
Firefox debugger. Finding the code responsible for leaking this object
involves searching the entire production code base for identifiers in
the retaining paths, which are commonly managed by third-party
libraries and obfuscated via minification.

Figure 2. The manual memory leak debugging process: Currently, developers debug leaks by first examining heap
snapshots to find leaking objects (Figure 2a). Then, they try to use retaining paths to locate the code responsible (Figure 2b).
Unfortunately, these paths have no connection to code, so developers must search their codebase for identifiers referenced in
the paths (see §2.2). This process can be time consuming and ultimately fruitless. BLEAK saves considerable developer effort by
automatically detecting and locating the code responsible for memory leaks.

the debugger’s text editor (codeMirror) and its GUI object
(wrapper) every time the user views a source file. The leak
occurs because the code fails to remove the listeners when
the view is closed. Each event listener leaks this, which
points to an instance of Preview.

2.1 Prior Automated Techniques

There currently are no effective automated techniques for
finding memory leaks in web applications. Previous effective
automated techniques for finding memory leaks operate in
the context of conventional applications written in C, C++,
and Java. These techniques predominantly use a staleness
metric to discover [8, 25, 48] or rank [74] memory leaks,
but the four memory leaks in the Firefox debugger would
not be considered stale. These four listeners continue to
execute and touch leaked state every time the user uses the
mouse on the editor, marking that state as “fresh”. In web
applications, many leaks are connected to browser events:
77% of the memory leaks found by BLEAK would not be found
by a staleness-based approach (§6.5). For this reason, BLEAK
focuses on object growth rather than staleness.

Prior growth-based techniques assume that leaked objects
are uniquely owned (dominated) by a single object or that
they form strongly connected components in the heap [41,
74]. These assumptions do not hold for the leaked objects
in the Firefox debugger because 1) they are owned by four
separate leak locations that are only dominated by the global
scope, and 2) they reference the global scope (window) and
are thus strongly connected with nearly the entire heap.

Because these properties are common in web applications,
BLEAK does not use ownership information to identify leaks.

2.2 Manual Leak Debugging via Heap Snapshots

Since there are currently no automated techniques for iden-
tifying memory leaks in web applications, developers are
forced to use manual approaches. The current state of the
art is manual processing of heap snapshots. As we show,
this approach does not effectively identify leaking objects or
provide useful diagnostic information, and it thus does little
to help developers locate and fix memory leaks.

The most popular way to manually debug memory leaks is
via the three heap snapshot technique introduced by the GMail
team [31]. Developers repeat a task twice on a webpage and
examine still-live objects created from the first run of the
task. The assumption is that each run will clear out most of
the objects created from the previous run and leave behind
only leaking objects; in practice, it does not.

To apply this technique to Firefox’s debugger, the devel-
oper takes a heap snapshot after loading the debugger, a
second snapshot after opening a source file, and a third snap-
shot after closing and re-opening a source file. Then, the
developer filters the third heap snapshot to focus only on
objects allocated between the first and second.

This filtered view, shown in Figure 2a, does not clearly
identify a memory leak. Most of these objects are simply
reused from the previous execution of the task and are not
actually leaks, but developers must manually inspect these
objects before they can come to that conclusion. The top
item, Array, conflates all arrays in the application under one

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

T - S N VR R

24

exports.loop = [
// Loop that repeatedly opens and closes a source document.
// First, open a source document in the text editor.
{
check: function() {
const nodes = $('.node');
// No documents are open
return $('.source-tab').length === 0 &&
// Target document appears in doc list
nodes.length > 1 && nodes[1].innerText === "main.js";
3
next: function() { $('.node')[1].click(); }
3,
// Next, close the document after it loads.
{
check: function() {
// Contents of main.js are in editor
return $('.CodeMirror-line').length > 2 &&
// Editor displays a tab for main.js
$('.source-tab').length === 1 &&
// Tab contains a close button
$('.close-btn').length === 1;
1
next: function() { $('.close-btn').click(); }

25 31,

(a) This script runs the Firefox debugger in a loop, and is the only
input BLEAK requires to automatically locate memory leaks. For
brevity, we modify the script to use jQuery syntax.

John Vilk and Emery D. Berger

Leak Root 1 [LeakShare: 811920]

Leak Paths

* Event listeners for 'mouseover' on window.cm.display.wrapper
Stack Traces Responsible

1. Preview.componentDidMount
http://localhost:8000/assets/build/debugger.js:109352:22
2. http://localhost:8000/assets/build/debugger.js:81721:24
3. measureLifeCyclePerf
http://localhost:8000/assets/build/debugger.js:81531:11
4. http://localhost:8000/assets/build/debugger.js:81720:31
5. CallbackQueue.notifyAll
http://localhost:8000/assets/build/debugger.js:61800:21
6. ReactReconcileTransaction.close
http://localhost:8000/assets/build/debugger.js:83305:25
7. ReactReconcileTransaction.closeAll
http://localhost:8000/assets/build/debugger.js:42268:24

(b) A snippet from BLEAK’s memory leak report for the Firefox de-
bugger. BLEAK points directly to the code in Figure 1 responsible for
the memory leak.

Figure 3. Automatic memory leak debugging with BLEAK: The only input developers need to provide to BLEAK is a
simple script that drives the target web application in a loop (Figure 3a). BLEAK then runs automatically, producing a ranked
list of memory leaks with stack traces pointing to the code responsible for the leaks (Figure 3b).

heading because JavaScript is dynamically typed. Confus-
ingly, the entry (array) just below it refers to internal V8
arrays, which are not under the application’s direct control.
Developers would be unlikely to suspect the Preview object,
the primary leak, because it both appears low on the list and
has a small retained size.

Even if a developer identifies a leaking object in a snapshot,
it remains challenging to diagnose and fix because the snap-
shot contains no relation to code. The snapshot only provides
retaining paths in the heap, which are often controlled by a
third party library or the browser itself. As Figure 2b shows,
the retaining paths for a leaking Preview object stem from
an array and an unidentified DOM object. Locating the code
responsible for a leak using these retaining paths involves
grepping through the code for instances of the identifiers
along the path. This task is often further complicated by two
factors: (1) the presence of third-party libraries, which must
be manually inspected; and (2) the common use of minifica-
tion, which effectively obfuscates code and heap paths by
reducing most variable names and some object properties to
single letters.

Summary: To debug memory leaks, developers currently
must manually sift through large heap snapshots and all
JavaScript code on a page. Snapshots conflate many JavaScript

objects as either arrays or Objects, and existing ranking tech-
niques can incorrectly place severe leaks below non-leaks.
Since snapshots only contain retaining paths, programmers
must manually determine program points by searching code
for promising identifiers in the retained paths, but these are
commonly obfuscated by minifiers. These challenges com-
bine to make manual leak debugging a daunting task.

3 BLEAK Overview

This section presents an overview of the techniques BLEAK
uses to automatically detect, rank, and diagnose memory
leaks. We illustrate these by showing how to use BLEAK to
debug the Firefox memory leak presented in Section 2.

Input script: Developers provide BLEAK with a simple script
that drives a web application in a loop through specific visual
states. A visual state is the resting state of the GUI after the
user takes an action, such as clicking on a link or submitting a
form. The developer specifies the loop as an array of objects,
where each object represents a specific visual state, compris-
ing (1) a check function that checks the preconditions for
being in that state, and (2) a transition function next that
interacts with the page to navigate to the next visual state in
the loop. The final visual state in the loop array transitions
back to the first, forming a loop.

BLEAk: Automatically Debugging Memory Leaks in Web Applications

Figure 3a presents a loop for the Firefox debugger that
opens and closes a source file in the debugger’s text editor.
The first visual state occurs when there are no tabs open in
the editor (line 8), and the application has loaded the list of
documents in the application it is debugging (line 10); this is
the default state of the debugger when it first loads. Once the
application is in that first visual state, the loop transitions the
application to the second visual state by clicking on main. js
in the list of documents to open it in the text editor (line
12). The application reaches the second visible state once the
debugger displays the contents of main. js (line 18). The loop
then closes the tab containing main. js (line 24), transitioning
back to the first visual state.

Locating leaks: From this point, BLEAK proceeds entirely
automatically. BLEAK uses the developer-provided script to
drive the web application in a loop. Because object instances
can change from snapshot to snapshot, BLEAK tracks paths
instead of objects, letting it spot leaks even when a variable
or object property is regularly updated with a new and larger
object. For example, history = history.concat(newItems)
overwrites history with a new and larger array.

After each visit to the first visual state in the loop, BLEAK
takes a heap snapshot and tracks specific paths from GC
roots that are continually growing. BLEAK treats a path as
growing if the object identified by that path gains more
outgoing references (e.g., when an array expands or when
properties are added to an object).

For the Firefox debugger, BLEAK notices four heap paths
that are growing each round trip: (1) an array within the
codeMirror object that contains scroll event listeners, and
internal browser event listener lists for (2) mouseover, (3)
mouseup, and (4) mousedown events on the DOM element con-
taining the text editor. Since these objects continue to grow
over multiple loop iterations (the default setting is eight),
BLEAK marks these items as leak roots as they appear to be
growing without bound.

Ranking leaks: BLEAK uses the final heap snapshot and the
list of leak roots to rank leaks by return on investment using
a novel but intuitive metric we call LeakShare (§4.3) that
prioritizes memory leaks that free the most memory with the
least effort. LeakShare prunes objects in the graph reachable
by non-leak roots, and then splits the credit for remaining
objects equally among the leak roots that retain them. Unlike
retained size (a standard metric used by all existing heap
snapshot tools), which only considers objects uniquely owned
by leak roots, LeakShare correctly distributes the credit for
the leaked Preview objects among the four different leak
roots since they all must be removed to eliminate the leak.

Diagnosing leaks: BLEAK next reloads the application and
uses its proxy to transparently rewrite all of the JavaScript
on the page, exposing otherwise-hidden edges in the heap
as object properties. BLEAK uses JavaScript reflection to in-
strument identified leak roots to capture stack traces when

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

they grow and when they are overwritten (not just where they
were allocated). With this instrumentation in place, BLEAK
uses the developer-provided script to run one final iteration
of the loop to collect stack traces. These stack traces directly
zero in on the code responsible for leak growth.

Output: Finally, BLEAK outputs its diagnostic report: a ranked
list of leak roots (ordered by LeakShare), together with the
heap paths that retain them and stack traces responsible
for their growth. Figure 3b displays a snippet from BLEAK’s
output for the Firefox debugger, which points directly to the
code responsible for the memory leak from Figure 1.

Summary: Using BLEAK, the only developer effort required
is creating a short script to drive the web application in a
loop. BLEAK then locates memory leaks and provides detailed
information pointing to the source code responsible. With
this information in hand, we were able to discover four new
memory leaks in the Firefox debugger, and quickly develop
a fix that removes the event listeners when the user closes
the document. This fix has been incorporated in the latest
version of the debugger.

4 Algorithms

This section formally describes the operation of BLEAK’s
core algorithms for detecting (§4.1), diagnosing (§4.2), and
ranking leaks (§4.3).

4.1 Memory Leak Detection

The input to BLEAK’s memory leak detection algorithm is
a set of heap snapshots collected during the same visual
state, and the output is a set of paths from GC roots that
are growing across all snapshots. We call these paths leak
roots. BLEAK considers a path to be growing if the object at
that path has more outgoing references than it did in the
previous snapshot. To make the algorithm tractable, BLEAK
only considers the shortest path to each specific heap item.

Each heap snapshot contains a heap graph G = (N, E) with
a set of nodes N that represent items in the heap, and edges
E where each edge (n1, n2, l) € E represents a reference from
node n; to ny with label /. A label [is a tuple containing the
type and name of the edge. Each edge’s type is either a closure
variable or an object property. An edge’s name corresponds
to the name of the closure variable or object property. For
example, the object 0 = { foo: 3 } has an edge e from 0
to the number 3 with label I = (property, “f00”). A path P
is simply a list of edges (ey, €3, . . ., €,) Where e; is an edge
from the root node (G.root).!

For the first heap snapshot, BLEAK conservatively marks
every node as growing. For subsequent snapshots, BLEAK
runs PRoPAGATEGROWTH (Figure 4) to propagate the growth
flags from the previous snapshot to the new snapshot, and
discards the previous snapshot. On line 2, PROPAGATEGROWTH
initializes every node in the new graph to not growing to

IFor simplicity, we describe heap graphs as having a single root.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

PrROPAGATEGROWTH(G, G’)

1 Q = [(G.root,G'.root)], G’.root.mark = TRUE
2 for eachnoden € G'.\N

3 n.growing = FALSE

4 while |Q] >0

5 (n,n”) = DEQUEUE(Q)

6 E, = GETOUTGOINGEDGES(G, n)

7 E}, = GETOUTGOINGEDGES(G’, n’)

8 n’.growing = n.growing A |E,| < |E,|
9 for each edge (n1,ny,1) € E,

10 for each edge (n],n,,1l") € E,

11 if [== I’ and n;.mark == FALSE
12 n;.mark = TRUE

13 ENQUEUE((n2, 1))

Figure 4. PROPAGATEGROWTH propagates a node’s growth
status (n.growing) between heap snapshots. BLEAK considers
a path in the heap to be growing if the node at the path
continually increases its number of outgoing edges.

prevent spuriously marking new growth as growing in the
next run of the algorithm. Since the algorithm only considers
paths that are the shortest path to a specific node, it is able to
associate growth information with the terminal node which
represents a specific path in the heap.

PROPAGATEGROWTH runs a breadth-first traversal across
shared paths in the two graphs, starting from the root node
that contains the global scope (window) and the DOM. The
algorithm marks a node in the new graph as growing if the
node at the same path in the previous graph is both grow-
ing and has fewer outgoing edges (line 8). As a result, the
algorithm will only mark a heap path as a leak root if it con-
sistently grows between every snapshot, and if it has been
present since the first snapshot.

PROPAGATEGROWTH only visits paths shared between the
two graphs (line 11). At a given path, the algorithm considers
an outgoing edge e, in the old graph and e;, in the new graph
as equivalent if they have the same label. In other words, the
edges have to correspond to the same property name on the
object at that path, or a closure variable with the same name
captured by the function at that path.

After propagating growth flags to the final heap snapshot,
BLEAK runs FINDLEAKPATHS (Figure 5) to record growing
paths in the heap. This traversal visits edges in the graph to
capture the shortest path to all unique edges that point to
growing nodes. For example, if a growing object O is located
at window.0 and as variable p in the function window.L.z,
FINDLEAKPATHS will report both paths. This property is im-
portant for diagnosing leaks, as we discuss in Section 4.2.

BLEAK takes the output of FINDLEAKPATHS and groups it
by the terminal node of each path. Each group corresponds

John Vilk and Emery D. Berger

FINDLEAKPATHS(G)
1 Q=[Tsr = {}
2 for each edge e = (ny, ny,1) € G.E where ny == G.root
3 e.mark = TRUE
4 ENQUEUE(Q, (NIL, €))
5 while |Q] >0
6 t = DEQUEUE(Q)
7 (tp, (n1,mg, 1)) =t
8 if ny.growing == TRUE
9 Tgr = Tgr U {t}
10 for each edge e = (n},n;,1") € G.E
11 if n] == n, and e.mark == FALSE
12 e.mark = TRUE
13 ENQUEUE(Q, (¢, €))

14 return T,

Figure 5. FINDLEAKPATHS, which returns paths through the
heap to leaking nodes. The algorithm encodes each path as
a list of edges formed by tuples (z).

to a specific leak root. This set of leak roots forms the input
to the ranking algorithm.

4.2 Diagnosing Leaks

Given a list of leak roots and, for each root, a list of heap
paths that point to the root, BLEAK diagnoses leaks through
hooks that run whenever the application performs any of
the following actions:

o Grows a leak root with a new item. This growth occurs

when the application adds a property to an object, an

element to an array, an event listener to an event target,
or a child node to a DOM node. BLEAK captures a stack
trace, and associates it with the new item.

Shrinks a leak root by removing any of the previously-

mentioned items. BLEAK removes any stack traces as-

sociated with the removed items, as the items are no
longer contributing to the leak root’s growth.

e Assigns a new value to a leak root, which typically
occurs when the application copies the state from an
old version of the leaking object into a new version.
BLEAK removes all previously-collected stack traces
for the leak root, collects a new stack trace, associates
it with all of the items in the new value, and inserts
the grow and shrink hooks into the new value.

BLEAK runs one loop iteration of the application with all
hooks installed. This process generates a list of stack traces
responsible for growing each leak root.

4.3 Leak Root Ranking

BLEAK uses a new metric to rank leak roots by return on
investment that we call LeakShare (Figure 6). LeakShare pri-
oritizes memory leaks that free the most memory with the

BLEAk: Automatically Debugging Memory Leaks in Web Applications

CALCULATELEAKSHARE(G, LR)

1 Q = [G.root], visitld = 0
2 for eachnoden € G.N
3 n.mark = -1
4 while |Q] >0
5 n = DEQUEUE(Q)
6 if n ¢ LR and n.mark # visitld
7 n.mark = visitld
8 for each edge (ny, ny,l) € G.E wheren; ==n
9 ENQUEUE(Q, ny)
10 for each node n,oo; € LR
11 visitld += 1
12 Q = [nro0t]
13 while |Q| > 0
14 n = DEQUEUE(Q)
15 if n.mark # 0 and n.mark # visitld
16 n.mark = visitld
17 n.counter = n.counter + 1
18 for each (n{,n»,1) € G.E where ny ==n
19 ENQUEUE(Q, ny)
20 for each node n,y,; € LR
21 visitld += 1
22 Q = [nroot]
23 while |Q| > 0
24 n = DEQUEUE(Q)
25 if n.counter # 0 and n.mark # visitld
26 n.mark = visitld
27 Nroot-LS += n.size/n.counter
28 for each (ny,n,,1) € G.E where ny == n
29 ENQUEUE(Q, ny)

Figure 6. CALCULATELEAKSHARE, which calculates the Leak-
Share metric (n.LS) for a set of leak roots LR.

least effort by dividing the “credit” for retaining a shared
leaked object equally among the leak roots that retain them.

LeakShare first marks all of the items in the heap that
are reachable from non-leaks via a breadth-first traversal
that stops at leak roots (line 4). These nodes are ignored by
subsequent traversals. Then, LeakShare performs a breadth-
first traversal from each leak root that increments a counter
on all reachable nodes (line 10). Once this process is complete,
every node has a counter containing the number of leak
roots that can reach it. Finally, the algorithm calculates the
LeakShare of each leak root (n.LS) by adding up the size of
each reachable node divided by its counter, which splits the
“credit” for the node among all leak roots that can reach it
(line 20).

5 Implementation

Applying BLEAKs algorithms to web applications poses a
number of significant engineering challenges:

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Google Chrome

app.config.js
PP 9 MITMProxy

bleak_agent.js BLeak
(§85.3) Proxy
(85.2)

HTTPS Network

Remote Debugging

Protocol
BLeak Driver Leak Report.txt
(§5.1)

Figure 7. BLEAK implementation overview. BLEAK con-
sists of a driver program that orchestrates the leak detection
process (§5.1), a proxy that transparently rewrites the tar-
get web application’s JavaScript during leak diagnosis (§5.2),
and an agent script embedded in the application that hooks
into relevant web APIs and leak roots (§5.3). Given a short
developer-provided configuration script, BLEAK automati-
cally produces a leak report. White rectangles are BLEAK
components, gray items are automatically rewritten by the
proxy during leak diagnosis, and black items are unmodified.

app.config.js

Leak identification and ranking: BLEAK uses heap snap-
shots to identify and rank leaks, but many native methods
(implemented in C++) do not expose their state to JavaScript
heap snapshots. These native methods can harbor memory
leaks and reduce the apparent severity of leaks that retain
native state.

Leak diagnosis: BLEAK s diagnostic strategy assumes that it
can collect stack traces when relevant growth occurs, but the
browser hides some state and state updates from JavaScript
reflection. Native methods bypass JavaScript reflection and
mutate state. JavaScript reflection cannot introspect into
function closures, necessitating program transformations to
expose this state. Transforming a web application is difficult
because it can load code at any time from remote servers
over HTTP or encrypted HTTPS. In addition, JavaScript
contains dynamic features that are necessary but challenging
to support with code transformations, including eval and
with statements.

BLEAK consists of three main components that work to-
gether to overcome these challenges (see Figure 7): (1) a dri-
ver program orchestrates the leak debugging process (§5.1);
(2) a proxy transparently performs code rewriting on-the-fly
on the target web application and eval-ed strings (§5.2); and
(3) an agent script embedded within the application exposes
hidden state for leak detection and growth events for leak
diagnosis (§5.3).

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

5.1 BLEAK Driver

The BLEAK driver is responsible for orchestrating the leak
debugging process. To initiate leak debugging, the driver
launches BLEAK’s proxy and a standard version of the Google
Chrome browser with an empty cache, a fresh user profile,
and a configuration that uses the BLEAK proxy. The driver
connects to the browser via the standard Chrome DevTools
Protocol [19], navigates to the target web application, and
uses the developer-provided configuration file to drive the
application in a loop. After each repeated visit to the first vi-
sual state in the loop, the driver takes a heap snapshot via the
remote debugging protocol, and runs PROPAGATEGROWTH
(Figure 4) to propagate growth information between heap
snapshots. Prior to taking a heap snapshot, the driver calls a
method in the BLEAK agent embedded in the web application
that prepares the DOM for snapshotting (§5.3.2).

At the end of a configurable number of loop iterations
(the default is 8), the driver shifts into diagnostic mode. The
driver runs FINDLEAKPATHS to locate all of the paths to all
of the leak roots (Figure 5), configures the proxy to perform
code rewriting for diagnosis (§5.2), and reloads the page to
pull in the transformed version of the web application. The
driver runs the application in a single loop iteration before
triggering the BLEAK agent to insert diagnostic hooks that
collect stack traces at all of the paths reported by FINDLEAK-
PaTas (§5.3.1). Then, the driver runs the application in a
final loop before retrieving the collected stack traces from
the agent. Finally, the driver runs LeakShare (Figure 6) to
rank the leak roots and generates a memory leak report.

5.2 BLEAK Proxy

The BLEAK proxy uses mitmproxy [11] to transparently in-
tercept all HTTP and HTTPS traffic between the web appli-
cation and the network. The proxy rewrites the web appli-
cation’s JavaScript during leak diagnosis to move closure
variables into explicit scope objects, chains scope objects
together to enable scope lookup at runtime, and exposes an
HTTP endpoint for transforming eval-ed code. The proxy
also injects the BLEAK agent and developer-provided config-
uration file into the application, uses Babel [4] to translate
emerging JavaScript features into code that BLEAK can un-
derstand, and supports the JavaScript with statement. Due
to space constraints we do not discuss these features further.

Exposing closure variables for diagnosis: During leak
diagnosis, the BLEAK proxy rewrites the JavaScript on the
webpage, including JavaScript inlined into HTML, to make it
possible for the BLEAK agent to instrument closure variables.
Since this process distorts the application’s memory foot-
print, BLEAK does not use this process during leak detection
and ranking. This code transformation moves local variables
into JavaScript “scope” objects (Imagen uses a similar pro-
cedure to implement JavaScript heap snapshots [33]). Scope
objects are ordinary JavaScript objects where property foo

John Vilk and Emery D. Berger

refers to the local variable foo; the browser-provided window
object functions as a global scope object, and works iden-
tically. BLEAK adds a __scope__ property to all JavaScript
Function objects that refer to that function’s defining scope,
and rewrites all variable reads and writes to refer to proper-
ties in the scope object. With this transformation, the BLEAK
agent can capture variable updates in the transformed pro-
gram in the same manner as object properties.

As an optimization, BLEAK performs a conservative escape
analysis to avoid transforming variables that are not captured
by any function closures. However, if the program calls eval
or uses the with statement, then BLEAK assumes that all
reachable variables escape.

The scope object transformation treats function argu-
ments differently than local variables. A function’s argu-
ments are reflected in an implicit array-like object called
arguments, and updates to an argument also update the cor-
responding element in arguments.” To preserve this behavior,
BLEAK rewrites updates to arguments so that it simulta-
neously updates the property in the scope object and the
original argument variable.

Runtime scope lookup: The JavaScript transformation
knows statically which scope objects contain which vari-
ables, but the BLEAK agent needs this information at runtime
to instrument the correct scope object for a given variable.
One solution would be to reify scope information into run-
time metadata objects that the agent can query, but this
would add further runtime and memory overhead. Instead,
the proxy uses a simpler design that uses JavaScript’s built-in
prototype inheritance to naturally encode scope chains. Each
scope object inherits from its parent, and the outermost scope
object inherits from the browser-provided window object. To
perform scope lookup, the BLEAK agent uses JavaScript re-
flection to find the first scope object in the chain that defines
a property corresponding to the variable.

eval support: eval evaluates a string as code within the
context of the call site, posing two key challenges: (1) the
string may not be known statically, and (2) the string may
refer to outer variables that the code transformation moved
into scope objects. The proxy overcomes these challenges by
cooperating with the BLEAk agent. The proxy transforms all
references to eval into references to a BLEAK agent-provided
function that sends the program text synchronously to the
proxy for transformation via an HTTP POST. The proxy
transforms eval-ed code so that references to variables not
explicitly defined in the new code refer to a single scope
object, and then returns the transformed code to the agent.
The agent creates the single scope object as an ECMAScript
2015 Proxy object [46] that interposes on property reads and
writes to relay them to the appropriate scope object using
runtime scope lookup (Proxy objects are available in modern

2This behavior does not occur in “strict mode”, but many prominent libraries
do not opt into “strict mode”.

BLEAk: Automatically Debugging Memory Leaks in Web Applications

versions of all major browsers). Finally, the agent calls eval
on the transformed code. Since this code transformation is
independent of calling context, the BLEAK agent can cache
and re-use transformed code strings.

5.3 BLEAK Agent

The BLEAK agent is a JavaScript file that BLEAK automatically
embeds in the web application; it exposes globally-accessible
functions that the BLEAK driver can invoke via the Chrome
DevTools Protocol. The agent is responsible for installing
diagnostic hooks that collect stack traces for growth events.
The agent also exposes hidden state in the browser’s native
methods so that PROPAGATEGROWTH (Figure 4) can find leaks
within or accessible through this state.

5.3.1 Diagnostic Hooks

To diagnose memory leaks as described in Section 4.2, the
BLEAK agent needs to interpose on leak root growth, shrink-
age, and assignment events. Although all leak roots are
JavaScript objects, some types of objects have native browser
methods that implicitly grow, shrink, or assign to properties
on the object, necessitating interface-specific hooks:

Object hooks: BLEAK uses Proxy objects to detect when
objects gain and lose properties. These Proxy objects wrap
JavaScript objects and expose hooks for various object oper-
ations, including when the application adds, deletes, reads,
or writes properties on the object.

Proxy objects do not automatically take the place of the ob-
ject they wrap in the heap, so the BLEAK agent must replace
all references to the object with the proxy to completely cap-
ture all growth/shrinkage events. If the agent fails to replace
a reference, then it will not capture any object updates that
occur through that reference. BLEAK can miss a reference if
it does not appear in the heap snapshot used for FINDLEAK-
Patas (Figure 5). This could happen if the heap path to the
reference is determined by some external factor, such as the
clock, a random number, or the amount of time spent on the
page. This behavior appears to be rare; in our evaluation,
BLEAK reports all but one of the relevant stack traces for all
of the true leaks it finds.

Proxy objects are semantically equivalent to the original
object except that programs can observe that Proxy(O) # O.
Since BLEAK cannot guarantee that it replaces all references
to O with Proxy(O), a program could run incorrectly if it
directly compared these two objects. To preserve correct-
ness, the BLEAK proxy also transforms the binary operations
==, ===, =, |== into calls to an agent function that treats
Proxy(O) as equal to O. The BLEAK agent also reimplements
the functions Array.indexOf and Array.lastIndexOf, which
report the index of a particular item in an array, so that calls
with Proxy objects function appropriately.

Array hooks: JavaScript arrays contain a number of built-
in functions that mutate the array without invoking Proxy

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

hooks. The agent wraps Array’s push, pop, unshift, shift,
and splice functions to appropriately capture growth / shrink-
age / assignment events.

DOM node hooks: Applications can add and remove nodes
from the DOM tree via browser-provided interfaces; these
operations are not captured via Proxy objects. In order to
capture relevant events on DOM nodes, the agent must
wrap a number of functions and special properties. On Node
objects, it wraps textContent, appendChild, insertBefore,
normalize, removeChild, and replaceChild. On Element ob-
jects, it wraps innerHTML, outerHTML, insertAdjacentElement,
insertAdjacentHTML, insertAdjacentText, and remove.

Leak root assignment hooks: Givenapath P = (e, ..., e,)
to a leak root, the agent instruments all edges e € P to cap-
ture when the program overwrites any objects or variables
in the path from the GC root to the leak root. For example,
given the path window. foo.bar, the program can overwrite
bar by assigning a new value to foo or bar. When a leak root
gets overwritten with a new value, the agent also wraps that
value in a Proxy object.

To interpose on these edges, the agent uses JavaScript
reflection to replace object properties with getters and setters
that interpose on its modification. Since the BLEAK proxy
rewrites closure variables into properties on scope objects
(§5.2), this approach works for all edges in the heap graph.

5.3.2 Exposing Hidden State

Some of the browser’s native methods hide state from heap
snapshots, preventing BLEAK from accurately identifying
and ranking memory leaks involving this state. To overcome
this limitation, the agent builds a mirror of hidden state using
JavaScript objects. Using these mirrors, BLEAK can locate
and diagnose memory leaks that are in or accessible through
DOM nodes, event listeners, and partially applied functions.

DOM nodes: The agent builds a mirror of the DOM tree
as JavaScript objects before the BLEAK driver takes a heap
snapshot, and installs it at the global variable $$$D0M$$$. Each
node in the tree contains the array childNodes that contains
a JavaScript array of (mirror) nodes, and a property root that
points to the original native DOM node.

Event listeners: The agent overwrites addEventListener
and removeEventListener to eagerly maintain an object con-
taining all of the installed listeners. Because this object is
maintained eagerly, ordinary object and array hooks capture
event listener list growth.

Function.bind: The bind function provides native support
for partial application, and implicitly retains the arguments
passed to it. The agent overwrites this function with a pure
JavaScript version that retains the arguments as ordinary
JavaScript closure variables.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

John Vilk and Emery D. Berger

Leaks Fixed — All ---- None

Airbnb

Firefox Debugger

40-

O~ v v o Oy 0y
0.0 25 50 75100 00 25 50 7.5 10.0

Live Heap Size (MB)
ES
&

Loomio

0. F————— .

00 25 50 7.5 10.0

Mailpile Piwik
w—r*" 15- ‘ 90 -
A 10- =2 _ 60- — +
30- o=
0-, 0-,

00 25 50 75 100 00 25 50 7.5 10.0

Round Trips

Figure 8. Impact of fixing memory leaks found with BLEAK: Graphs display live heap size over round trips; error bars
indicate the 95% confidence interval. Fixing the reported leaks eliminates an average of 93% of all heap growth.

6 Evaluation

We evaluate BLEAK by running it on production web appli-
cations. Our evaluation addresses the following questions:

o Precision: How precise is BLEAK’s memory leak detec-
tion? (§6.2)

e Accuracy of diagnoses: Does BLEAK accurately locate
the code responsible for memory leaks? (§6.2)

e Overhead: Does BLEAK impose acceptable overhead? (§6.2)

e Impact of discovered leaks: How impactful are the mem-
ory leaks that BLEAK finds? (§6.3)

o Utility of ranking: Is LeakShare an effective metric for
ranking the severity of memory leaks? (§6.4)

e Staleness vs. growth: How does BLEAK compare to a
staleness-based leak detector? (§6.5)

Our evaluation finds 59 distinct memory leaks across five
web applications, all of which were unknown to application
developers. Of these, 27 corresponded to known-but-unfixed
memory leaks in JavaScript library dependencies, of which
only 6 were independently diagnosed and had pending fixes.
We reported all 32 new memory leaks to the relevant devel-
opers along with our fixes; 16 are now fixed, and 4 have fixes
in code review. We find new leaks in popular applications
and libraries including Airbnb, Angular JS (1.x), Google Maps
SDK, Google Tag Manager, and Google Analytics. Appen-
dix A lists each of these memory leaks, the application or
library responsible, and links to bug reports with fixes.

We run BLEAK on each web application for 8 round trips
through specific visual states to produce a BLEAK leak re-
port, as in Figure 3b. We describe these loops using only
17-73 LOC; Appendix B contains the code for each loop.
This process takes less than 15 minutes per application on
our evaluation machine, a MacBook Pro with a 2.9 GHz Intel
Core i5 and 16GB of RAM. For each application, we analyze
the reported leaks, write a fix for each true leak, measure
the impact of fixing the leaks, and compare LeakShare with
alternative ranking metrics.

6.1 Applications

Because there is no existing corpus of benchmarks for web ap-
plication memory leak detection, we created one. Our corpus
consists of five popular web applications that both comprise
large code bases and whose overall memory usage appeared
to be growing over time. We primarily focus on open source
web applications because it is easier to develop fixes for the
original source code; this represents the normal use case for
developers. We also include a single closed-source website,
Airbnb, to demonstrate BLEAK’s ability to diagnose websites
in production. We present each web application, highlight a
selection of the libraries they use, and describe the loop of
visual states we use in our evaluation:

Airbnb [2]: A website offering short-term rentals and other
services, Airbnb uses React, Google Maps SDK, Google Ana-
lytics, the Criteo OneTag Loader, and Google Tag Manager.
BLEAK loops between the pages /s/all, which lists all ser-
vices offered on Airbnb, and /s/homes, which lists only homes
and rooms for rent.

Piwik 3.0.2 [51]: A widely-used open-source analytics plat-
form; we run BLEAK on its in-browser dashboard that dis-
plays analytics results. The dashboard primarily uses jQuery
and Angular]S. BLEAK repeatedly visits the main dashboard
page, which displays a grid of widgets.

Loomio 1.8.66 [34]: An open-source collaborative platform
for group decision-making. Loomio uses Angular]S, LokiJS,
and Google Tag Manager. BLEAK runs Loomio in a loop
between a group page, which lists all of the threads in that
group, and the first thread listed on that page.

Mailpile v1.0.0 [36]: An open-source mail client. Mailpile
uses jQuery. BLEAK runs Mailpile’s demo [35] in a loop that
visits the inbox and the first four emails in the inbox (revisit-
ing the inbox in-between emails).

Firefox Debugger (commit 91f5¢63) [15]: An open-source
JavaScript debugger written in React that runs in any web
browser. We run the debugger while it is attached to a Fire-
fox instance running Mozilla’s SensorWeb [45]. BLEAK runs

BLEAk: Automatically Debugging Memory Leaks in Web Applications

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Loop Leak False Distinct Stale Growth Runtime

Program LOC Roots Pos. Leaks Leaks Prec. Reduction Total Algs Proxy Snapshot
Airbnb 17 32 2 32 4 94% 1.04 MB (81.0%)
Piwik 32 17 0 11 4 100% 8.14 MB (99.3%) 224s 7.1% 4.7% 50.3%
Loomio 73 10 1 9 4 90% 2.83 MB (98.3%) 149s 3.7% 6.2% 37.9%
Mailpile 37 4 0 1 100% 0.80 MB (91.8%) 388s 0.4% 1.0% 4.0%
Firefox Debugger 17 4 0 0 100% 0.47 MB (98.2%) 214s 2.3% 37.9% 33.6%
Total / mean: 35 67 3 59 13 96.8% 2.66 MB (93.7%) 243.8s 3.4% 12.5% 31.4%

Figure 9. BLEAK precisely finds impactful memory leaks: On average, BLEAK finds these leaks with over 95% precision,
and fixing them eliminates over 90% of all heap growth. 77% of these leaks would not be found with a staleness metric (§6.5).

the debugger in a loop that opens and closes SensorWeb’s
main.js in the debugger’s text editor.

6.2 Precision, Accuracy, and Overhead

To determine BLEAK’s leak detection precision and the ac-
curacy of its diagnoses, we manually check each BLEAK-
reported leak in the final report to confirm (1) that it is grow-
ing without bound and (2) that the stack traces correctly
report the code responsible for the growth. To determine
BLEAK’s overhead, we log the runtime of the following spe-
cific operations during automatic leak debugging: BLEAK’s
three core algorithms from §4 (Algs), proxy transformations
from §5.2 (Proxy), and receiving and parsing heap snapshots
from Google Chrome (Snapshot). We were unable to gather
overhead information for Airbnb, the only closed-source ap-
plication, because the company fixed the leaks we reported
prior to this experiment. Figure 9 summarizes our results.

BLEAK has an average precision of 96.8%, and a me-
dian precision of 100% on our evaluation applications.
There are only three false positives. All point to an object
that continuously grows until some threshold or timeout oc-
curs; developers using BLEAK can avoid these false positives
by increasing the number of round trips. Two of the three
false positives are actually the same object located in the
Google Tag Manager JavaScript library.

With one exception, BLEAK accurately identifies the
code responsible for all of the true leaks. BLEAK reports
stack traces that directly identifies the code responsible for
each leak. In cases where multiple independent source lo-
cations grow the same leak root, BLEAK reports all relevant
source locations. For one specific memory leak, BLEAK fails
to record a stack trace. Guided by BLEAK’s leak reports,
we were able to fix every memory leak. Fixing each mem-
ory leak took approximately 15 minutes. Most fixes involve
adding simple cleanup hooks to remove unneeded references
or logic to avoid duplicating state every round trip.

BLEAK locates, ranks, and diagnoses memory leaks
in less than 7 minutes on our open-source evaluation ap-
plications. BLEAK’s core algorithms (PROPAGATEGROWTH,
FINDLEAKPATHS, CALCULATELEAKSHARE) contribute less than

8% to that runtime. The primary contribution to overhead on
all benchmarks, with one exception, is receiving and parsing
Chrome’s JSON-based heap snapshots. The Firefox Debugger
spends more time in the proxy because it uses new JavaScript
features that BLEAK supports by invoking the Babel compiler,
which dominates proxy runtime for that application [4].

6.3 Leak Impact

To determine the impact of the memory leaks that BLEAK
reports, we measure each application’s live heap size over 10
loop iterations with and without our fixes. We use BLEAK’s
HTTP/HTTPS proxy to directly inject memory leak fixes
into the application, which lets us test fixes on closed-source
websites like Airbnb. We run each application except Airbnb
5 times in each configuration (we run Airbnb only once per
configuration for reasons discussed in §6.4).

To calculate the leaks’ combined impact on overall heap
growth, we calculate the average live heap growth between
loop iterations with and without the fixes in place, and take
the difference (Growth Reduction). For this metric, we ignore
the first five loop iterations because these are noisy due to
application startup. Figure 8 and Figure 9 present the results.

On average, fixing the memory leaks that BLEAK re-
ports eliminates over 93% of all heap growth on the eval-
uation applications (median: 98.2%). These results suggest
that BLEAK does not miss any significantly impactful leaks.

6.4 LeakShare Effectiveness

We compare LeakShare against two alternative ranking met-
rics: retained size and transitive closure size. Retained size
corresponds to the amount of memory the garbage collector
would reclaim if the leak root were removed from the heap
graph, and is the metric that standard heap snapshot viewers
display to the developer [29, 40, 44, 49]. The transitive clo-
sure size of a leak root is the size of all objects reachable from
the leak root; Xu et al. use this metric along with staleness
to rank Java container memory leaks [74]. Since JavaScript
heaps are highly connected and frequently contain refer-
ences to the global scope, we expect this metric to report
similar values for most leaks.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Growth Reduction for Top Leaks Fixed

Program Metric 25% 50% 75%
LeakShare 0K 111K 462K
Airbnb Retained Size 0K 0K 105K
Trans. Closure Size 0K 196K 393K
LeakShare 0K 1083K 2878K
Loomio Retained Size 64K 186K 2898K
Trans. Closure Size 59K 67K 2398K
LeakShare 613K 817K 820K
Mailpile Retained Size 613K 817K 820K
Trans. Closure Size 0K 0K 201K
LeakShare 8003K 8104K 8306K
Piwik Retained Size 2073K 7969K 8235K

Trans. Closure Size 103K 110K 374K

Figure 10. Performance of ranking metrics: Growth re-
duction by metric after fixing quartiles of top ranked leaks.
Bold indicates greatest reduction (+1%). We omit Firefox be-
cause it has only four leaks which must all be fixed (see §2).
LeakShare generally outperforms or matches other metrics.

We measure the effectiveness of each ranking metric by
calculating the growth reduction (as in §6.3) over the appli-
cation with no fixes after fixing each memory leak in ranked
order. We then calculate the quartiles of this data, indicating
how much heap growth is eliminated after fixing the top
25%, 50%, and 75% of memory leaks reported ranked by a
given metric. We sought to write patches for each evaluation
application that fix a single leak root at a time, but this is
not feasible in all cases. Specifically, one Airbnb patch fixes
two leak roots; one Mailpile patch (a jQuery bug) fixes two
leak roots; and one Piwik patch, which targeted a loop, fixes
nine leak roots. In these cases, we apply the patch during a
ranking for the first relevant leak root reported.

We run each application except Airbnb for ten loop itera-
tions over five runs for each unique combination of metric
and number of top-ranked leak roots to fix. We avoid run-
ning duplicate configurations when multiple metrics report
the same ranking. Airbnb is challenging to evaluate because
it has 30 leak roots, randomly performs A/B tests between
runs, and periodically updates its minified codebase in ways
that break our memory leak fixes. As a result, we were only
able to gather one run of data for Airbnb for each unique
configuration. Figure 10 displays the results.

In most cases, LeakShare outperforms or ties the
other metrics. LeakShare initially is outperformed by other
metrics on Airbnb and Loomio because it prioritizes leak
roots that share significant state with other leak roots. Re-
tained size always prioritizes leak roots that uniquely own
the most state, which provide the most growth reduction
in the short term. LeakShare eventually surpasses the other

John Vilk and Emery D. Berger

metrics on these two applications as it fixes the final leak
roots holding on to shared state.

6.5 Leak Staleness

We manually analyzed the leaks BLEAK finds to determine
whether they would also be found using a staleness-based
technique. We assume that, to avoid falsely reporting most
event listeners as stale, a staleness-based technique would
exercise each event listener on the page that could be trig-
gered via normal user interaction. In this case, no memory
leaks stemming from event listener lists would be found by a
staleness-based tool. Leaks in internal application arrays and
objects that emulate event listener lists for user-triggered
events would also not be found. Finally, we assume that ac-
tive DOM elements in the DOM tree would not be marked
stale, since they are clearly in use by the webpage. Mem-
ory leaks stemming from node lists in the DOM would also
not be found by a staleness-based technique. Of the mem-
ory leaks BLEAK finds, at least 77% would not be found
with a staleness-based approach. Figure 9 presents re-
sults per application (see Appendix A for individual leaks).

7 Related Work

Web application memory leak detectors: BLEAK auto-
matically debugs memory leaks in modern web applications;
past work in this space is ineffective, out of date, or not suf-
ficiently general. LeakSpot locates JavaScript allocation and
reference sites that produce and retain increasing numbers
of objects over time, and uses staleness as a heuristic to refine
its output [52]. On real web applications, LeakSpot typically
reports over 50 different allocation and reference sites that
developers must manually inspect to identify and diagnose
memory leaks. AjaxScope dynamically detects leaks due to
a bug in web browsers that has now been fixed [30]. JSWhiz
statically analyzes code written with Google Closure type
annotations to detect specific leak patterns [50].

Web application memory debugging: Some tools help
web developers debug memory usage and present diagnostic
information that the developer must manually interpret to
locate leaks (Section 1 describes Google Chrome’s Develop-
ment Tools). MemInsight summarizes and displays informa-
tion about the JavaScript heap, including per-object-type
staleness information, the allocation site of individual ob-
jects, and retaining paths in the heap [27]. Unlike BLEAK,
these tools do not directly identify memory as leaking or
identify the code responsible for leaks.

Growth-based memory leak detection: LeakBot looks
for patterns in the heap graphs of Java applications to find
memory leaks [41]. LeakBot assumes that leak roots own
all of their leaking objects, but leaked objects in web appli-
cations frequently have multiple owners. BLEAK does not
rely on specific patterns, and uses round trips to the same
visual state to identify leaking objects. Cork uses static type

BLEAk: Automatically Debugging Memory Leaks in Web Applications

information available in the JVM to locate types that appear
to be the source of memory leaks. [28]. Cork is not applicable
to dynamically typed languages like JavaScript.

Staleness-based memory leak detection: SWAT (C/C++),
Sleigh (JVM), and Hound (C/C++) find leaking objects using
a staleness metric derived from the last time an object was
accessed, and identify the call site responsible for allocating
them [8, 25, 48]. Leakpoint (C/C++) also identifies the last
point in the execution that referenced a leaking memory
location [9]. As we show (§6.5), staleness is ineffective for at
least 77% of the memory leaks BLEAK identifies .

Hybrid leak detection approaches: Xu et al. identify leaks
stemming from Java collections using a hybrid approach that
targets containers that grow in size over time and contain
stale items. The vast majority of memory leaks found by
BLEAK would not be considered stale (§6.5).

Specification-based memory leak detection: LeakChaser
and GC Assertions let developers manually annotate their
programs with heap invariants that, when broken, indicate a
memory leak [1, 73]. BLEAK’s growth-based approach iden-
tifies memory leaks automatically without taking liveness
relationships into account.

8 Conclusion

This paper presents BLEAK, the first effective system for
debugging client-side memory leaks in web applications.
We show that BLEAK has high precision and finds numer-
ous previously-unknown memory leaks in web applications
and libraries. BLeak is open source [71], and is available for
download at http://bleak-detector.org/.

We believe the insights we develop for BLEAK are appli-
cable to a broad class of GUI applications, including mobile
applications. Many mobile applications are actually hybrid
applications, which combine both native and browser com-
ponents. However, even native GUI applications, like web
applications, are commonly event-driven and repeatedly visit
specific views. We plan in future work to explore the appli-
cation of BLEAK’s techniques to find memory leaks in GUI
applications.

Acknowledgments

John Vilk was supported by a Facebook PhD Fellowship.
This material is based upon work supported by the National
Science Foundation under Grant No. 1637536. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author and do not necessarily
reflect the views of the National Science Foundation.

References

[1] Edward Aftandilian and Samuel Z. Guyer. 2009. GC Assertions: Using
the Garbage Collector to Check Heap Properties. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design and
Implementation. 235-244. https://doi.org/10.1145/1542476.1542503

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

[2] Airbnb, Inc. 2017. Vacation Rentals, Homes, Experiences, & Places -
Airbnb. http://airbnb.com/. [Online; accessed 12-October-2017].

[3] Bill Allombert, Avery Pennarun, Bill Allombert, and Petter Reinholdt-
sen. 2017. Debian Popularity Contest. https://popcon.debian.org/.
See entries for iceweasel and chromium-browser. [Online; accessed
4-November-2017].

[4] Babel. 2017. Babel - The compiler for writing next generation
JavaScript. https://babeljs.io/. [Online; accessed 15-October-2017].

[5] Dmitry Baranovskiy. 2017. DmitryBaranovskiy/raphael: JavaScript
Vector Library. https://github.com/DmitryBaranovskiy/raphael. [On-
line; accessed 6-November-2017].

[6] Kayce Basques. 2017. Fix Memory Problems. https://developers.google.
com/web/tools/chrome-devtools/memory-problems/. [Online; ac-
cessed 2-November-2017].

[7] Jason Bedard. 2017. Deferred: fix memory leak of promise callbacks.
https://github.com/jquery/jquery/pull/3657. [Online; accessed 8-
November-2017].

[8] Michael D. Bond and Kathryn S. McKinley. 2006. Bell: bit-encoding
online memory leak detection. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and
Operating Systems. 61-72. https://doi.org/10.1145/1168857.1168866

[9] James A. Clause and Alessandro Orso. 2010. LEAKPOINT: pinpointing
the causes of memory leaks. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1. 515-524.
https://doi.org/10.1145/1806799.1806874

[10] Jeff Collins. 2017. jeff-collins/ment.io: Mentions and Macros for An-
gular. https://github.com/jeff-collins/ment.io. [Online; accessed 6-
November-2017].

[11] Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contribu-
tors. 2010—. mitmproxy: A free and open source interactive HTTPS
proxy. https://mitmproxy.org/ [Online; accessed 15-October-2017].

[12] Criteo. 2017. Criteo OneTag Explained. https://support.criteo.com/hc/
en-us/articles/202726972-Criteo-OneTag-explained. [Online; accessed
6-November-2017].

[13] Steve Dent. 2017.
its RAM hunger.
firefox-performance-tab-will-curb-its-ram-hunger/.
accessed 4-November-2017].

[14] Filament Group, Inc. 2017. filamentgroup/loadCSS: A function for load-
ing CSS asynchronously. https://github.com/filamentgroup/loadCSS.
[Online; accessed 6-November-2017].

[15] Firefox Developer Tools Team. 2017. debugger.html: The Firefox de-
bugger that works anywhere. http://firefox-dev.tools/debugger.html/.
[Online; accessed 12-October-2017].

[16] Google. 2011. Bug: Destroying Google Map Instance Never Frees
Memory. https://issuetracker.google.com/issues/35821412. [Online;
accessed 2-November-2017].

[17] Google. 2017. Adding analytics.js to Your Site. https://developers.
google.com/analytics/devguides/collection/analyticsjs/. [Online; ac-
cessed 6-November-2017].

[18] Google. 2017. angular/angular.js: Angular]S - HTML enhanced for
web apps! https://github.com/angular/angular.js. [Online; accessed
6-November-2017].

[19] Google. 2017. Chrome DevTools Protocol Viewer. https://
chromedevtools.github.io/devtools-protocol/. [Online; accessed 7-
November-2017].

[20] Google. 2017. Google Maps JavaScript APL https://developers.google.
com/maps/documentation/javascript/. [Online; accessed 6-November-
2017].

[21] Google. 2017. Speed up Google Chrome. https://support.google.com/
chrome/answer/1385029. [Online; accessed 4-November-2017].

[22] Google. 2017. Tag Management Solutions for Web and Mobile.
https://www.google.com/analytics/tag-manager/. [Online; accessed
6-November-2017].

Firefox ‘performance’ tab will curb
https://www.engadget.com/2017/04/13/
[Online;

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Kentaro Hara.

Blink.

2013. Oilpan: GC for
https://docs.google.com/presentation/d/

1YtfurcyKFSOhxPOnC3U6JJroM8aRP49YfOQWznZ9jrk. [On-
line; accessed 4-November-2017].

Kentaro Hara. 2017. State of Blink’s
Speed. https://docs.google.com/presentation/d/

1Az-F3CamBq6hZ5QqQt-ynQEMWEhHY1VTvIRwL7b_6TU.

See slide 46. [Online; accessed 2-November-2017].

Matthias Hauswirth and Trishul M. Chilimbi. 2004. Low-overhead
memory leak detection using adaptive statistical profiling. In Pro-
ceedings of the 11th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. 156-164.
https://doi.org/10.1145/1024393.1024412

Alan Henry. 2011. How Do I Stop My Browser from
Slowing to a Crawl? https://lifehacker.com/5833074/
how-do-i-stop-my-browser-from-slowing-to-a-crawl. [Online;
accessed 4-November-2017].

Simon Holm Jensen, Manu Sridharan, Koushik Sen, and Satish Chan-
dra. 2015. MemlInsight: Platform-Independent Memory Debugging
for JavaScript. In Proceedings of the 2015 10th Joint Meeting on Founda-
tions of Software Engineering. 345-356. https://doi.org/10.1145/2786805.
2786860

Maria Jump and Kathryn S. McKinley. 2007. Cork: dynamic memory
leak detection for garbage-collected languages. In Proceedings of the
34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. 31-38. https://doi.org/10.1145/1190216.1190224

Meggin Kearney. 2017. How to Record Heap Snapshots.
https://developers.google.com/web/tools/chrome-devtools/
memory-problems/heap-snapshots. [Online; accessed 11-November-
2017].

Emre Kiciman and Benjamin Livshits. 2007. AjaxScope: A platform for
remotely monitoring the client-side behavior of web 2.0 applications. In
Proceedings of the 21st ACM Symposium on Operating Systems Principles.
17-30. https://doi.org/10.1145/1294261.1294264

Loreena Lee and Robert Hundt. 2012. BloatBusters: Eliminating
memory leaks in Gmail. https://docs.google.com/presentation/d/
TwUVmf78gG-ra5aOxvTfYdiLkdGaR9OhXRnOIllcEmu2s. [Online;
accessed 2-November-2017].

Joe Lencioni. 2017. Possible memory leak when used with the
same URL multiple times. https://github.com/filamentgroup/loadCSS/
issues/236. [Online; accessed 6-November-2017].

James Teng Kin Lo, Eric Wohlstadter, and Ali Mesbah. 2013. Imagen:
runtime migration of browser sessions for JavaScript web applications.
In 22nd International World Wide Web Conference. 815-826. http://dl.
acm.org/citation.cfm?id=2488459

Loomio Cooperative Limited. 2017. Loomio - Better decisions together.
https://www.loomio.org/. [Online; accessed 12-October-2017].
Mailpile Team. 2017. Mailpile Demo’s mailpile v1.0.0rc0. https://demo.
mailpile.is/in/inbox/. [Online; accessed 8-November-2017].

Mailpile Team. 2017. Mailpile: e-mail that protects your privacy. http:
//mailpile.is/. [Online; accessed 12-October-2017].

Materialize. 2017. Dogfalo/materialize: Materialize, a CSS Framework
based on Material Design. https://github.com/Dogfalo/materialize.
[Online; accessed 6-November-2017].

Kirk McElhearn. 2016. It’s time for Safari to go on a mem-
ory diet. https://www.macworld.com/article/3148256/browsers/
it-s-time-for-safari-to-go-on-a-memory-diet.html. [Online; accessed
4-November-2017].

Kirk McElhearn. 2017. Apple’s Safari Web Browser Now
Uses Much Less Memory. https://www.kirkville.com/
apples-safari-web-browser-now-uses-much-less-memory/. [Online;
accessed 4-November-2017].

Microsoft. 2017. Microsoft Edge F12 DevTools - Memory. https://docs.
microsoft.com/en-us/microsoft-edge/f12-devtools-guide/memory.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

John Vilk and Emery D. Berger

[Online; accessed 4-November-2017].

Nick Mitchell and Gary Sevitsky. 2003. LeakBot: An Automated and
Lightweight Tool for Diagnosing Memory Leaks in Large Java Appli-
cations. In Proceedings of ECOOP 2003 - Object-Oriented Programming.
351-377. https://doi.org/10.1007/978-3-540-45070-2_16

Mozilla. 2017. about:memory. https://developer.mozilla.org/en-US/
docs/Mozilla/Performance/about:memory. [Online; accessed 4-
November-2017].

Mozilla. 2017. Firefox uses too much memory (RAM)
- How to fix. https://support.mozilla.org/en-US/kb/
firefox-uses-too-much-memory-ram. [Online; accessed 4-
November-2017].

Mozilla. 2017. Memory - Firefox Developer Tools. https://developer.
mozilla.org/en-US/docs/Tools/Memory. [Online; accessed 11-
November-2017].

Mozilla. 2017. SensorWeb. http://aws-sensorweb-static-site.
s3-website-us-west-2.amazonaws.com/. [Online; accessed 2-
November-2017].

Mozilla Development Network. 2017. Proxy - JavaScript.
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Proxy. [Online; accessed 7-November-2017].

Nick Nguyen. 2017. The Best Firefox Ever. https://blog.mozilla.org/
blog/2017/06/13/faster-better-firefox/. [Online; accessed 4-November-
2017].

Gene Novark, Emery D. Berger, and Benjamin G. Zorn. 2009. Efficiently
and precisely locating memory leaks and bloat. In Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design and
Implementation. 397-407. https://doi.org/10.1145/1542476.1542521
Joseph Pecoraro. 2016. Memory Debugging with Web Inspector. https:
//webkit.org/blog/6425/memory-debugging-with-web-inspector/.
[Online; accessed 4-November-2017].

Jacques A. Pienaar and Robert Hundt. 2013. JSWhiz: Static analysis
for JavaScript memory leaks. In Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization. 11:1-
11:11. https://doi.org/10.1109/CG0.2013.6495007

Piwik.org. 2017. #1 Free Web & Mobile Analytics Software. https:
//piwik.org/. [Online; accessed 12-October-2017].

Masoomeh Rudafshani and Paul A. S. Ward. 2017. LeakSpot: Detection
and diagnosis of memory leaks in JavaScript applications. Software:
Practice and Experience 47, 1 (2017), 97-123. https://doi.org/10.1002/

spe.2406
Greg Sterling. 2015. No, Apps Aren’'t Winning.
The Mobile Browser Is. http://marketingland.com/

morgan-stanley-no-apps-arent-winning-themobile-browser-is-144303.
[Online; accessed 2-November-2017].

The jQuery Foundation. 2017. jquery/jquery: jQuery JavaScript Library.
https://github.com/jquery/jquery/. [Online; accessed 6-November-
2017].

John Vilk. 2017. [Browser Client] Minor memory leak: “.mail_source”
event resubscriptions. https://github.com/mailpile/Mailpile/issues/
1911. [Online; accessed 8-November-2017].

John Vilk. 2017. [Browser Client] Minor memory leak: Text nodes
in notification area. https://github.com/mailpile/Mailpile/issues/1931.
[Online; accessed 8-November-2017].

John Vilk. 2017. Fix memory leak in Element.removeData(). https://
github.com/DmitryBaranovskiy/raphael/pull/1077. [Online; accessed
8-November-2017].

John Vilk. 2017. Fix memory leaks in data table / jgplot. https://github.
com/piwik/piwik/pull/11354. [Online; accessed 8-November-2017].
John Vilk. 2017. Fix multiple memory leaks in UserCountryMap. https:
//github.com/piwik/piwik/pull/11350. [Online; accessed 8-November-
2017].

John Vilk. 2017. Fix UIControl memory leak. https://github.com/piwik/
piwik/pull/11362. [Online; accessed 8-November-2017].

[61] John Vilk. 2017. JavaScript Memory Leak: #columnPreview click han-

dlers. https://github.com/piwik/piwik/issues/12058. [Online; accessed
8-November-2017].

[62] John Vilk. 2017. JavaScript Memory Leak: widgetContent $destroy han-

dlers. https://github.com/piwik/piwik/issues/12059. [Online; accessed
8-November-2017].

[63] John Vilk. 2017. Memory Leak: gtm.js repeatedly appends conver-

sion_async.js to head when pushing to dataLayer. https://goo.gl/
WFPt4M. [Online; accessed 6-November-2017].

[64] John Vilk. 2017. Memory Leak in Preview Component. https://github.

com/devtools-html/debugger.html/issues/3822. [Online; accessed

8-November-2017].

[65] John Vilk. 2017. Memory Leak: material_select never removes global

click handlers. https://github.com/Dogfalo/materialize/issues/4266.
[Online; accessed 8-November-2017].

[66] John Vilk. 2017. Minor frontend memory leaks due to unremoved

LokiJS dynamic views. https://github.com/loomio/loomio/issues/4248.
[Online; accessed 8-November-2017].

[67] John Vilk. 2017. Minor JavaScript Memory Leak: piwikApiService all-

Requests array. https://github.com/piwik/piwik/issues/12105. [Online;
accessed 8-November-2017].

[68] John Vilk. 2017. Small Memory Leak and Correctness Bug in ana-

lytics.js. https://issuetracker.google.com/issues/66525724. [Online;
accessed 6-November-2017].

BLEAk: Automatically Debugging Memory Leaks in Web Applications

[69]

[70]

[71]

[72]

(73]

[74]

[75]

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

John Vilk. 2017. Small memory leak: Callbacks added to window._xdc_
are never cleared. https://issuetracker.google.com/issues/66529186.
[Online; accessed 6-November-2017].

John Vilk. 2017. Small Memory Leak in $rootScope.$on. https://github.
com/angular/angular.js/issues/16135. [Online; accessed 8-November-
2017].

John Vilk and Emery D. Berger. 2018. BLEAK repository. https://github.
com/plasma-umass/bleak. [Online; accessed 20-March-2018].

Brent Wheeldon. 2017. Unbind events to prevent memory leaks.
https://github.com/jeff-collins/ment.io/pull/138. [Online; accessed
8-November-2017].

Guogqing (Harry) Xu, Michael D. Bond, Feng Qin, and Atanas Rountev.
2011. LeakChaser: Helping programmers narrow down causes of
memory leaks. In Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation. 270-282. https:
//doi.org/10.1145/1993498.1993530

Guoqing (Harry) Xu and Atanas Rountev. 2013. Precise memory leak
detection for Java software using container profiling. ACM Transac-
tions on Software Engineering and Methodology 22, 3 (2013), 17:1-17:28.
https://doi.org/10.1145/2491509.2491511

Limin Zhu. 2017. Improved JavaScript performance,
WebAssembly, and Shared Memory in Microsoft
Edge. https://blogs.windows.com/msedgedev/2017/04/20/
improved-javascript-performance-webassembly-shared-memory.
[Online; accessed 4-November-2017].

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

A Leaks Found By BLEAK

In the next few pages, we document all 59 memory leaks
found by BLEAK in a separate table per evaluation appli-
cation. Each memory leak corresponds to a specific source
code location that causes unbounded growth; in some cases,
multiple memory leaks grow the same leak root or a single
memory leak grows multiple leak roots. For each bug, we
report the leak root, the type of the leak root, the library
responsible for the unbounded growth (Culprit), whether or
not the memory leak was previously known (New), if the
leaked objects would be considered stale under the assump-
tions discussed in Section 6.5 (Stale), a link to the bug report,
and whether or not the bug has been fixed. A 1 in the “Fixed”
column indicates that a fix is currently under code review,
whereas v'indicates that a fix has already been merged into
the codebase. A T in the “New” column indicates that the
memory leak was unknown to the application developers,
whereas a v/indicates that the memory leak was unknown
to the developers of the culprit library/application.

John Vilk and Emery D. Berger

BLEAk: Automatically Debugging Memory Leaks in Web Applications PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Leak Root Type Culprit New Stale Bug Report Fixed
1 document.body.childNodes DOM loadCSS [14] v [32] T
2 ‘blur’ listeners on window EL Google Maps SDK [20] T [16]
3 ‘blur’ listeners on window EL Airbnb v Emailed to Airbnb
4 ‘resize’ listeners on window EL Google Maps SDK T [16]
5 ‘click’ listeners on document EL Google Maps SDK + [16]
6 ‘scroll’ listeners on window EL Google Maps SDK T [16]
7 ‘scroll’ listeners on window EL Airbnb v Emailed to Airbnb
8 ‘keydown’ listeners on document ~ EL Google Maps SDK T [16]
9 ‘keypress’ listeners on document EL Google Maps SDK T [16]
10 document.__e3_[‘keydown’] Object Google Maps SDK T [16]
11 ‘keyup’ listeners on document EL Google Maps SDK T [16]
12 __e3_[‘resize’] Object Google Maps SDK T [16]
13 document.__e3_[‘keyup’] Object Google Maps SDK T [16]
14 document.__e3_[“click’] Object Google Maps SDK T [16]
15 __e3_[‘blur’] Object Google Maps SDK T [16]
16 document.__e3_[‘keypress’] Object Google Maps SDK T [16]
17 ‘MSFullscreenChange’ listeners on EL Google Maps SDK T [16]
document
18 ‘fullscreenchange’ listeners on EL Google Maps SDK T [16]
document
19 ‘mozfullscreenchange’ listeners on EL Google Maps SDK T [16]
document
20 ‘webkitfullscreenchange’ listeners EL Google Maps SDK T [16]
on document
21 document.__e3_ Object Google Maps SDK T [16]
[“fullscreenchange’]
22 document.__e3_ Object Google Maps SDK T [16]
[“mozfullscreenchange’]
23 document.__e3_ Object Google Maps SDK T [16]
[‘webkitfullscreenchange’]
24 document.__e3_ Object Google Maps SDK T [16]
[“MSFullscreenChange’]
25 document.head.childNodes DOM Google Tag Manager [22] v [63]
26 _xdc_ Object Google Maps SDK v v [69] v
27 ‘focus’ listeners on window EL Airbnb v Emailed to Airbnb
28 ga.h.t0.b.data.keys Array Google Analytics [17] v v [68]
29 document.body. DOM Criteo OneTag Loader [12] v/ Emailed to Criteo F
childNodes[126].childNodes
30 e.extraData in closure of Array Criteo OneTag Loader v v Emailed to Criteo T
criteo_g.push
31 Ainclosure of __inner__ property Array Airbnb v v Emailed to Airbnb

on the second ‘popstate’ listener of
window
32 n[‘5v9T’].exports._events Array Airbnb v Emailed to Airbnb
[’ header:search’] within closure
of webpackJsonp

Figure 11. Memory leaks in Airbnb found by BLEAk

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA John Vilk and Emery D. Berger

Leak Root Type Culprit New Stale Bug Report Fixed
33 jQuery223056319336220622061.events.resize Array Piwik (Data Table) v [58] v
34 jQuery223056319336220622061.events.resize Array Piwik (jqPlot Plugin) v [58] v
35 jQuery223056319336220622061.events.resize Array Piwik (Visitor Map) v [59] v
36 bb in closure of Raphael Object Raphael.js [5] v v [57] +
37 body. jQuery223056319336220622061.events Array Piwik v [58] v

.mouseup in closure of

$widgetContent.__proto__.mwheellntent
38 document.body.childNodes DOM Piwik v [59] v
39 allRequests in closure of Piwik Array v v [67] v

a.piwikApi.withTokenInUrl in closure of
Ea.jQuery223056319336220622062.%$injector
.invoke in closure of jQuery
40 $widgetContent[‘0’] Array Piwik v v [62]
.jQuery223056319336220622062. $scope
.$$listeners. $destroy
41 jQuery223056319336220622061.events.click Array Materialize [37] v v
42 piwik.UI.UIControl._controls Array Piwik v v [60] v
43 Property jQuery223056319336220622061.events Array Piwik v v
.click on all div children of #columnPreview

—
(o))
(8,

—_

—
(o)
—_

—_—

Figure 12. Memory leaks in Piwik found by BLEAk

Leak Root Type Culprit New Stale Bug Report Fixed
44 angular.element.cache[3].events[‘resize’] Array Ment.io [10] T [72] T
45 angular.element.cache[2].events[‘click’] Array Ment.io T [72] +
46 angular.element.cache[2].events[‘paste’] Array Ment.io T [72] T
47 angular.element.cache[2].events[‘keypress’] Array Ment.io + [72] +
48 angular.element.cache[2].events[‘keydown’] Array Ment.io T [72] T
49 Loomio.records.discussions.collection Array Loomio v v [66] v
.DynamicViews

50 angular.element.cache[4].data.$scope Array Angular]S (1.x) [18] v [70] v
.$parent.$$listeners. $translateChangeSuccess

51 Loomio.records.stanceChoices.collection Array Loomio v v [66] v
.DynamicViews

52 Loomio.records.versions.collection Array Loomio v v [66] v
.DynamicViews

Figure 13. Memory leaks in Loomio found by BLEAK
Leak Roots Type Culprit New Stale Bug Report Fixed
53 1list in closure of tuples[0][3].add in closure of Array jQuery [54] T v [7] T
$.ready.then, and list in closure of tuples[2][3].add
in closure of $.ready.then
54 EventlLog.eventbindings Array Mailpile v [55] v
55 document.body.childNodes[3].childNodes[3].childNodes DOM Mailpile v [56] v

Figure 14. Memory leaks in Mailpile found by BLEAk

BLEAk: Automatically Debugging Memory Leaks in Web Applications PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

Leak Roots Type Culprit New Stale Bug Report Fixed
56 ‘mouseover’ listeners on cm.display.wrapper EL Firefox debugger v [64] v
57 ‘mouseup’ listeners on cm.display.wrapper EL Firefox debugger v [64] v
58 ‘mousedown’ listeners on cm.display.wrapper EL Firefox debugger v/ [64] v
59 cm._handlers.scroll Array Firefox debugger v [64] v

Figure 15. Memory leaks in the Firefox debugger found by BLEAK

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

B BLEAK Evaluation Application Loops

This section lists the code for all of the loops used in the
evaluation (§6). These scripts are the only input BLEAK needs
to automatically locate, rank, and debug the memory leaks
from the evaluation. Note that the line counts reported in
Figure 9 ignore comment lines.

John Vilk and Emery D. Berger

BLEAk: Automatically Debugging Memory Leaks in Web Applications PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

1 exports.loop = [{

2 check: function() {

3 const buttons = document.getElementsByTagName('button');

4 return document.getElementsByTagName('a')[4].getAttribute('aria-selected') "true';

5 3,

6 next: function() {

7 document.getElementsByTagName('a')[5].click();

8 3

9 3 {

10 check: function() {

11 const buttons = document.getElementsByTagName('button');

12 return document.getElementsByTagName('a')[5].getAttribute('aria-selected') === 'true' && buttons.length > 11 &&
— buttons[11].innerText.trim() === "Room type"

13 1

14 next: function() {

15 document.getElementsByTagName('a')[4].click();

16 }

17 3]

Figure 16. Airbnb’s loop.

1 exports.login = [

2 {

3 check: function() {

4 const input = document.getElementsByTagName('input');
5 const username = input[0];

6 const password = input[2];

7 const submit = document.getElementsByClassName('submit')[0];
8 return !!(username && password && submit);

9 3

10 next: function() {

11 const input = document.getElementsByTagName('input');
12 const username = input[0];

13 const password = input[2];

14 const submit = document.getElementsByClassName('submit')[0];
15 username.value = "bleak";

16 password.value = "bleakpldi";

17 submit.click();

18 }

19 }

20 1

21 exports.loop = [

22 {

23 check: function() {

24 const svg = document.getElementsByTagName('svg');

25 const canvas = document.getElementsByTagName('canvas');
26 return svg.length === 1 && canvas.length === 42;

27 1,

28 next: function() {

29 document.getElementsByClassName('item')[1].click();
30 }

31 }

2 1

Figure 17. Piwik’s loop.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA John Vilk and Emery D. Berger

1 exports.login = [{ 38 3
2 check: function() { 39 return false;
3 const emailField = 40 3,
— document.getElementsByTagName('input')[1]; 41 next: function() {
4 if (emailField) { 42 document.getElementsByTagName('md_icon_button')[0]
5 return emailField.getAttribute('name') === 'email'; — .clickQ);
6 } 43 }
7 return false; a3},
8 3, 45 exports.loop = [{
9 next: function() { 46 check: function() {
10 const emailField = 47 const span =
— document.getElementsByTagName('input')[1]; — document.getElementsByTagName('span')[6];
11 emailField.value = 'default@loomio.org'; 48 return !!span && span.innerText === "Fun Group 1";
12 // Notify Angular code of change. 49 3,
13 emailField.dispatchEvent(new Event("change")); 50 next: function() {
14 const submitBtn = 51 document.getElementsByTagName('span')[6].click();
— document.getElementsByTagName('button')[2]; 52 3
15 submitBtn.click(); 3 3, {
16 3} 54 check: function() {
17 3}, { 55 const tp = document
18 check: function() { — .getElementsByClassName('thread-preview');
19 const pswdField = 56 if (tp.length > 0) {
— document.getElementsByTagName('input')[1]; 57 const thread = tp[0];
20 const modalHeader = 58 return thread.childNodes.length > 0 &&
< document.getElementsByTagName('h2')[3]; — thread.childNodes[0¢].tagName === "A" &&
21 const submitBtn = — thread.childNodes[0].getAttribute(" href') ===
— document.getElementsByTagName('button')[3]; — "/d/6jZ4c8FL/how-to-use-loomio";
22 return submitBtn &% pswdField && pswdField.name === 39 3
<« "password" && modalHeader && 60 return false;
< modalHeader.innerText === "Welcome back, 61 b
— default@loomio.org!" &3 submitBtn.innerText === 62 next: function() {
<, "SIGN IN": 63 document. getElementsByClassName (' thread-preview')[0]
53 ' < .childNodes[0].click();
24 next: function() { 64 3
25 const pswdField = s}, {
— document.getElementsByTagName('input')[1]; 66 check: function() {
26 pswdField.value = 'boeb3a48'; o7 const paragraphs =
27 pswdField.dispatchEvent(new Event("change")); — document.getElementsByTagName('p');
28 const submitBtn = 68 const h3 = document.getElementsByTagName('h3')[3];
< document.getElementsByTagName('button')[3]; 69 return paragraphs.length > 6 && h3 &&
20 submitBtn.click(); < h3.innerText.index0f ("Loomio Helper Bot started
30 } — a proposal") === 0 && paragraphs[5].innerText
EERST < === "Welcome to Loomio, an online place to make
52 exports.setup = [{ — decisions together.";
33 check: function() { 7 b)
34 const tp = document | 7 next: function() {
— .getElementsByClassName('thread-preview'); 72 // Opens menu w/ logout. .
35 if (tp.length > 0) { 73 document.getElementsByTagName('md_1con_button')[0]J
36 const thread = tp[0]; — .click();
37 return thread.childNodes.length > 0 && 74 }
— thread.childNodes[0].tagName === "A" && 75 3

< thread.childNodes[0].getAttribute(href') ===
— "/d/6jZ4c8FL/how-to-use-loomio";

Figure 18. Loomio’s loop.

BLEAk: Automatically Debugging Memory Leaks in Web Applications PLDI’18, June 18-22, 2018, Philadelphia, PA, USA

=T - S I N VR R

const emailSubjects = ["YO DAWG", "Icelandic Banana", "Demo ipsum",
"CRYPTO-GRAM, January 15, 2014"1;
function returnToInbox() {
document.getElementById('sidebar-tag-b').children[@].click();
3
function itemSteps(i) {
let lastCheck = 0;
function inboxCheck() {
return document.getElementsByClassName('message-subject').length === 0 &&
— document.getElementsByClassName('item-subject').length > 0;
3
function inboxClick() {
document.getElementsByClassName('item-subject')[i].click()
}
return [{
check: inboxCheck,
next: inboxClick
Ao
check: function() {
const ms = document.getElementsByClassName('message-subject');
const rv = ms.length === 1 && ms[0].innerText === emailSubjects[i];
const now = Date.now();
// Mailpile's server fails a *lot*, requiring multiple clicks to get through.
// This is a hack to get around what I consider to be a bug.
if (!rv && inboxCheck() && (now - lastCheck) > 1000) {

inboxClick();
}
lastCheck = now;
return rv;

1,
next: function() {
lastCheck = 0;
returnToInbox();
3
3
}
exports.loop = [1;
for (let i = 0; i < emailSubjects.length; i++) {
exports.loop.push.apply(exports.loop, itemSteps(i));
}

Figure 19. Mailpile’s loop.

PLDI’18, June 18-22, 2018, Philadelphia, PA, USA John Vilk and Emery D. Berger

1 exports.loop = [{

2 check: function() {

3 const nodes = document.getElementsByClassName('node');

4 const sourceTabs = document.getElementsByClassName('source-tab');

5 return sourceTabs.length === 0 && nodes.length > 1 &% nodes[1].innerText === "main.js";

6 1,

7 next: function() {

8 document.getElementsByClassName('node')[1].click();

9 3

o 3, {

11 check: function() {

12 // code mirror must be open, tab must be added, etc.

13 return document.getElementsByClassName('CodeMirror-line').length > 2 &&
< document.getElementsByClassName('source-tab').length === 1 && document.getElementsByClassName('close-btn').length
= ==1

14 3},

15 next: function() {

16 document.getElementsByClassName('close-btn')[0].click();

17 }

18 31

Figure 20. Firefox Debugger’s loop.

