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tions via basis transformations. In this paper, we replace matchgates in the paradigm
Keywords: above by the affine type and the product type constraint functions, which are known to
Counting complexity be tractable in general (not necessarily planar) graphs. We present polynomial-time al-
Holographic algorithms gorithms to decide if a given counting problem has a holographic reduction to another
problem defined by the affine or product-type functions. We also give polynomial-time al-
gorithms to the same problems for symmetric functions, where the complexity is measured
in terms of the (exponentially more) succinct representations. The latter result implies that
the symmetric Boolean Holant dichotomy (Cai, Guo, and Williams, SICOMP 2016) is effi-
ciently decidable. Our proof techniques are mainly algebraic.
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1. Introduction

Recently a number of complexity dichotomy theorems have been obtained for counting problems. Typically, such di-
chotomy theorems assert that a vast majority of problems expressible within certain frameworks are #P-hard, however
an intricate subset manages to escape this fate. These exceptions exhibit some rich mathematical structure, leading to
polynomial-time algorithms. Holographic reductions and algorithms, introduced by Valiant [45], play key roles in many re-
cent dichotomy theorems [14,25,20,15,35,22,12,33]. Indeed, many interesting tractable cases are solvable using holographic
reductions. This fascinating fact urges us to explore the full reach of holographic algorithms.

Valiant’s holographic algorithms [45,44] have two main ingredients. The first is to encode computation in planar graphs
via gadget construction, called matchgates [43,42,9,17,10]. The result of the computation is then obtained by counting the
number of perfect matchings in a related planar graph, which can be done in polynomial time by Kasteleyn’s (a.k.a. the FKT)
algorithm [36,41,37]. The second one is the notion of holographic transformations/reductions, which show equivalences of
problems with different descriptions via basis transformations. Thus, in order to apply the holographic algorithm, one must
find a suitable holographic transformation along with matchgates realizing the desired constraint functions. This procedure
has been made algorithmic [9,17].

* A preliminary version has appeared in ICALP 2014 [11].
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In this paper, we replace matchgates in the paradigm above by the affine type or the product type constraint functions,
both of which are known to be tractable over general (i.e. not necessarily planar) graphs [24]. We present polynomial-time
algorithms to decide if a given counting problem has a holographic reduction to another problem defined by affine or
product-type functions. Our algorithm also finds a holographic reduction when one exists. Although, conceptually, we do
not add new tractable cases, the task of finding these transformations is often non-trivial. For example, generalized Fibonacci
gates [23] are the same as the product-type via transformations, but at first glance, the former look much more complicated
than the latter.

To formally state the results, we briefly introduce some notation. The counting problems we consider are those express-
ible as a Holant problem [23,21,19,24]. A Holant problem is defined by a set F of constraint functions, which we call
signatures, and is denoted by Holant(F). An instance of Holant(F) is a tuple Q = (G, F, ), called a signature grid, where
G = (V,E) is a graph and 7 labels each vertex v € V and its incident edges with some f, € F and its input variables. Here
fv maps {0, 1}9€8M) to C, where deg(v) is the degree of v. We consider all possible 0-1 edge assignments. An assignment
o to the edges E gives an evaluation [],.y fv(o|gw)), where E(v) denotes the incident edges of v and o|g(,) denotes the
restriction of o to E(v). The counting problem on the instance 2 is to compute

Holantg = Z l_[ fv(@lEw)-

o:E—{0,1} veV

For example, consider the problem of counting PERFECT MATCHING on G. This problem corresponds to attaching the ExAcT-
ONE function at every vertex of G. The EXAcT-ONE function is an example of a symmetric signature, which are functions
that only depend on the Hamming weight of the input. We denote a symmetric signature by f ={ fo, f1,..., fn] where f,,
is the value of f on inputs of Hamming weight w. For example, [0, 1,0, 0] is the EXAcT-ONE function on three bits. The
output is 1 if and only if the input is 001, 010, or 100, and the output is O otherwise.

Holant problems contain both counting constraint satisfaction problems and counting graph homomorphisms as special
cases. All three classes of problems have received considerable attention, which has resulted in a number of dichotomy the-
orems (see [39,34,29,2,28,4,27,1,5,31,32,8,13,14,6,30,3,7,24]). Despite the success with #CSP and graph homomorphisms, the
case with Holant problems is more difficult. Recently, a dichotomy theorem for Holant problems with symmetric signatures
was obtained [12], but the general (i.e. not necessarily symmetric) case has a richer and more intricate structure. The same
dichotomy for general signatures remains open.

Our first main result is an efficient procedure to decide whether a given Holant problem can be solved by affine or
product-type signatures via holographic transformations. In past classification efforts, we have been in the same situation
several times, where one concrete problem determines the complexity of a wide range of problems. However, the brute
force way to check whether this concrete problem already belongs to known tractable classes is time-consuming. We hope
that the efficient decision procedure given here mitigates this issue, and would help the pursuit towards a general Holant
dichotomy.

Theorem 1.1. There is a polynomial-time algorithm to decide, given a finite set of signatures F, whether Holant(F) admits a holo-
graphic algorithm based on affine or product-type signatures.

The holographic algorithms for Holant(F) are all polynomial time in the size of the problem input Q. The polynomial
time decision algorithm of Theorem 1.1 is on another level; it decides based on any specific set of signatures F whether
the counting problem Holant(F) defined by F has such a holographic algorithm.

Symmetric signatures are an important special case. Because symmetric signatures can be presented exponentially more
succinctly, we would like the decision algorithm to be efficient when measured in terms of this succinct description. An al-
gorithm for this case needs to be exponentially faster than the one in Theorem 1.1. In Theorem 1.2, we present a polynomial
time algorithm for the case of symmetric signatures. The increased efficiency is based on several signature invariants under
orthogonal transformations.

Theorem 1.2. There is a polynomial-time algorithm to decide, given a finite set of symmetric signatures F expressed in the succinct
notation, whether Holant(F) admits a holographic algorithm based on affine or product-type signatures.

A dichotomy theorem classifies every set of signatures as defining either a tractable problem or an intractable problem
(e.g. #P-hard). Yet it would be more useful if given a specific set of signatures, one could decide to which case it belongs.
This is the decidability problem of a dichotomy theorem. In [12], a dichotomy regarding symmetric complex-weighted sig-
natures for Holant problems was proved. However, the decidability problem was left open. Of the five tractable cases in
the dichotomy theorem, three of them are easy, but the remaining two cases are more challenging, which are (1) holo-
graphic algorithms using affine signatures and (2) holographic algorithms using product-type signatures. As a consequence
of Theorem 1.2, this decidability is now proved.

Corollary 1.3. The dichotomy theorem for symmetric complex-weighted Holant problems in [12] is decidable in polynomial time.
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Previous work on holographic algorithms focused almost exclusively on those with matchgates [45,44,16,25,17,18,33].
(This has led to a misconception in the community that holographic algorithms are always based on matchgates.) The first
example of a holographic algorithm using something other than matchgates came in [23]. These holographic algorithms
use generalized Fibonacci gates. A symmetric signature f =[fo, f1,..., fn] iS a generalized Fibonacci gate of type A € C if
fi+2 = A fr1+ fi holds for all k € {0, 1,...,n—2}. The standard Fibonacci gates are of type A =1, in which case, the entries
of the signature satisfy the recurrence relation of the Fibonacci numbers. The generalized Fibonacci gates were immediately
put to use in a dichotomy theorem [21]. As it turned out, for nearly all values of A, the generalized Fibonacci gates are
equivalent to product-type signatures via holographic transformations. Our results provide a systematic way to determine
such equivalences and we hope these results help in determining the full reach of holographic algorithms.

The constraint functions we call signatures are essentially tensors. A group of transformations acting upon these tensors
yields an orbit. Previously, in [12], we have shown that it is sufficient to restrict holographic transformations to those from
or related to the orthogonal group (see Lemma 2.7 and Lemma 2.10). Thus, our question can be rephrased as the following:
given a tensor, determine whether its orbit under the orthogonal group action (or related transformations) intersects the set
of affine or product-type tensors. As showed by Theorems 1.1 and 1.2, this can be done efficiently, even for a set rather than
a single tensor. In contrast, this orbit intersection problem with the general linear group acting on two arbitrary tensors is
NP-hard [38]. In our setting, the actions are much more restricted and we consider an arbitrary tensor against one of the
two fixed sets. Similar orbit problems are central in geometric complexity theory [40].

Our techniques are mainly algebraic. A particularly useful insight is that an orthogonal transformation in the standard

basis is equivalent to a diagonal transformation in the [} 11] basis. Since diagonal transformations are much easier to

understand, this gives us some leverage to understand orbits under orthogonal transformations. Also, the groups of transfor-
mations that stabilize the affine and product-type signatures play important roles in our proofs. Comparing to similar results
for matchgates [17], the proofs are very different in that each proof relies heavily on distinct properties of matchgates or
the affine and product-type signatures.

In Section 2, we review basic notation and state previous results, many of which come from [12]. In Section 3, we present
some example problems that are tractable by holographic algorithms using affine or product-type signatures. The proof of
Theorem 1.1 spans two sections. The affine case is handled in Section 4 and the product-type case is handled in Section 5.
The proof of Theorem 1.2 also spans two sections. Once again, the affine case is handled in Section 6 and the product-type
case is handled in Section 7.

A preliminary version of this paper has appeared in ICALP 2014 [11].

2. Preliminaries
2.1. Problems and definitions

The framework of Holant problems is defined for functions mapping [q]¥ to F for a finite g and some field F. In this
paper, we investigate some of the tractable complex-weighted Boolean Holant problems, that is, all functions are of the type
[2]¢ — C. Strictly speaking, for consideration of models of computation, functions take complex algebraic numbers.

A signature grid Q = (G, F, ) consists of a graph G = (V, E) and a set of constraint functions (also called signatures) F,
where 7 labels each vertex v € V and its incident edges with some f, € F and its input variables. Note that in particular,
7 specifies an ordering of edges/variables on each vertex. The Holant problem on instance € is to evaluate Holantg =
> o [vey fv(o |Ew)), @ sum over all edge assignments o : E — {0, 1}.

A function f, can be represented by listing its values in lexicographical order as in a truth table, which is a vector in
2 Equivalently, f, can be treated as a tensor in (C2)®9e8(") We also use fy to denote the value f(x), where X is a
binary string. A function f € F is also called a signature. A symmetric signature f on k Boolean variables can be expressed
as [fo, f1, ..., fxl, where fy, is the value of f on inputs of Hamming weight w.

A Holant problem is parametrized by a set of signatures.

Definition 2.1. Given a set of signatures F, we define the counting problem Holant(F) as:

Input: A signature grid Q = (G, F, ),
Output: Holantg,.

A signature f of arity n is degenerate if there exist unary signatures u; € C?2(1<j<n)suchthat f=u;® --Quy. In
a signature grid, it is equivalent to replace a degenerate one by corresponding unary signatures. A symmetric degenerate
signature has the form u®", where the superscript denotes the tensor power. Replacing a signature f € F by a constant
multiple cf, where ¢ # 0, does not change the complexity of Holant(F). It introduces a global factor to Holantg,.

We say a signature set F is tractable (resp. #P-hard) if the corresponding counting problem Holant(F) can be solved in
polynomial time (resp. #P-hard). Similarly for a signature f, we say f is tractable (resp. #P-hard) if {f} is.
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2.2. Holographic reduction

To introduce the idea of holographic reductions, it is convenient to consider bipartite graphs. We can always transform
a general graph into a bipartite graph while preserving the Holant value, as follows. For each edge in the graph, we replace
it by a path of length two. (This operation is called the 2-stretch of the graph and yields the edge-vertex incidence graph.)
Each new vertex is assigned the binary EQUALITY signature (=) =[1,0, 1].

We use Holant (F | G) to denote the Holant problem on bipartite graphs H = (U, V, E), where each vertex in U or V is
assigned a signature in F or G, respectively. An input instance for this bipartite Holant problem is a bipartite signature grid
and is denoted by 2 = (H, F | G, ). Signatures in F are considered as row vectors (or covariant tensors); signatures in G
are considered as column vectors (or contravariant tensors) [26].

For a 2-by-2 matrix T and a signature set 5, define TF = {g|3f € F of arity n, g =T®"f}, similarly for 7T. Whenever
we write T®" f or TF, we view the signatures as column vectors; similarly for fT®" or FT as row vectors.

Let T be an element of GL;(C), the group of invertible 2-by-2 complex matrices. The holographic transformation defined
by T is the following operation: given a signature grid Q@ = (H, F | G, ), for the same graph H, we get a new grid Q' =
(H, FT | TG, ') by replacing f € F (or g € G) with T®"f (or (T‘l)@m g).

Theorem 2.2 (Valiant’s Holant Theorem [45]). If there is a holographic transformation mapping signature grid 2 to /, then Holantg =
Holantgy.

Therefore, an invertible holographic transformation does not change the complexity of the Holant problem in the bi-
partite setting. Furthermore, there is a particular kind of holographic transformation, the orthogonal transformation, that
preserves binary equality and thus can be used freely in the standard setting. Let 0,(C) be the group of 2-by-2 complex
matrices that are orthogonal. Recall that a matrix T is orthogonal if TTT =1I.

Theorem 2.3 (Theorem 2.6 in [19]). Suppose T € 0,(C) and let 2 = (H, F, ) be a signature grid. Under a holographic transforma-
tion by T, we get a new grid Q' = (H, TF, ') and Holantg, = Holantg.

We also use SO (C) to denote the group of special orthogonal matrices, i.e. the subgroup of 0,(C) with determinant 1.
2.3. Tractable signature sets without a holographic transformation
The following two signature sets are tractable without a holographic transformation [24].

Definition 2.4. A k-ary function f(x1,...,x) is affine if it has the form
A XAx=0" I'er!:lea)‘)’

where A #0 is in C, x = (x1,X2,..., X, 1)T, A is a matrix over Fo, v;j is a vector over IF, for each j=1,...,n, and x is
a 0-1 indicator function such that xax—o is 1 iff Ax=10. Note that the dot product (v;, x) is calculated over IF,, while the
summation Z’}=1 on the exponent of i =+/—1 is evaluated as a sum mod 4 of 0-1 terms. We use < to denote the set of
all affine functions.

Notice that there is no restriction on the number of rows in the matrix A. It is permissible that A is the zero matrix
so that xax—o =1 holds for all x. An equivalent way to express the exponent of i is as a quadratic polynomial (evaluated
mod 4) where all cross terms have an even coefficient. This equivalent expression is often easier to use.

Definition 2.5. A function is of product type if it can be expressed as a function product of unary functions, binary equality
functions ([1, 0, 1]), and binary disequality functions ([0, 1, 0]). We use & to denote the set of product-type functions.

The above two types of functions, when restricted to be symmetric, have been characterized explicitly. It has been shown
(cf. Lemma 2.2 in [35]) that if f is a symmetric signature in &2, then f is either degenerate, binary disequality, or of the
form [a,O0,...,0,b] for some a,b € C. It is also known that (cf. [19]) the set of non-degenerate symmetric signatures in .o/
is precisely the nonzero signatures (1 # 0) in .%; U.%, U.%3! with arity at least 2, where .%;, .%,, and .%3 are three families
of signatures defined as

y1=[A<[é]®l<+ir[?]®k> |Ae(C,k:1,2,...,r:O,1,2,3},

1 To be consistent with previous papers, we still use %, %, and %3 to denote the subclasses of 7. They are not to be confused with 7, 2%, and
73 that will be introduced in Definition 2.8.
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Table 1
Notations for some matrices
and numbers.

Name  Value

Kk . 1 k
[_1] |AeCk=1,2,...,r=0,1,2,3}, and

+i
Rk . 1 Rk
+1r[7i] IAeCk=1,2,...,r=0,1,2,3}.

Let F123 = %1 U %, U.Z3 be the union of these three sets of signatures. We explicitly list all the signatures in %153 (as
row vectors) up to an arbitrary constant multiple from C:

I
T3

(0]
([

1. [1,0,...,0,£1]; (Z1,r=0,2)
2.[1,0,...,0,&i]; (F1,r=1,3)
3.[1,0,1,0,...,00r1]; (F,r=0)
4. [1,—i,1,—i,...,(=i)or1]; (Fr,r=1)
5.[0,1,0,1,...,00r1]; (F2,r=2)
6. [1,i,1,i,...,ior1]; (F,r=3)
7.11,0,-1,0,1,0,—-1,0,...,0o0r1or (—1)]; (F3,r=0)
8.[1,1,—-1,-1,1,1,—-1,—=1,..., Tor (=1)]; (F3,r=1)
9.[0,1,0,—1,0,1,0,—1,...,00r 1 or (=1]; (F3,1=2)
10. [1,-1,-1,1,1,—-1,-1,1,..., Tor (=1)]. (F3,1r=3)

24. of -transformable and &?-transformable signatures

The tractable sets o/ and &2 are still tractable under a suitable holographic transformation. This is captured by the
following definition.

Definition 2.6. A set F of signatures is «7-transformable (resp. &?-transformable) if there exists a holographic transforma-
tion T such that F C T/ (resp. F € TZ) and [1,0,1]T®% € o/ (resp. [1,0,1]T®% € 2).

To refine the above definition, we consider the stabilizer group of <7,

Stab(«7) ={T e GL(C) | T</ = &/}.

Technically what we defined is the left stabilizer group of 7, but it turns out that the left and right stabilizer groups of ./
coincide [12].

Some matrices and numbers are used extensively throughout the paper. We summarize them in Table 1. Note that
Z = DH, and that D?Z = % [ 1 1] = ZX, hence X = Z~'D?Z. 1t is easy to verify that D, Hy, X, Z € Stab(<7). In fact,

—ii
Stab(.«?) is precisely the set of nonzero scalar multiples of the group generated by D and Hy [12]. Note that the zero matrix
is not a stabilizer since < does not include the zero function.

The next lemma is the first step toward understanding .o/ -transformable signatures. Recall that 0,(C) is the group of
2-by-2 orthogonal complex matrices. The lemma shows that to determine <7 -transformability, it is necessary and sufficient

to consider only the orthogonal transformations and related ones.

Lemma 2.7 ([12]). Let F be a set of signatures. Then F is <7 -transformable iff there exists an H € 03(C) such that F € H</ or
FCH [; 2] o.

Non-degenerate symmetric ./ -transformable signatures are captured by three sets .7, .2%, and .27, which will be defined
next (not to be confused with .%7, .%,, and .#3).
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Definition 2.8. A symmetric signature f of arity n is in, respectively, 7, or 7, or 7 if there exists an H € 0(C) and a
nonzero constant ¢ € C such that f has the following form, respectively:

®n ®n
ocH®”([}] +/3[_ll:| ),whereﬂ:at"+2r,re{0,l,2,3},andte{O,l}:

e (H M

®n ®n
oorcH®"<[;] +ir[_1a] ),wherere{0,1,2,3}.

For i € {1, 2, 3}, when such an orthogonal H exists, we say that f € < with transformation H. If f € < with I, the
identity matrix, then we say f is in the canonical form of 7. Note that there is no direct correspondences between ()
and (%).

Lemma 2.9 ([12]). Let f be a non-degenerate symmetric signature. Then f is <7 -transformable iff f € o4 U o5 U of3.

Analogous results hold for &7-transformable signatures. Let the stabilizer group of & be
Stab(Z?) ={T e GL(C) | TZ = #}.

The group Stab(&?) is generated by (up to nonzero scalars) matrices of the form [(l) 8] for any v € C* and X = [? (1)] [12].

Lemma 2.10 ([12]). Let F be a set of signatures. Then F is &-transformable iff there exists an H € 0(C) such that F C HZ or
Feu[l ]2

Definition 2.11. A symmetric signature f of arity n is in &7, if there exist an H € 0,(C) and a nonzero ¢ € C such that

f=cH®" ([:]gm + 8 [j1]®n). where 8 #0.

It is easy to check that .2/ C £?;. We define &2, = 4. For i € {1, 2}, when H € 0,(C) exists (in Definition 2.11 and 2.8,
respectively), we say that f € &7 with transformation H. If f € & with I, then we say f is in the canonical form of %;.

Lemma 2.12 ([12]). Let f be a non-degenerate symmetric signature. Then f is &-transformable iff f € &1 U ZP,.

3. Some example problems

In this section, we illustrate a few problems that are tractable via holographic reductions to affine or product-type
functions. Although the algorithms to solve them follow from a known paradigm, it is often non-trivial to find the correct
holographic transformation. Our main result provides a systematic way to search for these transformations.

3.1. A Fibonacci-like problem

Fibonacci gates were introduced in [23]. They define tractable counting problems, and holographic algorithms based on
Fibonacci gates work over general (i.e. not necessarily planar) graphs. However, Fibonacci gates are symmetric by definition.
An example of a Fibonacci gate is the signature f ={[fo, f1, f2, f31=1[1,0, 1, 1]. Its entries satisfy the recurrence relation of
the Fibonacci numbers, i.e. fo = f1 + fo and f3 = f, + f1. For Holant(f), the input is a 3-regular graph, and the problem is
to count spanning subgraphs such that no vertex has degree 1.

A symmetric signature g = [go, &1,.-.,8n] iS a generalized Fibonacci gate of type A € C if gy42 = Agky1 + 8k holds
for all k € {0,1,...,n — 2}. The standard Fibonacci gates are of type A = 1. An example of a generalized Fibonacci gate
is g =1[3,1,3, 1], which has type A = 0. In contrast to Holant(f), the problem Holant(g) permits all possible spanning
subgraphs. The output is the sum of the weights of each spanning subgraph. The weight of a spanning subgraph S is 3K,
where k(S) is the number of vertices of even degree in S. Since g =[3, 1,3, 1] is Fibonacci, the problem Holant(g) is
computable in polynomial time [19,12]. One new family of holographic algorithms in this paper extends Fibonacci gates to
asymmetric signatures.

In full notation, the ternary signature g is (3,1, 1, 3,1, 3, 3, 1). Consider the asymmetric signature h = (3,1, —1, -3, —1,
—3,3,1)T. This signature h differs from g by a negative sign in four entries. Although h is not a generalized Fibonacci gate
or even a symmetric signature, it still defines a tractable Holant problem. Under a holographic transformation by Z~1, where

=5[]



108 J.-Y. Cdi et al. / Information and Computation 259 (2018) 102-129
Holant(h) = Holant (=3 | h) = Holant (:z(z*l)®2 | z®3h) — Holant ([1, 0,—1]| E) ,

where h = 2if2(0,1,0, 0,0,0,2i,0). Both [1,0,—1](x1,x2) = EQUALITY(X1,X2) - [1,—1](x7) and ﬁ(xl,xz,X3) = 2i/2 -
EQUALITY(X1, X2) - DISEQUALITY (X2, X3) - [1, 2i](x1) are product-type signatures.

It turns out that for all values of A # +2i, the generalized Fibonacci gates of type A are Z-transformable. The value
of A indicates under which holographic transformation the signatures become product type. For A = £2i, the generalized
Fibonacci gates of type A are vanishing, which means the output is always zero for every possible input (see [12] for more
on vanishing signatures).

3.2. Some cycle cover problems and orientation problems

To express some problems involving asymmetric signatures of arity 4, it is convenient to arrange the 16 outputs into

a 4-by-4 matrix. With a slight abuse of notation, we also write a function f(x1,X2,x3,X4) in its matrix form, namely
foooo footo fooo1 foor1
f= for00 for10 foro1 for11
fro00 fio10 fioo1 fio11
frio0 fi110 frio1 frin
reverse order. We call this the signature matrix.

Consider the problem of counting the number of cycle covers in a given graph. This problem is #P-hard even when
restricted to planar 4-regular graphs [33]. As a Holant problem, its expression is Holant(f), where f(x1,x2,x3,X4) is the
0001
0110
0110
1000
of Hamming weight two (indicating that a cycle cover passes through each vertex exactly twice), can be divided into two

parts, namely {0011,0110, 1100, 1001} and {0101, 1010}. In the planar setting, this corresponds to a pairing of consecutive
or non-consecutive incident edges. Both sets are invariant under cyclic permutations.

Suppose we removed the inputs 0101 and 1010 from the support of f, which are the two 1’s on the anti-diagonal in
0001
0100
0010
1000
on the types of cycle covers allowed. We call a cycle cover valid if it satisfies this new constraint. A valid cycle cover

must not pass through a vertex in a “crossing” way. Counting the number of such cycle covers over 4-regular graphs can
be done in polynomial time, even without the planarity restriction. The signature g(xi, X2, X3, X4) = DIS-EQUALITY (X1, X3) -
Dis-EQUALITY(X2, x4) is of the product type &2, therefore Holant(g) is tractable.

Under a holographic transformation by Z = - [} _11] we obtain the problem

, Where the row is indexed by two bits (x1, x2) and the column is indexed by two bits (x4, x3) in

symmetric signature [0, 0, 1, 0, 0]. The signature matrix of f is . The six entries in the support of f, which are all

the middle of M. Call the resulting signature g, which has signature matrix .2 These new 0's impose a constraint

-2
Holant(g) = Holant (=; | g) = Holant (:22‘82 | (Z‘1)®4g) = Holant (#; | §).

-100 0
0010
0100
000-1
graphs. On the right side of the bipartite graph, the vertices must all have degree 4 and are assigned the signature g. On
the left side, the vertices must all have degree 2 and are assigned the binary disequality constraint #;. The disequality
constraints suggest an orientation between their two neighboring vertices of degree 4 (see Fig. 1). By convention, we view
the edge as having its tail assigned 0 and its head assigned 1. Then every valid assignment in this bipartite graph naturally
corresponds to an orientation in the original 4-regular graph.

If the four inputs 0011, 0110, 1100, and 1001 were in the support of g, then the Holant sum would be over all possible
orientations with an even number of incoming edges at each vertex. As it is, the sum is over all possible orientations
with an even number of incoming edges at each vertex that also forbid those four types of orientations at each vertex, as
specified by g. The following orientations are admissible by g: The orientation of the edges are such that at each vertex all
edges are oriented out (source vertex), or all edges are oriented in (sink vertex), or the edges are cyclically oriented in, out,
in, out (saddle vertex).

Thus, the output of Holant (752 | g) is a weighted sum over of these admissible orientations. Each admissible orientation
O contributes a weight (—1)5(9) to the sum, where s(0) is the number of source and sink vertices in an orientation 0. We
can express this as ZOEO(G)(—US(O), where O(G) is the set of admissible orientations for G, which are those orientations
that only contain source, sink, and saddle vertices. In words, the value is the number of admissible orientations with an
even number of sources and sinks minus the number of admissible orientations with an odd number of sources and sinks.

where §:= (Z71)®4g = . This problem has the following interpretation. It is a Holant problem on bipartite

2 Recall that in general we require the input signature grid to specify the ordering of the edges (namely variables) on each vertex. This is not necessary
for symmetric signatures, but when asymmetric signatures are involved, specifying the ordering is essential.
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(a) An admissible assignment to this graph fragment. (b) The orientation induced by the assignment in (a).

The circle vertices are assigned g and the square ver-
tices are assigned #2.

Fig. 1. A fragment of an instance to Holant (;éz | g), which must be a (2, 4)-regular bipartite graph. Note the saddle orientation of the edges incident to the
two vertices with all four edges depicted.

This orientation problem may seem quite different from the restricted cycle cover problem we started with, but they are, in
fact, the same problem. Since Holant(g) is tractable, so is Holant (752 | Q).
Now, consider a slight generalization of this orientation problem.

Problem: #\-SOURCESINKSADDLEORIENTATIONS
Input: An undirected 4-regular graph G (equipped with a local edge-ordering on every vertex).

Output: Y5 ) 1*?.

For A = —1, we recover the orientation problem from above. For A =1, the problem is also tractable since, when viewed
as a bipartite Holant problem on the (2, 4)-regular bipartite vertex-edge incidence graph, the disequality constraint on the
vertices of degree 2 and the constraint on the vertices of degree 4 are both product-type functions. As a function of x1, xa,
X3, X4, the constraint on the degree 4 vertices is EQUALITY(X1, X3) - EQUALITY (X, X4). Let sk (G) be the number of 0 € O(G)
such that s(0) =k (mod m). Then the output of this problem with A =1 is s92(G) +51,2(G) and the output of this problem
with A = —1 is sp2(G) — 51,2(G). Therefore, we can compute both sp 2(G) and s12(G). However, more is possible.

For A =i, the problem is tractable using affine constraints. In the (2, 4)-regular bipartite vertex-edge incidence graph,
the disequality constraint assigned to the vertices of degree 2 is affine. On the vertices of degree 4, the assigned constraint
function is an affine signature since the affine support is defined by the affine linear system x; = x3 and x, = x4 while the
quadratic polynomial in the exponent of i is 2x1x2 +3x1 +3x2 + 1. (Recall that in the definition of .o, Definition 2.4, we need
to evaluate the quadratic polynomial mod 4 instead of 2, and x> = x for any x € {0, 1}.) Although the output is a complex
number, the real and imaginary parts encode separate information. The real part is S 4(G) — s2,4(G) and the imaginary
part is s1,4(G) — $3,4(G). Since $92(G) = 50,4(G) +52,4(G) and s1,2(G) = 51,4(G) + 53,4(G), we can actually compute all four
quantities s 4(G), s1,4(G), $2,4(G), and s3 4(G) in polynomial time.

3.3. An enigmatic problem

Some problems may be a challenge for the human intelligence to grasp. But in a platonic view of computational com-
plexity, they are no less valid problems.
For example, consider the problem Holant((1 +c2)~'[1,0, —i] | f) where f has the signature matrix

0 (4+4i)(28+20ﬁ+ /2(799+565ﬁ)> (4+4i)(28+20ﬁ+ /2(799+565ﬁ)) —Si(13+9ﬁ+2¢82+58ﬁ)

(4+4i)<28+20ﬁ+ /2(799+565ﬁ)) —8i(13+9«/§+2\/82+58\/§> 8i(18+13ﬁ+4¢41+z9ﬁ) (—4+4i)(12+8ﬁ+\/274+194ﬁ)

(4+4i)(28+20ﬁ+ /2(799+565ﬁ)) 8i(18+13\/§+4\/41+29\/§) —8i(l3+9\/§+2\/82+58\/§) (—4+4i)(12+8\/§+\/274+194\/§)
—8i<13+9ﬁ+2\/82+58«/§) (—4+4i)(12+8«/§+\/274+194«/§) (—4+4i)(12+8ﬁ+\/274+194\/§) —16(13+9«/§+2\/82+58ﬁ)

and ¢ =1+ +/2 + {/2(1 ++/2). Most likely no one has ever considered this problem before. Yet this nameless problem
is .o/ -transformable under T = [(1) 2] [_16 i] and hence it is really the same problem as a more comprehensible problem

defined by f = (T=1)®4f. Namely,

Holant((1 4+ ¢*)~'[1,0, —i]| f) = Holant((1 +¢2)~'[1,0, —i]T®2 | (T~")®* f) = Holant([1, 0, 1] | f) = Holant(f),
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X1X2 + X2X3 + X3X4 + X4x1). Therefore, f is affine, which means that Holant(f) as well as Holant((1 +c2)~'[1,0, —i] | f) are
tractable. Furthermore, notice that f only contains integers even though (1 +c2)~1[1,0, —i] and f contain many complex
numbers with irrational real and imaginary parts. Thus, Holant((1 + c?)~1[1, 0, —i] | f) is not only tractable, but it always
outputs an integer. Apparent anomalies like Holant((1 + c2)~1[1,0, —i]| f), however contrived they may seem to be to the
human eye, behoove the creation of a systematic theory to understand and characterize the tractable cases.

where f = . We can express | as f(x1,X2,X3,Xs) = i2®, where Q (x1,X2, X3, X4) = 202 + X3 + X3+ x5 +

4. General &/ -transformable signatures

In this section, we give the algorithm to check .7 -transformable signatures. Our general strategy is to bound the number
of possible transformations by a polynomial in the length of the function, and then enumerate all of them. There are some
cases where this number cannot be bounded, and those cases are handled separately.

Let f be a signature of arity n. It is given as a column vector in C2" with bit length N, which is on the order of 2". We
denote its entries by fx = f(x) indexed by x € {0, 1}". The entries are from a fixed degree algebraic extension of Q and we
may assume basic bit operations in the field take unit time.

Notice that the number of general affine signatures of arity n is on the order of 2" Hence a naive check of the mem-
bership of affine signatures would result in a super-polynomial running time in N. Instead, we present a polynomial-time
algorithm.

Lemma 4.1. There is an algorithm to decide whether a given signature f of arity n belongs to <7 with running time polynomial in N,
the bit length of f.

Proof. We may assume that f is not identically zero. Normalize f so that the first nonzero entry of f is 1. If there exists a
nonzero entry of f after normalization that is not a power of i, then f ¢ <7, so assume that all entries are now powers of i.

The next step is to decide if the support S # @ of f forms an affine linear subspace. We try to build a basis for S
inductively. It may end successfully or find an inconsistency. We choose the index of the first nonzero entry bg € S as our
first basis element. Assume we have a set of basis elements B = {by, ..., by} € S. Consider the affine linear span Span(B).
We check if Span(B) € S. If not, then S is not affine and f ¢ <7, so suppose that this is the case. If Span(8) = S, then we
are done. Lastly, if S — Span(B3) # @, then pick the next element by ; € S — Span(B). Let B’ = B U {by,1} and repeat with
the new basis set 5.

Now assume that S is an affine subspace, that we have a linear system defining it, and that every nonzero entry of f is
a power of i. If S has dimension 0, then S is a single point, and f € <. Otherwise, dim(S) =r > 1, and (after reordering)
X1,...,%r are free variables of the linear system defining S. For each x € {0, 1}, let y € {0, 1}"~" be the unique extension
such that Xy € S. For each x, define px € Z4 such that fyy = iPx % 0. We will use the alternative expression for affine
functions: namely, we want to decide if there exists a quadratic polynomial

.
QW =) ¥ +2 > cuxxe+c,

j=1 1<k<t<r

where ¢, cj, cke € Zg, for 1< j<rand 1 <k <€ <r, such that Q (x) = px (mod 4) for all x € {0, 1}". Setting x=0¢< {0, 1}"
determines c. Setting exactly one x; =1 and the rest to 0 determines c;. Setting exactly two x, =X, =1 and the rest to 0
determines c,. Then we verify if Q (X) is consistent with f, and f € o7 iff it is so. O

For later use, we note the following corollary.

Corollary 4.2. There is an algorithm to decide whether a given signature f of arity n belongs to [(1) 2 ] o with running time polynomial
in N, the bit length of f.

®n
Proof. For arity(f) =n, just check if [;a&] f e by lemma4.l. O

We can strengthen Lemma 2.7 by restricting to orthogonal transformations within SO, (C).

Lemma 4.3. Let F be a set of signatures. Then F is </ -transformable iff there exists an H € SO, (C) such that F C He or F C

H[ég]g{
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Proof. Sufficiency is obvious by Lemma 2.7.
Assume that F is «7-transformable. By Lemma 2.7, there exists an H € 03(C) such that F € H&/ or F C H [(l) 2] .
If H € SO,(C), we are done, so assume that H € 02(C) \ SO,(C). We want to find an H € SO,(C) such that F € H &/ or

FCH [(1)2} . let H =H [(1) _01] € S0, (C). There are two cases to consider.

1. Suppose F C H/. Then since [(1)_01] € Stab(«&),
10
FeH[p o]
=Hd.
2. Suppose F € H [1 0] /. Then since [1 0 ] € Stab(«/) commutes with [1 0]
= 0« 0-1 Ow |
10][10
Fetfso]ls )

=H[s 5] [5e]

=H/[1°],;z%. O
0«

We now observe some properties of a signature under transformations in SO, (C). Let f be a signature and H = [fb Z] €

S0, (C) where a? + b2 = 1. Notice that vo = (1,1) and v{ = (1, —i) are row eigenvectors of H with eigenvalues a — bi and

a + bi respectively. Let Z' = [1 _'l] Then Z’H =TZ’', where T = [G’Obi afbi .

For an index or a bit-string u = (uq, ..., u) € {0, 1}" of length n, let
Vai=Vy Q@ Vy, ®...Q Vy,,
and let wt(u) be the Hamming weight of u. Then vy is a row eigenvector of the 2"-by-2" matrix H®" with eigenvalue
(a _ bi)nfwt(u) (a + bl-)wt(u) — (a _ bi)nfzwt(u) — (a + bl-)Zwt(u)fn (1)

since (a + bi)(a — bi) = a® + b? = 1. In this paper, the following Z’-transformation plays an important role. For any function
f on {0,1}", we define

f=z®f.

Then f‘u = (vu, f), as a dot product.

Lemma 4.4. Suppose f and g are signatures of arity n and let H = [fb Z] and T = [“’Obi afbi], Then g = H®"f iff g = T®”f,

Proof. Since ZZH=TZ',
g= H®"f — Z/®ng:Z/®nH®nf
s 7/®ng_TOnz/®nf
— §=T®F. 0

We note that v is also a column eigenvector of H®" with eigenvalue (a —bi)2wt-n_Now we characterize the signatures
that are invariant under transformations in SO;(C).

Lemma 4.5. Let f be a signature. Then f is invariant under transformations in SO, (C) (up to a nonzero constant) iff the support of f
contains at most one Hamming weight.

Proof. This clearly holds when f is identically zero, so assume that f contains a nonzero entry and has arity n. Such an f
is invariant under any H (up to a nonzero constant) iff f is a column eigenvector of H®". Consider H = [f’b Z] €S0, (C)
where a + b2 = 1. Then H®" has n + 1 distinct eigenvalues (a — bi)"™~"(a + bi)", for 0 <w <n. As a consequence, f is a
column eigenvector of H®" iff f is a nonzero linear combination of v{ of the same Hamming weight wt(u). Hence f is
invariant under H iff the support of f’ contains at most one Hamming weight. O
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Using Lemma 4.5, we can efficiently decide if there exists an H € S0,(C) such that H®"f € «/.

Lemma 4.6. There is an algorithm to decide in time polynomial in N, for any input signature f of arity n, whether there exists an
H € S0, (C) such that H®" f € o/ If so, either f € o/ and f is invariant under any transformation in SO, (C), or there exist at most
8n many H € SO, (C) such that H®" f € o/, and they can all be computed in time polynomial in N.

Proof. Compute f: Z'®" £ If the support of f contains at most one Hamming weight, then by Lemma 4.5, f is invariant
under any H € SO,(C). Therefore we only need to directly decide if f € </, which we do by Lemma 4.1.
Now assume there are at least two nonzero entries of f with distinct Hamming weights, say uy, u; € {0, 1}". Then fy,

and ]‘uz are nonzero, and 0 < wt(uy) — wt(uq) <n. Suppose there exists an H = [_ab Z] €S0,(C) such that g=H®"f € /.

Then by Lemma 4.4, we have § = T®"f, where T = [”_Obi afbl.
Since Z' = +/2H,D € Stab(.«7), we have § = Z'®"g € 7. Also since T is diagonal, both &, and &, are nonzero. Therefore,

there must exist an r € {0, 1, 2, 3} such that

] is a diagonal transformation. Recall H, and D from Table 1.

. 5 a + bi)2wt(uz)—n : . :
i Su _ ( .) {Uz _ (a_’_bl)ZWt(uz)wat(ul)@’ )
8w (a+ bi)2wtw)-nf, fuy

where we used (1). Recall that 0 < wt(uy) — wt(uq) <n. View a + bi as a variable, and then there are at most 2n solutions
to (2), given r and fy, and fy,. There are 4 possible values of r, resulting in at most 8n many solutions for a,b € C such
that a + bi satisfies (2) and a2 + b% = 1. Each (a, b) solution corresponds to a distinct H € S0,(C). O

We also want to efficiently decide if there exists an H € S0,(C) such that H®" f € [(1] 2] o .

Lemma 4.7. There is an algorithm to decide, for any input signature f of arity n, whether there exists an H € SO,(C) such that
H®"f ¢ [(1] 2] o/ with running time polynomial in N. If so, either f € [é 2] o/ and f is invariant under any transformation in

S0, (C), or there exist O (nN'®) many H € SO, (C) such that H®" f € [é 2] «f, and they can all be computed in polynomial time
in N.

Proof. Compute f: Z'®" fIf the support of f contains at most one Hamming weight, then by Lemma 4.5, f is invariant
under any H € SO, (C). Therefore we only need to directly decide if f € [[1) 2] o7, which we do by Corollary 4.2.

Ngw assume there are at least two nonzero entries of f that are of distinct Hamming weight. Let uy, u; € {0, 1}" be such
that fu, and fu, are nonzero, and 0 < wt(uy) — wt(uy) < n. We derive necessary conditions for the existence of H € S02(C)
such that H®" f [1 2] /. Thus, assume such an H = [ a b] exists, where a% + b =1.

0 —ba
Let g=H®"f. Then §=2'®"g ¢ [} _',] [ég] /. By Lemma 4.4, we have § =T®"f, where T = [agbi afbi]. Thus gy =
(a+ bi)2WtW-nF for any u € {0, 1}". Let t = wt(u;) — wt(uz). Then
s a -+ bi 2wt(uy)—n ¥ y:
o= Q40D Jui _ @ bi2ede
&uw;  (a+bi)2wtm)-nf,, fuy
Hence
(@+biy2 = {2 Sm
ug gllz

We claim that the value of each entry in g as well as the number of possible values is bounded by a polynomial in N,

~ i 1®n ®n
and hence so are the ratios between them. Let h € &/ be a signature such that g = [1 :I] [(])2] h. Every nonzero entry

of h is a power of i, up to a constant factor A. This constant factor cancels when taking ratios of entries, so we omit it.

®n ; 1®n
Let h' = [(1) 2] h. Then every entry of h’ is a power of o or 0. Moreover, each entry of [1 _'l] is also a power of «.

Therefore every entry of g is an exponential sum of 2" terms, each a power of « or 0. Recall that «® =1 and hence there
are 8 possible values of these powers. Let ¢y denote the number of 0 and c¢; (for 1 <i < 8) denote the number of ' in an
entry g, of g. Then we have

8 8
co+ Zci =2" and Zciozi = By
i=1 i=1



J.-Y. Cdi et al. / Information and Computation 259 (2018) 102-129 113

Clearly the total number of possible values of entries in g, is at most the number of possible choices of (co, ..., cg). There
are at most (2";8) = 0 (N?®) choices of (c, ..., cg). Thus the number of all possible ratios is at most 0(N6), and can all be

enumerated in time polynomial in N.
L each possible value of ;"2 gives at most 2n different transformations H. Therefore,
2 u

For any possible value of the ratio g“
u

the total number of transformations is bounded by O (nN'6), and we can find them in time polynomial in N. O
Now we give an algorithm that efficiently decides if a set of signatures is .«7-transformable.

Theorem 4.8. There is a polynomial-time algorithm to decide, for any finite set of signatures F, whether F is < -transformable. If so,
at least one transformation can be found.

Proof. By Lemma 4.3, we only need to decide if there exists an H € SO,(C) such that F C H&/ or F C H [;g]ﬂ. To

every signature in F, we apply Lemma 4.6 or Lemma 4.7 to check each case, respectively. If no H exists for some signature,
then F is not &/ -transformable. Otherwise, every signature is .</-transformable for some H € SO,(C). If every signature
in F is invariant under transformations in SO,(C), then F is .o/-transformable. Otherwise, we pick the first f € F that is
not invariant under transformations in S02(C). The number of possible transformations that work for f is bounded by a
polynomial in the size of the presentation of f. We simply try all such transformations on all other signatures in F that are
not invariant under transformations in SO, (C), respectively using Lemma 4.1 or Corollary 4.2 to check if the transformation
works. O

5. General £?-transformable signatures

In this section, we give the algorithm to check £?-transformable signatures. Once again, our general strategy is to bound
the number of possible transformations (with a few exceptions), and then enumerate all of them. Indeed, the bound will be
a constant in this section. The distinct feature for £-transformable signatures is that we have to decompose them first.

We begin with the counterpart to Lemma 4.3, which strengthens Lemma 2.10 by restricting to either orthogonal trans-
formations within SO, (C) or no orthogonal transformation at all.

Lemma 5.1. Let F be a set of signatures. Then F is &-transformable iff F C [: _]1] & or there exists an H € SO,(C) such that
FCHZ.

Proof. Sufficiency is obvious by Lemma 2.10.
Assume that F is Z?-transformable. By Lemma 2.10, there exists an H € 0,(C) such that F C HZ or F CH [: _ll] L.
There are two cases to consider.

1. Suppose F C HZ. If H € SO,(C), then we are done, so assume that H € 05(C) \ SO2(C). We want to find an H' €

S0, (C) such that F C H' 2. Let H' = H [; _01] €S0,(C). Then

ng[(l)_O]]ﬁ
=H %>
since [;_01] € Stab(&?).
2. Suppose F C H [} _11] P H= [_ab Z] € S0,(C), then

ng[}j,.]y
11 a+bi O
g[i—i] 0 a—bi]’gz

c[l. ].]5”
1 —1

since H [: _11] = [: _11] [agbi afbi] and [“Ebi afbi} € Stab(4?). Otherwise, H = [Z fa] € 0,(C) \ S0,(C) and

ng[}ji]gz

11 0 a-bi| 4
S | e
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. 11 ]_ |11 0 a-bi 0 a-bi
since H[i _,.] = [i _l,] [LH_b[ o ] and [a+bi 0 ] eStab(#). O

The “building blocks” of &7 are signatures whose support is contained in two entries with complementary indices.
However, for technical convenience that will be explained shortly, in the following definition we restrict to functions that
are either unary, or have support of size exactly two. Recall that two signatures are considered the same if one is a nonzero
multiple of the other.

Definition 5.2. A k-ary function f is a generalized equality if it is a nonzero multiple of [0, 0], [1, 0], [0, 1], or satisfies

Ixe(0.1)*, vye{0.1}, fy=0 <= y¢xX).

We use & to denote the set of all generalized equality functions.

For any set F, we let (F) denote the closure under function products without shared variables. It is easy to show that
P = (&) (cf. [20]).

If we view signatures as tensors, then (-) is the closure under tensor products. That is, if f(X1,X2) = f1(X1) f2(x2), then
f = f1 ® fo with a correct ordering of indices. In general, we call such f reducible, defined next.

Definition 5.3. We call a function f of arity n on variable set x reducible if f has a non-trivial decomposition, namely,
there exist f; and f, of arities ny and ny on variable sets X; and X;, respectively, such that 1 <nj,ny <n—1, x; Ux; =X,
X1 NXy =0, and f(X) = f1(X1) f2(x2). Otherwise we call f irreducible.

Note that all unary functions, including [0, 0], are irreducible. However, the identically zero function of arity greater
than one is reducible. Recall that we call a function degenerate if it is a tensor product of unary functions. All degenerate
functions of arity > 2 are reducible, but not vice versa — a reducible function may be decomposable into only non-unary
functions. Due to the same reason, degenerate functions are trivially tractable, but reducible functions are not necessarily
so.

Definition 5.2 is a slight modification of a similar definition for & that appeared in Section 2 of [20]. For both definitions
of &, it follows that &2 = (&’). The motivation for our slight change in the definition is so that every signature in & is
irreducible.

Irreducibility is preserved by transformations.

Lemma 5.4. Let f be an irreducible function of arity n, and T be a 2-by-2 non-singular matrix. Then g = T®" f is also irreducible.

Proof. Suppose g is reducible. By Definition 5.3, there is a non-trivial decomposition g = g1 ® g». Hence f = (T‘1)®n g also
has a non-trivial decomposition. O

If a function f is reducible, then we can factor it into functions of smaller arity. This procedure can be applied recursively
and terminates when all components are irreducible. Therefore any function has at least one irreducible factorization. We
show that such a factorization is unique for functions that are not identically zero.

Lemma 5.5. Let f be a function of arity n on variables X that is not identically zero. Assume there exist irreducible functions f; and g;,
and two partitions {X;} and {y;} of X for 1 <i <kand 1 < j <K/, such that

k K

fo=]]fixo=]]eip.

i=1 j=1

Then k = k', the partitions are the same, and there exists a permutation 7 on {1, 2, - - - , k} such that f; = gz (j) up to nonzero factors.

Proof. Since f is not identically zero, none of the f; or g; is identically zero. Fix an assignment uj, ..., u, such that
c= ]_[i-‘=2 fi(uj) #0. Let zj =y; NXq, and vj =y; N (Ug‘:zx,-) for 1 < j <k'. Let the assignments uy, ..., uy restricted to v;
be w;. Then we have

K

k
cfix) = frexn) [ [ fiw) =[] gizj w).

i=2 j=1
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Define new functions h;(z;) = gj(zj, wj) for 1 < j <k’. Then

1
fixn) =< [Thi@p.

Jj=1
Since fy is irreducible, there cannot be two z; that are nonempty. And yet, X = U’J?’:]zj, so it follows that x; =z; for some
1 <j<k'. We may assume j=1, so X; Cy;. By the same argument we have y; C X;, for some i. But by disjointness of
X= Ui.‘:1xi, we must have y; C x1. Thus after a permutation, we have x; =y;. Therefore f; = g1 up to a nonzero constant.
By fixing some assignment to X; =y; such that f; and g; are not zero, we may cancel this factor, and the proof is
completed by induction. Therefore we must have that k =k’ and the two sets {f;} and {g;} are equal, where we identify

functions up to nonzero constants. O

In fact, we can efficiently find the unique factorization.

Lemma 5.6. There is an algorithm to compute in time polynomial in N, for any input signature f of arity n that is not identically
zero, the unique factorization of f into irreducible factors. More specifically, the algorithm computes irreducible f1, ..., fi of arities
ni,...,Ng € Z* (for some k > 1) such that Zfﬂ nj=nand f(Xq,...,XK) = 1_[1-‘:1 fi(xq).

Proof. We may partition the variables x into two sets X; and X, of length n; and nj, respectively, such that 1 <nq,ny <
n—1, X; UXp =X, and X1 NXp = @. Define a 2™ -by-2™ matrix M such that My, 4, = f(u1,u2) for uq € {0,1}" and uy €
{0, 1}"2, Then M is of rank at most 1 iff there exist f; and f, of arity ny and ny, such that f(X) = f1(X1) f2(X2).

Therefore, in order to factor f, we only need to run through all distinct partitions, and check if there exists at least one
such matrix of rank at most 1. If none exists, then f is irreducible. The total number of possible such partitions is 2"~ 1 —1.
Hence the running time is polynomial in 2" < N.

Once we have found f = f; ® f,, we recursively apply the above procedure to f; and f> until every component is
irreducible. The total running time is polynomial in N. O

This factorization algorithm gives a simple algorithm to determine membership in Z2.
Lemma 5.7. There is an algorithm to decide, for a given signature f of arity n, whether f € &2 with running time polynomial in N.

Proof. We may assume that f is not identically zero, and we obtain its unique factorization f = ); f; by Lemma 5.6. Then
f e & iff for all i, we have f; € &. Since membership in & is easy to check, our proof is complete. O

Let T € GL,(C) be some transformation and f some signature. To check if f € T2, it suffices to first factor f and then
check if each irreducible factor is in T&'.

Lemma 5.8. Suppose f = ®2‘:1 fi is not identically zero and that f; is irreducible forall 1 <i <k. Let T € GLy(C). Then f € T iff
fieT& foralll <i<k.

Proof. Suppose f is of arity n and f; is of arity n; so that Z{le nj=n.If fj e T& for all 1 <i <k, then there exists g; € &

such that f; = T®%g;. Thus f = ®i-‘:1 fi= ®§‘:1 T®Nig, — TO" ®{-‘:1 gi. Since g; € &, we have ®i-‘:1 gi € &. Therefore
eTA.

d On the other hand, assume f € T.Z. By the definition of &, there exist g1, ..., g € & of arities mq, ..., mp € Z™, such

that f = T®"g, where g = ®§‘/:1 gi. Since g; € &, g; is irreducible. Let f/ = T®Mig; € T& for all 1 <i <k, which is also

irreducible by Lemma 5.4. Then ®i~":] fil=f= ®§-‘:1 fi. By Lemma 5.5, we have k =k and {f;} and {f/} are the same up

to a permutation. Therefore each fie T&. O

With Lemma 5.6 and Lemma 5.8 in mind, we focus our attention on membership in &. We show how to efficiently
decide if there exists an H € SO,(C) such that H®" f € & when f is irreducible.

Lemma 5.9. There is an algorithm to decide, for a given irreducible signature f of arity n > 2, whether there exists an H € SO, (C)
such that H®" f ¢ & with running time polynomial in N. If so, there exist at most eight H € S0, (C) such that H®" f € & unless
f=@1,0,0,)%or f =(0,1,—-1,0)7.

Proof. Assume there exists an H = [_ab 2] € S0,(C) such that g = H®"f € &, where a®> + b% = 1. Then by Lemma 4.4,

a—bi 0

there exists a diagonal transformation T = [ 0 atbi

] such that §=T®"} ¢ [} ll] &. In particular, g and f have the same
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i 1®n
support. For two vectors u, X € {0, 1}, the entry indexed by row u and column X in the matrix [1 ll] is Wi (—)xu)

where wt(-) denotes Hamming weight and (-, -) is the dot product.
Since g € &, g is irreducible. Thus g has two nonzero entries with opposite index, say x and X. Hence we have

Bu=1"0 ()M gy MO (1) MW gg
— iwt(x) (_1)(x,u)gx + in—wt(x)(_1)wt(u)—(x,u>gi

— (_1)(x,u> (iwt(x)gX + infwt(x)(_l)wt(u)gi>

for any vector u € {0, 1}".
For uy,u; € {0, 1}", if wt(uq) = wt(uz) (mod 2), then

§u1 = :I:glh . (3)

Therefore, if any entry of j’ with even Hamming weight is 0, then all entries with even Hamming weight are 0. This also
holds for entries with odd Hamming weight. However, f is not identically zero because it is irreducible and of arity n > 2.
Therefore, we know that either all entries of even Hamming weight are not 0 or all entries of odd Hamming weight are
not 0. If n >3, or if n =2 and all entries of even Hamming weight are not 0, then we can take two nonzero entries of
]‘ whose Hamming weight differ by 2. Their ratio restricts the possible choices of a + bi, as in the proof of Lemma 4.7,
because the only possible ratios for gy, /8y, are £1 by (3). Together with a? 4+ b% =1, this gives at most 8 possible matrices
H €S0,(C). )

The remaining case is when n =2 and all entries of f with even Hamming weight are 0. By (3), we have g =

2(0,1,41,0)7 for some A #0 since g and f have the same support. Then from f = (T~1)®2g, where T~! = [“ngi a_obi] is

diagonal, we calculate that T~! [f] é] (T-HT = [jg g)] Hence, up to a nonzero scalar, f = (0,1,1,0)T or f = (0,1, —1,0)".

Finally f = (Z'~1)®2f, and we get f = (1,0,0,1)T or f = (0,1, —1,0)T, up to a nonzero scalar. O
Now we give an algorithm that efficiently decides if a set of signatures is &?-transformable.

Theorem 5.10. There is a polynomial-time algorithm to decide, for any finite set of signatures F, whether F is &?-transformable. If
so, at least one transformation can be found.

Proof. By Lemma 5.1, we only need to decide if F C [: _11] 2 or if there exists an H € SO,(C) such that F C HZ. To
-1
check if F C [: _11} &, we simply apply Lemma 5.7 to each signature in [} _11] F.

Now to check if 7 C HZ”. We may assume that no signature in F is identically zero. Now we obtain the unique
factorization of each signature in F using Lemma 5.6. If every irreducible factor is either a unary signature, or (1,0,0, 1)7T,
or (0,1,—1,0)7T, then F C (&) = £. Otherwise, let f € F be a signature that is not of this form. This means that f has a
unique factorization f =), fi where some f; is not a unary signature, or (1,0,0, 1)T, or (0,1, —1,0). Assume it is f;.

By applying Lemma 5.8 to f, we get the necessary condition f; € H&. Then we apply Lemma 5.9 to fi. If the test
passes, then by the definition of f;, we have at most eight transformations in SO,(C) that could work. For each possible
transformation H, we apply Lemma 5.7 to every signature in H~!F to check if it works. O

6. Symmetric &/ -transformable signatures

In the next two sections, we consider the case when the signatures are symmetric. The significant difference is that a
symmetric signature of arity n is given by n+ 1 values, instead of 2" values. This exponentially more succinct representation
requires us to find a more efficient algorithm.

6.1. Asingle signature

Recall Definition 2.8. To begin with, we provide efficient algorithms to decide membership in each of <7, <%, and <4 for
a single signature. If the signature is in one of the sets, then the algorithm also finds at least one corresponding orthogonal
transformation satisfying Definition 2.8. By Lemma 2.9, this is enough to check if a single signature is .«7-transformable.

We say a signature f satisfies a second order recurrence relation, if there exist not all zero a, b, c € C, such that for all
0 <k <n-—2,afy + bfy+1 + cfrr2 = 0. For a non-degenerate signature of arity at least 3, these coefficients are unique up to
a nonzero scalar.

Lemma 6.1. Let f be a non-degenerate symmetric signature of arity n > 3. If f satisfies a second order recurrence relation with coef-
ficients a, b, c € C and another one with coefficients a’, b’, ¢’ € C, then there exists a nonzero k € C such that (a, b, ¢) =k(d’,b’, c’).
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Proof. A function f = [fo, f1...., fu] is degenerate if and only if fo,..., f; forms a geometric sequence. As f is non-
fo f1 - fa—2

degenerate, the matrix A = H‘l’ ﬁ f}”] has rank 2. Let B = |:f1 fa ... f:q ] We claim that rank(B) > 2, which implies that
o f2 f3 o fa

f satisfies at most one second order recurrence relation up to a nonzero scalar, as desired.
If (f1,..., fa_1) =0, then fo, fn # 0 since rank(A) =2, so rank(B) =2 as well. Otherwise, (f1,..., fn—1) # 0. Consider

the matrices A1 = [;‘: 2 ;:j] and Ay = [ﬁ g f”f;l ] which are submatrices of both A and B. Both A; and A have rank

at least 1 since (f1,..., fnr—1) # 0. We show that either rank(A;) =2 or rank(A;) = 2, which implies that rank(B) > 2.

For a contradiction, suppose rank(Ai) = rank(A;) = 1. Then there exist A, u € C such that (fo,..., fn—2) = A (f1,...,
fn—1) and (f2,..., fn) = u(f1,..., fa=1). If A =0, then fo = f1 =0 as n > 3. It implies that rank(A,) = rank(A). However,
rank(A) = 2, a contradiction. Similarly if u = 0, then rank(A1) = 2, a contradiction. Otherwise A, u # 0 and we get f; #0
for all 0 <i <n, and A = 1. This implies that rank(A) = 1, a contradiction. O

For a signature with a second order recurrence relation, the quantity b® — 4ac is nonzero precisely when the signature
can be expressed as the sum of two degenerate signatures that are linearly independent.

Lemma 6.2. Let f be a non-degenerate symmetric signature of arity n > 3. Then f satisfies a second order recurrence relation with
®n ®n

coefficients a, b, c satisfying b> — 4ac # 0 iff there exist ag, bo, a1, by (satisfying aghy # a1bg) such that f = [gg] + [Zl :| )

Proof. The “only if” direction is straightforward to verify. For the other direction, assume that there exist a, b, ¢ € C not all

zero, such that for all 0 <k <n — 2, afy + bfk+1 + cfk42 = 0. If ¢ # 0, then since b% — 4ac # 0, we can solve this recurrence
with the initial values of fp and f;, namely, there exist cp,cq # 0 and A # A, such that for any 0 <k <n,

k k
Sk =cory +c11;.

®n ®n
In other words, we can express f as f =cop [;1] +c1 [;2] . Normalizing shows the claim.
The other case of ¢ =0 implies that b # 0. Hence the entries fo,---, fn—1 satisfy a first order recurrence relation and

®n ®n
the recurrence does not involve the last entry f,. Thus there must exist cg, c; and A such that f =cq [l] +c1 [?] .

Moreover, if any of ¢y or c; equals 0, then f is degenerate which contradicts the assumption. The lemma follows from a
normalization. O

The following definition of the 6 function is crucial. A priori, 6(vg, v1) may be not well-defined, but this is circumvented
by insisting that vo and v be linearly independent.

a a

Definition 6.3. For a pair of linearly independent vectors vy = [bg:| and vi = [b ] we define

1
1
2

aopa + bobq

a1b0 — a0b1 '

0(vo, v1) 2=<

Furthermore, suppose that a signature f of arity n > 3 can be expressed as f = ngm + v?”, where v and vq are linearly
independent. Then we define 6(f) =6(vg, v1).

Intuitively, this formula is the square of the cotangent of the angle from v¢ to vi. This notion of cotangent is properly
extended to the complex domain. The expression is squared so that 6(vg, v{) =6(v1, Vo).

Let f = v?" + v?” be a non-degenerate signature of arity n > 3. Since f is non-degenerate, vy and v; are linearly
independent. The next proposition implies that this expression for f via vo and v is unique up to a root of unity. Therefore,
6(f) from Definition 6.3 is well-defined.

Proposition 6.4 (Lemma 9.1 in [23]). Let a, b, ¢, d be four vectors and suppose that ¢, d are linearly independent. If for some n > 3, we
have a®" + b®" = ¢®" ++ d®", then there exist wo and w, satisfying w} = w} = 1 such that either a= woc and b = w1d or a = wod
and b = wc.

For the convenience of future use, we can generalize Proposition 6.4 to the following simple lemma.

Lemma 6.5. Let a, b, ¢, d be four vectors and suppose that ¢, d are linearly independent. Furthermore, let xg, x1, Yo, ¥1 be nonzero
scalars. If for some n > 3, we have xpa®" + x1b®" = yoc®" + y1d®", then there exist wg and w1, such that either a = woc, b = w1 d,
Xowf = Yo, and x;w] = y1; ora=wod, b = w1¢, xowf) = y1, and x, @} = yo.
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It is easy to verify that 0 is invariant under an orthogonal transformation.

Lemma 6.6. For two linearly independent vectors vg, vi € C2 and H € 0(C), let 75 = Hvg and Vi = Hvy. Then 0(vg, vq) =
6(vo, V7).

Proof. Within the square in the definition of 6, the numerator is the dot product, which is invariant under any orthogonal
transformation. Also, the denominator is the determinant, which is invariant under any orthogonal transformation up to a
sign. O

Now we have some necessary conditions for membership in .2 U 2% U 4. Recall that &) C &;.

Lemma 6.7. Let f be a non-degenerate symmetric signature of arity at least 3. Then

1 feP = 0(f) =0,
2. feoh — 6(f)=—1,and
3. feds = 0(f)=—1.

Proof. The result clearly holds when f is in the canonical form of each set. This extends to the rest of each set by
Lemma 6.6. O

These results imply the following corollary.

Corollary 6.8. Let f be a non-degenerate symmetric signature f of arity n > 3. If f is o/ -transformable, then f is of the form v6®” +
v?", where v and vy are linearly independent, and 6 (vg, v1) € {0, —1, —%}.

The condition given in Lemma 6.7 is not sufficient to determine if f € .24 U @ U of. For example, if f = vgz’” + v?"
with vg = [:] and v1 is not a multiple of [11 , then 6(f) = —1 but f is not in 5. However, this is essentially the only

exceptional case. We achieve the full characterization with some extra conditions.
The next lemma gives an equivalent form for membership in 7, 9%, and < using transformations in 0,(C) \ SO, (C).
Only having to consider transformation matrices in 02 (C) \ SO, (C) is convenient since such matrices are their own inverses.

Lemma 6.9. Suppose f is a non-degenerate symmetric signature of arity n > 3 and let % € {</, <5, </3}. Then f € % iff there exists
an H € 0,(C) \ SO2(C) such that f € & with H.

Proof. Sufficiency is trivial. For necessity, assume that f € % with H € 02(C). If H € 0(C) \ SO,(C), then we are done, so
further assume that H € SO, (C). By the definition of .7,
f=cH®" (v3" + pvE"),

where ¢ #0 and vg, vq, and 8 depend on .%#. Let H' = [(1) _ol]H‘1 € 0,(C) \ S0,(C), so it follows that H® = H'~! = H'.
Then

f=HH)®"f
=cH'®"(H'H)®" (v§" + pv§")
®n
@n |1 ® ®
=cH'®" [071] (vo" +Bvi")
=cH'®" (v¥" + pve")
=cpH'®" (v&" + g1V,
where in the fourth step, we use the fact that [; _01] vop =v1 and [(1) _01 ] v1 = vg for any .7 € (A, o5, <3). To finish, we
rewrite 8~! in the form required in Definition 2.8 as follows:
o if # = .07, then B = a2 for some t € {0,1} and r € {0,1,2,3} and g~ =™ 2", Pick r’ € {0, 1, 2,3} such that
r'=—tn—r (mod 4), so g~ = ™2 as required;

o if # =.f, then =1, 50 ' =1= 8 as required;
o if F = a5, then B =i" for some r€{0,1,2,3}, 50 B~ =i~"=i*T as required. O
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Before considering 271, we prove a technical lemma that is also applicable when considering ;.

a

Lemma 6.10. Let f = v§" + v¥" be a symmetric signature of arity n > 3, where vo = [bg] and vq = [Zl ] are linearly independent.

If6(f) =0, then there exist an H € 0,(C) and a nonzero k € C satisfying a; = kbg and b1 = —kag such that

(T

for some nonzero » € C.

Proof. Since 6(f) =0, we have apa; + bpb1 = 0. By linear independence, we have aibg # apb1. Thus, there exists a nonzero

k € C such that a; = kby and by = —kag. (Note that this is clearly true even if one of ap or bg, but not both, is zero.) Let
c= a(2) + b2, which is nonzero since ajbg % agb;. Also, let ug = % and uy = k‘:_lﬁ so it follows that the matrix M = [ug u1]
is orthogonal. Then the matrix H = % [} jl } M~1 is also orthogonal and what we need. Under a transformation by H, we

have

H®"f = H®" (c%ugz’" +k”c%u?”)

(L)),
where 1 = (c/Z)% #0. O

Now we give the characterization of <.

Lemma 6.11. Let f = v?” + v?” be a symmetric signature of arity n > 3, where v = [gg] and vi = [Zl ] are linearly independent.
Then f € o7 iff 6(f) = 0 and there exist anr € {0, 1,2, 3} and t € {0, 1} such that a’} = «"+2"b} +# 0 or b} = 2" al £ 0.
X

Proof. Suppose f € ;. By Lemma 6.9, after a suitable normalization, there exists a transformation H = [y fx] € 0,(0)\
S0, (C) such that

f=He" ([}]®n+ﬁ[fl]®n>,

where 8 = ™2 for some r € {0,1,2,3} and some t € {0,1}. Since H € 05(C), we have x> + y> = 1. By Lemma 6.7,
0(f)=0.

Now we have two expressions for f, which are

®n ®n ®n ®n
dap ay _ _ x+y X=y
[n] ] =r =[5 +e[a]
Since v and vy are linearly independent, we know that ap and a; cannot both be 0. Suppose ag # 0. By Lemma 6.5, we
have two cases.

1. Suppose ag = wp(x+ y) and by = w(x + y) where wfj =1 and ] = . Then we have b} = (x+ y)" = Bag # 0. Since
B = a2 we are done.

2. Suppose ap = wo(x — y) and by = w1(y —x) where wj = g and | = 1. Then we have aj = (x—y)" = amt2r—n(y —
X) = g2 5o pll = o ~=2r=4ngl £ 0. Pick 1’ € {0, 1,2, 3} such that ' = —tn—r—2n (mod 4). Then oz~ ~2" 4" =
a2 s of the desired form.

Otherwise, a; # 0, in which case, similar reasoning shows that af = (x“”zrbg #0.
For sufficiency, we apply Lemma 6.10, which gives

H®nf:A<[1i|®n+kn|:j]j|®n)

for some H € 0,(C), some nonzero A € C, and some nonzero k € C satisfying a; = kbg and b1 = —kag. The ratio of these
coefficients is k™. We consider two cases.

1. Suppose af = /!"*2'b £ 0. Then k" = "2, s0 f € .

2. Suppose b = a"+27ql £ 0. Then k" = (—1)"a™"+2". Pick 1’ € {0, 1,2, 3} such that ' =r+2n (mod 4). Then k" = a!" 2",
so fesh. O
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Now we give the characterization of .<73.

Lemma 6.12. Let f = v§" + v§" be a symmetric signature of arity n > 3, where v = [Zg} and vq [z

= 1] are linearly in-
dependent. Then f € .of5 iff there exist an € € {1,—1} and r € {0, 1,2, 3} such that a; («/fao +6ib0> = by (aiao — ﬁbo),

@} =" (eiag — V2bo) , and b = 1" (v/2ao +eibo) .

Proof. Suppose f € «7. By Lemma 6.9, after a suitable normalization, there exists a transformation H = [;(/ 7yx] €0,(C) —
S0, (C) such that

®n ®n
_ g®n 1 o 1
r=we (L7 [L]7)
apai+boby __ i

for some r € {0, 1,2, 3}. Since H € 0,(C), we have x? + y?> =1. By Lemma 6.7, (f) = —%, which implies by —arby = iﬁ'

After rearranging terms, we get
aj (\/iao + Sibo) =by <8iao — ﬁbo) ,

for some & € {1, —1}. Since vo and v; are linearly independent, we know that a; and b; cannot both be 0. Also, if v/2ag +
gibg and eiag — +/2bg are both 0, then we have —+/2ag = giby and €iag = ~/2bg, which implies ag = bg = 0, a contradiction.
Therefore, we have

a; =c(giag —~2bg)  and by =c(v/2aq + €ibg) (4)

for some c # 0. To prove necessity, it remains to show that ¢” is a power of i.
Now using H~! = H, we have two expressions for (H~1)®" f, which are

xao+ybo en xa1+ybq on _ y®n aog en ap on _ —N\®n - [1 on a1 ®n
[yag—xbo] + I:yal—xb1 ] =H bo + b1 - (H ) f= o +i —a :
By Lemma 6.5, there are two cases to consider, each of which has two more cases depending on &.

1. Suppose yag — xbg = a(xap + ybo), ya; — xby = —a(xay + yb1), (xap + ybo)" =1, and (xa; + yby)" =i". By rearranging
the first two equations, we get
(y —ax)ap=(x+ay)bp and  (y+ax)a; =x—ay)b;. (5)

It cannot be the case that ag =bp =0 or y —ax=x+«ay =0.If aqg =0, then x+ oy =0, so a; = —/2ib; by (5)

and y #0 lest x=0 as well. If by =0, then y — ax =0, so v/2ia; = by, by the same argument. Now we consider the

different cases for &.

(@) If € =1, then a; = c(iag — +/2bg) and by = c(v/2ag + ibg) by (4). If ag = 0, then a; = —c~/2bg and by = ciby,
which contradicts a; = —+/2ibq; if bg = 0, then a; = ciag and by = c+/2ag, which contradicts ~/2ia; = by. Thus,
(y —ax)ap = (x+ ay)bg # 0 by (5). Also from (5), (¥ + ax)a; = (x — ay)b1. Then since ¢ # 0 and using (4) with
=1, we get

(¥ +ax) (iao — ﬁb()) =(x—-ay) (\/iao + ibo) .
Using (y — ax)ap = (x + ay)bg # 0, we get
(y +ax) (i(x+ ay) —V2(y — ax)) =x—ay) (ﬁ(x+ ay)+i(y — ocx)) .

This equation simplifies to x2 + y2 = 0, which is a contradiction.
(b) If e = —1, then a; = c(—iag — ~/2bg) and by = c(v/2ag — ibg), from (4). Then we get

xai + yb1 = xc (—iao — \/fbo) + yc (ﬁao — ibo)
=c (—i (xao + ybo) + v/2(yaq — xbo))

= c(xap + ybo),

where in the third step, we used yap — xbg = o (xap + ybo) from (5). Raising this equation to the nth power and
using (xap + ybo)" =1 and (xa; + yb1)" =i", we conclude that ¢" =i".
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2. Suppose yag —xbg = —a(xag + ybg), ya; —xb1 = a(xay + yb1), (xap+ ybo)" =i", and (xa; + yb1)" = 1. Now we consider
the different cases for ¢.
(a) If e =1, then a; = c(iag — ~/2bg) and by = c(~/2ag + ibg) by (4). Using similar reasoning to that in case 1b leads to
(=0)"i" =1, so c" is a power of i.
(b) If £ = —1, then a; = c(—iag — ~/2bg) and by = c(v/2ag — ibg) by (4). Using similar reasoning to that in case 1a leads
to a contradiction.

For sufficiency, suppose the three equations hold for some ¢ € {1, —1} and some r € {0, 1, 2, 3}. Further assume ¢ =1, in
which case, the equations are

@ (fzao + ibo) — by (iao - «/§b0> : (6)
as well as
@i =i (iao - ﬁbo)" and b} =1 (Va0 + ibo)" . 7)

From (6), we have

ay =c(iag—~2bg)  and by =c(v/2a0 + ibg) (8)

for some ¢ € C. In (6), a;, by cannot be both zero. Similarly, ~/2ag + ibo, iag — ~/2bg cannot be both zero. Thus at least one
equation in (8) has both sides nonzero and we can always find some c even if one factor is zero. We can write (8) as

[n]=e[ ][5

This implies that aga; + bgb1 = ci(ag + b(z)). Using (7) or (8), whichever equation is not zero on both sides, we have ¢" =i".

Since (6) implies 6(f) = —1, we know that a2 -+ b2 # 0 because otherwise v is a multiple of [L] which makes 6(f) = —1
regardless of v1.
. 1 1 « _ 1 ap bo _
We now define two orthogonal matrices T{ = Wees [701 ]] and Ty = oy [bo —ao]' Also let T =TT, € 0,(C). For

ag ®n @ ®n ® .
f= [bo] + [m] , we want to calculate T®" f. First,

nfE)-aeal] e r[a]=v[2]

2
ag+bg
1+i

1 .
o] _ apay+bob1 | _ 2 2 i
o[y |- = [ | =eves + 18 s
ag +bg
It follows that

)= [ L] a)=er [0 )= [ 1]
TEf =y <[_1a]®n + (=0 [;]m) :

So T transforms f into the canonical form of .o7. If we write out the orthogonal transformation T explicitly, then T = [; _y X}

N

where y = . Furthermore, aibg — agb1 = v/2i(aoas + bob1) = —c+/2(aZ + b3) by (6) and (8). Then

Thus

where

ap + abg bg — aag
X=—— —— and y=—.

i+ 1) (a3 +53) (1) (a3 +53)
When ¢ = —1, the argument is similar. In this case, a; = c(—iag — ~/2bg) and by = c(+~/2ag —ibg) for some c € C satisfying
¢"=i" and the entries of T are

ap —ab bo + aa
x:—o 0 and y:—o+ 0 O

(i+1) (a5 +b3) ,/(i—i—l)(a%—l—bg)'
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Remark. Notice that either aj(v/2ag+ibg) = b1 (iag — ~/2bo) or ay(v/2ag — ibg) = b1 (—iag —+/2bo) implies 6(f) = —3, unless
det([ ;0 r =0.

As mentioned before, &5 = &7, requires a stronger condition than just 6. If f € @ = £, then 6(f) = —1, but the
reverse is not true. If f = vgg” + v?” with vg =[1,i] and v{ is not a multiple of [1, —i], then 8(f) = —1 but f is not in
afh = &, since any orthogonal H fixes {[1,i], [1, —i]} set-wise, up to a scalar multiple.

The next lemma, which appeared in [12], gives a characterization of .2%. It says that any signature in 7 is essentially in
canonical form. For completeness, we include its proof.

®n ®n
Lemma 6.13 ([12]). Let f be a non-degenerate symmetric signature. Then f € < iff f is of the form c <[: ] + B [_11} )forsome
c,B#0.

=

®n
Proof. Assume that f = c([:] +

n
> for some c, 8 # 0. Consider the orthogonal transformation H = [g l’a]
B

where a = % (ﬂﬁ —l—ﬁ’ﬁ) and b = 21 *2]7). We pick a and b in this way so that a + bi :ﬁﬁ, a — bi :ﬁ’ﬁ,

[
(p
and (a + bi)(a — bi) =a® + b2 =1. Also (gf—gi) = B. Then
wong—e ([ o]+ n o]
—c ((a +biy" [ji]m +(@—biy" | ]®">

=C\/E<|:ji:|®n+[}:|®n)’

so f can be written as

f=c/BHE <[—1f]®n i mm) '

Therefore f € ..
. 18 17%" 1 17, . .
On the other hand, the desired form f = c([i] + ﬂ[i] ) follows from the fact that {[i],[_i]} is fixed setwise
under any orthogonal transformation up to nonzero constants. 0

Remark. Notice that 6(vg, v1) = —1 for linearly independent v and v if and only if at least one of vy, v1 is [:] or [_1[]

up to a nonzero scalar.
We now present the polynomial-time algorithm to check if f € @/ U oA U .

Lemma 6.14. Given a non-degenerate symmetric signature f of arity at least 3, there is a polynomial-time algorithm to decide whether
f € 9 foreach k € {1, 2, 3}. If so, k is unique and at least one corresponding orthogonal transformation can be found in polynomial
time.

Proof. First we check if f satisfies a second order recurrence relation. If it does, then the coefficients (a, b, ¢) of the second
order recurrence relation are unique up to a nonzero scalar by Lemma 6.1. If the coefficients satisfy b*> — 4ac # 0, then by
Lemma 6.2, we can express f as v?" + v?", where v and v; are linearly independent and arity(f) =n. All of this must be
true for f to be in @7 U o5 U 3. With this alternate expression for f, we apply Lemma 6.11, Lemma 6.13, and Lemma 6.12
to decide if f € o for each k € {1, 2, 3} respectively. These sets are disjoint by Lemma 6.7, so there can be at most one k
such that f e.of. O

6.2. Set of symmetric signatures

We first show that if a non-degenerate signature f of arity at least 3 is in .«/; or .73, then for any set F containing f,
there are only a small constant number of transformations to check to decide whether F is < -transformable. If f € %,
then there can be more than a constant number of transformations to check. However, this number is at most linear in the
arity of f.



J.-Y. Cdi et al. / Information and Computation 259 (2018) 102-129 123

Notice that any non-degenerate symmetric signature f € .o/ of arity at least 3 is in %123 (introduced in Section 2.3),
which contains signatures expressed as a sum of two tensor powers. Therefore 6(f) is well-defined. By Lemma 2.7, to

check «7-transformability, we may restrict our attention to the sets ./ and [é 2] o/ up to orthogonal transformations. In
particular,

0 iffemumnu[il]a,
0(fH)=1-1 if feTs, 9)
-1 iffe[g)g](%u%).

Lemma 6.15. Let F be a set of symmetric signatures and suppose JF contains a non-degenerate signature f € .oy of arity n > 3 with

H € 0,(C). Then F is < -transformable iff F is a subset of H</, or H [} jl]fszf, or H [} jl] [(1)2],;27,

Proof. Sufficiency follows from Lemma 2.7 and both H, Hy = % [} _1]] € 02(0).

Before we prove necessity, we first claim that without loss of generality, we may assume H € 0,(C) \ SO2(C). If H
S0, (C), we let H=H [? (1)] € 0,(C) \ S0, (C). Then f € o7 also with H. From [? (])] € Stab(%), it follows that Ho/ =Hd.

Also [?3] [1 _11] [;g] = [} _]1] [3)2] = E _11] [8 _01] [ég] = [} _1]] [(1)2] [é _01], and [8 _01] € Stab(). It follows that
IR P EEL Y | P 2
Suppose F is «/-transformable. By Lemma 4.3, there exists an H' € SO,(C) such that F C H'« or F C H' [ég]d.

We only need to show there exists an M € Stab(«), such that H' = HM in the first case, and in the second case H' =

H[i _11]M, and M[(l)g] :[;S]M/ for some M’ € Stab(%).

Since f € o/ with H, after a suitable normalization by a nonzero scalar, we have

f=H®" ([}]®n+ﬁ[,]1]®n>:

where 8 = «!"2" for some r €{0,1,2,3} and t € {0, 1}. Let g = (H'~")®"f and T = H'~!H so that

g=T%" ([}]®n+ﬂ[fl]®n).

Note that T € 0,(C) \ SO, (C) since H' € SO,(C) and H € 05(C) \ SO(C). Thus T=T"! and HT=H’. Let T = [Z _ba] for

some a, b € C such that a? + b2 = 1. There are two possibilities according to whether F C H'«7 or F C H’ [(]) 2] o .

1. If F C H'«/, then g € F1,3 since g is symmetric and non-degenerate. Since 0(g) =0, by (9), g € %1 or g € %,. We
discuss the two cases of g separately.
e Suppose g € %1. Then we have

e (L7 []7) =+ (G171 [07)

for some A #0 and t € {0, 1, 2, 3}. Plugging in the expression for T, we have
®n ®n ®n ®n
a+b a—b _ 1 10
(2] o)) = (B2 [2]7)

Then by Lemma 6.5, we have a+b =0 or a — b = 0. Together with a® + b? =1, we can solve for T = % [} _11] or
T= %2 [j] j] = % [1 31] [? _01}, up to a constant multiple £1. Since [(1) _01] € Stab(«7), we have T € Stab(.«?), so
we are done.

e Suppose g € .%,. Then we have

NEORURSRIHEIRY

for some A #0 and t € {0, 1, 2, 3}. Plugging in the expression for T, we have

(Biz]@n o [2;2]@) _ (I:}]@)n L [j1]®n>



124 J.-Y. Cdi et al. / Information and Computation 259 (2018) 102-129

Then by Lemma 6.5, we have a+b=a—b or a+b = —(a — b). Therefore either a=0 or b=0. Thus T =+ [; _01} or
T==+ [? (1)] and both matrices are in Stab(%).
2.If FCH [;g]y{, then we have g € [82} F123. Since 0(g) =0, by (9), g€ [ég]ﬁﬁ. That is,

(1[4 = L] ([ [ = () e [2]7)

for some A # 0. This is essentially the same as the case where g € .%#; above, except that the coefficients are dif-

ferent. However, the coefficients do not affect the argument and our conclusion in this case that T = %Fz [} _11] or

_ 1|11 0 -1 . . 0 -1
T= 7 [1 71] [1 0 ] up to a constant multiple £+1. Notice that [1 0 ] € Stab(«/). Moreover,

[P lse]=10%]
- I:g)g] I:a(i‘ —00(]
=-a[42][%].
and [?é] e Stab(«). O

Lemma 6.16. Let F be a set of symmetric signatures and suppose F contains a non-degenerate signature f € .o/ of arity n > 3. Then
there exists a set H C 0,(C) of size O (n) such that F is < -transformable iff there exists an H € H such that F C H.</. Moreover H
can be computed in polynomial time in the input length of the symmetric signature f.

Proof. Sufficiency is trivial by Lemma 4.3.
Suppose F is «/-transformable. By Lemma 4.3, there exists an H € SO,(C) such that F C H& or F CH [ég]d. In

the first case, we show that the number of choices of H can be limited to O(n). Then we show that the second case is
impossible.
Since f € 4, after a suitable normalization by a nonzero scalar, we have

f= [::I@Jn +v [_1[]®n
for some v 0 by Lemma 6.13. Let g = (H~1)®"f. Then
g = (HHen (E]@n o [ji]m) .
There are two possibilities according to whether 7 € He/ or F € H [52] o
1. Suppose F C H.¢/. Therefore g € .%13. Since 6(g) = —1, by (9), g € #3. Then we have
(H-1)®n (E]@n o [ji]®n) . <[: ]®n o [ji]@an)

for some A # 0 and r € {0, 1,2, 3}. Because H~! € SO,(C), we may assume that H~! is of the form [
a? + b% = 1. Therefore

(O L) L ()

— (@ +bi)" [}]@m + v(a— bi)* [j,.]m

ab

b a] where

Comparing the coefficients, by Lemma 6.5, we have
A=(@@+b)" and A" =v(a-—bi)"
Hence,

i"(a+bi)" =v(a — bi)".
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Since (a + bi)(a — bi) = a® + b2 =1, we know that (a + bi)?" = vi~". Therefore a + bi = wy, (Vi~")1/2" where wy, is a
2n-th root of unity. There are 4 choices for r, and 2n choices for w,,. However, a — bi = # and (a, b) can be solved
from (a + bi, a — bi). Hence there are only O (n) choices for H, depending on f.

2. Suppose F C H [(1)2] o/. Then g € [3)2] Z123. However, 6(g) = —1, which contradicts (9). O

Lemma 6.17. Let F be a set of symmetric signatures and suppose J contains a non-degenerate signature f € 273 of arity n > 3 with
H € 05(C). Then F is </ -transformable iff ¥ € H [8 g] .

Proof. Sufficiency is trivial by Lemma 4.3.
Suppose F is «7-transformable. As in the proof of Lemma 6.15, we may assume that H € 0(C) \ SO2(C). By Lemma 4.3,

there exists an H' € SO,(C) such that F C H'& or F C H' [;g]%. We show the first case is impossible. Then in the

second case, we show that there exists an M such that H = HM, where M [(l) 2] = [(1)2] M’ for some M’ € Stab().
Since f € .o with H, after a suitable normalization by a nonzero scalar, we have

= H®" (B]@n o [_10,]®n>

for some r € {0,1,2,3}. Let g=(H' ~1)®"f and T = H'~'H so that

®n ®n
__ T®n 1 a1
R (I
Note that T € 0,(C) \ SO,(C) since H' € SO5(C) and H € 05(C) \ SO(C). Thus T=T"! and HT=H’. Let T = [g fa] for

some a, b € C such that a® + b? = 1. There are two possibilities according to whether F C H'«7 or F C H’ [(1) 2] .

1. Suppose F C H'.«7. Then g = (H' ~1)®" f € F,3. However, 6(g) = —%, which contradicts (9).

2. Suppose F C H’ [;g]yi. Then g € [82]&7123, so 0(g) = —% and g € [82] (F2 U Z3) by (9). We discuss these two
cases separately.
e Suppose g € [é 2] %>. Then we have

®n ®n ®n ®n ®n
on([1 a1 _s[10 1 [ 1
e (] [T = Ll () e (1)
®n ®n
_ 1 £ 1
()7 [2]7)
for some A #0 and t € {0, 1, 2, 3}. Plugging in the expression for T, we have
a+ab1®" | o [a—ab]®" _ 178" | 1 %"
([b—aa] +1 [b+aa] =X [a] +1 I:fa:l .
Then by Lemma 6.5, we have either

b —ax =«a(a+ bx) and b+ax =—a(a—ba)
or

b—a0 =—a(a+ba) and b+ax =o(a— ba).
The first case is impossible. In the second case, we have a = 4+1 and b = 0. This implies T = + [(1) Pl] € Stab(%),
which commutes with [:)2]

oSupposege[ég]ﬂg. Then we have
®n ®n ®n ®n ®n
en (1 o1 _ .10 1 1
(L ) = B (T )
B M LU S =
=+([a]7 [ ]
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for some A #0 and t € {0, 1, 2, 3}. Plugging in the expression for T, we have

a+ab ®n ;v | a—ab en _ 1]®" ] 1 on
(I:bfaa] +1 [b+aa] =A [ai] +1 [—ai] :
Then by Lemma 6.5, we have either

b —ax =«ai(a+ ba) and b+ao = —ai(a — ba)

or
b —ax = —«ai(a + ba) and b+ax =«ai(a — ba).

The first case is impossible. In the second case, we have a =0 and b = +1. This implies that T =+ [(1) (1)] Note that
[?(1)] [;2] = [82] [a91 %‘] and [Oﬁl ‘;] =q! [?(')] € Stab(«/). O

Now we are ready to show how to decide if a finite set of signatures is .« -transformable. To avoid trivialities, we assume
JF contains a non-degenerate signature of arity at least 3. If every non-degenerate signature in JF has arity at most two,
then Holant(F) is tractable.

Theorem 6.18. There is a polynomial-time algorithm to decide, for any finite input set F of symmetric signatures containing a non-
degenerate signature f of arity n > 3, whether F is </ -transformable.

Proof. By Lemma 6.14, we can decide if f is in % for some k € {1,2,3}. If not, then by Lemma 2.9, F is not
o -transformable. Otherwise, f € < for some unique k. Depending on k, we apply Lemma 6.15, Lemma 6.16, or Lemma 6.17
to check if F is «/-transformable. O

7. Symmetric &2 -transformable signatures

To decide if a signature set is &?-transformable, we face the same issue as in the .<7-transformable case. Namely, a sym-
metric signature of arity n is given by n + 1 values, instead of 2" values. This exponentially more succinct representation
requires us to find a more efficient algorithm.

The next lemma tells us how to decide membership in £?; for signatures of arity at least 3.

Lemma 7.1. Let f = v?" + v‘?” be a symmetric signature of arity n > 3, where vo and v are linearly independent. Then f € 21 iff

o(f)=0.
Proof. Necessity is clear by Lemma 6.7 and sufficiency follows from Lemma 6.10. O

Since @4 = &7, the membership problem for &2, is handled by Lemma 6.13. Using Lemma 7.1 and Lemma 6.13, we can
efficiently decide membership in &1 U &%,.

Lemma 7.2. Given a non-degenerate symmetric signature f of arity at least 3, there is a polynomial-time algorithm to decide whether
f € Py for some k € {1, 2}. If so, k is unique and at least one corresponding orthogonal transformation can be found in polynomial
time.

Proof. First we check if f satisfies a second order recurrence relation. If it does, then the coefficients (a, b, ¢) of the second
order recurrence relation are unique up to a nonzero scalar by Lemma 6.1. If the coefficients satisfy b? — 4ac # 0, then by
Lemma 6.2, we can express f as v(‘?” + v?", where vy and v; are linearly independent and arity(f) = n. All of this must be
true for f to be in &7 U &7,. With this alternate expression for f, we apply Lemma 7.1 and Lemma 6.13 to decide if f € &
for some k € {1, 2} respectively. These sets are disjoint by Lemma 6.7, so there can be at most one k such that f € &%. O

Like the symmetric affine case, the following lemmas assume the signature set F contains a non-degenerate signature
of arity at least 3 in 4?; or £?,. Unlike the symmetric affine case, the number of transformations to be checked to decide
whether F is #2-transformable is always a small constant.

Lemma 7.3. Let F be a set of symmetric signatures and suppose F contains a non-degenerate signature f € 2?1 of arity n > 3 with

H € 05(C). Then F is &-transformable iff F € H [} _11} .
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Proof. Sufficiency is trivial by Lemma 2.10.
Suppose F is Z-transformable. As in the proof of Lemma 6.15, we may assume H € 0,(C)\ SO, (C). Then by Lemma 5.1,

there exists an H' € SO,(C) such that F CH'Z or F CH' [} jl] 2, where in the second case we can take H' = I5. In the

first case, we show that there exists an M € Stab(Z?) such that H' = H [1 _11 ] M. Then we show that the second case is
impossible.
Since f € 471 with H, after a suitable normalization by a nonzero scalar, we have

f=H®" ([}]®n+ﬂ[fl]®n>

for some B£0. Let g=(H'~1)®"f and T = H'~'H so that

®n ®n
g:T®"<[}] +,3[_1]] >
Note that T € 05(C) \ SO2(C) since H € S0,(C) and H € 05(C) \ SO,(C). Thus T =T~! and HT = H'.

1. Suppose F C H'Z. Then g must be a generalized equality since g € &7 with arity n > 3. The only symmetric non-

®n ®n
degenerate generalized equalities in &2 with arity n > 3 have the form A ([(1)] +p [(1):| ) for some A, B’ # 0. Thus

o (Lo L7) = (L7 [07)

Let T = [z _ba] for a, b € C such that a2 + b2 = 1. Then

a+b ®n a—b ®n _ 1 ®n /10 ®n
] el =[]+ [1]):
By Lemma 6.5 we have either a —b =0 or a+ b = 0. Together with a2 +b? =1, the only solutions are T = i% [1 11}

1-—
orT ::I:%f2 [jl j] = i\% B J]] [? _01]. Since i%lz, j:% [(1) —01] € Stab(2?), this case is complete.
2. Suppose F C H’ [: _]1] &.Then g € [: _l,} Z, and 0(g) :9([}], [_1]]) =0 by Lemma 6.7.
®n ®n
However, any h € [: _11] & that is non-degenerate and has arity at least 3 must have the form c [}] +d [_11] for

some nonzero ¢, d € C, which implies that 6 (h) = —1. This contradicts 6(g) =0. O

Lemma 7.4. Let F be a set of symmetric signatures and suppose F contains a non-degenerate signature f € &%, of arity n > 3. Then
F is &-transformable iff all non-degenerate signatures in F are contained in &%, U {=;}.

Proof. Suppose F is &?-transformable. Let Z = % [: jl] Then by Lemma 5.1, F C ZZ2 or there exists an H € SO, (C) such

that 7 € HZ. In first case, we show that all the non-degenerate symmetric signatures in Z.27 are contained in &%, U {=}.
Then we show that the second case is impossible.

1. Suppose F C ZZ. Let g € Z% be a symmetric non-degenerate signature of arity m. If (Z=1)®2g = 1[0, 1,0] is the
binary disequality signature up to a nonzero scalar A € C, then

0 1

_ ®R2[ 1) _ 0
i (1) (3)

0 1

is the binary equality signature =;. Otherwise, we can express g as

s=ern ([ o [1]7)
—e([i" 2]

for some c, 8 # 0 with m > 2. Thus, g € &) = o by Lemma 6.13. We conclude that the symmetric non-degenerate
subset of Z.Z7 is contained in &%, U {=3}. Therefore, the non-degenerate subset of F is contained in &, U {=3}.
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2. Suppose F C HZ2. By assumption, F contains f € &, = g7 of arity n > 3. After a suitable normalization by a scalar,
we have

®n ®n
=[11" [ ]
for some g 0 by Lemma 6.13. Let g = (H~1)®" f so that

g=0)" ([ +0[1]7).

In particular, f and g have the same arity n > 3. By Lemma 6.7, 6(g) = 9([%] R [_11.]) = —1 since H~! € 0,(C). However,

®n
g € &2 must be of the form [C]

®n
0 + [O] for some nonzero c,d € C, which has 6(g) = 0. This is a contradiction.

d

It is easy to see that all of above is reversible. Therefore sufficiency follows. O

Now we are ready to show how to decide if a finite set of signatures is &?-transformable. To avoid trivialities, we assume
JF contains a non-degenerate signature of arity at least 3. If every non-degenerate signature in F has arity at most two,
then Holant(F) is tractable.

Theorem 7.5. There is a polynomial-time algorithm to decide, for any finite input set F of symmetric signatures containing a non-
degenerate signature f of arity n > 3, whether F is &2-transformable.

Proof. By Lemma 7.2, we can decide if f is in % for some k € {1,2}. If not, then by Lemma 2.12, F is not
P -transformable. Otherwise, f € &7, for some unique k. Depending on k, we apply Lemma 7.3 or Lemma 7.4 to check
if F is &-transformable. O
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