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Abstract

Acyclic anyon models are non-abelian anyon models for which thermal anyon errors
can be corrected. In this note, we characterize acyclic anyon models and raise the
question whether the restriction to acyclic anyon models is a deficiency of the current
protocol or could it be intrinsically related to the computational power of non-abelian
anyons. We also obtain general results on acyclic anyon models and find new acyclic
anyon models such as SO (8)> and the representation theory of Drinfeld doubles of
nilpotent finite groups.
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1 Introduction

In topological quantum computing (TQC), information is encoded in the ground-state
manifolds of topological phases of matter which are error correction codes. Therefore,
TQC is intrinsically fault tolerant against local errors. But at any finite temperature
T > 0, thermal anyon pairs created from the vacuum due to thermal fluctuations can
diffuse and braid with computational anyons to cause errors, the so-called thermal
anyon errors. In practice, thermal anyon creations are suppressed by the energy gap A

and low temperature 7 as ae™T for some positive constant «, so it might not pose a
serious challenge. But if the suppression by gap and temperature is not enough, then
thermal anyon errors could become a serious issue for long quantum computation.
In [8], the authors found an error correction scheme for acyclic anyon models (called
non-cyclic in [8]). In this paper, we characterize acyclic anyon models as anyon models
with nilpotent fusion rules. We obtain several general results on acyclic anyon models
and find many more acyclic anyon models such as S O(8),, which has Property F'.

Our characterization of acyclic anyon models raises the question whether the restric-
tion to acyclic anyon models is a deficiency in the current protocol or could it be
intrinsically related to the computational power of non-abelian anyons. A triality exists
for the computational power of non-abelian anyons as illustrated by the anyon models
SUQ2)k, k = 2,3, 4. The type of anyons in SU (2); is labeled by the truncated angular
momenta in {0, 1/2,...,k/2} and let s be the spin=1/2 anyon. When k = 2, s is
essentially the Ising anyon o, not only it is not braiding universal, but also all braiding
circuits can be efficiently simulated by a Turing machine. Moreover, it is believed that
all measurements of total charges can also be efficiently simulated classically. When
k = 3, s is the Fibonacci anyon, which is braiding universal [12]. When k = 4, s
is a metaplectic anyon which is not braiding universal. But supplemented by a total
charge measurement, a universal quantum computing model can be designed based
on the metaplectic anyon s [6]. While SU (2); is acyclic, neither SU (2)3 nor SU (2)4
is. Since acyclic anyon models are weakly integral (proved below), they should not
be braiding universal as the property F conjecture suggests [16]. Therefore, it would
be interesting to know whether any acyclic model can be made universal when sup-
plemented with total charge measurements. If not, then whether or not the protocols
in [8] can be generalized to go beyond acyclic anyon models.

2 Preliminaries

An anyon model is mathematically a unitary modular tensor category—a very difficult
and complicated structure [17]. But the fusion rule of an anyon model is completely
elementary. Our main result is a theorem about fusion rules, so we start with the basics
of fusion rules to make the characterization of acyclic anyon model self-contained.
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2.1 Fusionrules

A fusion rule (A,N) based on the finite set A is a collection of nonnegative integers
{Nl.k/.} as below, where the elements of A will be called anyon types or particle types
or topological charges. The elements in A will be denoted by x1, x2, x3, ..., and the
number of elements of A will be called the rank of (A, N). A fusion rule is really the
pair (A, N), but in the following we sometimes simply refer to the set A or the set of
integers {Nl.’;} as the fusion rule when no confusion would arise.

For every particle type x;, there exists a unique dual or anti-particle type that we
denote by X; = x;. There is a trivial or “vacuum” particle type denoted by 1.

The fusion rules can be conveniently organized into formal fusion product and
sum of particle types (mathematically such formal product and sum can be made into
operations of a fusion algebra where particle types are bases elements of the fusion
algebra):

k
Xixj = ZNi,jxk’
k

where Nilf j € 770, The fusion rules obey the following relations

(a) Associativity: (x;x;)x; = x; (x;xi),
(b) The vacuum is the identity for the fusion product,

x,~l =X = lxi,
(c) The anti-particle type x; — X; = x; defines an involution, that is,

=1 Xx=x, xx;

7 = Xix),

where
— . k
XiXj = ZNi’ij,
k

(d) The fusion of x; with its anti-particle x; contains the vacuum with multiplicity
one, that is,

NL =1.

i,i

A fusion rule is called abelian (or pointed) if
DN =1
k

for every x; and x;. If A is an abelian fusion rule, then the fusion product defines a
group structure on A and conversely every group defines an abelian fusion rule.
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2.2 Nilpotent fusion rules

Let (A, N) be a fusion rule on the set A. A sub-fusion rule of (A, N)isasubset B C A
such that

(a) 1€ B,
(b) x; € Bif and only if x; € B,
(c) if x;, x; € B, then Nikj > 0 implies x; € B.

The rank of the fusion rule A is | A|, the cardinality of the set A.

Definition 2.1 [13] Let A,q be the minimal sub-fusion rule of A with the property that
x;x7 belongs to A,q forall x; € Aj;thatis, A,q is generated by all particle types x; € A
such that Nik;, > 0 for some x; € A.

Definition 2.2 [13, Definition 4.2] The descending central series of A is the sequence
of sub-fusion rules

,_,A(Vl+1) C A(n) c...C A(l) c A(O) — A,

defined recursively as AtD — Ag’fl), foralln > 0.

Definition 2.3 [13, Definition 4.4] A fusion rule is called nilpotent, if there exists an
n € N such that A® has rank one. The smallest number n for which this happens is
called the nilpotency class of A.

3 Acyclic fusion rules are nilpotent

In this section, we prove our main result.

3.1 Acyclic fusion rules

Definition 3.1 [8] A fusion rule A is called acyclic if for any value of n € N and for
any sequence

(Xiy = Xipyys Xiys -+ -5 Xigs Xigs Xiy)

with x;; # 1, we have that

n

i
| | N* __=0.
Lk+151k+1

k=1

To any fusion rule, we may associate its adjoint graph defined as follows [8]: The
vertices are pairs X; := (x;, x;) and a directed edge is drawn from X; # (1,1) to X;

if Ni/ : # 0. Notice that this is unambiguous since Ni/ P = Nl_/ -
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Fig.1 SO(8); adjoint graph,

b1
with 1 removed: by, by, b1 by are
bosons and the remaining bo 174
objects have dimension 2. All
° V2

objects are self-dual, so we may
abbreviate the vertex labels

b1ba W,

Yo Y

Now we can say that a fusion rule is acyclic if its adjoint graph contains no directed
cycles, as in [8]. Moreover, since (by definition) no directed edges emanate from 1,
we may ignore the vertex (1, 1) and all incident edges when searching for cycles: No
cycle can have (1, 1) as a vertex.

We illustrate this with an example of an acyclic fusion rule: The adjoint graph found
in Fig. 1 corresponds to SO (8)2, an integral modular category of dimension 32 and
rank 11: The explicit fusion rules are found in [2]. Notice that there are no directed
cycles in the adjoint graph of SO (8), so its fusion rule is acyclic.

The direct product of two acyclic fusion rules is acyclic as well. Here, the direct
product of two fusion rules (A, N) and (B, M) is the fusion rule on A x B with

(x,, Ya)(Xj, yb) = Y1 CN -M¢, (xk, ye). Since Nj Mb # 0 iff both NJ # 0 and

M # 0, the adjoint graph of (A, N) x (B, M) is the (tensor) product of the adjoint
graphs of (A, N) and (B, M).If (A, N) x (B, M) has a cycle, then either (A, N) or
(B, M) has a cycle by projecting, proving that direct products preserve acyclicity.

Lemma 3.2 Let A be finite acyclic fusion rule with |A| > 1. Then, the rank of A,q is
strictly smaller than the rank of A.

Proof Assume that A is acyclic and Aq = A.
For each n € N, we will define inductively a sequence of bases elements

(Xiys v vy Xigs Xiy) (3.1)

such that

(a) N”‘ —>0and N”‘“ 0 forall k < n.

(b) x,k 75 1 for all k.
(c) The elements in the sequence are pairwise distinct.
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Since A has rank bigger than one, there is an x;, # 1. Using that Ayq = A, we
have that there is x;, such that N ' _ > 0. Now, since A is acyclic, using the sequence

(x4, 5 Xip» Xi, ), we have that N’2 = O In particular, N R = 0 implies x;, # 1. Using
the same argument, we can construct for each n € N a sequence (x;,, ..., X;,) that
satisfies (a) and (b).

We will use induction on the length of the sequence (3.1) to see that the elements
in the sequence (3.1) are pairwise distinct. For n = 2, we have that N — # N 12 .
then x;, # x;,. Assume that any sequence of n — 1 elements satlsfylng (a) and (b)
has pairwise distinct elements. Then, (x;,, ..., x;,) and (x;,_,, ..., X;;) are pairwise
distinct. Since A is acyclic, if x;; = x;,, using the sequence (x;; = X;,, Xi, 1, ..., Xi;)
we have that

| | =0.
lk+l,ll\+1

But by construction, N. % __ > 0; hence, we have a contradiction. In conclusion,
L1 Tk41
the elements in the sequence (x;,, ..., X;,) are pairwise distinct.

Finally, since the rank of A isa ﬁnite number, and we can construct an arbitrary large
sequence of pairwise distinct basic elements, we obtain a contradiction. Thus, if Aisa
non-trivial acyclic fusion rule, the rank of A,q is strictly smaller than the rank of A. O

Theorem 3.3 Let A be a fusion rule. Then, A is acyclic if and only if A is nilpotent.

Proof Clearly, any sub-fusion rule of an acyclic fusion rule is acyclic.
Assume that A is acyclic. Using Lemma 3.2, we obtain that in the sequence

_,A(Vl+1) C A(n) c...C A(l) c A(O) — A,

the rank of A”*1 is strictly smaller than the rank of A® if the rank of A is bigger
than one. Since the rank of A is finite, there is m € N such that the rank of A® is
one, that is, A is nilpotent.

Assume that A is nilpotent, in particular Ayq # A. We will use induction on the
nilpotency class of A. If A has nilpotency class one, then A is abelian (pointed in
mathematical terminology) and thus acyclic. If A has nilpotency class n > 1, the
nilpotency class of Ayq is n — 1; thus, by induction hypothesis, A,q is acyclic. Let

(Xiy = Xipoys Xigs -+ Xig,s Xiy)
be a sequence of basic elements with x;; # 1.1If Nl” —> Oforallk,thenx;, € Auq
k+1slk+1
for all k and
n—1 }
l_[ N* >0,
Lk+1s1k+1
a contradiction since A,q is acyclic. O
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Now, we will present some consequences of Theorem (3.3) to modular categories.
We refer the reader to [3,9] for a general theory of modular categories.

Let 5 be amodular category, the set Irr(B) = {xo = [1], x1, ..., X}, of the isomor-
phism classes of the distinct simple objects of B with NV; k = = dim¢ (Homg (xk, xi ®x;))
are the fusion rules of B. A modular category is called acyclic (respectively nilpotent)
if its fusion rules are acyclic (respectively nilpotent). It follows from Theorem 3.3
that nilpotent and acyclic modular categories are equivalent definitions. The simplest
example of a gauging corresponds to the trivial action of a finite group G on the trivial
modular category Vecg; in this case, the associated modular category is the represen-
tation theory of the Drinfeld double of G, denoted by Z(Rep(G)), see [15, Section
3].

When a finite group G acts on a modular category 3 by braided autoequivalences,
then gauging this symmetry, when possible, leads to a new modular tensor category
denoted by B(X;’G. A physical and mathematical theory of gauging based on the notion
of G-crossed braided fusion category was developed in [1,5], respectively.

Corollary 3.4 (1) If a gauging Bé’G of a modular category B by a finite group G has
acyclic fusion rules, then B has acyclic fusion rules and G is nilpotent.

(2) The category of representation of the Drinfeld double of a finite group G has
acyclic fusion rules if and only if G is a nilpotent group.

Proof (1)If B g’G is nilpotent, any fusion subcategory is also nilpotent [13, Proposition

4.6]. Since Rep(G) c B¢ ¢ BE’G, we have that Rep(G) and B¢ are nilpotent, and
by Gelaki and Nikshych [13, Remark 4.7], we have that G is a nilpotent group. It
follows from [4, Corollary 4.25] that the forgetful functor B¢ — B is surjective, and
then by Gelaki and Nikshych [13, Proposition 4.6], B is nilpotent.

(2) The category of representation of the Drinfeld double of a finite group G is
Z(Rep(G)) the Drinfeld center of the category of finite-dimensional representation
of G, see [14, Theorem XIII.5.1]. Thus, by Gelaki and Nikshych [13, Theorem 6.11]
and Theorem 3.3, the modular category Z(Rep(G)) is acyclic if and only if G is a
nilpotent group. O

The Perron-Frobenius dimension of a fusion rules (A, N) is the unique func-
tion FPdim : A — R0, that satisfies FPdim(1) = 1 and FPdim(x;x;) =
FPdim(x; )FPdim(x ;) for all x;, x; € A, (see [9, Proposition 3.3.6]). A modular cate-
gory B3 is called weakly integral if FPdim(B) := Zx;elrr(B) FPdim(x;)? € Z.

A braided fusion category C is said to have property F' [16] if, for every simple object
X, the braid group representation associated with X has finite image. Conjecturally,
the class of braided fusion categories with property F coincides with the class of
braided weakly integral fusion categories. It follows from [16] that the acyclic braided
fusion category SO (8), mentioned above has property F. A large class of braided
fusion categories that have property F are the (braided) group-theoretical categories,
i.e., categories Morita equivalent to a pointed category, see [11] for a proof of this
fact. A larger class of weakly integral categories for which property F is not currently
known are the weakly group-theoretical categories, i.e., categories Morita equivalent
to a nilpotent fusion category. Although we do not know whether all acyclic braided
fusion categories have property F, some partial results in this direction are as follows,
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which strongly suggest that anyon models with acyclic fusion rules are never braiding
universal.

Corollary 3.5 (1) A fusion category with acyclic fusion rules is weakly group theoret-
ical. In particular, it is weakly integral.

(2) Anintegral braided fusion category with acyclic fusion rules is group theoretical
and hence has property F.

(3) A braided fusion category BB has acyclic fusion rules if and only if B is the Deligne
product of braided fusion categories of prime powers.

Proof In light of Theorem 3.3, the statements follow from the results of [7,10,11]
dealing with nilpotent categories. In more detail, a nilpotent category is weakly group
theoretical by Etingof et al. [10, Definition 1.1], from which the first statement follows.
By Drinfeld et al. [7, Corollary 6.2], any integral nilpotent fusion category is group
theoretical and hence has property F by Etingof et al. [11, Corollary 4.4], proving (2)
while [7, Theorem 1.1] implies (3). O
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