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1. Introduction

A primary purpose of complexity theory is to provide classifications to computational problems according to their in-
herent computational difficulty. While computational problems can come from many sources, a class of problems from 
statistical mechanics has a remarkable affinity to what is naturally studied in complexity theory. These are the sum-of-

product computations, a.k.a. partition functions in physics.
Well-known examples of partition functions from physics that have been investigated intensively in complexity theory 

include the Ising model and Potts model [10,8,7,12]. Most of these are spin systems. Spin systems as well as the more 
general counting constraint satisfaction problems (#CSP) are special cases of Holant problems [5] (see Section 2 for defi-
nitions). Roughly speaking, Holant problems are tensor networks where edges of a graph are variables while vertices are 
local constraint functions; by contrast, in spin systems vertices are variables and edges are (binary) constraint functions. 
Spin systems can be simulated easily as Holant problems, but Freedman, Lovász and Schrijver proved that simulation in 
the reverse direction is generally not possible [6]. In this paper we study a family of partition functions that fit the Holant 
problems naturally, but not as a spin system. This is the six-vertex model.

The six-vertex model in statistical mechanics concerns crystal lattices with hydrogen bonds. Remarkably it can be ex-
pressed perfectly as a family of Holant problems with 6 parameters for the associated signatures, although in physics people 
are more focused on regular structures such as lattice graphs, and asymptotic limit. In this paper we study the partition 
functions of six-vertex models purely from a complexity theoretic view, and prove a complete classification of these Holant 
problems, where the 6 parameters can be arbitrary complex numbers.
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Fig. 1. Valid configurations of the six-vertex model.

The first model in the family of six-vertex models was introduced by Linus Pauling in 1935 to account for the residual 
entropy of water ice [17]. Suppose we have a large number of oxygen atoms. Each oxygen atom is connected by a bond 
to four other neighboring oxygen atoms, and each bond is occupied by one hydrogen atom between two oxygen atoms. 
Physical constraint requires that the hydrogen is closer to either one or the other of the two neighboring oxygens, but never 
in the middle of the bond. Pauling argued [17] that, furthermore, the allowed configuration of hydrogen atoms is such that 
at each oxygen site, exactly two hydrogens are closer to it, and the other two are farther away. The placement of oxygen and 
hydrogen atoms can be naturally represented by vertices and edges of a 4-regular graph. The constraint on the placement of 
hydrogens can be represented by an orientation of the edges of the graph, such that at every vertex, exactly two edges are 
oriented toward the vertex, and exactly two edges are oriented away from it. In other words, this is an Eulerian orientation. 
Since there are 

(4
2

)

= 6 local valid configurations, this is called the six-vertex model. In addition to water ice, potassium 
dihydrogen phosphate KH2PO4 (KDP) also satisfies this model.

The valid local configurations of the six-vertex model are illustrated in Fig. 1. There are parameters ε1, ε2, . . . , ε6 as-

sociated with each type of the local configuration. The total energy E is given by E = n1ε1 + n2ε2 + . . . + n6ε6 , where ni
is the number of local configurations of type i. Then the partition function is Z =

∑

e−E/kB T , where the sum is over all 
valid configurations, kB is Boltzmann’s constant, and T is the system’s temperature. Mathematically, this is a sum-of-product

computation where the sum is over all Eulerian orientations of the graph, and the product is over all vertices where each 
vertex contributes a factor ci = cεi if it is in configuration i (1 ≤ i ≤ 6) for some constant c.

Some choices of the parameters are well-studied. On the square lattice graph, when modeling ice one takes ε1 = ε2 =
. . . = ε6 = 0. In 1967, Elliott Lieb [14] famously showed that, as the number N of vertices approaches ∞, the value of 

the “partition function per vertex” W = Z1/N approaches 
(

4
3

)3/2
≈ 1.5396007 . . . (Lieb’s square ice constant). This matched 

experimental data 1.540 ± 0.001 so well that it is considered a triumph. The case ε1 = ε2 = . . . = ε6 = 0 is precisely 
the problem of counting the number of Eulerian orientations on 4-regular graphs. Mihail and Winkler [16] showed that 
counting the number of Eulerian orientations (on a general even degree graph, called an Euler graph) is #P-hard, and gave 
a fully polynomial randomized approximation scheme (fpras) for it. Huang and Lu [9] proved that the problem remains 
#P-hard for 4-regular graphs, which is exactly the special case for the six-vertex model with ε1 = ε2 = . . . = ε6 = 0. They 
proved this by a reduction from the #P-hardness of TG(3, 3), the evaluation at (3, 3) of the Tutte polynomial TG , due to 
Las Vergnas [11]. On (4-regular) planar graphs, TG(3, 3) is actually exactly equivalent to a specific six-vertex model; in the 

notation of Section 2, it is specified by the signature matrix 

⎡

⎣

0 0 0 1

0 1 2 0

0 2 1 0

1 0 0 0

⎤

⎦. Welsh has pointed out that TG (0, −2) is equivalent 

to counting the number of Eulerian orientations on 4-regular graphs [21]. Luby, Randall and Sinclair [15] gave sampling 
algorithms for Eulerian orientations on simply connected regions of the grid graph with boundary conditions.

There are other well-known choices in the six-vertex model family. The KDP model of a ferroelectric is to set ε1 = ε2 = 0, 
and ε3 = ε4 = ε5 = ε6 > 0. The Rys F model of an antiferroelectric is to set ε1 = ε2 = ε3 = ε4 > 0, and ε5 = ε6 = 0. When 
there is no ambient electric field, the model chooses the zero field assumption: ε1 = ε2 , ε3 = ε4 , and ε5 = ε6 . Historically 
these are widely considered among the most significant applications ever made of statistical mechanics to real substances. 
In classical statistical mechanics the parameters are all real numbers while in quantum theory the parameters are complex 
numbers in general.

In this paper, we give a complete classification of the complexity of calculating the partition function Z on any 4-regular 
graph defined by an arbitrary choice parameter values c1, c2, . . . , c6 ∈ C. (To state our theorem in strict Turing machine 
model, we take c1, c2, . . . , c6 to be algebraic numbers.) Depending on the setting of these values, we show that the partition 
function Z is either computable in polynomial time, or it is #P-hard, with nothing in between. The dependence of this 
dichotomy on the values c1, c2, . . . , c6 is explicit.

A number of complexity dichotomy theorems for counting problems have been proved previously. These are mostly 
on spin systems, or on #CSPs (counting Constraint Satisfaction Problems), or on Holant problems with symmetric local 
constraint functions. #CSP is the special case of Holant problems where Equalities of all arities are auxiliary functions 
assumed to be present. Spin systems are a further specialization of #CSP, where there is a single binary constraint function 
(see Section 2). The six-vertex model cannot be expressed as a #CSP problem. It is a Holant problem where the constraint 
functions are not symmetric. Thus previous dichotomy theorems do not apply. This is the first complexity dichotomy theorem 
proved for a class of Holant problems on non-symmetric constraint functions and without auxiliary functions assumed to be 
present.

However, one important technical ingredient of our proof is to discover a direct connection between some subset of the 
six-vertex models with spin systems. Another technical highlight is a new interpolation technique that carves out subsums 
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of a partition function by assembling a suitable sublattice, and partitions the sum over an exponential range according to 
an enumeration of the intersections of cosets of the sublattice with this range.

2. Preliminaries and notations

A constraint function f of arity k is a map {0, 1}k → C. Fix a set of constraint functions F . A signature grid � = (G, π)

is a tuple, where G = (V , E) is a graph, π labels each v ∈ V with a function f v ∈F of arity deg(v), and the incident edges 
E(v) at v with input variables of f v . We consider all 0–1 edge assignments σ , each gives an evaluation 

∏

v∈V f v(σ |E(v)), 
where σ |E(v) denotes the restriction of σ to E(v). The counting problem on the instance � is to compute Holant� =
∑

σ :E→{0,1}
∏

v∈V f v(σ |E(v)). The Holant problem parameterized by the set F is denoted by Holant(F). We denote by 
Holant(F | G) the Holant problem on bipartite graphs where signatures from F and G are assigned to vertices from the 
Left and Right.

A spin system on G = (V , E) has a variable for every v ∈ V and a binary function g for every edge e ∈ E . The partition 
function is 

∑

σ :V→{0,1}
∏

(u,v)∈E g(σ (u), σ (v)). Spin systems are special cases of #CSP(F) (counting CSP) where F consists 
of a single binary function. In turn, #CSP(F) is the special case of Holant where F contains Equality of all arities.

A constraint function is also called a signature. A function f of arity k can be represented by listing its values in 
lexicographical order as in a truth table, which is a vector in C2k , or as a tensor in (C2)⊗k , or as a matrix in C2k1 × C2k2

if we partition the k variables to two parts, where k1 + k2 = k. A function is symmetric if its value depends only on the 
Hamming weight of its input. A symmetric function f on k Boolean variables can be expressed as [ f0, f1, . . . , fk], where fw
is the value of f on inputs of Hamming weight w . For example, (=k) is the Equality signature [1, 0, . . . , 0, 1] (with k − 1

0’s) of arity k. We use 	=2 to denote binary Disequality function [0, 1, 0]. The support of a function f is the set of inputs 
on which f is nonzero.

Given an instance � = (G, π) of Holant(F), we add a middle point on each edge as a new vertex to G , then each edge 
becomes a path of length two through the new vertex. Extend π to label a function g to each new vertex. This gives a 
bipartite Holant problem Holant(g |F). It is obvious that Holant(=2|F) is equal to Holant(F).

For T ∈ GL2(C) and a signature f of arity n, written as a column vector f ∈ C2n , we denote by T−1 f = (T−1)⊗n f the 
transformed signature. For a signature set F , define T−1F = {T−1 f | f ∈F}. For signatures written as row vectors we define 
F T similarly. The holographic transformation defined by T is the following operation: given a signature grid � = (H, π) of 
Holant (F | G), for the same bipartite graph H , we get a new signature grid �′ = (H, π ′) of Holant

(

F T | T−1G
)

by replacing 
each signature in F or G with the corresponding signature in F T or T−1G .

In this paper we focus on Holant(	=2| f ) when f has support among strings of Hamming weight 2. They are the six-
vertex models on general graphs. We note that as an orientation problem the six-vertex model is naturally represented as 
a Holant problem on the edge-vertex incidence graph �(G) of a given 4-regular graph G , where the edge node in �(G)

are given the binary Disequality function (	=2), and the degree 4 vertices are given the constraint function f . We can also 

transform this to a set of (non-bipartite) Holant problems by a holographic reduction [18–20]. Let Z = 1√
2

[

1 1

i −i

]

. The matrix 

form of (	=2) is 
[

0 1

1 0

]

= ZT Z . Under a holographic transformation with bases Z , Holant(	=2| f ) becomes Holant(=2| Z⊗4 f ), 

where Z⊗4 f is a constraint function represented by a column vector, which is the matrix tensor power Z⊗4 multiplied 
by the column vector form of f . The bipartite Holant problems of the form Holant(	=2| f ) naturally correspond to the 
non-bipartite Holant problems Holant(Z⊗4 f ). In general f and Z⊗4 f are non-symmetric functions.

A signature f of arity 4 has the signature matrix M = Mx1x2,x4x3 ( f ) =

⎡

⎣

f0000 f0010 f0001 f0011
f0100 f0110 f0101 f0111
f1000 f1010 f1001 f1011
f1100 f1110 f1101 f1111

⎤

⎦. If {i, j, k, �} is a permutation 

of {1, 2, 3, 4}, then the 4 × 4 matrix Mxix j ,xkx�
( f ) lists the 16 values with row index xix j ∈ {0, 1}2 and column index xkx� ∈

{0, 1}2 in lexicographic order.

Let H = 1√
2

[

1 1

1 −1

]

and N =
[

0 1

1 0

]

⊗
[

0 1

1 0

]

=

⎡

⎣

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎤

⎦. Note that N is the double Disequality, which is the function of 

connecting two pairs of edges by (	=2).

If f and g have signature matrices M( f ) = Mxix j ,xkx�
( f ) and M(g) = Mxsxt ,xuxv (g), by connecting xk to xs , x� to xt , both 

with Disequality (	=2), we get a signature of arity 4 with the signature matrix M( f )NM(g) by matrix product with row 
index xix j and column index xuxv .

The six-vertex model is Holant(	=2| f ), where Mx1x2,x4x3 ( f ) =

⎡

⎣

0 0 0 a

0 b c 0

0 z y 0

x 0 0 0

⎤

⎦. We also write this matrix by M(a, x, b, y, c, z). 

When a = x, b = y and c = z, we abridge it as M(a, b, c). Note that all nonzero entries of f are on Hamming weight 2. 
Denote the 3 pairs of ordered complementary strings by λ = 0011, λ = 1100, μ = 0110, μ = 1001, and ν = 0101, ν = 1010. 
The support of f is the union {λ, λ, μ, μ, ν, ν} of the pairs (λ, λ), (μ, μ) and (ν, ν), on which f has values (a, x), (b, y)
and (c, z). If f has the same value in a pair, say a = x on λ and λ, we say it is a twin.
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The permutation group S4 on {x1, x2, x3, x4} induces a group action on {s ∈ {0, 1}4 | wt(s) = 2} of size 6. This is a 
faithful representation of S4 in S6 . Since the action of S4 preserves complementary pairs, this group action has non-
trivial blocks of imprimitivity, namely {A, B, C} = {{λ, λ}, {μ, μ}, {ν, ν}}. The action on the blocks is a homomorphism of 
S4 onto S3 , with kernel K = {1, (12)(34), (13)(24), (14)(23)}. In particular one can calculate that the subgroup S{2,3,4} =
{1, (23), (34), (24), (243), (234)} maps to {1, (AC), (BC), (AB), (ABC), (AC B)}. By a permutation from S4 , we may permute 
the matrix M(a, x, b, y, c, z) by any permutation on the values {a, b, c} with the corresponding permutation on {x, y, z}, and 
moreover we can further flip an even number of pairs (a, x), (b, y) and (c, z). In particular, we can arbitrarily reorder the 

three rows in 
[

a x

b y

c z

]

, and we can also reverse the order of arbitrary two rows together. In the proof, after one construction, 

we may use this property to get a similar construction and conclusion, by quoting this symmetry of three pairs or six values.

Definition 2.1. A 4-ary signature is redundant iff in its 4 by 4 signature matrix the middle two rows are identical and the 
middle two columns are identical.

Theorem 2.2 ([2]). If f is a redundant signature and the determinant

det

⎡

⎣

f0000 f0010 f0011
f0100 f0110 f0111
f1100 f1110 f1111

⎤

⎦ 	= 0,

then Holant(	=2 | f ) is #P-hard.

Now we define the tractable function classes A and P .

Affine signatures A

Definition 2.3. A signature f (x1, . . . , xn) of arity n is affine if it has the form

λ · χAX=0 · iQ (X),

where λ ∈ C, X = (x1, x2, . . . , xn, 1), A is a matrix over Z2 , Q (x1, x2, . . . , xn) ∈ Z4[x1, x2, . . . , xn] is a quadratic (total degree 
at most 2) multilinear polynomial with the additional requirement that the coefficients of all cross terms are even, i.e., 
Q has the form

Q (x1, x2, . . . , xn) = a0 +
n

∑

k=1

akxk +
∑

1≤i< j≤n

2bi jxix j,

and χ is a 0-1 indicator function such that χAX=0 is 1 iff AX = 0. We use A to denote the set of all affine signatures.

Product-type signatures P

Definition 2.4. A signature on a set of variables X is of product type if it can be expressed as a product of unary functions, 
binary equality functions ([1, 0, 1]), and binary disequality functions ([0, 1, 0]), each on (not necessarily disjoint subsets of) 
one or two variables of X . We use P to denote the set of product-type functions.

The classes A and P are identified as tractable for #CSP [3]. Problems defined by A are tractable essentially by Gauss 
Sums (See Theorem 6.30 of [13]). The signatures in P are tensor products of signatures whose supports are among two 
complementary bit vectors. Problems defined by them are tractable by a propagation algorithm. The full version [1] contains 
complete definitions and characterizations of these classes.

Theorem 2.5 ([3]). Let F be any set of complex-valued signatures in Boolean variables. Then #CSP(F) is #P-hard unless F ⊆ A or 
F ⊆ P , in which case the problem is computable in polynomial time.

By Theorem 2.5, we have the following corollary, which is easier to apply for binary signatures.

Corollary 2.6. Let f =
[

f00 f01
f10 f11

]

=
[

α β

γ δ

]

be a binary signature. Then #CSP( f ) is #P-hard unless

• f ∈ P : αδ − βγ = 0, or α = δ = 0, or β = γ = 0;

• f ∈ A : (α, β, γ , δ) = λ(ir1 , ir1 , ir3 , ir4 ), where r1 + r2 + r3 + r4 ≡ 0 (mod 2) and λ ∈C.
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If f ∈ P ∪ A , then #CSP( f ) is computable in polynomial time.

Definition 2.7. M is the set of functions, whose support is composed of strings of Hamming weight at most one. M ′ = {g |
∃ f ∈ M , g(x) = f (x)}, where x is the complement of x.

Note that all unary functions are in M ∩ M ′ . Theorem 2.8 is a consequence of Theorem 2.2 in [4].

Theorem 2.8. Holant(	=2| M ) and Holant(	=2| M ′) are polynomial time computable.

3. Main theorem

Theorem 3.1. Let f be a 4-ary signature with the signature matrix Mx1x2,x4x3 (a, x, b, y, c, z), then Holant(	=2| f ) is #P-hard except 
for the following cases:

• f ∈ P ;

• f ∈ A ;

• there is a zero in each pair (a, x), (b, y), (c, z);

in which cases Holant(	=2| f ) is computable in polynomial time.

We prove the complexity classification by categorizing the six values a, b, c, x, y, z in the following way.

1. There is a zero pair. If f ∈ A ∪ P , then it is tractable. Otherwise it is #P-hard.
2. All values in {a, x, b, y, c, z} are nonzero. We prove these are #P-hard.

(a) Three twins. We prove this case mainly by an interpolation reduction from redundant signatures, then apply Theo-
rem 2.2.

(b) There is one pair that is not twin. We prove this by a reduction from Case 2a.

3. There is exactly one zero in {a, x, b, y, c, z}. All are #P-hard by reducing from Case 2.

4. There are exactly two zeros which are from different pairs. All are #P-hard by reducing from Case 2.

5. There is one zero in each pair. These are tractable according to Theorem 2.8.

By definition, in Case 1 and Case 5, f may have more zero values than the stated ones.
These cases above cover all possibilities: After Case 1 we may assume that there is no zero pair. Then after Case 2 we 

may assume there is at least one zero and there is no zero pair. Similarly after Case 3 we may assume there are at least 
two zeros and there is no zero pair. So Case 4 finishes off the case when there are exactly two zeros. After Case 4 we may 
assume there are at least three zeros, but there is no zero pair. Therefore we may assume the only case remaining is where 
there are exactly three zeros in three distinct pairs, and Case 5 finishes the proof.

In the following we prove the 5 cases to prove the main theorem.

4. Case 1: one zero pair

In this section we prove Case 1. Note that by renaming the variables x1, x2, x3, x4 we may assume the signature f of 
arity 4 with one zero pair has the form in (4.1).

Lemma 4.1. Let f be a 4-ary signature with the signature matrix

Mxsxt ,xuxv ( f ) =

⎡

⎢

⎢

⎣

0 0 0 0

0 α β 0

0 γ δ 0

0 0 0 0

⎤

⎥

⎥

⎦

, (4.1)

where {s, t, u, v} is a permutation of {1, 2, 3, 4}. Then Holant(	=2| f ) is #P-hard unless f ∈ A or f ∈ P , in which case the problem 
is computable in polynomial time.

Proof. By the S4 group symmetry, we only need to prove the lemma for (s, t, u, v) = (1, 2, 4, 3). Tractability follows from 
Corollary 2.6.

Let g(x, y) be the binary signature g =
[

g00 g01
g10 g11

]

=
[

α β

γ δ

]

in matrix form. We prove that #CSP(g) ≤T Holant(	=2| f ) in 

two steps. In each step, we begin with a signature grid and end with a new signature grid such that the Holant values of 
both signature grids are the same.
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Fig. 2. The reduction from #CSP(g) to Holant(	=2 | f ). The circle vertices are assigned =d , where d is the degree of the corresponding vertex, the diamond 
vertices are assigned g , the triangle vertices are assigned f , and the square vertices are assigned 	=2 . In the first step, we replace a vertex by a cycle, where 
the length of the cycle is the degree of the vertex. The vertices on the cycle are assigned =3 . In the second step, we merge two vertices that are connected 
to the diamond with g and assign f to the new vertex.

For step one, consider an instance of #CSP(g). Equivalently, we will view the instance as a bipartite graph G = (U , V , E), 
where each u ∈ U is a variable, and each v ∈ V has degree two and is labeled g . We define a cyclic order of the edges 
incident to each vertex u ∈ U , and decompose u into k = deg(u) vertices. Then we connect the k edges originally incident 
to u to these k new vertices so that each vertex is incident to exactly one edge. We also connect these k new vertices in a 
cycle according to the cyclic order (see Fig. 2b). Thus, in effect we have replaced u by a cycle of length k = deg(u). (If k = 1

there is a self-loop. If k = 2 there is a cycle of length 2, i.e., a pair of parallel edges.) Each of the k vertices has degree 3, and 
we assign them (=3). Clearly this does not change the value of the partition function. The resulting graph has the following 
properties: (1) every vertex has either degree 2 or degree 3; (2) each degree 2 vertex is connected to degree 3 vertices; 
(3) each degree 3 vertex is connected to exactly one degree 2 vertex.

Now step two. For every v ∈ V , v has degree 2 and is labeled by g . We contract the two edges incident to v . The resulting 
graph G ′ = (V ′, E ′) is 4-regular. We put a node on every edge of G ′ (which are all the edges on the cycles introduced in 
step 1 for each u ∈ U ) and assign (	=2) to the new node (see Fig. 2c). Next we assign a copy of f to every v ′ ∈ V ′ after this 
contraction. The input variables x1, x2, x3, x4 are carefully assigned at each copy of f as illustrated in Fig. 3. More specifically, 
suppose originally the binary constraint g is applied to the ordered pair of variables u and u′ , then after the contraction we 
have a degree 4 vertex common to the cycles corresponding to u and u′ respectively. In this case, variables x1 and x2 will 
be on the incident edges from the cycle for u, variables x3 and x4 will be on the incident edges from the cycle for u′ , so 
that clockwise cyclically the four variables are ordered x1, x2, x4, x3 . (Note the flipped order of x4 and x3 in the cyclic order.) 
This careful assignment of variables is to ensure that in any nonzero term of the Holant sum there are only two possible 
configurations to each original cycle corresponding to a variable u ∈ U . Indeed, notice that the support of f is contained 
in (x1 	= x2) ∧ (x3 	= x4). Hence to have a nonzero term in the Holant sum, any cycle corresponding to a variable u ∈ U has 
only two configurations corresponding to two cyclic orientations, by the support of f and the (	=2) on the cycle. These 
correspond to the 0-1 assignment values at the original variable u ∈ U . Moreover in each case, the value of the function g
is perfectly mirrored by the value of the function f under the orientations. So we have #CSP(g) ≤T Holant(	=2| f ).

We have f (x1, x2, x3, x4) = g(x1, x4) ·χx1 	=x2 ·χx3 	=x4 . By Definition 2.3, g ∈ A ∪P implies f ∈ A ∪P , because the factor 
χx1 	=x2 · χx3 	=x4 simply gets absorbed into the 0-1 characteristic function of the affine support of g . Therefore if f /∈ A ∪ P , 
then g /∈ A ∪ P . Then #CSP(g) is #P-hard by Corollary 2.6. It follows that Holant(	=2| f ) is #P-hard. This finishes the 
proof. �

5. Case 2: all six values are nonzero

In this section, we handle the case axbycz 	= 0, by proving all problems in this case are #P-hard. Firstly, we give a 
technical lemma for interpolation reduction. Then we prove the 3-twins case. Finally, we prove the other cases by realizing 
a 3-twins problem.

Lemma 5.1. Suppose α, β ∈ C − {0}, and the lattice L = {( j, k) ∈ Z2 | α jβk = 1} has the form L = {(ns, nt) | n ∈ Z}, where s, t ∈ Z

and (s, t) 	= (0, 0). Let φ and ψ be any numbers satisfying φsψ t = 1. If we are given the values N� =
∑

j,k≥0, j+k≤m(α jβk)�x j,k for 

� = 1, 2, . . .
(

m+2
2

)

, then we can compute 
∑

j,k≥0, j+k≤m φ jψkx j,k in polynomial time.

Proof. We treat 
∑

j,k≥0, j+k≤m(α jβk)�x j,k = N� (where 1 ≤ � ≤
(

m+2
2

)

) as a system of linear equations with unknowns x j,k . 

The coefficient vector of the first equation is (α jβk), indexed by the pair ( j, k), where 0 ≤ j, k ≤ m and j + k ≤ m. The 
coefficient matrix of the linear system is a Vandermonde matrix, with row index � and column index ( j, k). However, this 
Vandermonde matrix is rank deficient. If ( j, k) − ( j′, k′) ∈ L, then columns ( j, k) and ( j′, k′) have the same value.

We can combine the identical columns ( j, k) and ( j′, k′) if ( j, k) − ( j′, k′) ∈ L, since for each coset T of L, the value α jβk

is constant. Thus, the sum 
∑

j,k≥0, j+k≤m(α jβk)�x j,k can be written as 
∑

T (α jβk)�
(

∑

j,k≥0, j+k≤m, ( j,k)∈T x j,k

)

, where the 
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Fig. 3. Assigning input variables at one copy of f : Suppose the binary function g is applied to (the ordered pair) (u, u′). The variables u and u′ have 
been replaced by cycles of length deg(u) and deg(u′) respectively. (In the figure, they have deg(u) = 5 and deg(u′) = 3.) For the cycle Cu representing a 
variable u, we associate the value u = 0 with a clockwise orientation, and u = 1 with a counter-clockwise orientation. We assign xi to the edge labeled
by i for i = 1, 2, 3, 4. Then by the support of f , x1 = 0, 1 forces x2 = 1, 0 respectively, and similarly x4 = 0, 1 forces x3 = 1, 0 respectively. Thus there is a 
natural 1–1 correspondence between u = 0 (respectively, u = 1) with clockwise (respectively, counter-clockwise) orientation of the cycle Cu , and similarly 
for Cu′ . Under this 1–1 correspondence, the value of the function g is perfectly mirrored by the value of the function f .

Fig. 4. Recursive construction of the interpolation in Lemma 5.2. The circles are assigned f and the squares are assigned 	=2 .

sum over T is for all cosets T of L having a non-empty intersection with the cone C = {( j, k) | 0 ≤ j, k ≤m, j +k ≤m}. Now 
the coefficient matrix, indexed by 1 ≤ � ≤

(

m+2
2

)

for the rows and the cosets T with T ∩C 	= ∅ for the columns, has full rank. 

And so we can solve 
(

∑

j,k≥0, j+k≤m, ( j,k)∈T x j,k

)

for each coset T with T ∩C 	= ∅. Notice that for the sum 
∑

j+k≤m φ jψkx j,k , 

we also have the expression 
∑

T φ jψk
(

∑

j,k≥0, j+k≤m, ( j,k)∈T x j,k

)

, since φ jψk on each coset T of L is also constant. The 

lemma follows. �

Now we prove the #P-hardness for the 3-twins case. In this case a = x, b = y and c = z. We denote by M(a, b, c) the 
problem defined by the signature matrix Mx1x2,x4x3 (a, a, b, b, c, c).

Lemma 5.2. Let f be a 4-ary signature with the signature matrix Mx1x2,x4x3 ( f ) =

⎡

⎣

0 0 0 a

0 b c 0

0 c b 0

a 0 0 0

⎤

⎦ with abc 	= 0. Then Holant(	=2 | f ) is 

#P-hard.

Proof. We construct a series of gadgets by a chain of one leading copy of f and a sequence of twisted copies of f linked by 
two (	=2)’s in between. It has the signature matrix Ds = M(NM ′)s−1 , for s ≥ 1, where M = Mx1x2,x4x3 ( f ), M

′ = Mx2x1,x4x3 ( f )

is a permuted copy of M , and N is the double Disequality. See Fig. 4. This is in the right side of Holant(	=2 | f ).
The signature matrix of this gadget is given as a product of matrices. Each matrix is a function of arity 4. Notice that 

the two row indices in Mx2x1,x4x3 ( f ) exchange their positions compared with the standard one Mx1x2,x4x3 ( f ). Thus the rows 
of M under go the permutation (00, 01, 10, 11) → (00, 10, 01, 11) to get M ′ . In other words, M ′ is obtained from M by 
exchanging the middle two rows. Also NM ′ reverses all 4 rows of M ′ . So we have

NM ′ =

⎡

⎢

⎢

⎣

a 0 0 0

0 b c 0

0 c b 0

0 0 0 a

⎤

⎥

⎥

⎦

, and Ds =

⎡

⎢

⎢

⎣

0 0 as

0

[

b c

c b

]s

0

as 0 0

⎤

⎥

⎥

⎦

.

We diagonalize the 2 by 2 matrix in the middle using H = 1√
2

[

1 1

1 −1

]

(note that H−1 = H), and get Ds = P�s P , where

P =

⎡

⎣

1 0 0

0 H 0

0 0 1

⎤

⎦ , and �s =

⎡

⎢

⎢

⎣

0 0 0 as

0 (b + c)s 0 0

0 0 (b − c)s 0

as 0 0 0

⎤

⎥

⎥

⎦

.

The matrix �s has a good form for polynomial interpolation. Suppose we have a problem Holant(	=2| F ) to be reduced 
to Holant(	=2| M). Let F appear m times in an instance �. We replace each appearance of F by a copy of the gadget Ds , 
to get an instance �s of Holant(	=2| M). We can treat each of the m appearances of Ds as a new gadget composed of 
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three functions in sequence P , �s and P , and denote this new instance by �′
s . We divide �′

s into two parts. One part is 
composed of m functions �s . The second part is the rest of the functions, including 2m occurrences of P , and its signature 
is represented by X (which is a tensor expressed as a row vector). The Holant value of �′

s is the dot product 〈X, �⊗m
s 〉, 

which is a summation over 4m bits, that is, the values of the 4m edges connecting the two parts. We can stratify all 
0–1 assignments of these 4m bits having a nonzero evaluation of Holant�′

s
into the following categories. For each tuple of 

nonnegative integers (i, j, k) such that i + j + k =m, the category parameterized by (i, j, k) is:

• there are i many copies of �s receiving inputs 0011 or 1100;
• there are j many copies of �s receiving inputs 0110; and
• there are k many copies of �s receiving inputs 1001.

For any assignment in the category with parameter (i, j, k), the evaluation of �⊗m
s is clearly asi(b + c)sj(b − c)sk . We can 

rewrite the dot product summation and get

Holant�s = Holant�′
s
= 〈X,�⊗m

s 〉 =
∑

i+ j+k=m

asi(b + c)sj(b − c)skxi, j,k, (5.2)

where xi, j,k is the summation of values of the second part X over all assignments in the category (i, j, k). Because i + j +
k =m, we also use xi, j to denote the value xi, j,k . Similarly we use x j,k or xi,k to denote the same value xi, j,k when there is 
no confusion.

Generally, in an interpolation reduction, we pick polynomially many values of s, and get a system of linear equations in 
xi, j,k . When all ai(b + c) j(b − c)k are distinct, for i + j + k =m, we get a full rank Vandermonde coefficient matrix, and then 
we can solve for each xi, j,k . Once we have xi, j,k we can compute any function in xi, j,k .

When ai(b + c) j(b − c)k are not distinct, say ai(b + c) j(b − c)k = ai
′
(b + c) j

′
(b − c)k

′
, we may define a new variable 

y = xi, j,k + xi′, j′,k′ . We can combine all xi, j,k with the same ai(b + c) j(b − c)k . Then we have a full rank Vandermonde system 
of linear equations in these new unknowns. We can solve all new unknowns and then sum them up to get 

∑

i+ j+k=m xi, j,k . 
This is one special function in xi, j,k .

The above are two typical application methods in this kind of interpolation. Unfortunately in our case, we may have 
a rank deficient Vandermonde system, and the sum 

∑

i+ j+k=m xi, j,k does not give us anything useful. This is because if 

we replace asi(b + c)sj(b − c)sk by the constant value 1 in equation (5.2), we get 
∑

i+ j+k=m xi, j,k . Thus, 
∑

i+ j+k=m xi, j,k

corresponds to �′
s with all nonzero values in �s replaced by the constant 1, i.e., we get a reduction from the problem 

M(1, 1, 0). But M(1, 1, 0) is a tractable problem, and so we do not get any hardness result by such a reduction. Instead, we 
consider weighted sums of the form 

∑

i, j,k φ jψkxi, j,k for appropriate values of φ and ψ , so that we end up in a #P-hard 
problem.

To prove this lemma, there are three cases when there are 3 twins.

1. Two elements in {a, b, c} are equal. By the symmetry of the group action of S4 , without loss of generality, we may 
assume b = c. We have

�s =

⎡

⎢

⎢

⎣

0 0 0 as

0 (2b)s 0 0

0 0 0 0

as 0 0 0

⎤

⎥

⎥

⎦

,

and equation (5.2) becomes Holant�s =
∑

i+ j=m xi, ja
si(2b)sj . Note that all terms xi, j,k with k 	= 0 have disappeared. We 

can interpolate to get 
∑

i+ j=m xi, j . (This can be argued as follows: If a
2b

is not a root of unity, then we can get a system 
of linear equations about xi, j with a full-ranked coefficient matrix. By solving the system of linear equations we have all 
xi, j . If 

a
2b

is a root of unity, we pick the minimum positive u ∈ Z such that ( a
2b

)u = 1. Let Xk =
∑

0≤�≤�m
u

� xk+u�,m−k−u�

for 0 ≤ k ≤ u −1. Then we can get a system of linear equations about Xk with a full-ranked coefficient matrix. By solving 
this system of linear equations we have all Xk and then we can get 

∑

i+ j=m xi, j .) This sum corresponds to the problem 

defined by the matrix �′ =

⎡

⎣

0 0 0 1

0 1 0 0

0 0 0 0

1 0 0 0

⎤

⎦, which in turn corresponds to the signature M(1, 1
2
, 1
2
) = P�′P =

⎡

⎣

0 0 0 1

0 1
2

1
2 0

0 1
2

1
2 0

1 0 0 0

⎤

⎦. 

Since Holant(	=2 |M(1, 1
2
, 1
2
)) is #P-hard by the determinant criterion, we obtain that Holant(	=2 |M(a, b, c) is #P-hard.

2. Two elements in {a, b, c} have the opposite value. By the symmetry of the group action of S4 , without loss of generality, 
we may assume b = −c. We have

�s =

⎡

⎢

⎢

⎣

0 0 0 as

0 0 0 0

0 0 (2b)s 0

as 0 0 0

⎤

⎥

⎥

⎦

,
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and equation (5.2) becomes Holant�s =
∑

i+k=m xi,ka
si(2b)sk . Similarly note that all terms xi, j,k with j 	= 0 have disap-

peared. We can interpolate to get 
∑

i+k=m xi,k . Similarly, this sum corresponds to the problem defined by the matrix 

�′′ =

⎡

⎣

0 0 0 1

0 0 0 0

0 0 1 0

1 0 0 0

⎤

⎦, which in turn corresponds to the signature M(2, 1, −1) = P�′′P =

⎡

⎣

0 0 0 1

0 1
2 − 1

2 0

0 − 1
2

1
2 0

1 0 0 0

⎤

⎦. By the group action 

we also have M(−1, 2, 1). If we link two copies of M(−1, 2, 1) by N , we get M(1, 5, 4), because 
[

2 1

1 2

]2
=

[

5 4

4 5

]

. Then 

M(1, 5, 4) = P�P , where � =

⎡

⎣

0 0 0 1

0 9 0 0

0 0 1 0

1 0 0 0

⎤

⎦. There are only two nonzero values 9 and 1 in �. For M(1, 5, 4), we have 

Holant�s =
∑

0≤i≤m xi9
si , from which we can solve all xi (i = 0, 1, . . . , m), we can compute 

∑

0≤i≤m xi3
si . This realizes 

the following problem 

⎡

⎣

0 0 0 1

0 3 0 0

0 0 1 0

1 0 0 0

⎤

⎦, which gives us Holant(	=2| M(1, 2, 1)). By the symmetry of group action we also have 

Holant(	=2| M(2, 1, 1)), which is #P-hard by Theorem 2.2.

3. After the previous two cases, we can assume that there are no two elements in {a, b, c} that are equal or opposite. If 
we consider a, b and c as three nonzero complex numbers on the plane, there must be two elements in {a, b, c} that 
are not orthogonal as vectors. This is easy to see, since if a and b are orthogonal, and also b and c are orthogonal, then 
a/c = (a/b) · (b/c) has complex argument a multiple of π . By the symmetry of the group action of S4 , we may assume 
b and c are not orthogonal. We have already considered the cases b + c = 0 or b − c = 0, So we may assume b 	= ±c.

Let α = b+c
a

and β = b−c
a

. Then they have different norms |α| 	= |β|. Indeed, if |α| = |β| then |1 + c/b| = |1 − c/b| which 
means that c/b ∈ iR is purely imaginary, i.e., b and c are orthogonal.
Let N = {0, 1, 2, . . .}. By the interpolation method, we have a system of linear equations in xi, j,k , whose coefficient 
matrix ((ai(b + c) j(b − c)k)s) has row index s and column index from {(i, j, k) | i, j, k ∈N, i + j + k =m}.
The matrix ((ai(b + c) j(b − c)k)s), after dividing the sth row by asm , has the form ((α jβk)s), which is a Vandermonde 
matrix with row index s and column index from {( j, k) | j, k ∈ N, j + k ≤m}. Define L = {( j, k) ∈ Z2 | α jβk = 1}. This is 
a sublattice of Z2 . Every lattice has a basis. There are 3 cases depending on the rank of L.
(a) L = {(0, 0)}. All α jβk are distinct. Thus the coefficient matrix has full rank. By solving a system of linear equations, 

we can realize 

⎡

⎣

0 0 0 1

0 3 0 0

0 0 1 0

1 0 0 0

⎤

⎦, which in turn corresponds to the signature M(2, 1, 1). Since Holant(	=2| M(2, 1, 1)) is 

#P-hard by Theorem 2.2, we obtain that Holant(	=2 |M(a, b, c)) is #P-hard.
(b) L contains two vectors ( j1, k1) and ( j2, k2) independent over Q. Then the nonzero vectors j2( j1, k1) − j1( j2, k2) =

(0, j2k1 − j1k2) and k2( j1, k1) − k1( j2, k2) = (k2 j1 − k1 j2, 0) are in L. Hence, both α and β are roots of unity, but 
this contradicts with |α| 	= |β|.

(c) L = {(ns, nt) | n ∈ Z}, where s, t ∈ Z and (s, t) 	= (0, 0). We know that s + t 	= 0, otherwise we get |α| 	= |β|. By 
Lemma 5.1, for any numbers φ and ψ satisfying φsψ t = 1, we can compute 

∑

j+k≤m φ jψkx j,k efficiently.

Define A =

⎡

⎣

0 0 0 1

0 φ 0 0

0 0 ψ 0

1 0 0 0

⎤

⎦, and we have 2P AP =

⎡

⎣

0 0 0 2

0 φ+ψ φ−ψ 0

0 φ−ψ φ+ψ 0

2 0 0 0

⎤

⎦. We get Holant(	=2| M(2, φ + ψ, φ − ψ)).

i. t = 0. Without loss of generality s > 0. Let φ = 1 and ψ = 1/2. We get M(4, 3, 1), from which we can get 
M(1, 4, 3) by the S4 group symmetry. This is #P-hard by the same proof method as we prove M(1, 5, 4) is 
#P-hard in Case 2.

ii. t > 0 and s ≥ 0. Let φ = ψ + 2. We need f (ψ) = (ψ + 2)sψ t = 1. Because f (0) = 0 < 1 and f (1) ≥ 1, there is 
a root ψ0 ∈ (0, 1]. We get M(2, 2ψ0 + 2, 2), which is #P-hard by Case 1.

iii. t > 0, s < 0 and |t| > |s|. Let φ = ψ +2. ψ |t| = (ψ +2)|s| has a solution ψ0 in (1, ∞). We get M(2, 2ψ0 +2, 2), 
which is #P-hard by Case 1.

iv. t > 0, s < 0 and |t| < |s|. Let ψ = φ +2. φ|s| = (φ +2)|t| has a solution φ0 in (1, ∞). We get M(2, 2φ0 +2, −2), 
which is #P-hard by Case 2. �

We finish this section by proving the other no zero cases can realize 3-twins.

Lemma 5.3. Let f be a 4-ary signature with the signature matrix Mx1x2,x4x3 ( f ) =

⎡

⎣

0 0 0 a

0 b c 0

0 z y 0

x 0 0 0

⎤

⎦ with abcxyz 	= 0. Then Holant(	=2| f )

is #P-hard.
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Proof. Note that Mx4x3,x1x2 ( f ) =

⎡

⎣

0 0 0 x

0 b z 0

0 c y 0

a 0 0 0

⎤

⎦. Connecting two copies of f back to back by double Disequality N , we get the 

gadget whose signature has the signature matrix

Mx1x2,x4x3( f )NMx4x3,x1x2( f ) =

⎡

⎢

⎢

⎣

0 0 0 ax

0 2bc by + cz 0

0 by + cz 2yz 0

ax 0 0 0

⎤

⎥

⎥

⎦

.

If by + cz 	= 0, we have realized a function M(ax, ax, 2bc, 2yz, by + cz, by + cz) of two twins, with all nonzero values. We 
can use M(2bc, 2yz, ax, ax, by + cz, by + cz) to construct the following function by the same gadget

M(4bcyz,4bcyz,2ax(by + cz),2ax(by + cz),a2x2 + (by + cz)2,a2x2 + (by + cz)2).

If furthermore a2x2 + (by + cz)2 	= 0, we get a nonzero 3-twins function and we can finish the proof by Lemma 5.2. If this 
process fails, we get a condition that either by + cz = 0 or iax + by + cz = 0 or −iax + by + cz = 0. Recall the symmetry 
among the 3 pairs (a, x), (b, y), (c, z). If we apply this process with a permuted form of M , we will get either ax + cz = 0

or ax + iby + cz = 0 or ax − iby + cz = 0. There is one more permutation of M which gives us either ax + by = 0 or 
ax + by + icz = 0 or ax + by − icz = 0.

We claim that, when axbycz 	= 0, the 3 Boolean disjunction conditions can not hold simultaneously. Hence, one of three 
constructions will succeed and give us #P-hardness.

To prove the claim, we assume that all 3 disjunction conditions hold. Then we get 3 conjunctions, each a disjunction of 
3 linear equations. Each equation is a homogeneous linear equation on (ax, by, cz). The 3 equations in the first conjunction 
all have the form α ·ax +1 ·by +1 · cz = 0 where α ∈ {0, i, −i}. Similarly the 3 equations in the second and third conjunction 
all have the form 1 · ax + β · by + 1 · cz = 0 and 1 · ax + 1 · by + γ · cz = 0 respectively. If at least one equation holds in each 
of the 3 sets of linear equations with nonzero solution (ax, by, cz), the following determinant

det

⎡

⎣

α 1 1

1 β 1

1 1 γ

⎤

⎦ = 0, (5.3)

for some α, β, γ ∈ {0, i, −i}. However, there are no choices of α, β, γ ∈ {0, i, −i} such that Equation (5.3) holds: The deter-
minant is αβγ + 2 − α − β − γ . For α, β, γ ∈ {0, i, −i}, the norm |2 − α − β − γ | ≥ 2, but |αβγ | = 0 or 1. �

6. Case 3: exactly one zero

Lemma 6.1. Let f be a 4-ary signature with the signature matrix

Mx1x2,x4x3 ( f ) =

⎡

⎢

⎢

⎣

0 0 0 a

0 b c 0

0 z y 0

x 0 0 0

⎤

⎥

⎥

⎦

,

where there is exactly one of {a, b, c, x, y, z} that is zero, then Holant(	=2| f ) is #P-hard.

Proof. Without loss of generality, we can assume that b = 0. Note that Mx3x4,x1x2 ( f ) =

⎡

⎣

0 0 0 x

0 c y 0

0 0 z 0

a 0 0 0

⎤

⎦. Connecting a copy of f

with this via N , we get a signature g with signature matrix

Mx1x2,x4x3 ( f )NMx3x4,x1x2 ( f ) =

⎡

⎢

⎢

⎣

0 0 0 ax

0 c2 cy 0

0 cy y2 + z2 0

ax 0 0 0

⎤

⎥

⎥

⎦

.

If y2 + z2 	= 0, by Lemma 5.3, Holant(	=2| g) is #P-hard. Thus Holant(	=2| f ) is #P-hard. Otherwise, we have

y2 + z2 = 0.

Similarly, Mx3x4,x1x2 ( f )NMx3x4,x2x1 ( f ) gives us

y2 + cz = 0.

Mx4x3,x1x2 ( f )NMx2x1,x4x3 ( f ) gives us
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y2 + c2 = 0.

From these equations, we get c2 = z2 = cz = −y2 . This gives us z = c and y = ±ic, and M = Mx1x2,x4x3 ( f ) =

⎡

⎣

0 0 0 a

0 0 c 0

0 c ±ic 0

x 0 0 0

⎤

⎦.

For this matrix M , we may construct MNMT =

⎡

⎣

0 0 0 ax

0 0 c2 0

0 c2 ±2ic2 0

ax 0 0 0

⎤

⎦. Now we may repeat the construction from the begin-

ning using MNMT instead of M . Because (c2)2 + (±2ic2)2 	= 0, we get a function of 6 nonzero values. By Lemma 5.3,

Holant(	=2| f ) is #P-hard. �

7. Case 4: exactly two zeros from distinct pairs

Lemma 7.1. Let f be a 4-ary signature with the signature matrix

Mx1x2,x4x3 ( f ) =

⎡

⎢

⎢

⎣

0 0 0 a

0 b c 0

0 z y 0

x 0 0 0

⎤

⎥

⎥

⎦

,

where there are exactly two zero entries in {a, b, c, x, y, z} and they are from distinct pairs, then Holant(	=2| f ) is #P-hard.

Proof. Recall from Section 2 that we can arbitrarily reorder the three rows in 
[

a x

b y

c z

]

, and we can also reverse arbitrary 

two rows. Thus, we can assume that ax 	= 0, bz 	= 0 and c = y = 0. Note that Mx1x2,x4x3 ( f ) =

⎡

⎣

0 0 0 a

0 b 0 0

0 z 0 0

x 0 0 0

⎤

⎦ and Mx3x4,x1x2 ( f ) =
⎡

⎣

0 0 0 x

0 0 0 0

0 b z 0

a 0 0 0

⎤

⎦. Take two copies of f . If we connect the variables x4, x3 of the first function with the variables x3, x4 of the 

second function using (	=2), we get a signature g with the signature matrix

Mx1x2,x4x3( f )NMx3x4,x1x2( f ) =

⎡

⎢

⎢

⎣

0 0 0 ax

0 b2 bz 0

0 bz z2 0

ax 0 0 0

⎤

⎥

⎥

⎦

.

By Lemma 5.3, Holant(	=2| g) is #P-hard. Thus Holant(	=2| f ) is #P-hard. �

8. Case 5: one zero in each pair

Lemma 8.1. If there is one zero in each pair of (a, x), (b, y), (c, z), then Holant(	=2| f ) is computable in polynomial time.

Proof. We will list the three strings of weight 2 where f may be nonzero, by the symmetry of the group action of S4 . We 
may assume the first string is ξ = 0011. The second string η, being not complementary to ξ and of weight two, we may 
assume it is 0101.

The third string ζ , being not complementary of either ξ or η, and of weight two, must be either 0110 or 1001. Hence, 
ξ = 0 0 1 1
η = 0 1 0 1
ζ = 0 1 1 0

or
ξ = 0 0 1 1
η = 0 1 0 1
ζ = 1 0 0 1

.

Then f (x1, x2, x3, x4) = Is-Zero(x1) · g(x2, x3, x4) or Is-One(x4) · h(x1, x2, x3), where h ∈ M and g ∈ M ′ . Note that the
Is-Zero and Is-One are both unary functions and both belong to M ∩ M ′ . By Theorem 2.8, Holant(	=2| f ) is computable in 
polynomial time. �
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