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1. Introduction

A primary purpose of complexity theory is to provide classifications to computational problems according to their in-
herent computational difficulty. While computational problems can come from many sources, a class of problems from
statistical mechanics has a remarkable affinity to what is naturally studied in complexity theory. These are the sum-of-
product computations, a.k.a. partition functions in physics.

Well-known examples of partition functions from physics that have been investigated intensively in complexity theory
include the Ising model and Potts model [10,8,7,12]. Most of these are spin systems. Spin systems as well as the more
general counting constraint satisfaction problems (#CSP) are special cases of Holant problems [5] (see Section 2 for defi-
nitions). Roughly speaking, Holant problems are tensor networks where edges of a graph are variables while vertices are
local constraint functions; by contrast, in spin systems vertices are variables and edges are (binary) constraint functions.
Spin systems can be simulated easily as Holant problems, but Freedman, Lovasz and Schrijver proved that simulation in
the reverse direction is generally not possible [6]. In this paper we study a family of partition functions that fit the Holant
problems naturally, but not as a spin system. This is the six-vertex model.

The six-vertex model in statistical mechanics concerns crystal lattices with hydrogen bonds. Remarkably it can be ex-
pressed perfectly as a family of Holant problems with 6 parameters for the associated signatures, although in physics people
are more focused on regular structures such as lattice graphs, and asymptotic limit. In this paper we study the partition
functions of six-vertex models purely from a complexity theoretic view, and prove a complete classification of these Holant
problems, where the 6 parameters can be arbitrary complex numbers.
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Fig. 1. Valid configurations of the six-vertex model.

The first model in the family of six-vertex models was introduced by Linus Pauling in 1935 to account for the residual
entropy of water ice [17]. Suppose we have a large number of oxygen atoms. Each oxygen atom is connected by a bond
to four other neighboring oxygen atoms, and each bond is occupied by one hydrogen atom between two oxygen atoms.
Physical constraint requires that the hydrogen is closer to either one or the other of the two neighboring oxygens, but never
in the middle of the bond. Pauling argued [17] that, furthermore, the allowed configuration of hydrogen atoms is such that
at each oxygen site, exactly two hydrogens are closer to it, and the other two are farther away. The placement of oxygen and
hydrogen atoms can be naturally represented by vertices and edges of a 4-regular graph. The constraint on the placement of
hydrogens can be represented by an orientation of the edges of the graph, such that at every vertex, exactly two edges are
oriented toward the vertex, and exactly two edges are oriented away from it. In other words, this is an Eulerian orientation.
Since there are (‘2‘) =6 local valid configurations, this is called the six-vertex model. In addition to water ice, potassium
dihydrogen phosphate KH,PO4 (KDP) also satisfies this model.

The valid local configurations of the six-vertex model are illustrated in Fig. 1. There are parameters €1, €2, ..., € as-
sociated with each type of the local configuration. The total energy E is given by E =nj€; + naéz + ... + ng€g, where n;
is the number of local configurations of type i. Then the partition function is Z = ZE*E/I‘BT, where the sum is over all
valid configurations, kp is Boltzmann’s constant, and T is the system’s temperature. Mathematically, this is a sum-of-product
computation where the sum is over all Eulerian orientations of the graph, and the product is over all vertices where each
vertex contributes a factor ¢; = ¢ if it is in configuration i (1 <i < 6) for some constant c.

Some choices of the parameters are well-studied. On the square lattice graph, when modeling ice one takes €1 = €3 =
...=€g =0. In 1967, Elliott Lieb [14] famously showed that, as the number N of vertices approaches co, the value of

3/2
the “partition function per vertex” W = Z/N approaches (%) ~ 1.5396007 ... (Lieb’s square ice constant). This matched

experimental data 1.540 &+ 0.001 so well that it is considered a triumph. The case €; = €; = ... = €g = 0 is precisely
the problem of counting the number of Eulerian orientations on 4-regular graphs. Mihail and Winkler [16] showed that
counting the number of Eulerian orientations (on a general even degree graph, called an Euler graph) is #P-hard, and gave
a fully polynomial randomized approximation scheme (fpras) for it. Huang and Lu [9] proved that the problem remains
#P-hard for 4-regular graphs, which is exactly the special case for the six-vertex model with €; =€, =... =€ = 0. They
proved this by a reduction from the #P-hardness of T¢ (3, 3), the evaluation at (3, 3) of the Tutte polynomial T¢, due to

Las Vergnas [11]. On (4-regular) planar graphs, T¢ (3, 3) is actually exactly equivalent to a specific six-vertex model; in the
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to counting the number of Eulerian orientations on 4-regular graphs [21]. Luby, Randall and Sinclair [15] gave sampling

algorithms for Eulerian orientations on simply connected regions of the grid graph with boundary conditions.

There are other well-known choices in the six-vertex model family. The KDP model of a ferroelectric is to set €; = €3 =0,
and €3 = €4 = €5 = € > 0. The Rys F model of an antiferroelectric is to set €; = €; = €3 = €4 > 0, and €5 = €g = 0. When
there is no ambient electric field, the model chooses the zero field assumption: €; = €3, €3 = €4, and €5 = €g. Historically
these are widely considered among the most significant applications ever made of statistical mechanics to real substances.
In classical statistical mechanics the parameters are all real numbers while in quantum theory the parameters are complex
numbers in general.

In this paper, we give a complete classification of the complexity of calculating the partition function Z on any 4-regular
graph defined by an arbitrary choice parameter values cq,ca,...,cs € C. (To state our theorem in strict Turing machine
model, we take c1, ca, ..., cg to be algebraic numbers.) Depending on the setting of these values, we show that the partition
function Z is either computable in polynomial time, or it is #P-hard, with nothing in between. The dependence of this
dichotomy on the values c1, 3, ..., cg is explicit.

A number of complexity dichotomy theorems for counting problems have been proved previously. These are mostly
on spin systems, or on #CSPs (counting Constraint Satisfaction Problems), or on Holant problems with symmetric local
constraint functions. #CSP is the special case of Holant problems where EQUALITIES of all arities are auxiliary functions
assumed to be present. Spin systems are a further specialization of #CSP, where there is a single binary constraint function
(see Section 2). The six-vertex model cannot be expressed as a #CSP problem. It is a Holant problem where the constraint
functions are not symmetric. Thus previous dichotomy theorems do not apply. This is the first complexity dichotomy theorem
proved for a class of Holant problems on non-symmetric constraint functions and without auxiliary functions assumed to be
present.

However, one important technical ingredient of our proof is to discover a direct connection between some subset of the
six-vertex models with spin systems. Another technical highlight is a new interpolation technique that carves out subsums

notation of Section 2, it is specified by the signature matrix . Welsh has pointed out that T¢ (0, —2) is equivalent
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of a partition function by assembling a suitable sublattice, and partitions the sum over an exponential range according to
an enumeration of the intersections of cosets of the sublattice with this range.

2. Preliminaries and notations

A constraint function f of arity k is a map {0, 1}¥ — C. Fix a set of constraint functions F. A signature grid Q = (G, 1)
is a tuple, where G = (V, E) is a graph, & labels each v € V with a function f, € F of arity deg(v), and the incident edges
E(v) at v with input variables of f,. We consider all 0-1 edge assignments o, each gives an evaluation [],.y fv(Tlew)),
where o) denotes the restriction of o to E(v). The counting problem on the instance € is to compute Holantg =
Zg:E_){OJ}]_[VEv fv(olew)). The Holant problem parameterized by the set F is denoted by Holant(F). We denote by
Holant(F | G) the Holant problem on bipartite graphs where signatures from F and G are assigned to vertices from the
Left and Right.

A spin system on G = (V, E) has a variable for every v € V and a binary function g for every edge e € E. The partition
function is Za:v»{m} I—[(u,v)eE g(o(u), o (v)). Spin systems are special cases of #CSP(F) (counting CSP) where F consists
of a single binary function. In turn, #CSP(F) is the special case of Holant where F contains EQUALITY of all arities.

A constraint function is also called a signature. A function f of arity k can be represented by listing its values in
lexicographical order as in a truth table, which is a vector in C2", or as a tensor in (C2)®, or as a matrix in C2 x C2?
if we partition the k variables to two parts, where ki 4+ kp = k. A function is symmetric if its value depends only on the
Hamming weight of its input. A symmetric function f on k Boolean variables can be expressed as [ fo, f1, ..., fx], where f,
is the value of f on inputs of Hamming weight w. For example, (=) is the EQuALITY signature [1,0,...,0,1] (with k—1
0's) of arity k. We use #;, to denote binary DISEQUALITY function [0, 1, 0]. The support of a function f is the set of inputs
on which f is nonzero.

Given an instance Q = (G, ) of Holant(F), we add a middle point on each edge as a new vertex to G, then each edge
becomes a path of length two through the new vertex. Extend 7 to label a function g to each new vertex. This gives a
bipartite Holant problem Holant(g | F). It is obvious that Holant(=3| F) is equal to Holant(F).

For T € GLy(C) and a signature f of arity n, written as a column vector f € C2", we denote by T=!f = (T~)®"f the
transformed signature. For a signature set F, define T™'F = {T~! f | f € F}. For signatures written as row vectors we define
FT similarly. The holographic transformation defined by T is the following operation: given a signature grid Q = (H, r) of
Holant (F | G), for the same bipartite graph H, we get a new signature grid Q' = (H, 7r’) of Holant (fT | T—1g) by replacing
each signature in F or G with the corresponding signature in FT or T~!G.

In this paper we focus on Holant(#;| f) when f has support among strings of Hamming weight 2. They are the six-
vertex models on general graphs. We note that as an orientation problem the six-vertex model is naturally represented as
a Holant problem on the edge-vertex incidence graph I'(G) of a given 4-regular graph G, where the edge node in I'(G)
are given the binary DISEQUALITY function (#;), and the degree 4 vertices are given the constraint function f. We can also

transform this to a set of (non-bipartite) Holant problems by a holographic reduction [18-20]. Let Z = % [1 l‘] The matrix

form of (#) is [(1) 3)] = Z"Z. Under a holographic transformation with bases Z, Holant(#;| f) becomes Holant(=;| Z®*f),

where Z®4f is a constraint function represented by a column vector, which is the matrix tensor power Z®* multiplied
by the column vector form of f. The bipartite Holant problems of the form Holant(#;| f) naturally correspond to the
non-bipartite Holant problems Holant(Z®*f). In general f and Z®*f are non-symmetric functions.

foooo footo fooo1 foor1
fo00 for10 foro1 fornn
fro000 f1o10 fio01 from
frio0 f1110 frion fiin
of {1,2,3, 4}, then the 4 x 4 matrix Myy; xx,(f) lists the 16 values with row index x;x; € {0, 1}2 and column index xpx; €

{0, 1}? in lexicographic order.

A signature f of arity 4 has the signature matrix M = My, x, x4x; () = I {i, j, k, £} is a permutation

0001
_ 1|11 _Jo1 01]_]o0010 . s .
LetH_ﬁ[1—1] and N—[]0]®[10]— 0100 |- Note that N is the double DiseQuaLITY, which is the function of

1000

connecting two pairs of edges by (#,).
If f and g have signature matrices M(f) = Myx; xx (f) and M(g) = My, x,x, (), by connecting xi to xs, X, to X, both
with DISEQUALITY (#;), we get a signature of arity 4 with the signature matrix M(f)NM(g) by matrix product with row

index x;x; and column index xyx,.

000a
0ObcoO
0zyo0
X000
When a=x,b=y and ¢ =z, we abridge it as M(a, b, c). Note that all nonzero entries of f are on Hamming weight 2.
Denote the 3 pairs of ordered complementary strings by A = 0011, 2 = 1100, u = 0110, it = 1001, and v = 0101, v = 1010.
The support of f is the union {A, A, u, &, v, v} of the pairs (A, ), (4, &) and (v, V), on which f has values (g, ), (b, y)
and (c, z). If f has the same value in a pair, say a=x on A and X, we say it is a twin.

The six-vertex model is Holant(#;| f), where My, x, x,;x; (f) = . We also write this matrix by M(a, x, b, y,c, 2).
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The permutation group S4 on {x1, X2, X3, x4} induces a group action on {s € {0, 1}4 | wt(s) = 2} of size 6. This is a
faithful representation of S4 in Sg. Since the action of S4 preserves complementary pairs, this group action has non-
trivial blocks of imprimitivity, namely {A, B, C} = {{, 1}, {1, &t}, {v, P}}. The action on the blocks is a homomorphism of
S4 onto S3, with kernel K = {1, (12)(34), (13)(24), (14)(23)}. In particular one can calculate that the subgroup S 34 =
{1, (23), (34), (24), (243), (234)} maps to {1, (AC), (BC), (AB), (ABC), (ACB)}. By a permutation from S4, we may permute
the matrix M(a, x, b, y, ¢, z) by any permutation on the values {a, b, c} with the corresponding permutation on {x, y, z}, and

moreover we can further flip an even number of pairs (a, x), (b, y) and (c, z). In particular, we can arbitrarily reorder the
ax

three rows in [b y], and we can also reverse the order of arbitrary two rows together. In the proof, after one construction,
cz
we may use this property to get a similar construction and conclusion, by quoting this symmetry of three pairs or six values.

Definition 2.1. A 4-ary signature is redundant iff in its 4 by 4 signature matrix the middle two rows are identical and the
middle two columns are identical.

Theorem 2.2 (|2]). If f is a redundant signature and the determinant

foooo  footo  foot1
det | foioo foiio for11 | #0,
fiioo friio fiin

then Holant(#; | f) is #P-hard.

Now we define the tractable function classes <« and .

Affine signatures .of

Definition 2.3. A signature f(x1,...,xy) of arity n is affine if it has the form

A Xax=o-i%X),

where L € C, X = (x1,X2,...,Xp, 1), A is a matrix over Zj, Q (x1,X2,...,Xn) € Z4[X1,X2, ...,Xy] is a quadratic (total degree
at most 2) multilinear polynomial with the additional requirement that the coefficients of all cross terms are even, i.e.,
Q has the form

n
Q1. X2, ... x) =G0+ Y _ax+ Y 2bixix;,

k=1 1<i<j<n

and yx is a 0-1 indicator function such that xax—o is 1 iff AX =0. We use &/ to denote the set of all affine signatures.
Product-type signatures &2

Definition 2.4. A signature on a set of variables X is of product type if it can be expressed as a product of unary functions,
binary equality functions ([1, 0, 1]), and binary disequality functions ([0, 1, 0]), each on (not necessarily disjoint subsets of)
one or two variables of X. We use & to denote the set of product-type functions.

The classes o7 and &2 are identified as tractable for #CSP [3]. Problems defined by </ are tractable essentially by Gauss
Sums (See Theorem 6.30 of [13]). The signatures in & are tensor products of signatures whose supports are among two
complementary bit vectors. Problems defined by them are tractable by a propagation algorithm. The full version [1] contains
complete definitions and characterizations of these classes.

Theorem 2.5 ([3]). Let F be any set of complex-valued signatures in Boolean variables. Then #CSP(F) is #P-hard unless F C </ or
F C &, in which case the problem is computable in polynomial time.

By Theorem 2.5, we have the following corollary, which is easier to apply for binary signatures.

Corollary 2.6. Let f = H‘l’g ﬁ’l ] = [;f ’g ] be a binary signature. Then #CSP( f) is #P-hard unless

o feP:as—By=00ra=8=0,0rf=y =0;
o fed (,B,y,8) =r{",i,i3, i), wherer; + 12 +13+714=0 (mod 2) and . € C.
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If f e & U, then #CSP(f) is computable in polynomial time.

Definition 2.7. ./ is the set of functions, whose support is composed of strings of Hamming weight at most one. .#" = {g |
Af e A, g(x) = f(X)}, where X is the complement of x.

Note that all unary functions are in .Z N .#'. Theorem 2.8 is a consequence of Theorem 2.2 in [4].
Theorem 2.8. Holant(#;| .#) and Holant(#;| .#") are polynomial time computable.
3. Main theorem

Theorem 3.1. Let f be a 4-ary signature with the signature matrix My,x, x,x; (@, X, b, y, ¢, 2), then Holant(#,| f) is #P-hard except
for the following cases:

o fe;
° f co;
e thereis a zero in each pair (a, x), (b, y), (c, 2);

in which cases Holant(#;| f) is computable in polynomial time.

We prove the complexity classification by categorizing the six values a, b, c, X, y, z in the following way.

1. There is a zero pair. If f € &/ U &2, then it is tractable. Otherwise it is #P-hard.
2. All values in {a, x, b, y, c, z} are nonzero. We prove these are #P-hard.
(a) Three twins. We prove this case mainly by an interpolation reduction from redundant signatures, then apply Theo-
rem 2.2.
(b) There is one pair that is not twin. We prove this by a reduction from Case 2a.
3. There is exactly one zero in {a, x, b, y, c, z}. All are #P-hard by reducing from Case 2.
4. There are exactly two zeros which are from different pairs. All are #P-hard by reducing from Case 2.
5. There is one zero in each pair. These are tractable according to Theorem 2.8.

By definition, in Case 1 and Case 5, f may have more zero values than the stated ones.

These cases above cover all possibilities: After Case 1 we may assume that there is no zero pair. Then after Case 2 we
may assume there is at least one zero and there is no zero pair. Similarly after Case 3 we may assume there are at least
two zeros and there is no zero pair. So Case 4 finishes off the case when there are exactly two zeros. After Case 4 we may
assume there are at least three zeros, but there is no zero pair. Therefore we may assume the only case remaining is where
there are exactly three zeros in three distinct pairs, and Case 5 finishes the proof.

In the following we prove the 5 cases to prove the main theorem.

4. Case 1: one zero pair

In this section we prove Case 1. Note that by renaming the variables x1, X2, X3, x4 we may assume the signature f of
arity 4 with one zero pair has the form in (4.1).

Lemma 4.1. Let f be a 4-ary signature with the signature matrix

0 0 0O
0 o 0

stx[,xuxv (f) = 0 Y ? ol (4-1)
0 0 0O

where {s, t, u, v} is a permutation of {1, 2, 3, 4}. Then Holant(#;| f) is #P-hard unless f € o/ or f € &2, in which case the problem
is computable in polynomial time.

Proof. By the S4 group symmetry, we only need to prove the lemma for (s,t,u, v) = (1,2, 4, 3). Tractability follows from

Corollary 2.6.
Let g(x,y) be the binary signature g = [g‘;g g?:} = [;"; in matrix form. We prove that #CSP(g) <t Holant(#;| f) in

two steps. In each step, we begin with a signature grid and end with a new signature grid such that the Holant values of
both signature grids are the same.
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(a) (b) ()

Fig. 2. The reduction from #CSP(g) to Holant(#; | f). The circle vertices are assigned =4, where d is the degree of the corresponding vertex, the diamond
vertices are assigned g, the triangle vertices are assigned f, and the square vertices are assigned #,. In the first step, we replace a vertex by a cycle, where
the length of the cycle is the degree of the vertex. The vertices on the cycle are assigned =3. In the second step, we merge two vertices that are connected
to the diamond with g and assign f to the new vertex.

For step one, consider an instance of #CSP(g). Equivalently, we will view the instance as a bipartite graph G = (U, V, E),
where each u € U is a variable, and each v € V has degree two and is labeled g. We define a cyclic order of the edges
incident to each vertex u € U, and decompose u into k = deg(u) vertices. Then we connect the k edges originally incident
to u to these k new vertices so that each vertex is incident to exactly one edge. We also connect these k new vertices in a
cycle according to the cyclic order (see Fig. 2b). Thus, in effect we have replaced u by a cycle of length k = deg(u). (If k=1
there is a self-loop. If k = 2 there is a cycle of length 2, i.e., a pair of parallel edges.) Each of the k vertices has degree 3, and
we assign them (=3). Clearly this does not change the value of the partition function. The resulting graph has the following
properties: (1) every vertex has either degree 2 or degree 3; (2) each degree 2 vertex is connected to degree 3 vertices;
(3) each degree 3 vertex is connected to exactly one degree 2 vertex.

Now step two. For every v € V, v has degree 2 and is labeled by g. We contract the two edges incident to v. The resulting
graph G’ = (V’, E’) is 4-regular. We put a node on every edge of G’ (which are all the edges on the cycles introduced in
step 1 for each u € U) and assign (#;) to the new node (see Fig. 2c). Next we assign a copy of f to every v/ € V' after this
contraction. The input variables x1, X2, x3, X4 are carefully assigned at each copy of f as illustrated in Fig. 3. More specifically,
suppose originally the binary constraint g is applied to the ordered pair of variables u and u’, then after the contraction we
have a degree 4 vertex common to the cycles corresponding to u and u’ respectively. In this case, variables x; and x, will
be on the incident edges from the cycle for u, variables x3 and x4 will be on the incident edges from the cycle for u’, so
that clockwise cyclically the four variables are ordered x1, X2, X4, x3. (Note the flipped order of x4 and x3 in the cyclic order.)
This careful assignment of variables is to ensure that in any nonzero term of the Holant sum there are only two possible
configurations to each original cycle corresponding to a variable u € U. Indeed, notice that the support of f is contained
in (X1 # x2) A (x3 # X4). Hence to have a nonzero term in the Holant sum, any cycle corresponding to a variable u € U has
only two configurations corresponding to two cyclic orientations, by the support of f and the (#;) on the cycle. These
correspond to the 0-1 assignment values at the original variable u € U. Moreover in each case, the value of the function g
is perfectly mirrored by the value of the function f under the orientations. So we have #CSP(g) <t Holant(#3| f).

We have f(x1,x2,X3,X4) = g(X1,Xa) - Xxy5x, - Xxa£xq- By Definition 2.3, g € & U & implies f € &/’ U 2, because the factor
Xxi#x2 - Xxs#x4 SIMply gets absorbed into the 0-1 characteristic function of the affine support of g. Therefore if f ¢ &/ U &,
then g ¢ &/ U &2. Then #CSP(g) is #P-hard by Corollary 2.6. It follows that Holant(#;| f) is #P-hard. This finishes the
proof. O

5. Case 2: all six values are nonzero

In this section, we handle the case axbycz # 0, by proving all problems in this case are #P-hard. Firstly, we give a
technical lemma for interpolation reduction. Then we prove the 3-twins case. Finally, we prove the other cases by realizing
a 3-twins problem.

Lemma 5.1. Suppose o, 8 € C — {0}, and the lattice L = {(j, k) € Z* | o/ B = 1} has the form L = {(ns, nt) | n € Z}, wheres,t € Z
and (s, t) # (0, 0). Let ¢ and v be any numbers satisfying ¢>y* = 1. If we are given the values Ny = Zj,kzo, jtk<m (alﬂ")“xj,k for

¢=1,2,...(™}?), then we can compute > k0. jikem 1 UFXj i in polynomial time.

Proof. We treat ;10 jik<m (@I B*)xj k= N¢ (where 1 < ¢ < (m;rz)) as a system of linear equations with unknowns x; .

The coefficient vector of the first equation is (o/g¥), indexed by the pair (j,k), where 0 < j,k <m and j + k <m. The
coefficient matrix of the linear system is a Vandermonde matrix, with row index ¢ and column index (j, k). However, this
Vandermonde matrix is rank deficient. If (j, k) — (j’, k') € L, then columns (j, k) and (j’, k") have the same value.

We can combine the identical columns (j, k) and (j’, k') if (j, k) — (j’, k') € L, since for each coset T of L, the value o/ gk

is constant. Thus, the sum Y - ;4 (@/B*) X} can be written as Y (/)" (Zj,kZO, ik<m. GoeT xj,k>, where the
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(a) goo+>foi10 (b) go1¢> foro1 ((’) g104> f1o10 (d) 9114+ f1001

Fig. 3. Assigning input variables at one copy of f: Suppose the binary function g is applied to (the ordered pair) (u,u’). The variables u and u’ have
been replaced by cycles of length deg(u) and deg(u’) respectively. (In the figure, they have deg(u) =5 and deg(u’) = 3.) For the cycle C, representing a
variable u, we associate the value u =0 with a clockwise orientation, and u =1 with a counter-clockwise orientation. We assign x; to the edge labeled
by i for i =1, 2,3, 4. Then by the support of f, x; =0,1 forces x, =1, 0 respectively, and similarly x4 =0, 1 forces x3 = 1, 0 respectively. Thus there is a
natural 1-1 correspondence between u = 0 (respectively, u = 1) with clockwise (respectively, counter-clockwise) orientation of the cycle C,, and similarly
for Cy . Under this 1-1 correspondence, the value of the function g is perfectly mirrored by the value of the function f.

1 42 1 4 1 42 1 4E 1 4 1 4z z 1 4
2 3 2 3 2 3 2 3 2 3 2 3 2 3
(a) mNm (b) M(NM")? (c) M(NM")—?

Fig. 4. Recursive construction of the interpolation in Lemma 5.2. The circles are assigned f and the squares are assigned #;.

sum over T is for all cosets T of L having a non-empty intersection with the cone C = {(j, k) |0 < j,k <m, j+k <m}. Now
the coefficient matrix, indexed by 1 < ¢ < (m;z) for the rows and the cosets T with TN C # @ for the columns, has full rank.

And so we can solve (Zj,kzO, tk<m, (j,k)erxj,k) for each coset T with TNC # . Notice that for the sum 3 ; IR 1

we also have the expression Y ¢/yk (Zj.,kzo, k<, GoeT xj,k), since ¢Jy* on each coset T of L is also constant. The
lemma follows. O

Now we prove the #P-hardness for the 3-twins case. In this case a =%, b=y and c = z. We denote by M(a, b, c¢) the
problem defined by the signature matrix My, x, x4x; (@,a,b, b, c, ©).

000a

Lemma 5.2. Let f be a 4-ary signature with the signature matrix My, x, x,x; (f) = g’z ; g with abc # 0. Then Holant(#; |f) is

a000
#P-hard.

Proof. We construct a series of gadgets by a chain of one leading copy of f and a sequence of twisted copies of f linked by
two (#)’s in between. It has the signature matrix Ds = M(NM')*~!, for s > 1, where M = My, x, %43 (f)y M = M,y xax3 ()
is a permuted copy of M, and N is the double DISEQUALITY. See Fig. 4. This is in the right side of Holant(#; | f).

The signature matrix of this gadget is given as a product of matrices. Each matrix is a function of arity 4. Notice that
the two row indices in My,x, x,x; (f) exchange their positions compared with the standard one My, x, x,x; (f). Thus the rows
of M under go the permutation (00, 01,10,11) — (00, 10,01, 11) to get M’. In other words, M’ is obtained from M by
exchanging the middle two rows. Also NM’ reverses all 4 rows of M’. So we have

a 00 0 0 0 @

S

NM' = glggg,and Ds=| 0 [tc’ ;]
000 a @ 0 0

11

We diagonalize the 2 by 2 matrix in the middle using H = % [1 71] (note that H~! = H), and get D; = PAP, where

0 o0 0 o
100

_ o ®w+0s 0 o0

b= g I; (1) coand As=1g 00— 0

@ 0 0 0

The matrix As has a good form for polynomial interpolation. Suppose we have a problem Holant(#;| F) to be reduced
to Holant(#;| M). Let F appear m times in an instance 2. We replace each appearance of F by a copy of the gadget Dy,
to get an instance s of Holant(#;| M). We can treat each of the m appearances of D as a new gadget composed of
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three functions in sequence P, As; and P, and denote this new instance by ;. We divide | into two parts. One part is
composed of m functions A;. The second part is the rest of the functions, including 2m occurrences of P, and its signature
is represented by X (which is a tensor expressed as a row vector). The Holant value of € is the dot product (X, A®™),
which is a summation over 4m bits, that is, the values of the 4m edges connecting the two parts. We can stratify all
0-1 assignments of these 4m bits having a nonzero evaluation of Holantg, into the following categories. For each tuple of
nonnegative integers (i, j, k) such that i + j + k = m, the category parameterized by (i, j, k) is:

e there are i many copies of A receiving inputs 0011 or 1100;
e there are j many copies of Ag receiving inputs 0110; and
e there are k many copies of A receiving inputs 1001.

For any assignment in the category with parameter (i, j, k), the evaluation of A®™ is clearly a (b + ¢)* (b — o). We can
rewrite the dot product summation and get

Holantg, = Holantg = (X, AZ™ = > a"(b+ )Y (b — 0)*x; ju. (5.2)
i+j+k=m

where ¥; j  is the summation of values of the second part X over all assignments in the category (i, j, k). Because i + j +
k =m, we also use x; j to denote the value x; j x. Similarly we use x; ; or x; x to denote the same value x; j , when there is
no confusion.

Generally, in an interpolation reduction, we pick polynomially many values of s, and get a system of linear equations in
Xi j.k- When all a’(b+c)J (b — ¢)¥ are distinct, for i + j +k =m, we get a full rank Vandermonde coefficient matrix, and then
we can solve for each x; j . Once we have x; j we can compute any function in X; j k.

When da(b + ¢)J (b — c)¥ are not distinct, say ai(b + ¢)i(b — o)k = a’ (b + c)f/ (b — c)"/, we may define a new variable
Y =X jk+X j 1. We can combine all x; j  with the same al(b+c)f (b — c)¥. Then we have a full rank Vandermonde system
of linear equations in these new unknowns. We can solve all new unknowns and then sum them up to get Zi+j+k=m Xi, j k-
This is one special function in x; j k.

The above are two typical application methods in this kind of interpolation. Unfortunately in our case, we may have
a rank deficient Vandermonde system, and the sum »; ;.4 ., % jx does not give us anything useful. This is because if
we replace a’i(b + ¢)¥ (b — c)* by the constant value 1 in equation (5.2), we get it jrkem Xijke THUS, Do X ik
corresponds to 2} with all nonzero values in A replaced by the constant 1, i.e., we get a reduction from the problem
M(1,1,0). But M(1,1,0) is a tractable problem, and so we do not get any hardness result by such a reduction. Instead, we
consider weighted sums of the form Zi,j,k ¢jtpkx,-,jyk for appropriate values of ¢ and v, so that we end up in a #P-hard
problem.

To prove this lemma, there are three cases when there are 3 twins.

1. Two elements in {a, b, c} are equal. By the symmetry of the group action of S4, without loss of generality, we may
assume b = c. We have

0 0 0d

o @) oo
As=1o 0 o0 0]

@ 0 0 0

and equation (5.2) becomes Holantg, = Ziﬂ-:m xi,jaSi(Zb)sf. Note that all terms x; j, with k # 0 have disappeared. We
can interpolate to get ;. , =m Xi,j- (This can be argued as follows: If zaTs is not a root of unity, then we can get a system
of linear equations about x; j with a full-ranked coefficient matrix. By solving the system of linear equations we have all
xi j. If z‘l—b is a root of unity, we pick the minimum positive u € Z such that (%)“ =1. Let X} = ZOSKSL%J Xktul,m—k—ue
for 0 <k <u—1. Then we can get a system of linear equations about X, with a full-ranked coefficient matrix. By solving
this system of linear equations we have all X; and then we can get ZH_j:m X;,j.) This sum corresponds to the problem

0001 0001
. S . ollo
defined by the matrix A’ = g;gg , which in turn corresponds to the signature M(1, , 1) = PA'P = 0llo
1000 1000
Since Holant(#; |[M(1, % %)) is #P-hard by the determinant criterion, we obtain that Holant(#; [M(a, b, ¢) is #P-hard.

2. Two elements in {a, b, c} have the opposite value. By the symmetry of the group action of S4, without loss of generality,
we may assume b = —c. We have

00 0 d

00 0 0
As=119 0 @) o

@0 0 0
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and equation (5.2) becomes Holantg, =} ; x,-,kas"(Zb)Sk. Similarly note that all terms x; j, with j # 0 have disap-
peared. We can interpolate to get ) ;,,_ Xi k. Similarly, this sum corresponds to the problem defined by the matrix

0001 g (1) ,01 (1)
AN = gg?g , which in turn corresponds to the signature M(2,1,—1) = PA”P = 0 72% %2 ol By the group action
1000 10 00
we also have M(—1,2,1). If we link two copies of M(—1,2,1) by N, we get M(1, 5, 4), because [? ;]2 = [ig] Then
0001
M(1,5,4) = PAP, where A = gg?g . There are only two nonzero values 9 and 1 in A. For M(1,5,4), we have
' 1000 4
Holantg, = } ;- %9*, from which we can solve all x; (i =0, 1,...,m), we can compute } _;_, %;3*. This realizes
0001
the following problem 83?8 , Which gives us Holant(s£2| M(1, 2, 1)). By the symmetry of group action we also have
1000

Holant(#,| M(2, 1, 1)), which is #P-hard by Theorem 2.2.

3. After the previous two cases, we can assume that there are no two elements in {a, b, c} that are equal or opposite. If
we consider a, b and c as three nonzero complex numbers on the plane, there must be two elements in {a, b, c} that
are not orthogonal as vectors. This is easy to see, since if a and b are orthogonal, and also b and c are orthogonal, then
a/c = (a/b) - (b/c) has complex argument a multiple of 7. By the symmetry of the group action of S4, we may assume
b and c are not orthogonal. We have already considered the cases b+ c=0 or b —c =0, So we may assume b # +c.
Let o = % and g = ba;‘:. Then they have different norms |¢| # |8]. Indeed, if || = |B]| then |1+ c/b| =|1 —c¢/b| which
means that c¢/b € iR is purely imaginary, i.e., b and c are orthogonal.

Let N={0,1,2,...}. By the interpolation method, we have a system of linear equations in x; ji, whose coefficient
matrix ((a'(b + ¢)?(b — ¢)*)%) has row index s and column index from {(i, j, k) |i, j, ke N, i+ j+k=m}.

The matrix ((a'(b + ¢)i (b — c)%)%), after dividing the sth row by a*™, has the form ((a/ %)), which is a Vandermonde
matrix with row index s and column index from {(j, k) | j,k € N, j + k <m}. Define L = {(j, k) € Z? | o/ ¥ = 1}. This is
a sublattice of Z2. Every lattice has a basis. There are 3 cases depending on the rank of L.

(@) L={(0, 0)}. All afg¥ are distinct. Thus the coefficient matrix has full rank. By solving a system of linear equations,
0001
0300
0010
1000
#P-hard by Theorem 2.2, we obtain that Holant(#; [M(a, b, ¢)) is #P-hard.

(b) L contains two vectors (ji, k1) and (jo, k2) independent over Q. Then the nonzero vectors j»(j1, k1) — j1(j2,k2) =
(0, jok1 — jik2) and ka(j1,k1) — k1(j2,k2) = (ka2 j1 — k1j2,0) are in L. Hence, both o and B are roots of unity, but
this contradicts with |a| # |B].

(c) L ={(ns,nt) |n eZ}, where s,t € Z and (s,t) # (0,0). We know that s+t # 0, othgrwise we get || # |B]. By
Lemma 5.1, for any numbers ¢ and 1 satisfying ¢*y‘ =1, we can compute Zj+k§m qblx//"xj,k efficiently.

we can realize , which in turn corresponds to the signature M(2, 1, 1). Since Holant(#2| M(2,1, 1)) is

0001 00 0 2
_|0o¢00 _ | 0¢+y ¢—y 0 _
Define A = 000 , and we have 2PAP = 0 s 0 0 . We get Holant(#2| M2, ¢ + ¥, ¢ — ).
1000 2 0 00

i. t =0. Without loss of generality s > 0. Let ¢ =1 and ¥ = 1/2. We get M(4, 3, 1), from which we can get
M(1,4,3) by the S4 group symmetry. This is #P-hard by the same proof method as we prove M(1,5,4) is
#P-hard in Case 2.

ii. t>0ands>0.Let ¢ = +2. We need f(¥) = (¥ +2)’¢' =1.Because f(0)=0<1 and f(1) > 1, there is
a root Yo € (0, 1]. We get M(2, 2yo + 2, 2), which is #P-hard by Case 1.

iii. t>0,s<0and [t| >]|s|. Let ¢ = ¢ +2. ¥/l = ( +2)15! has a solution ¥ in (1, 00). We get M(2, 2y + 2, 2),
which is #P-hard by Case 1.

iv. t>0,s<0and |t]| <|s|. Let ¥ = ¢ +2. ¥l = (¢ +2)!!! has a solution ¢ in (1, c0). We get M(2, 2¢0 +2, —2),
which is #P-hard by Case 2. O

We finish this section by proving the other no zero cases can realize 3-twins.

000a
0ObcoO
0zyo0
x000

Lemma 5.3. Let f be a 4-ary signature with the signature matrix My, x, x4x; (f) = with abcxyz # 0. Then Holant(#£3] f)

is #P-hard.
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000x
0bzO
Ocyo0
a000
gadget whose signature has the signature matrix

Proof. Note that My,x; x;x, (f) = . Connecting two copies of f back to back by double DiSEQUALITY N, we get the

0 0 0 ax
0 2bc  by+cz O
0 by-+cz 2yz 0
ax 0 0 0

MX]Xz,X4X3 (f)NMX4X3,X1X2 (f) =

If by + cz # 0, we have realized a function M(ax, ax, 2bc,2yz, by +cz, by + cz) of two twins, with all nonzero values. We
can use M(2bc,2yz, ax,ax,by + cz, by + cz) to construct the following function by the same gadget

M(4bcyz, 4bcyz, 2ax(by + cz), 2ax(by + cz), a’x* + (by + cz)z, a?x* + (by + cz)z).

If furthermore a®x® + (by + cz)? # 0, we get a nonzero 3-twins function and we can finish the proof by Lemma 5.2. If this
process fails, we get a condition that either by + cz =0 or iax + by + cz =0 or —iax + by + cz = 0. Recall the symmetry
among the 3 pairs (a, x), (b, ¥), (c, z). If we apply this process with a permuted form of M, we will get either ax +cz=0
or ax +iby + cz =0 or ax — iby 4+ cz = 0. There is one more permutation of M which gives us either ax + by = 0 or
ax+by +icz=0or ax+ by —icz=0.

We claim that, when axbycz # 0, the 3 Boolean disjunction conditions can not hold simultaneously. Hence, one of three
constructions will succeed and give us #P-hardness.

To prove the claim, we assume that all 3 disjunction conditions hold. Then we get 3 conjunctions, each a disjunction of
3 linear equations. Each equation is a homogeneous linear equation on (ax, by, cz). The 3 equations in the first conjunction
all have the form «-ax+1-by+1-cz=0 where o € {0, i, —i}. Similarly the 3 equations in the second and third conjunction
all have the form 1-ax+8-by+1-cz=0and 1-ax+1-by + y - cz= 0 respectively. If at least one equation holds in each
of the 3 sets of linear equations with nonzero solution (ax, by, cz), the following determinant

a 1 1
det| 1 B8 1 |=0, (5.3)
1 1 vy

for some «, 8, y € {0, i, —i}. However, there are no choices of «, 8, y € {0, 1, —i} such that Equation (5.3) holds: The deter-
minant is ¢y +2—o — B —y.Fora, B,y €{0,i,—i}, the norm |2 —a — B — y| > 2, but [fy|=00r 1. O

6. Case 3: exactly one zero

Lemma 6.1. Let f be a 4-ary signature with the signature matrix

0 0 0 a
0b c O

Mx1x2,X4X3 (f) = 0 z y ol
x 0 0O

where there is exactly one of {a, b, c, x, y, z} that is zero, then Holant(#;| f) is #P-hard.

000 x
Ocyo0
00z0
a000

Proof. Without loss of generality, we can assume that b = 0. Note that My,x, x;x, (f) = . Connecting a copy of f

with this via N, we get a signature g with signature matrix
0 0 0 ax

0 ¢ ¢ 0
MX]Xz,X4X3 (f)NMX3X4,X1X2 (f) = 0 cy yZ _{22 0

ax 0 0 0
If y2 + 22 0, by Lemma 5.3, Holant(#;| g) is #P-hard. Thus Holant(s;| f) is #P-hard. Otherwise, we have
y24+z2=0.
Similarly, Mx;x,,x1% (f)NMxsxq. %%, (f) gives us
y2 +cz=0.
Mixyxs x1x0 (F)NMiyx xax3 (f) gives us
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y2+c2=0.
00 0 a
From these equations, we get c® = z? = cz = —y?. This gives us z=c and y = +ic, and M = My, x, x5 (f) = g?icicg
x0 0 0
00 0 ax
For this matrix M, we may construct MNMT = 8 COZ iicl 8 . Now we may repeat the construction from the begin-
ax 0 0

ning using MNMT instead of M. Because (c?)? + (£2ic?)® 0, we get a function of 6 nonzero values. By Lemma 5.3,
Holant(#;| f) is #P-hard. O

7. Case 4: exactly two zeros from distinct pairs

Lemma 7.1. Let f be a 4-ary signature with the signature matrix

MX1X2.X4X3 (f) =

X O OO
oN T O
o< o O
S O oOQ

where there are exactly two zero entries in {a, b, c, x, ¥, z} and they are from distinct pairs, then Holant(#;| f) is #P-hard.

ax
Proof. Recall from Section 2 that we can arbitrarily reorder the three rows in |:b y], and we can also reverse arbitrary
cz
000a
two rows. Thus, we can assume that ax # 0,bz # 0 and ¢ = y = 0. Note that My, x, x,x; (f) = glz’gg and My;x,,x,x, (f) =
x000
000x
8228 . Take two copies of f. If we connect the variables x4, x3 of the first function with the variables x3, x4 of the
a000

second function using (#2), we get a signature g with the signature matrix

0 0 0 ax
0 b% bz O
My, x,,x4x3 (f)NMX3X4,X1X2 H= 0 bz 22 0O
ax 0 0 O

By Lemma 5.3, Holant(#;| g) is #P-hard. Thus Holant(#;| f) is #P-hard. O
8. Case 5: one zero in each pair
Lemma 8.1. If there is one zero in each pair of (a, x), (b, ¥), (c, z), then Holant(#| f) is computable in polynomial time.

Proof. We will list the three strings of weight 2 where f may be nonzero, by the symmetry of the group action of S4. We

may assume the first string is £ = 0011. The second string 1, being not complementary to £ and of weight two, we may

assume it is 0101.

The third string ¢, being not complementary of either & or 7, and of weight two, must be either 0110 or 1001. Hence,
= 1

& =001 1 E =001
n =0101o o n =010 1.
¢ =0110 ¢ =100 1

Then f(x1,x2,X3,X4) = IS-ZERO(X1) - g(X2, X3, X4) or IS-ONE(x4) - h(x1, X2, X3), where h € .# and g € .#’. Note that the
Is-Zero and Is-ONE are both unary functions and both belong to .# N .#’. By Theorem 2.8, Holant(#;,| f) is computable in
polynomial time. O
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