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Holographic algorithms introduced by Valiant have two ingredients: matchgates, which
are gadgets realizing local constraint functions by weighted planar perfect matchings, and
holographic reductions, which show equivalences among problems with different descrip-
tions via basis transformations. In this paper, we replace matchgates in the paradigm
above by the affine type and the product type constraint functions, which are known to
be tractable in general (not necessarily planar) graphs. We present polynomial-time al-
gorithms to decide if a given counting problem has a holographic reduction to another
problem defined by the affine or product-type functions. We also give polynomial-time al-
gorithms to the same problems for symmetric functions, where the complexity is measured
in terms of the (exponentially more) succinct representations. The latter result implies that
the symmetric Boolean Holant dichotomy (Cai, Guo, and Williams, SICOMP 2016) is effi-
ciently decidable. Our proof techniques are mainly algebraic.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Recently a number of complexity dichotomy theorems have been obtained for counting problems. Typically, such di-
chotomy theorems assert that a vast majority of problems expressible within certain frameworks are #P-hard, however 
an intricate subset manages to escape this fate. These exceptions exhibit some rich mathematical structure, leading to 
polynomial-time algorithms. Holographic reductions and algorithms, introduced by Valiant [45], play key roles in many re-
cent dichotomy theorems [14,25,20,15,35,22,12,33]. Indeed, many interesting tractable cases are solvable using holographic 
reductions. This fascinating fact urges us to explore the full reach of holographic algorithms.

Valiant’s holographic algorithms [45,44] have two main ingredients. The first is to encode computation in planar graphs 
via gadget construction, called matchgates [43,42,9,17,10]. The result of the computation is then obtained by counting the 
number of perfect matchings in a related planar graph, which can be done in polynomial time by Kasteleyn’s (a.k.a. the FKT) 
algorithm [36,41,37]. The second one is the notion of holographic transformations/reductions, which show equivalences of 
problems with different descriptions via basis transformations. Thus, in order to apply the holographic algorithm, one must 
find a suitable holographic transformation along with matchgates realizing the desired constraint functions. This procedure 
has been made algorithmic [9,17].

✩ A preliminary version has appeared in ICALP 2014 [11].
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In this paper, we replace matchgates in the paradigm above by the affine type or the product type constraint functions, 
both of which are known to be tractable over general (i.e. not necessarily planar) graphs [24]. We present polynomial-time 
algorithms to decide if a given counting problem has a holographic reduction to another problem defined by affine or 
product-type functions. Our algorithm also finds a holographic reduction when one exists. Although, conceptually, we do 
not add new tractable cases, the task of finding these transformations is often non-trivial. For example, generalized Fibonacci 
gates [23] are the same as the product-type via transformations, but at first glance, the former look much more complicated 
than the latter.

To formally state the results, we briefly introduce some notation. The counting problems we consider are those express-
ible as a Holant problem [23,21,19,24]. A Holant problem is defined by a set F of constraint functions, which we call 
signatures, and is denoted by Holant(F). An instance of Holant(F) is a tuple � = (G, F , π), called a signature grid, where 
G = (V , E) is a graph and π labels each vertex v ∈ V and its incident edges with some f v ∈F and its input variables. Here 
f v maps {0, 1}deg(v) to C, where deg(v) is the degree of v . We consider all possible 0–1 edge assignments. An assignment 
σ to the edges E gives an evaluation 

∏
v∈V f v(σ |E(v)), where E(v) denotes the incident edges of v and σ |E(v) denotes the 

restriction of σ to E(v). The counting problem on the instance � is to compute

Holant� =
∑

σ :E→{0,1}

∏
v∈V

f v
(
σ |E(v)

)
.

For example, consider the problem of counting Perfect Matching on G . This problem corresponds to attaching the Exact-

One function at every vertex of G . The Exact-One function is an example of a symmetric signature, which are functions 
that only depend on the Hamming weight of the input. We denote a symmetric signature by f = [ f0, f1, . . . , fn] where fw
is the value of f on inputs of Hamming weight w . For example, [0, 1, 0, 0] is the Exact-One function on three bits. The 
output is 1 if and only if the input is 001, 010, or 100, and the output is 0 otherwise.

Holant problems contain both counting constraint satisfaction problems and counting graph homomorphisms as special 
cases. All three classes of problems have received considerable attention, which has resulted in a number of dichotomy the-
orems (see [39,34,29,2,28,4,27,1,5,31,32,8,13,14,6,30,3,7,24]). Despite the success with #CSP and graph homomorphisms, the 
case with Holant problems is more difficult. Recently, a dichotomy theorem for Holant problems with symmetric signatures 
was obtained [12], but the general (i.e. not necessarily symmetric) case has a richer and more intricate structure. The same 
dichotomy for general signatures remains open.

Our first main result is an efficient procedure to decide whether a given Holant problem can be solved by affine or 
product-type signatures via holographic transformations. In past classification efforts, we have been in the same situation 
several times, where one concrete problem determines the complexity of a wide range of problems. However, the brute 
force way to check whether this concrete problem already belongs to known tractable classes is time-consuming. We hope 
that the efficient decision procedure given here mitigates this issue, and would help the pursuit towards a general Holant 
dichotomy.

Theorem 1.1. There is a polynomial-time algorithm to decide, given a finite set of signatures F , whether Holant(F) admits a holo-
graphic algorithm based on affine or product-type signatures.

The holographic algorithms for Holant(F) are all polynomial time in the size of the problem input �. The polynomial 
time decision algorithm of Theorem 1.1 is on another level; it decides based on any specific set of signatures F whether 
the counting problem Holant(F) defined by F has such a holographic algorithm.

Symmetric signatures are an important special case. Because symmetric signatures can be presented exponentially more 
succinctly, we would like the decision algorithm to be efficient when measured in terms of this succinct description. An al-
gorithm for this case needs to be exponentially faster than the one in Theorem 1.1. In Theorem 1.2, we present a polynomial 
time algorithm for the case of symmetric signatures. The increased efficiency is based on several signature invariants under 
orthogonal transformations.

Theorem 1.2. There is a polynomial-time algorithm to decide, given a finite set of symmetric signatures F expressed in the succinct 
notation, whether Holant(F) admits a holographic algorithm based on affine or product-type signatures.

A dichotomy theorem classifies every set of signatures as defining either a tractable problem or an intractable problem 
(e.g. #P-hard). Yet it would be more useful if given a specific set of signatures, one could decide to which case it belongs. 
This is the decidability problem of a dichotomy theorem. In [12], a dichotomy regarding symmetric complex-weighted sig-
natures for Holant problems was proved. However, the decidability problem was left open. Of the five tractable cases in 
the dichotomy theorem, three of them are easy, but the remaining two cases are more challenging, which are (1) holo-
graphic algorithms using affine signatures and (2) holographic algorithms using product-type signatures. As a consequence 
of Theorem 1.2, this decidability is now proved.

Corollary 1.3. The dichotomy theorem for symmetric complex-weighted Holant problems in [12] is decidable in polynomial time.
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Previous work on holographic algorithms focused almost exclusively on those with matchgates [45,44,16,25,17,18,33]. 
(This has led to a misconception in the community that holographic algorithms are always based on matchgates.) The first 
example of a holographic algorithm using something other than matchgates came in [23]. These holographic algorithms 
use generalized Fibonacci gates. A symmetric signature f = [ f0, f1, . . . , fn] is a generalized Fibonacci gate of type λ ∈ C if 
fk+2 = λ fk+1 + fk holds for all k ∈ {0, 1, . . . , n −2}. The standard Fibonacci gates are of type λ = 1, in which case, the entries 
of the signature satisfy the recurrence relation of the Fibonacci numbers. The generalized Fibonacci gates were immediately 
put to use in a dichotomy theorem [21]. As it turned out, for nearly all values of λ, the generalized Fibonacci gates are 
equivalent to product-type signatures via holographic transformations. Our results provide a systematic way to determine 
such equivalences and we hope these results help in determining the full reach of holographic algorithms.

The constraint functions we call signatures are essentially tensors. A group of transformations acting upon these tensors 
yields an orbit. Previously, in [12], we have shown that it is sufficient to restrict holographic transformations to those from 
or related to the orthogonal group (see Lemma 2.7 and Lemma 2.10). Thus, our question can be rephrased as the following: 
given a tensor, determine whether its orbit under the orthogonal group action (or related transformations) intersects the set 
of affine or product-type tensors. As showed by Theorems 1.1 and 1.2, this can be done efficiently, even for a set rather than 
a single tensor. In contrast, this orbit intersection problem with the general linear group acting on two arbitrary tensors is 
NP-hard [38]. In our setting, the actions are much more restricted and we consider an arbitrary tensor against one of the 
two fixed sets. Similar orbit problems are central in geometric complexity theory [40].

Our techniques are mainly algebraic. A particularly useful insight is that an orthogonal transformation in the standard 
basis is equivalent to a diagonal transformation in the 

[
1 1
i −i

]
basis. Since diagonal transformations are much easier to 

understand, this gives us some leverage to understand orbits under orthogonal transformations. Also, the groups of transfor-
mations that stabilize the affine and product-type signatures play important roles in our proofs. Comparing to similar results 
for matchgates [17], the proofs are very different in that each proof relies heavily on distinct properties of matchgates or 
the affine and product-type signatures.

In Section 2, we review basic notation and state previous results, many of which come from [12]. In Section 3, we present 
some example problems that are tractable by holographic algorithms using affine or product-type signatures. The proof of 
Theorem 1.1 spans two sections. The affine case is handled in Section 4 and the product-type case is handled in Section 5. 
The proof of Theorem 1.2 also spans two sections. Once again, the affine case is handled in Section 6 and the product-type 
case is handled in Section 7.

A preliminary version of this paper has appeared in ICALP 2014 [11].

2. Preliminaries

2.1. Problems and definitions

The framework of Holant problems is defined for functions mapping [q]k to F for a finite q and some field F. In this 
paper, we investigate some of the tractable complex-weighted Boolean Holant problems, that is, all functions are of the type 
[2]k → C. Strictly speaking, for consideration of models of computation, functions take complex algebraic numbers.

A signature grid � = (G, F , π) consists of a graph G = (V , E) and a set of constraint functions (also called signatures) F , 
where π labels each vertex v ∈ V and its incident edges with some f v ∈ F and its input variables. Note that in particular, 
π specifies an ordering of edges/variables on each vertex. The Holant problem on instance � is to evaluate Holant� =∑

σ

∏
v∈V f v(σ |E(v)), a sum over all edge assignments σ : E → {0, 1}.

A function f v can be represented by listing its values in lexicographical order as in a truth table, which is a vector in 
C2deg(v)

. Equivalently, f v can be treated as a tensor in (C2)⊗ deg(v) . We also use fx to denote the value f (x), where x is a 
binary string. A function f ∈F is also called a signature. A symmetric signature f on k Boolean variables can be expressed 
as [ f0, f1, . . . , fk], where fw is the value of f on inputs of Hamming weight w .

A Holant problem is parametrized by a set of signatures.

Definition 2.1. Given a set of signatures F , we define the counting problem Holant(F) as:

Input: A signature grid � = (G, F , π);
Output: Holant� .

A signature f of arity n is degenerate if there exist unary signatures u j ∈ C2 (1 ≤ j ≤ n) such that f = u1 ⊗ · · · ⊗ un . In 
a signature grid, it is equivalent to replace a degenerate one by corresponding unary signatures. A symmetric degenerate 
signature has the form u⊗n , where the superscript denotes the tensor power. Replacing a signature f ∈ F by a constant 
multiple cf , where c �= 0, does not change the complexity of Holant(F). It introduces a global factor to Holant� .

We say a signature set F is tractable (resp. #P-hard) if the corresponding counting problem Holant(F) can be solved in 
polynomial time (resp. #P-hard). Similarly for a signature f , we say f is tractable (resp. #P-hard) if { f } is.
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2.2. Holographic reduction

To introduce the idea of holographic reductions, it is convenient to consider bipartite graphs. We can always transform 
a general graph into a bipartite graph while preserving the Holant value, as follows. For each edge in the graph, we replace 
it by a path of length two. (This operation is called the 2-stretch of the graph and yields the edge-vertex incidence graph.) 
Each new vertex is assigned the binary Equality signature (=2) = [1, 0, 1].

We use Holant (F | G) to denote the Holant problem on bipartite graphs H = (U , V , E), where each vertex in U or V is 
assigned a signature in F or G , respectively. An input instance for this bipartite Holant problem is a bipartite signature grid 
and is denoted by � = (H, F | G, π). Signatures in F are considered as row vectors (or covariant tensors); signatures in G
are considered as column vectors (or contravariant tensors) [26].

For a 2-by-2 matrix T and a signature set F , define TF = {g | ∃ f ∈F of arity n, g = T⊗n f }, similarly for F T . Whenever 
we write T⊗n f or TF , we view the signatures as column vectors; similarly for f T⊗n or F T as row vectors.

Let T be an element of GL2(C), the group of invertible 2-by-2 complex matrices. The holographic transformation defined 
by T is the following operation: given a signature grid � = (H, F | G, π), for the same graph H , we get a new grid �′ =
(H, F T | T−1G, π ′) by replacing f ∈F (or g ∈ G) with T⊗n f (or 

(
T−1

)⊗n
g).

Theorem 2.2 (Valiant’s Holant Theorem [45]). If there is a holographic transformation mapping signature grid � to �′ , then Holant� =
Holant�′ .

Therefore, an invertible holographic transformation does not change the complexity of the Holant problem in the bi-
partite setting. Furthermore, there is a particular kind of holographic transformation, the orthogonal transformation, that 
preserves binary equality and thus can be used freely in the standard setting. Let O2(C) be the group of 2-by-2 complex 
matrices that are orthogonal. Recall that a matrix T is orthogonal if T T T = I .

Theorem 2.3 (Theorem 2.6 in [19]). Suppose T ∈ O2(C) and let � = (H, F , π) be a signature grid. Under a holographic transforma-
tion by T , we get a new grid �′ = (H, TF , π ′) and Holant� = Holant�′ .

We also use SO2(C) to denote the group of special orthogonal matrices, i.e. the subgroup of O2(C) with determinant 1.

2.3. Tractable signature sets without a holographic transformation

The following two signature sets are tractable without a holographic transformation [24].

Definition 2.4. A k-ary function f (x1, . . . , xk) is affine if it has the form

λ · χAx=0 · i
∑n

j=1〈v j ,x〉,

where λ �= 0 is in C, x = (x1, x2, . . . , xk, 1)T , A is a matrix over F2, v j is a vector over F2 for each j = 1, . . . , n, and χ is 
a 0–1 indicator function such that χAx=0 is 1 iff Ax = 0. Note that the dot product 〈v j, x〉 is calculated over F2, while the 
summation 

∑n
j=1 on the exponent of i = √−1 is evaluated as a sum mod 4 of 0–1 terms. We use A to denote the set of 

all affine functions.

Notice that there is no restriction on the number of rows in the matrix A. It is permissible that A is the zero matrix 
so that χAx=0 = 1 holds for all x. An equivalent way to express the exponent of i is as a quadratic polynomial (evaluated 
mod 4) where all cross terms have an even coefficient. This equivalent expression is often easier to use.

Definition 2.5. A function is of product type if it can be expressed as a function product of unary functions, binary equality 
functions ([1, 0, 1]), and binary disequality functions ([0, 1, 0]). We use P to denote the set of product-type functions.

The above two types of functions, when restricted to be symmetric, have been characterized explicitly. It has been shown 
(cf. Lemma 2.2 in [35]) that if f is a symmetric signature in P , then f is either degenerate, binary disequality, or of the 
form [a, 0, . . . , 0, b] for some a, b ∈ C. It is also known that (cf. [19]) the set of non-degenerate symmetric signatures in A
is precisely the nonzero signatures (λ �= 0) in F1 ∪F2 ∪F3

1 with arity at least 2, where F1, F2, and F3 are three families 
of signatures defined as

F1 =
{
λ

([
1
0

]⊗k + ir
[
0
1

]⊗k
)

| λ ∈C,k = 1,2, . . . , r = 0,1,2,3

}
,

1 To be consistent with previous papers, we still use F1, F2, and F3 to denote the subclasses of A . They are not to be confused with A1, A2, and 
A3 that will be introduced in Definition 2.8.
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Table 1
Notations for some matrices 
and numbers.

Name Value

α
√
i = e

π i
4 = 1+i√

2

D
[
1 0

0 i

]
H2

1√
2

[
1 1

1 −1

]
X

[
0 1

1 0

]
Z 1√

2

[
1 1

i −i

]

F2 =
{
λ

([
1
1

]⊗k + ir
[

1
−1

]⊗k
)

| λ ∈C,k = 1,2, . . . , r = 0,1,2,3

}
, and

F3 =
{
λ

([
1
i

]⊗k + ir
[

1
−i

]⊗k
)

| λ ∈C,k = 1,2, . . . , r = 0,1,2,3

}
.

Let F123 = F1 ∪ F2 ∪ F3 be the union of these three sets of signatures. We explicitly list all the signatures in F123 (as 
row vectors) up to an arbitrary constant multiple from C:

1. [1,0, . . . ,0,±1]; (F1, r = 0,2)
2. [1,0, . . . ,0,±i]; (F1, r = 1,3)
3. [1,0,1,0, . . . ,0 or 1]; (F2, r = 0)
4. [1,−i,1,−i, . . . , (−i) or 1]; (F2, r = 1)
5. [0,1,0,1, . . . ,0 or 1]; (F2, r = 2)
6. [1, i,1, i, . . . , i or 1]; (F2, r = 3)
7. [1,0,−1,0,1,0,−1,0, . . . ,0 or 1 or (−1)]; (F3, r = 0)
8. [1,1,−1,−1,1,1,−1,−1, . . . ,1 or (−1)]; (F3, r = 1)
9. [0,1,0,−1,0,1,0,−1, . . . ,0 or 1 or (−1)]; (F3, r = 2)

10. [1,−1,−1,1,1,−1,−1,1, . . . ,1 or (−1)]. (F3, r = 3)

2.4. A -transformable and P-transformable signatures

The tractable sets A and P are still tractable under a suitable holographic transformation. This is captured by the 
following definition.

Definition 2.6. A set F of signatures is A -transformable (resp. P-transformable) if there exists a holographic transforma-
tion T such that F ⊆ TA (resp. F ⊆ TP) and [1, 0, 1]T⊗2 ∈ A (resp. [1, 0, 1]T⊗2 ∈ P).

To refine the above definition, we consider the stabilizer group of A ,

Stab(A ) = {T ∈ GL2(C) | TA = A }.
Technically what we defined is the left stabilizer group of A , but it turns out that the left and right stabilizer groups of A
coincide [12].

Some matrices and numbers are used extensively throughout the paper. We summarize them in Table 1. Note that 
Z = DH2 and that D2 Z = 1√

2

[
1 1
−i i

]
= Z X , hence X = Z−1D2 Z . It is easy to verify that D, H2, X, Z ∈ Stab(A ). In fact, 

Stab(A ) is precisely the set of nonzero scalar multiples of the group generated by D and H2 [12]. Note that the zero matrix 
is not a stabilizer since A does not include the zero function.

The next lemma is the first step toward understanding A -transformable signatures. Recall that O2(C) is the group of 
2-by-2 orthogonal complex matrices. The lemma shows that to determine A -transformability, it is necessary and sufficient 
to consider only the orthogonal transformations and related ones.

Lemma 2.7 ([12]). Let F be a set of signatures. Then F is A -transformable iff there exists an H ∈ O2(C) such that F ⊆ HA or 
F ⊆ H

[
1 0
0 α

]
A .

Non-degenerate symmetric A -transformable signatures are captured by three sets A1, A2, and A3, which will be defined 
next (not to be confused with F1, F2, and F3).
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Definition 2.8. A symmetric signature f of arity n is in, respectively, A1, or A2, or A3 if there exists an H ∈ O2(C) and a 
nonzero constant c ∈C such that f has the following form, respectively:

• cH⊗n

([
1
1

]⊗n + β
[

1
−1

]⊗n
)
, where β = αtn+2r , r ∈ {0, 1, 2, 3}, and t ∈ {0, 1};

• or cH⊗n

([
1
i

]⊗n +
[

1
−i

]⊗n
)
;

• or cH⊗n

([
1
α

]⊗n + ir
[

1
−α

]⊗n
)
, where r ∈ {0, 1, 2, 3}.

For i ∈ {1, 2, 3}, when such an orthogonal H exists, we say that f ∈ Ai with transformation H . If f ∈ Ai with I2, the 
identity matrix, then we say f is in the canonical form of Ai . Note that there is no direct correspondences between (Ai)

and (Fi).

Lemma 2.9 ([12]). Let f be a non-degenerate symmetric signature. Then f is A -transformable iff f ∈ A1 ∪ A2 ∪ A3 .

Analogous results hold for P-transformable signatures. Let the stabilizer group of P be

Stab(P) = {T ∈ GL2(C) | TP = P}.
The group Stab(P) is generated by (up to nonzero scalars) matrices of the form 

[
1 0
0 ν

]
for any ν ∈C∗ and X =

[
0 1
1 0

]
[12].

Lemma 2.10 ([12]). Let F be a set of signatures. Then F is P-transformable iff there exists an H ∈ O2(C) such that F ⊆ HP or 
F ⊆ H

[
1 1
i −i

]
P .

Definition 2.11. A symmetric signature f of arity n is in P1 if there exist an H ∈ O2(C) and a nonzero c ∈ C such that 

f = cH⊗n

([
1
1

]⊗n + β
[

1
−1

]⊗n
)
, where β �= 0.

It is easy to check that A1 ⊂ P1. We define P2 = A2. For i ∈ {1, 2}, when H ∈ O2(C) exists (in Definition 2.11 and 2.8, 
respectively), we say that f ∈ Pi with transformation H . If f ∈ Pi with I2, then we say f is in the canonical form of Pi .

Lemma 2.12 ([12]). Let f be a non-degenerate symmetric signature. Then f is P-transformable iff f ∈ P1 ∪ P2 .

3. Some example problems

In this section, we illustrate a few problems that are tractable via holographic reductions to affine or product-type 
functions. Although the algorithms to solve them follow from a known paradigm, it is often non-trivial to find the correct 
holographic transformation. Our main result provides a systematic way to search for these transformations.

3.1. A Fibonacci-like problem

Fibonacci gates were introduced in [23]. They define tractable counting problems, and holographic algorithms based on 
Fibonacci gates work over general (i.e. not necessarily planar) graphs. However, Fibonacci gates are symmetric by definition. 
An example of a Fibonacci gate is the signature f = [ f0, f1, f2, f3] = [1, 0, 1, 1]. Its entries satisfy the recurrence relation of 
the Fibonacci numbers, i.e. f2 = f1 + f0 and f3 = f2 + f1. For Holant( f ), the input is a 3-regular graph, and the problem is 
to count spanning subgraphs such that no vertex has degree 1.

A symmetric signature g = [g0, g1, . . . , gn] is a generalized Fibonacci gate of type λ ∈ C if gk+2 = λgk+1 + gk holds 
for all k ∈ {0, 1, . . . , n − 2}. The standard Fibonacci gates are of type λ = 1. An example of a generalized Fibonacci gate 
is g = [3, 1, 3, 1], which has type λ = 0. In contrast to Holant( f ), the problem Holant(g) permits all possible spanning 
subgraphs. The output is the sum of the weights of each spanning subgraph. The weight of a spanning subgraph S is 3k(S) , 
where k(S) is the number of vertices of even degree in S . Since g = [3, 1, 3, 1] is Fibonacci, the problem Holant(g) is 
computable in polynomial time [19,12]. One new family of holographic algorithms in this paper extends Fibonacci gates to 
asymmetric signatures.

In full notation, the ternary signature g is (3, 1, 1, 3, 1, 3, 3, 1)T . Consider the asymmetric signature h = (3, 1, −1, −3, −1,
−3, 3, 1)T . This signature h differs from g by a negative sign in four entries. Although h is not a generalized Fibonacci gate 
or even a symmetric signature, it still defines a tractable Holant problem. Under a holographic transformation by Z−1, where 
Z = 1√

[
1 1

]
,

2 i −i
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Holant(h) = Holant (=2 | h) = Holant
(
=2(Z

−1)⊗2 | Z⊗3h
)

= Holant
(
[1,0,−1] | ĥ

)
,

where ĥ = 2i
√
2(0, 1, 0, 0, 0, 0, 2i, 0). Both [1, 0, −1](x1, x2) = Equality(x1, x2) · [1, −1](x1) and ĥ(x1, x2, x3) = 2i

√
2 ·

Equality(x1, x2) · Disequality(x2, x3) · [1, 2i](x1) are product-type signatures.
It turns out that for all values of λ �= ±2i, the generalized Fibonacci gates of type λ are P-transformable. The value 

of λ indicates under which holographic transformation the signatures become product type. For λ = ±2i, the generalized 
Fibonacci gates of type λ are vanishing, which means the output is always zero for every possible input (see [12] for more 
on vanishing signatures).

3.2. Some cycle cover problems and orientation problems

To express some problems involving asymmetric signatures of arity 4, it is convenient to arrange the 16 outputs into 
a 4-by-4 matrix. With a slight abuse of notation, we also write a function f (x1, x2, x3, x4) in its matrix form, namely 

f =
⎡⎣ f0000 f0010 f0001 f0011

f0100 f0110 f0101 f0111
f1000 f1010 f1001 f1011
f1100 f1110 f1101 f1111

⎤⎦, where the row is indexed by two bits (x1, x2) and the column is indexed by two bits (x4, x3) in 

reverse order. We call this the signature matrix.
Consider the problem of counting the number of cycle covers in a given graph. This problem is #P-hard even when 

restricted to planar 4-regular graphs [33]. As a Holant problem, its expression is Holant( f ), where f (x1, x2, x3, x4) is the 

symmetric signature [0, 0, 1, 0, 0]. The signature matrix of f is 

⎡⎣ 0 0 0 1
0 1 1 0
0 1 1 0
1 0 0 0

⎤⎦. The six entries in the support of f , which are all 

of Hamming weight two (indicating that a cycle cover passes through each vertex exactly twice), can be divided into two 
parts, namely {0011, 0110, 1100, 1001} and {0101, 1010}. In the planar setting, this corresponds to a pairing of consecutive 
or non-consecutive incident edges. Both sets are invariant under cyclic permutations.

Suppose we removed the inputs 0101 and 1010 from the support of f , which are the two 1’s on the anti-diagonal in 

the middle of M f . Call the resulting signature g , which has signature matrix 

⎡⎣ 0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤⎦.2 These new 0’s impose a constraint 

on the types of cycle covers allowed. We call a cycle cover valid if it satisfies this new constraint. A valid cycle cover 
must not pass through a vertex in a “crossing” way. Counting the number of such cycle covers over 4-regular graphs can 
be done in polynomial time, even without the planarity restriction. The signature g(x1, x2, x3, x4) = Dis-Equality(x1, x3) ·
Dis-Equality(x2, x4) is of the product type P , therefore Holant(g) is tractable.

Under a holographic transformation by Z = 1√
2

[
1 1
i −i

]
, we obtain the problem

Holant(g) = Holant (=2 | g) = Holant
(
=2 Z

⊗2 | (Z−1)⊗4g
)

= Holant
(�=2 | ĝ) ,

where ĝ := (Z−1)⊗4g =
⎡⎣−1 0 0 0

0 0 1 0
0 1 0 0
0 0 0 −1

⎤⎦. This problem has the following interpretation. It is a Holant problem on bipartite 

graphs. On the right side of the bipartite graph, the vertices must all have degree 4 and are assigned the signature ĝ . On 
the left side, the vertices must all have degree 2 and are assigned the binary disequality constraint �=2. The disequality 
constraints suggest an orientation between their two neighboring vertices of degree 4 (see Fig. 1). By convention, we view 
the edge as having its tail assigned 0 and its head assigned 1. Then every valid assignment in this bipartite graph naturally 
corresponds to an orientation in the original 4-regular graph.

If the four inputs 0011, 0110, 1100, and 1001 were in the support of ĝ , then the Holant sum would be over all possible 
orientations with an even number of incoming edges at each vertex. As it is, the sum is over all possible orientations 
with an even number of incoming edges at each vertex that also forbid those four types of orientations at each vertex, as 
specified by ĝ . The following orientations are admissible by ĝ: The orientation of the edges are such that at each vertex all 
edges are oriented out (source vertex), or all edges are oriented in (sink vertex), or the edges are cyclically oriented in, out, 
in, out (saddle vertex).

Thus, the output of Holant
(�=2 | ĝ) is a weighted sum over of these admissible orientations. Each admissible orientation 

O contributes a weight (−1)s(O ) to the sum, where s(O ) is the number of source and sink vertices in an orientation O . We 
can express this as 

∑
O∈O(G)(−1)s(O ) , where O(G) is the set of admissible orientations for G , which are those orientations 

that only contain source, sink, and saddle vertices. In words, the value is the number of admissible orientations with an 
even number of sources and sinks minus the number of admissible orientations with an odd number of sources and sinks. 

2 Recall that in general we require the input signature grid to specify the ordering of the edges (namely variables) on each vertex. This is not necessary 
for symmetric signatures, but when asymmetric signatures are involved, specifying the ordering is essential.
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Fig. 1. A fragment of an instance to Holant (�=2 | ĝ), which must be a (2, 4)-regular bipartite graph. Note the saddle orientation of the edges incident to the 
two vertices with all four edges depicted.

This orientation problem may seem quite different from the restricted cycle cover problem we started with, but they are, in 
fact, the same problem. Since Holant(g) is tractable, so is Holant

(�=2 | ĝ).
Now, consider a slight generalization of this orientation problem.

Problem: #λ-SourceSinkSaddleOrientations

Input: An undirected 4-regular graph G (equipped with a local edge-ordering on every vertex).
Output:

∑
O∈O(G) λ

s(O ) .

For λ = −1, we recover the orientation problem from above. For λ = 1, the problem is also tractable since, when viewed 
as a bipartite Holant problem on the (2, 4)-regular bipartite vertex-edge incidence graph, the disequality constraint on the 
vertices of degree 2 and the constraint on the vertices of degree 4 are both product-type functions. As a function of x1, x2, 
x3, x4, the constraint on the degree 4 vertices is Equality(x1, x3) · Equality(x2, x4). Let sk,m(G) be the number of O  ∈ O(G)

such that s(O ) ≡ k (mod m). Then the output of this problem with λ = 1 is s0,2(G) + s1,2(G) and the output of this problem 
with λ = −1 is s0,2(G) − s1,2(G). Therefore, we can compute both s0,2(G) and s1,2(G). However, more is possible.

For λ = i, the problem is tractable using affine constraints. In the (2, 4)-regular bipartite vertex-edge incidence graph, 
the disequality constraint assigned to the vertices of degree 2 is affine. On the vertices of degree 4, the assigned constraint 
function is an affine signature since the affine support is defined by the affine linear system x1 = x3 and x2 = x4 while the 
quadratic polynomial in the exponent of i is 2x1x2+3x1+3x2+1. (Recall that in the definition of A , Definition 2.4, we need 
to evaluate the quadratic polynomial mod 4 instead of 2, and x2 = x for any x ∈ {0, 1}.) Although the output is a complex 
number, the real and imaginary parts encode separate information. The real part is s0,4(G) − s2,4(G) and the imaginary 
part is s1,4(G) − s3,4(G). Since s0,2(G) = s0,4(G) + s2,4(G) and s1,2(G) = s1,4(G) + s3,4(G), we can actually compute all four 
quantities s0,4(G), s1,4(G), s2,4(G), and s3,4(G) in polynomial time.

3.3. An enigmatic problem

Some problems may be a challenge for the human intelligence to grasp. But in a platonic view of computational com-
plexity, they are no less valid problems.

For example, consider the problem Holant((1 + c2)−1[1, 0, −i] | f ) where f has the signature matrix⎡⎢⎢⎢⎢⎢⎣
0 (4+4i)

(
28+20

√
2+
√
2
(
799+565

√
2
))
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(
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√
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√
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2
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√
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2
)
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√
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2
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√
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2
)

8i
(
18+13

√
2+4

√
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2
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2
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2
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√
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)
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√
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√
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√
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2
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√
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2
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−16
(
13+9

√
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√
82+58

√
2
)

⎤⎥⎥⎥⎥⎥⎦
and c = 1 + √

2 +
√
2(1+ √

2). Most likely no one has ever considered this problem before. Yet this nameless problem 

is A -transformable under T =
[
1 0
0 α

][
1 c

−c 1

]
, and hence it is really the same problem as a more comprehensible problem 

defined by f̂ = (T−1)⊗4 f . Namely,

Holant((1+ c2)−1[1,0,−i] | f ) = Holant((1+ c2)−1[1,0,−i]T⊗2 | (T−1)⊗4 f ) = Holant([1,0,1] | f̂ ) = Holant( f̂ ),
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where f̂ =
⎡⎣ 1 −1 −1 −1

−1 −1 1 −1
−1 1 −1 −1
−1 −1 −1 1

⎤⎦. We can express f̂ as f̂ (x1, x2, x3, x4) = iQ (x) , where Q (x1, x2, x3, x4) = 2(x21 + x22 + x23 + x24 +

x1x2 + x2x3 + x3x4 + x4x1). Therefore, f̂ is affine, which means that Holant( f̂ ) as well as Holant((1 + c2)−1[1, 0, −i] | f ) are 
tractable. Furthermore, notice that f̂ only contains integers even though (1 + c2)−1[1, 0, −i] and f contain many complex 
numbers with irrational real and imaginary parts. Thus, Holant((1 + c2)−1[1, 0, −i] | f ) is not only tractable, but it always 
outputs an integer. Apparent anomalies like Holant((1 + c2)−1[1, 0, −i] | f ), however contrived they may seem to be to the 
human eye, behoove the creation of a systematic theory to understand and characterize the tractable cases.

4. General AAA -transformable signatures

In this section, we give the algorithm to check A -transformable signatures. Our general strategy is to bound the number 
of possible transformations by a polynomial in the length of the function, and then enumerate all of them. There are some 
cases where this number cannot be bounded, and those cases are handled separately.

Let f be a signature of arity n. It is given as a column vector in C2n with bit length N , which is on the order of 2n . We 
denote its entries by fx = f (x) indexed by x ∈ {0, 1}n . The entries are from a fixed degree algebraic extension of Q and we 
may assume basic bit operations in the field take unit time.

Notice that the number of general affine signatures of arity n is on the order of 2n2 . Hence a naive check of the mem-
bership of affine signatures would result in a super-polynomial running time in N . Instead, we present a polynomial-time 
algorithm.

Lemma 4.1. There is an algorithm to decide whether a given signature f of arity n belongs to A with running time polynomial in N, 
the bit length of f .

Proof. We may assume that f is not identically zero. Normalize f so that the first nonzero entry of f is 1. If there exists a 
nonzero entry of f after normalization that is not a power of i, then f /∈ A , so assume that all entries are now powers of i.

The next step is to decide if the support S �= ∅ of f forms an affine linear subspace. We try to build a basis for S
inductively. It may end successfully or find an inconsistency. We choose the index of the first nonzero entry b0 ∈ S as our 
first basis element. Assume we have a set of basis elements B = {b0, . . . , bk} ⊆ S . Consider the affine linear span Span(B). 
We check if Span(B) ⊆ S . If not, then S is not affine and f /∈ A , so suppose that this is the case. If Span(B) = S , then we 
are done. Lastly, if S − Span(B) �= ∅, then pick the next element bk+1 ∈ S − Span(B). Let B′ = B ∪ {bk+1} and repeat with 
the new basis set B′ .

Now assume that S is an affine subspace, that we have a linear system defining it, and that every nonzero entry of f is 
a power of i. If S has dimension 0, then S is a single point, and f ∈ A . Otherwise, dim(S) = r ≥ 1, and (after reordering) 
x1, . . . , xr are free variables of the linear system defining S . For each x ∈ {0, 1}r , let y ∈ {0, 1}n−r be the unique extension 
such that xy ∈ S . For each x, define px ∈ Z4 such that fxy = ipx �= 0. We will use the alternative expression for affine 
functions: namely, we want to decide if there exists a quadratic polynomial

Q (x) =
r∑

j=1

c jx
2
j + 2

∑
1≤k<
≤r

ck
xkx
 + c,

where c, c j, ck
 ∈ Z4, for 1 ≤ j ≤ r and 1 ≤ k < 
 ≤ r, such that Q (x) ≡ px (mod 4) for all x ∈ {0, 1}r . Setting x = 0 ∈ {0, 1}r
determines c. Setting exactly one x j = 1 and the rest to 0 determines c j . Setting exactly two xk = x
 = 1 and the rest to 0 
determines ck
 . Then we verify if Q (x) is consistent with f , and f ∈ A iff it is so. �

For later use, we note the following corollary.

Corollary 4.2. There is an algorithm to decide whether a given signature f of arity n belongs to 
[
1 0
0 α

]
A with running time polynomial 

in N, the bit length of f .

Proof. For arity( f ) = n, just check if 
[
1 0
0 α−1

]⊗n
f ∈ A by Lemma 4.1. �

We can strengthen Lemma 2.7 by restricting to orthogonal transformations within SO2(C).

Lemma 4.3. Let F be a set of signatures. Then F is A -transformable iff there exists an H ∈ SO2(C) such that F ⊆ HA or F ⊆
H
[
1 0
]
A .
0 α



J.-Y. Cai et al. / Information and Computation 259 (2018) 102–129 111
Proof. Sufficiency is obvious by Lemma 2.7.

Assume that F is A -transformable. By Lemma 2.7, there exists an H ∈ O2(C) such that F ⊆ HA or F ⊆ H
[
1 0
0 α

]
A . 

If H ∈ SO2(C), we are done, so assume that H ∈ O2(C) \ SO2(C). We want to find an H ′ ∈ SO2(C) such that F ⊆ H ′A or 
F ⊆ H ′

[
1 0
0 α

]
A . Let H ′ = H

[
1 0
0 −1

]
∈ SO2(C). There are two cases to consider.

1. Suppose F ⊆ HA . Then since 
[
1 0
0 −1

]
∈ Stab(A ),

F ⊆ H
[
1 0
0 −1

]
A

= H ′A .

2. Suppose F ⊆ H
[
1 0
0 α

]
A . Then since 

[
1 0
0 −1

]
∈ Stab(A ) commutes with 

[
1 0
0 α

]
,

F ⊆ H
[
1 0
0 α

][
1 0
0 −1

]
A

= H
[
1 0
0 −1

][
1 0
0 α

]
A

= H ′ [ 1 0
0 α

]
A . �

We now observe some properties of a signature under transformations in SO2(C). Let f be a signature and H =
[

a b
−b a

]
∈

SO2(C) where a2 + b2 = 1. Notice that v0 = (1, i) and v1 = (1, −i) are row eigenvectors of H with eigenvalues a − bi and 
a + bi respectively. Let Z ′ =

[
1 i
1 −i

]
. Then Z ′H = T Z ′ , where T =

[
a−bi 0
0 a+bi

]
.

For an index or a bit-string u = (u1, . . . , un) ∈ {0, 1}n of length n, let

vu := vu1 ⊗ vu2 ⊗ . . . ⊗ vun ,

and let wt(u) be the Hamming weight of u. Then vu is a row eigenvector of the 2n-by-2n matrix H⊗n with eigenvalue

(a − bi)n−wt(u)(a + bi)wt(u) = (a − bi)n−2wt(u) = (a + bi)2wt(u)−n (1)

since (a + bi)(a − bi) = a2 + b2 = 1. In this paper, the following Z ′-transformation plays an important role. For any function 
f on {0, 1}n , we define

f̂ = Z ′ ⊗n f .

Then f̂u = 〈vu, f 〉, as a dot product.

Lemma 4.4. Suppose f and g are signatures of arity n and let H =
[

a b
−b a

]
and T =

[
a−bi 0
0 a+bi

]
. Then g = H⊗n f iff ĝ = T⊗n f̂ .

Proof. Since Z ′H = T Z ′ ,

g = H⊗n f ⇐⇒ Z ′ ⊗ng = Z ′ ⊗nH⊗n f

⇐⇒ Z ′ ⊗ng = T⊗n Z ′ ⊗n f

⇐⇒ ĝ = T⊗n f̂ . �
We note that vTu is also a column eigenvector of H⊗n with eigenvalue (a −bi)2wt(u)−n . Now we characterize the signatures 

that are invariant under transformations in SO2(C).

Lemma 4.5. Let f be a signature. Then f is invariant under transformations in SO2(C) (up to a nonzero constant) iff the support of f̂
contains at most one Hamming weight.

Proof. This clearly holds when f is identically zero, so assume that f contains a nonzero entry and has arity n. Such an f
is invariant under any H (up to a nonzero constant) iff f is a column eigenvector of H⊗n . Consider H =

[
a b

−b a

]
∈ SO2(C)

where a2 + b2 = 1. Then H⊗n has n + 1 distinct eigenvalues (a − bi)n−w(a + bi)w , for 0 ≤ w ≤ n. As a consequence, f is a 
column eigenvector of H⊗n iff f is a nonzero linear combination of vTu of the same Hamming weight wt(u). Hence f is 
invariant under H iff the support of f̂ contains at most one Hamming weight. �
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Using Lemma 4.5, we can efficiently decide if there exists an H ∈ SO2(C) such that H⊗n f ∈ A .

Lemma 4.6. There is an algorithm to decide in time polynomial in N, for any input signature f of arity n, whether there exists an 
H ∈ SO2(C) such that H⊗n f ∈ A . If so, either f ∈ A and f is invariant under any transformation in SO2(C), or there exist at most 
8n many H ∈ SO2(C) such that H⊗n f ∈ A , and they can all be computed in time polynomial in N.

Proof. Compute f̂ = Z ′ ⊗n f . If the support of f̂ contains at most one Hamming weight, then by Lemma 4.5, f is invariant 
under any H ∈ SO2(C). Therefore we only need to directly decide if f ∈ A , which we do by Lemma 4.1.

Now assume there are at least two nonzero entries of f̂ with distinct Hamming weights, say u1, u2 ∈ {0, 1}n . Then f̂u1

and f̂u2 are nonzero, and 0 < wt(u2) − wt(u1) ≤ n. Suppose there exists an H =
[

a b
−b a

]
∈ SO2(C) such that g = H⊗n f ∈ A . 

Then by Lemma 4.4, we have ĝ = T⊗n f̂ , where T =
[
a−bi 0
0 a+bi

]
is a diagonal transformation. Recall H2 and D from Table 1. 

Since Z ′ = √
2H2D ∈ Stab(A ), we have ĝ = Z ′ ⊗n g ∈ A . Also since T is diagonal, both ĝu1 and ĝu2 are nonzero. Therefore, 

there must exist an r ∈ {0, 1, 2, 3} such that

ir = ĝu2

ĝu1

= (a + bi)2wt(u2)−n f̂u2

(a + bi)2wt(u1)−n f̂u1

= (a + bi)2wt(u2)−2wt(u1)
f̂u2

f̂u1

, (2)

where we used (1). Recall that 0 < wt(u2) − wt(u1) ≤ n. View a + bi as a variable, and then there are at most 2n solutions 
to (2), given r and f̂u1 and f̂u2 . There are 4 possible values of r, resulting in at most 8n many solutions for a, b ∈ C such 
that a + bi satisfies (2) and a2 + b2 = 1. Each (a, b) solution corresponds to a distinct H ∈ SO2(C). �

We also want to efficiently decide if there exists an H ∈ SO2(C) such that H⊗n f ∈
[
1 0
0 α

]
A .

Lemma 4.7. There is an algorithm to decide, for any input signature f of arity n, whether there exists an H ∈ SO2(C) such that 
H⊗n f ∈

[
1 0
0 α

]
A with running time polynomial in N. If so, either f ∈

[
1 0
0 α

]
A and f is invariant under any transformation in 

SO2(C), or there exist O (nN16) many H ∈ SO2(C) such that H⊗n f ∈
[
1 0
0 α

]
A , and they can all be computed in polynomial time 

in N.

Proof. Compute f̂ = Z ′ ⊗n f . If the support of f̂ contains at most one Hamming weight, then by Lemma 4.5, f is invariant 
under any H ∈ SO2(C). Therefore we only need to directly decide if f ∈

[
1 0
0 α

]
A , which we do by Corollary 4.2.

Now assume there are at least two nonzero entries of f̂ that are of distinct Hamming weight. Let u1, u2 ∈ {0, 1}n be such 
that f̂u1 and f̂u2 are nonzero, and 0 < wt(u2) − wt(u1) ≤ n. We derive necessary conditions for the existence of H ∈ SO2(C)

such that H⊗n f ∈
[
1 0
0 α

]
A . Thus, assume such an H =

[
a b

−b a

]
exists, where a2 + b2 = 1.

Let g = H⊗n f . Then ĝ = Z ′ ⊗n g ∈
[
1 i
1 −i

][
1 0
0 α

]
A . By Lemma 4.4, we have ĝ = T⊗n f̂ , where T =

[
a−bi 0
0 a+bi

]
. Thus ĝu =

(a + bi)2wt(u)−n f̂u for any u ∈ {0, 1}n . Let t = wt(u1) − wt(u2). Then

ĝu1

ĝu2

= (a + bi)2wt(u1)−n f̂u1

(a + bi)2wt(u2)−n f̂u2

= (a + bi)2t
f̂u1

f̂u2

.

Hence

(a + bi)2t = f̂u2

f̂u1

· ĝu1

ĝu2

.

We claim that the value of each entry in ĝ as well as the number of possible values is bounded by a polynomial in N , 
and hence so are the ratios between them. Let h ∈ A be a signature such that ĝ =

[
1 i
1 −i

]⊗n [ 1 0
0 α

]⊗n
h. Every nonzero entry 

of h is a power of i, up to a constant factor λ. This constant factor cancels when taking ratios of entries, so we omit it. 
Let h′ =

[
1 0
0 α

]⊗n
h. Then every entry of h′ is a power of α or 0. Moreover, each entry of 

[
1 i
1 −i

]⊗n
is also a power of α. 

Therefore every entry of ĝ is an exponential sum of 2n terms, each a power of α or 0. Recall that α8 = 1 and hence there 
are 8 possible values of these powers. Let c0 denote the number of 0 and ci (for 1 ≤ i ≤ 8) denote the number of αi in an 
entry ĝu of ĝ . Then we have

c0 +
8∑

ci = 2n and
8∑

ciα
i = ĝu.
i=1 i=1
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Clearly the total number of possible values of entries in ĝu is at most the number of possible choices of (c0, . . . , c8). There 
are at most 

(2n+8
8

)= O (N8) choices of (c0, . . . , c8). Thus the number of all possible ratios is at most O (N16), and can all be 
enumerated in time polynomial in N .

For any possible value of the ratio ĝu1
ĝu2

, each possible value of f̂u2
f̂u1

gives at most 2n different transformations H . Therefore, 

the total number of transformations is bounded by O (nN16), and we can find them in time polynomial in N . �
Now we give an algorithm that efficiently decides if a set of signatures is A -transformable.

Theorem 4.8. There is a polynomial-time algorithm to decide, for any finite set of signatures F , whether F is A -transformable. If so, 
at least one transformation can be found.

Proof. By Lemma 4.3, we only need to decide if there exists an H ∈ SO2(C) such that F ⊆ HA or F ⊆ H
[
1 0
0 α

]
A . To 

every signature in F , we apply Lemma 4.6 or Lemma 4.7 to check each case, respectively. If no H exists for some signature, 
then F is not A -transformable. Otherwise, every signature is A -transformable for some H ∈ SO2(C). If every signature 
in F is invariant under transformations in SO2(C), then F is A -transformable. Otherwise, we pick the first f ∈ F that is 
not invariant under transformations in SO2(C). The number of possible transformations that work for f is bounded by a 
polynomial in the size of the presentation of f . We simply try all such transformations on all other signatures in F that are 
not invariant under transformations in SO2(C), respectively using Lemma 4.1 or Corollary 4.2 to check if the transformation 
works. �
5. General PPP-transformable signatures

In this section, we give the algorithm to check P-transformable signatures. Once again, our general strategy is to bound 
the number of possible transformations (with a few exceptions), and then enumerate all of them. Indeed, the bound will be 
a constant in this section. The distinct feature for P-transformable signatures is that we have to decompose them first.

We begin with the counterpart to Lemma 4.3, which strengthens Lemma 2.10 by restricting to either orthogonal trans-
formations within SO2(C) or no orthogonal transformation at all.

Lemma 5.1. Let F be a set of signatures. Then F is P-transformable iff F ⊆
[
1 1
i −i

]
P or there exists an H ∈ SO2(C) such that 

F ⊆ HP .

Proof. Sufficiency is obvious by Lemma 2.10.

Assume that F is P-transformable. By Lemma 2.10, there exists an H ∈ O2(C) such that F ⊆ HP or F ⊆ H
[
1 1
i −i

]
P . 

There are two cases to consider.

1. Suppose F ⊆ HP . If H ∈ SO2(C), then we are done, so assume that H ∈ O2(C) \ SO2(C). We want to find an H ′ ∈
SO2(C) such that F ⊆ H ′P . Let H ′ = H

[
1 0
0 −1

]
∈ SO2(C). Then

F ⊆ H
[
1 0
0 −1

]
P

= H ′P

since 
[
1 0
0 −1

]
∈ Stab(P).

2. Suppose F ⊆ H
[
1 1
i −i

]
P . If H =

[
a b

−b a

]
∈ SO2(C), then

F ⊆ H
[
1 1
i −i

]
P

⊆
[
1 1
i −i

][
a+bi 0
0 a−bi

]
P

⊆
[
1 1
i −i

]
P

since H
[
1 1
i −i

]
=
[
1 1
i −i

][
a+bi 0
0 a−bi

]
and 

[
a+bi 0
0 a−bi

]
∈ Stab(P). Otherwise, H =

[
a b
b −a

]
∈ O2(C) \ SO2(C) and

F ⊆ H
[
1 1
i −i

]
P

⊆
[
1 1

][
0 a−bi

]
P

i −i a+bi 0
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⊆
[
1 1
i −i

]
P

since H
[
1 1
i −i

]
=
[
1 1
i −i

][
0 a−bi

a+bi 0

]
and 

[
0 a−bi

a+bi 0

]
∈ Stab(P). �

The “building blocks” of P are signatures whose support is contained in two entries with complementary indices. 
However, for technical convenience that will be explained shortly, in the following definition we restrict to functions that 
are either unary, or have support of size exactly two. Recall that two signatures are considered the same if one is a nonzero 
multiple of the other.

Definition 5.2. A k-ary function f is a generalized equality if it is a nonzero multiple of [0, 0], [1, 0], [0, 1], or satisfies

∃x ∈ {0,1}k, ∀y ∈ {0,1}k, fy = 0 ⇐⇒ y /∈ {x,x}.
We use E to denote the set of all generalized equality functions.

For any set F , we let 〈F〉 denote the closure under function products without shared variables. It is easy to show that 
P = 〈E 〉 (cf. [20]).

If we view signatures as tensors, then 〈·〉 is the closure under tensor products. That is, if f (x1, x2) = f1(x1) f2(x2), then 
f = f1 ⊗ f2 with a correct ordering of indices. In general, we call such f reducible, defined next.

Definition 5.3. We call a function f of arity n on variable set x reducible if f has a non-trivial decomposition, namely, 
there exist f1 and f2 of arities n1 and n2 on variable sets x1 and x2, respectively, such that 1 ≤ n1, n2 ≤ n − 1, x1 ∪ x2 = x, 
x1 ∩ x2 = ∅, and f (x) = f1(x1) f2(x2). Otherwise we call f irreducible.

Note that all unary functions, including [0, 0], are irreducible. However, the identically zero function of arity greater 
than one is reducible. Recall that we call a function degenerate if it is a tensor product of unary functions. All degenerate 
functions of arity ≥ 2 are reducible, but not vice versa — a reducible function may be decomposable into only non-unary 
functions. Due to the same reason, degenerate functions are trivially tractable, but reducible functions are not necessarily 
so.

Definition 5.2 is a slight modification of a similar definition for E that appeared in Section 2 of [20]. For both definitions 
of E , it follows that P = 〈E 〉. The motivation for our slight change in the definition is so that every signature in E is 
irreducible.

Irreducibility is preserved by transformations.

Lemma 5.4. Let f be an irreducible function of arity n, and T be a 2-by-2 non-singular matrix. Then g = T⊗n f is also irreducible.

Proof. Suppose g is reducible. By Definition 5.3, there is a non-trivial decomposition g = g1 ⊗ g2. Hence f = (T−1
)⊗n

g also 
has a non-trivial decomposition. �

If a function f is reducible, then we can factor it into functions of smaller arity. This procedure can be applied recursively 
and terminates when all components are irreducible. Therefore any function has at least one irreducible factorization. We 
show that such a factorization is unique for functions that are not identically zero.

Lemma 5.5. Let f be a function of arity n on variables x that is not identically zero. Assume there exist irreducible functions f i and g j , 
and two partitions {xi} and {y j} of x for 1 ≤ i ≤ k and 1 ≤ j ≤ k′ , such that

f (x) =
k∏

i=1

f i(xi) =
k′∏
j=1

g j(y j).

Then k = k′ , the partitions are the same, and there exists a permutation π on {1, 2, · · · , k} such that f i = gπ( j) up to nonzero factors.

Proof. Since f is not identically zero, none of the f i or g j is identically zero. Fix an assignment u2, . . . , uk such that 
c =∏k

i=2 f i(ui) �= 0. Let z j = y j ∩ x1, and v j = y j ∩ (∪k
i=2xi) for 1 ≤ j ≤ k′ . Let the assignments u2, . . . , uk restricted to v j

be w j . Then we have

cf1(x1) = f1(x1)
k∏

f i(ui) =
k′∏

g j(z j, w j).
i=2 j=1
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Define new functions h j(z j) = g j(z j, w j) for 1 ≤ j ≤ k′ . Then

f1(x1) = 1

c

k′∏
j=1

h j(z j).

Since f1 is irreducible, there cannot be two z j that are nonempty. And yet, x1 = ∪k′
j=1z j , so it follows that x1 = z j for some 

1 ≤ j ≤ k′ . We may assume j = 1, so x1 ⊆ y1. By the same argument we have y1 ⊆ xi , for some i. But by disjointness of 
x = ∪k

i=1xi , we must have y1 ⊆ x1. Thus after a permutation, we have x1 = y1. Therefore f1 = g1 up to a nonzero constant.
By fixing some assignment to x1 = y1 such that f1 and g1 are not zero, we may cancel this factor, and the proof is 

completed by induction. Therefore we must have that k = k′ and the two sets { f i} and {g j} are equal, where we identify 
functions up to nonzero constants. �

In fact, we can efficiently find the unique factorization.

Lemma 5.6. There is an algorithm to compute in time polynomial in N, for any input signature f of arity n that is not identically 
zero, the unique factorization of f into irreducible factors. More specifically, the algorithm computes irreducible f1, . . . , fk of arities 
n1, . . . , nk ∈ Z+ (for some k ≥ 1) such that 

∑k
i=1 ni = n and f (x1, . . . , xk) =∏k

i=1 f i(xi).

Proof. We may partition the variables x into two sets x1 and x2 of length n1 and n2, respectively, such that 1 ≤ n1, n2 ≤
n − 1, x1 ∪ x2 = x, and x1 ∩ x2 = ∅. Define a 2n1 -by-2n2 matrix M such that Mu1,u2 = f (u1, u2) for u1 ∈ {0, 1}n1 and u2 ∈
{0, 1}n2 . Then M is of rank at most 1 iff there exist f1 and f2 of arity n1 and n2, such that f (x) = f1(x1) f2(x2).

Therefore, in order to factor f , we only need to run through all distinct partitions, and check if there exists at least one 
such matrix of rank at most 1. If none exists, then f is irreducible. The total number of possible such partitions is 2n−1 − 1. 
Hence the running time is polynomial in 2n ≤ N .

Once we have found f = f1 ⊗ f2, we recursively apply the above procedure to f1 and f2 until every component is 
irreducible. The total running time is polynomial in N . �

This factorization algorithm gives a simple algorithm to determine membership in P .

Lemma 5.7. There is an algorithm to decide, for a given signature f of arity n, whether f ∈ P with running time polynomial in N.

Proof. We may assume that f is not identically zero, and we obtain its unique factorization f =⊗i f i by Lemma 5.6. Then 
f ∈ P iff for all i, we have f i ∈ E . Since membership in E is easy to check, our proof is complete. �

Let T ∈ GL2(C) be some transformation and f some signature. To check if f ∈ TP , it suffices to first factor f and then 
check if each irreducible factor is in TE .

Lemma 5.8. Suppose f =⊗k
i=1 f i is not identically zero and that f i is irreducible for all 1 ≤ i ≤ k. Let T ∈ GL2(C). Then f ∈ TP iff 

f i ∈ TE for all 1 ≤ i ≤ k.

Proof. Suppose f is of arity n and f i is of arity ni so that 
∑k

i=1 ni = n. If f i ∈ TE for all 1 ≤ i ≤ k, then there exists gi ∈ E

such that f i = T⊗ni gi . Thus f = ⊗k
i=1 f i = ⊗k

i=1 T
⊗ni gi = T⊗n⊗k

i=1 gi . Since gi ∈ E , we have 
⊗k

i=1 gi ∈ P . Therefore 
f ∈ TP .

On the other hand, assume f ∈ TP . By the definition of P , there exist g1, . . . , gk′ ∈ E of arities m1, . . . , mk′ ∈ Z+ , such 
that f = T⊗n g , where g =⊗k′

i=1 gi . Since gi ∈ E , gi is irreducible. Let f ′
i = T⊗mi gi ∈ TE for all 1 ≤ i ≤ k′ , which is also 

irreducible by Lemma 5.4. Then 
⊗k′

i=1 f ′
i = f =⊗k

i=1 f i . By Lemma 5.5, we have k = k′ and { f i} and { f ′
i } are the same up 

to a permutation. Therefore each f i ∈ TE . �
With Lemma 5.6 and Lemma 5.8 in mind, we focus our attention on membership in E . We show how to efficiently 

decide if there exists an H ∈ SO2(C) such that H⊗n f ∈ E when f is irreducible.

Lemma 5.9. There is an algorithm to decide, for a given irreducible signature f of arity n ≥ 2, whether there exists an H ∈ SO2(C)

such that H⊗n f ∈ E with running time polynomial in N. If so, there exist at most eight H ∈ SO2(C) such that H⊗n f ∈ E unless 
f = (1, 0, 0, 1)T or f = (0, 1, −1, 0)T .

Proof. Assume there exists an H =
[

a b
−b a

]
∈ SO2(C) such that g = H⊗n f ∈ E , where a2 + b2 = 1. Then by Lemma 4.4, 

there exists a diagonal transformation T =
[
a−bi 0

]
such that ĝ = T⊗n f̂ ∈

[
1 i

]
E . In particular, ĝ and f̂ have the same 
0 a+bi 1 −i
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support. For two vectors u, x ∈ {0, 1}n , the entry indexed by row u and column x in the matrix 
[
1 i
1 −i

]⊗n
is iwt(x)(−1)〈x,u〉 , 

where wt(·) denotes Hamming weight and 〈·, ·〉 is the dot product.
Since g ∈ E , g is irreducible. Thus g has two nonzero entries with opposite index, say x and x. Hence we have

ĝu = iwt(x)(−1)〈x,u〉gx + iwt(x)(−1)〈x,u〉gx
= iwt(x)(−1)〈x,u〉gx + in−wt(x)(−1)wt(u)−〈x,u〉gx
= (−1)〈x,u〉 (iwt(x)gx + in−wt(x)(−1)wt(u)gx

)
for any vector u ∈ {0, 1}n .

For u1, u2 ∈ {0, 1}n , if wt(u1) ≡ wt(u2) (mod 2), then

ĝu1 = ±ĝu2 . (3)

Therefore, if any entry of f̂ with even Hamming weight is 0, then all entries with even Hamming weight are 0. This also 
holds for entries with odd Hamming weight. However, f̂ is not identically zero because it is irreducible and of arity n ≥ 2. 
Therefore, we know that either all entries of even Hamming weight are not 0 or all entries of odd Hamming weight are 
not 0. If n ≥ 3, or if n = 2 and all entries of even Hamming weight are not 0, then we can take two nonzero entries of 
f̂ whose Hamming weight differ by 2. Their ratio restricts the possible choices of a + bi, as in the proof of Lemma 4.7, 
because the only possible ratios for ĝu1/ĝu2 are ±1 by (3). Together with a2 +b2 = 1, this gives at most 8 possible matrices 
H ∈ SO2(C).

The remaining case is when n = 2 and all entries of f̂ with even Hamming weight are 0. By (3), we have ĝ =
λ(0, 1, ±1, 0)T for some λ �= 0 since ĝ and f̂ have the same support. Then from f̂ = (T−1)⊗2 ĝ , where T−1 =

[
a+bi 0
0 a−bi

]
is 

diagonal, we calculate that T−1
[

0 1
±1 0

]
(T−1)T =

[
0 1

±1 0

]
. Hence, up to a nonzero scalar, f̂ = (0, 1, 1, 0)T or f̂ = (0, 1, −1, 0)T . 

Finally f = (Z ′ −1)⊗2 f̂ , and we get f = (1, 0, 0, 1)T or f = (0, 1, −1, 0)T , up to a nonzero scalar. �
Now we give an algorithm that efficiently decides if a set of signatures is P-transformable.

Theorem 5.10. There is a polynomial-time algorithm to decide, for any finite set of signatures F , whether F is P-transformable. If 
so, at least one transformation can be found.

Proof. By Lemma 5.1, we only need to decide if F ⊆
[
1 1
i −i

]
P or if there exists an H ∈ SO2(C) such that F ⊆ HP . To 

check if F ⊆
[
1 1
i −i

]
P , we simply apply Lemma 5.7 to each signature in 

[
1 1
i −i

]−1
F .

Now to check if F ⊆ HP . We may assume that no signature in F is identically zero. Now we obtain the unique 
factorization of each signature in F using Lemma 5.6. If every irreducible factor is either a unary signature, or (1, 0, 0, 1)T , 
or (0, 1, −1, 0)T , then F ⊆ 〈E 〉 = P . Otherwise, let f ∈ F be a signature that is not of this form. This means that f has a 
unique factorization f =⊗i f i where some f i is not a unary signature, or (1, 0, 0, 1)T , or (0, 1, −1, 0)T . Assume it is f1.

By applying Lemma 5.8 to f , we get the necessary condition f1 ∈ HE . Then we apply Lemma 5.9 to f1. If the test 
passes, then by the definition of f1, we have at most eight transformations in SO2(C) that could work. For each possible 
transformation H , we apply Lemma 5.7 to every signature in H−1F to check if it works. �
6. Symmetric AAA -transformable signatures

In the next two sections, we consider the case when the signatures are symmetric. The significant difference is that a 
symmetric signature of arity n is given by n +1 values, instead of 2n values. This exponentially more succinct representation 
requires us to find a more efficient algorithm.

6.1. A single signature

Recall Definition 2.8. To begin with, we provide efficient algorithms to decide membership in each of A1, A2, and A3 for 
a single signature. If the signature is in one of the sets, then the algorithm also finds at least one corresponding orthogonal 
transformation satisfying Definition 2.8. By Lemma 2.9, this is enough to check if a single signature is A -transformable.

We say a signature f satisfies a second order recurrence relation, if there exist not all zero a, b, c ∈ C, such that for all 
0 ≤ k ≤ n − 2, afk + bfk+1 + cfk+2 = 0. For a non-degenerate signature of arity at least 3, these coefficients are unique up to 
a nonzero scalar.

Lemma 6.1. Let f be a non-degenerate symmetric signature of arity n ≥ 3. If f satisfies a second order recurrence relation with coef-
ficients a, b, c ∈C and another one with coefficients a′, b′, c′ ∈ C, then there exists a nonzero k ∈C such that (a, b, c) = k(a′, b′, c′).
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Proof. A function f = [ f0, f1, . . . , fn] is degenerate if and only if f0, . . . , fn forms a geometric sequence. As f is non-

degenerate, the matrix A =
[

f0 f1 ... fn−1
f1 f2 ... fn

]
has rank 2. Let B =

[ f0 f1 ... fn−2
f1 f2 ... fn−1
f2 f3 ... fn

]
. We claim that rank(B) ≥ 2, which implies that 

f satisfies at most one second order recurrence relation up to a nonzero scalar, as desired.
If ( f1, . . . , fn−1) = 0, then f0, fn �= 0 since rank(A) = 2, so rank(B) = 2 as well. Otherwise, ( f1, . . . , fn−1) �= 0. Consider 

the matrices A1 =
[

f0 f1 ... fn−2
f1 f2 ... fn−1

]
and A2 =

[
f1 f2 ... fn−1
f2 f3 ... fn

]
, which are submatrices of both A and B . Both A1 and A2 have rank 

at least 1 since ( f1, . . . , fn−1) �= 0. We show that either rank(A1) = 2 or rank(A2) = 2, which implies that rank(B) ≥ 2.
For a contradiction, suppose rank(A1) = rank(A2) = 1. Then there exist λ, μ ∈ C such that ( f0, . . . , fn−2) = λ( f1, . . . ,

fn−1) and ( f2, . . . , fn) = μ( f1, . . . , fn−1). If λ = 0, then f0 = f1 = 0 as n ≥ 3. It implies that rank(A2) = rank(A). However, 
rank(A) = 2, a contradiction. Similarly if μ = 0, then rank(A1) = 2, a contradiction. Otherwise λ, μ �= 0 and we get f i �= 0
for all 0 ≤ i ≤ n, and λμ = 1. This implies that rank(A) = 1, a contradiction. �

For a signature with a second order recurrence relation, the quantity b2 − 4ac is nonzero precisely when the signature 
can be expressed as the sum of two degenerate signatures that are linearly independent.

Lemma 6.2. Let f be a non-degenerate symmetric signature of arity n ≥ 3. Then f satisfies a second order recurrence relation with 
coefficients a, b, c satisfying b2 − 4ac �= 0 iff there exist a0, b0 , a1 , b1 (satisfying a0b1 �= a1b0) such that f =

[
a0
b0

]⊗n +
[
a1
b1

]⊗n
.

Proof. The “only if” direction is straightforward to verify. For the other direction, assume that there exist a, b, c ∈ C not all 
zero, such that for all 0 ≤ k ≤ n − 2, afk + bfk+1 + cfk+2 = 0. If c �= 0, then since b2 − 4ac �= 0, we can solve this recurrence 
with the initial values of f0 and f1, namely, there exist c0, c1 �= 0 and λ1 �= λ2 such that for any 0 ≤ k ≤ n,

fk = c0λ
k
1 + c1λ

k
2.

In other words, we can express f as f = c0
[

1
λ1

]⊗n + c1
[

1
λ2

]⊗n
. Normalizing shows the claim.

The other case of c = 0 implies that b �= 0. Hence the entries f0, · · · , fn−1 satisfy a first order recurrence relation and 
the recurrence does not involve the last entry fn . Thus there must exist c0, c1 and λ such that f = c0

[
1
λ

]⊗n + c1
[
0
1

]⊗n
. 

Moreover, if any of c0 or c1 equals 0, then f is degenerate which contradicts the assumption. The lemma follows from a 
normalization. �

The following definition of the θ function is crucial. A priori, θ(v0, v1) may be not well-defined, but this is circumvented 
by insisting that v0 and v1 be linearly independent.

Definition 6.3. For a pair of linearly independent vectors v0 =
[
a0
b0

]
and v1 =

[
a1
b1

]
, we define

θ(v0, v1) :=
(
a0a1 + b0b1
a1b0 − a0b1

)2

.

Furthermore, suppose that a signature f of arity n ≥ 3 can be expressed as f = v⊗n
0 + v⊗n

1 , where v0 and v1 are linearly 
independent. Then we define θ( f ) = θ(v0, v1).

Intuitively, this formula is the square of the cotangent of the angle from v0 to v1. This notion of cotangent is properly 
extended to the complex domain. The expression is squared so that θ(v0, v1) = θ(v1, v0).

Let f = v⊗n
0 + v⊗n

1 be a non-degenerate signature of arity n ≥ 3. Since f is non-degenerate, v0 and v1 are linearly 
independent. The next proposition implies that this expression for f via v0 and v1 is unique up to a root of unity. Therefore, 
θ( f ) from Definition 6.3 is well-defined.

Proposition 6.4 (Lemma 9.1 in [23]). Let a, b, c, d be four vectors and suppose that c, d are linearly independent. If for some n ≥ 3, we 
have a⊗n + b⊗n = c⊗n + d⊗n, then there exist ω0 and ω1 satisfying ωn

0 = ωn
1 = 1 such that either a = ω0c and b = ω1d or a = ω0d

and b = ω1c.

For the convenience of future use, we can generalize Proposition 6.4 to the following simple lemma.

Lemma 6.5. Let a, b, c, d be four vectors and suppose that c, d are linearly independent. Furthermore, let x0, x1 , y0 , y1 be nonzero 
scalars. If for some n ≥ 3, we have x0a⊗n + x1b⊗n = y0c⊗n + y1d⊗n, then there exist ω0 and ω1 , such that either a = ω0c, b = ω1d, 
x0ωn = y0 , and x1ωn = y1; or a = ω0d, b = ω1c, x0ωn = y1 , and x1ωn = y0 .
0 1 0 1
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It is easy to verify that θ is invariant under an orthogonal transformation.

Lemma 6.6. For two linearly independent vectors v0 , v1 ∈ C2 and H ∈ O2(C), let v̂0 = Hv0 and v̂1 = Hv1 . Then θ(v0, v1) =
θ(v̂0, v̂1).

Proof. Within the square in the definition of θ , the numerator is the dot product, which is invariant under any orthogonal 
transformation. Also, the denominator is the determinant, which is invariant under any orthogonal transformation up to a 
sign. �

Now we have some necessary conditions for membership in A1 ∪ A2 ∪ A3. Recall that A1 ⊆ P1.

Lemma 6.7. Let f be a non-degenerate symmetric signature of arity at least 3. Then

1. f ∈ P1 =⇒ θ( f ) = 0,
2. f ∈ A2 =⇒ θ( f ) = −1, and
3. f ∈ A3 =⇒ θ( f ) = − 1

2 .

Proof. The result clearly holds when f is in the canonical form of each set. This extends to the rest of each set by 
Lemma 6.6. �

These results imply the following corollary.

Corollary 6.8. Let f be a non-degenerate symmetric signature f of arity n ≥ 3. If f is A -transformable, then f is of the form v⊗n
0 +

v⊗n
1 , where v0 and v1 are linearly independent, and θ(v0, v1) ∈ {0, −1, − 1

2 }.

The condition given in Lemma 6.7 is not sufficient to determine if f ∈ A1 ∪ A2 ∪ A3. For example, if f = v⊗n
0 + v⊗n

1

with v0 =
[
1
i

]
and v1 is not a multiple of 

[
1
−i

]
, then θ( f ) = −1 but f is not in A2. However, this is essentially the only 

exceptional case. We achieve the full characterization with some extra conditions.
The next lemma gives an equivalent form for membership in A1, A2, and A3 using transformations in O2(C) \ SO2(C). 

Only having to consider transformation matrices in O2(C) \SO2(C) is convenient since such matrices are their own inverses.

Lemma 6.9. Suppose f is a non-degenerate symmetric signature of arity n ≥ 3 and let F ∈ {A1, A2, A3}. Then f ∈ F iff there exists 
an H ∈ O2(C) \ SO2(C) such that f ∈ F with H.

Proof. Sufficiency is trivial. For necessity, assume that f ∈ F with H ∈ O2(C). If H ∈ O2(C) \ SO2(C), then we are done, so 
further assume that H ∈ SO2(C). By the definition of F ,

f = cH⊗n (v⊗n
0 + βv⊗n

1

)
,

where c �= 0 and v0, v1, and β depend on F . Let H ′ =
[
1 0
0 −1

]
H−1 ∈ O2(C) \ SO2(C), so it follows that H ′T = H ′ −1 = H ′ . 

Then

f = (H ′H ′)⊗n f

= cH ′ ⊗n(H ′H)⊗n (v⊗n
0 + βv⊗n

1

)
= cH ′ ⊗n

[
1 0
0 −1

]⊗n (
v⊗n
0 + βv⊗n

1

)
= cH ′ ⊗n (v⊗n

1 + βv⊗n
0

)
= cβH ′ ⊗n (v⊗n

0 + β−1v⊗n
1

)
,

where in the fourth step, we use the fact that 
[
1 0
0 −1

]
v0 = v1 and 

[
1 0
0 −1

]
v1 = v0 for any F ∈ {A1, A2, A3}. To finish, we 

rewrite β−1 in the form required in Definition 2.8 as follows:

• if F = A1, then β = αtn+2r for some t ∈ {0, 1} and r ∈ {0, 1, 2, 3} and β−1 = α−tn−2r . Pick r′ ∈ {0, 1, 2, 3} such that 
r′ ≡ −tn − r (mod 4), so β−1 = αtn+2r′ as required;

• if F = A2, then β = 1, so β−1 = 1 = β as required;
• if F = A3, then β = ir for some r ∈ {0, 1, 2, 3}, so β−1 = i−r = i4−r as required. �



J.-Y. Cai et al. / Information and Computation 259 (2018) 102–129 119
Before considering A1, we prove a technical lemma that is also applicable when considering P1.

Lemma 6.10. Let f = v⊗n
0 + v⊗n

1 be a symmetric signature of arity n ≥ 3, where v0 =
[
a0
b0

]
and v1 =

[
a1
b1

]
are linearly independent. 

If θ( f ) = 0, then there exist an H ∈ O2(C) and a nonzero k ∈C satisfying a1 = kb0 and b1 = −ka0 such that

H⊗n f = λ

([
1
1

]⊗n + kn
[

1
−1

]⊗n
)

for some nonzero λ ∈C.

Proof. Since θ( f ) = 0, we have a0a1 + b0b1 = 0. By linear independence, we have a1b0 �= a0b1. Thus, there exists a nonzero 
k ∈ C such that a1 = kb0 and b1 = −ka0. (Note that this is clearly true even if one of a0 or b0, but not both, is zero.) Let 
c = a20 + b20, which is nonzero since a1b0 �= a0b1. Also, let u0 = v0√

c
and u1 = v1

k
√
c
, so it follows that the matrix M = [u0 u1]

is orthogonal. Then the matrix H = 1√
2

[
1 1
1 −1

]
M−1 is also orthogonal and what we need. Under a transformation by H , we 

have

H⊗n f = H⊗n
(
c

n
2 u⊗n

0 + knc
n
2 u⊗n

1

)
= λ

([
1
1

]⊗n + kn
[

1
−1

]⊗n
)

,

where λ = (c/2)
n
2 �= 0. �

Now we give the characterization of A1.

Lemma 6.11. Let f = v⊗n
0 + v⊗n

1 be a symmetric signature of arity n ≥ 3, where v0 =
[
a0
b0

]
and v1 =

[
a1
b1

]
are linearly independent. 

Then f ∈ A1 iff θ( f ) = 0 and there exist an r ∈ {0, 1, 2, 3} and t ∈ {0, 1} such that an1 = αtn+2rbn0 �= 0 or bn1 = αtn+2ran0 �= 0.

Proof. Suppose f ∈ A1. By Lemma 6.9, after a suitable normalization, there exists a transformation H =
[
x y
y −x

]
∈ O2(C) \

SO2(C) such that

f = H⊗n
([

1
1

]⊗n + β
[

1
−1

]⊗n
)

,

where β = αtn+2r for some r ∈ {0, 1, 2, 3} and some t ∈ {0, 1}. Since H ∈ O2(C), we have x2 + y2 = 1. By Lemma 6.7, 
θ( f ) = 0.

Now we have two expressions for f , which are[
a0
b0

]⊗n +
[
a1
b1

]⊗n = f =
[
x+y
y−x

]⊗n + β
[
x−y
y+x

]⊗n
.

Since v0 and v1 are linearly independent, we know that a0 and a1 cannot both be 0. Suppose a0 �= 0. By Lemma 6.5, we 
have two cases.

1. Suppose a0 = ω0(x + y) and b1 = ω1(x + y) where ωn
0 = 1 and ωn

1 = β . Then we have bn1 = β(x + y)n = βan0 �= 0. Since 
β = αtn+2r , we are done.

2. Suppose a0 = ω0(x − y) and b1 = ω1(y − x) where ωn
0 = β and ωn

1 = 1. Then we have an0 = β(x − y)n = αtn+2r(−1)n(y −
x)n = αtn+2r+4nbn1, so bn1 = α−tn−2r−4nan0 �= 0. Pick r′ ∈ {0, 1, 2, 3} such that r′ ≡ −tn −r−2n (mod 4). Then α−tn−2r−4n =
αtn+2r′ is of the desired form.

Otherwise, a1 �= 0, in which case, similar reasoning shows that an1 = αtn+2rbn0 �= 0.
For sufficiency, we apply Lemma 6.10, which gives

H⊗n f = λ

([
1
1

]⊗n + kn
[

1
−1

]⊗n
)

for some H ∈ O2(C), some nonzero λ ∈ C, and some nonzero k ∈ C satisfying a1 = kb0 and b1 = −ka0. The ratio of these 
coefficients is kn . We consider two cases.

1. Suppose an1 = αtn+2rbn0 �= 0. Then kn = αtn+2r , so f ∈ A1.

2. Suppose bn1 = αtn+2ran0 �= 0. Then kn = (−1)nαtn+2r . Pick r′ ∈ {0, 1, 2, 3} such that r′ ≡ r+2n (mod 4). Then kn = αtn+2r′ , 
so f ∈ A1. �
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Now we give the characterization of A3.

Lemma 6.12. Let f = v⊗n
0 + v⊗n

1 be a symmetric signature of arity n ≥ 3, where v0 =
[
a0
b0

]
and v1 =

[
a1
b1

]
are linearly in-

dependent. Then f ∈ A3 iff there exist an ε ∈ {1, −1} and r ∈ {0, 1, 2, 3} such that a1
(√

2a0 + εib0
)

= b1
(
εia0 − √

2b0
)
, 

an1 = ir
(
εia0 − √

2b0
)n

, and bn1 = ir
(√

2a0 + εib0
)n

.

Proof. Suppose f ∈ A3. By Lemma 6.9, after a suitable normalization, there exists a transformation H =
[
x y
y −x

]
∈ O2(C) −

SO2(C) such that

f = H⊗n
([

1
α

]⊗n + ir
[

1
−α

]⊗n
)

for some r ∈ {0, 1, 2, 3}. Since H ∈ O2(C), we have x2 + y2 = 1. By Lemma 6.7, θ( f ) = − 1
2 , which implies a0a1+b0b1

a0b1−a1b0
= ± i√

2
. 

After rearranging terms, we get

a1
(√

2a0 + εib0
)

= b1
(
εia0 − √

2b0
)

,

for some ε ∈ {1, −1}. Since v0 and v1 are linearly independent, we know that a1 and b1 cannot both be 0. Also, if 
√
2a0 +

εib0 and εia0 −√
2b0 are both 0, then we have −√

2a0 = εib0 and εia0 = √
2b0, which implies a0 = b0 = 0, a contradiction. 

Therefore, we have

a1 = c(εia0 − √
2b0) and b1 = c(

√
2a0 + εib0) (4)

for some c �= 0. To prove necessity, it remains to show that cn is a power of i.
Now using H−1 = H , we have two expressions for (H−1)⊗n f , which are[

xa0+yb0
ya0−xb0

]⊗n +
[
xa1+yb1
ya1−xb1

]⊗n = H⊗n
([

a0
b0

]⊗n +
[
a1
b1

]⊗n
)

= (H−1)⊗n
f =

[
1
α

]⊗n + ir
[

1
−α

]⊗n
.

By Lemma 6.5, there are two cases to consider, each of which has two more cases depending on ε.

1. Suppose ya0 − xb0 = α(xa0 + yb0), ya1 − xb1 = −α(xa1 + yb1), (xa0 + yb0)n = 1, and (xa1 + yb1)n = ir . By rearranging 
the first two equations, we get

(y − αx)a0 = (x+ αy)b0 and (y + αx)a1 = (x− αy)b1. (5)

It cannot be the case that a0 = b0 = 0 or y − αx = x + αy = 0. If a0 = 0, then x + αy = 0, so a1 = −√
2ib1 by (5)

and y �= 0 lest x = 0 as well. If b0 = 0, then y − αx = 0, so 
√
2ia1 = b1, by the same argument. Now we consider the 

different cases for ε.
(a) If ε = 1, then a1 = c(ia0 − √

2b0) and b1 = c(
√
2a0 + ib0) by (4). If a0 = 0, then a1 = −c

√
2b0 and b1 = cib0, 

which contradicts a1 = −√
2ib1; if b0 = 0, then a1 = cia0 and b1 = c

√
2a0, which contradicts 

√
2ia1 = b1. Thus, 

(y − αx)a0 = (x + αy)b0 �= 0 by (5). Also from (5), (y + αx)a1 = (x − αy)b1. Then since c �= 0 and using (4) with 
ε = 1, we get

(y + αx)
(
ia0 − √

2b0
)

= (x− αy)
(√

2a0 + ib0
)

.

Using (y − αx)a0 = (x + αy)b0 �= 0, we get

(y + αx)
(
i(x+ αy) − √

2(y − αx)
)

= (x− αy)
(√

2(x+ αy) + i(y − αx)
)

.

This equation simplifies to x2 + y2 = 0, which is a contradiction.
(b) If ε = −1, then a1 = c(−ia0 − √

2b0) and b1 = c(
√
2a0 − ib0), from (4). Then we get

xa1 + yb1 = xc
(
−ia0 − √

2b0
)

+ yc
(√

2a0 − ib0
)

= c
(
−i(xa0 + yb0) + √

2(ya0 − xb0)
)

= c(xa0 + yb0),

where in the third step, we used ya0 − xb0 = α(xa0 + yb0) from (5). Raising this equation to the nth power and 
using (xa0 + yb0)n = 1 and (xa1 + yb1)n = ir , we conclude that cn = ir .
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2. Suppose ya0 − xb0 = −α(xa0 + yb0), ya1 − xb1 = α(xa1 + yb1), (xa0 + yb0)n = ir , and (xa1 + yb1)n = 1. Now we consider 
the different cases for ε.
(a) If ε = 1, then a1 = c(ia0 − √

2b0) and b1 = c(
√
2a0 + ib0) by (4). Using similar reasoning to that in case 1b leads to 

(−c)nir = 1, so cn is a power of i.
(b) If ε = −1, then a1 = c(−ia0 − √

2b0) and b1 = c(
√
2a0 − ib0) by (4). Using similar reasoning to that in case 1a leads 

to a contradiction.

For sufficiency, suppose the three equations hold for some ε ∈ {1, −1} and some r ∈ {0, 1, 2, 3}. Further assume ε = 1, in 
which case, the equations are

a1
(√

2a0 + ib0
)

= b1
(
ia0 − √

2b0
)

, (6)

as well as

an1 = ir
(
ia0 − √

2b0
)n

and bn1 = ir
(√

2a0 + ib0
)n

. (7)

From (6), we have

a1 = c(ia0 − √
2b0) and b1 = c(

√
2a0 + ib0) (8)

for some c ∈ C. In (6), a1, b1 cannot be both zero. Similarly, 
√
2a0 + ib0, ia0 − √

2b0 cannot be both zero. Thus at least one 
equation in (8) has both sides nonzero and we can always find some c even if one factor is zero. We can write (8) as[

a1
b1

]
= c
[

i −√
2√

2 i

][
a0
b0

]
.

This implies that a0a1 + b0b1 = ci(a20 + b20). Using (7) or (8), whichever equation is not zero on both sides, we have cn = ir . 
Since (6) implies θ( f ) = − 1

2 , we know that a20 +b20 �= 0 because otherwise v0 is a multiple of 
[

1
±i

]
, which makes θ( f ) = −1

regardless of v1.
We now define two orthogonal matrices T1 = 1√

1+i

[
1 α

−α 1

]
and T2 = 1√

a20+b20

[
a0 b0
b0 −a0

]
. Also let T = T1T2 ∈ O2(C). For 

f =
[
a0
b0

]⊗n +
[
a1
b1

]⊗n
, we want to calculate T⊗n f . First,

T2

[
a0
b0

]
=
√
a20 + b20

[
1
0

]
and T

[
a0
b0

]
= γ

[
1

−α

]
,

where γ =
√

a20+b20
1+i . Furthermore, a1b0 − a0b1 = √

2i(a0a1 + b0b1) = −c
√
2(a20 + b20) by (6) and (8). Then

T2

[
a1
b1

]
= 1√

a20 + b20

[
a0a1+b0b1
a1b0−a0b1

]
= c
√
a20 + b20

[
i

−√
2

]
.

It follows that

T
[
a1
b1

]
= cγ

[
1 α

−α 1

][
i

−√
2

]
= cγ

[
i−√

2α
−iα−√

2

]
= −cγ

[
1
α

]
.

Thus

T⊗n f = γ n
([

1
−α

]⊗n + (−c)n
[
1
α

]⊗n
)

.

So T transforms f into the canonical form of A3. If we write out the orthogonal transformation T explicitly, then T =
[
x y
y −x

]
where

x = a0 + αb0√
(i + 1)

(
a20 + b20

) and y = b0 − αa0√
(i + 1)

(
a20 + b20

) .
When ε = −1, the argument is similar. In this case, a1 = c(−ia0−√

2b0) and b1 = c(
√
2a0− ib0) for some c ∈C satisfying 

cn = ir and the entries of T are

x = a0 − αb0√
(i + 1)

(
a20 + b20

) and y = b0 + αa0√
(i + 1)

(
a20 + b20

) . �
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Remark. Notice that either a1(
√
2a0+ ib0) = b1(ia0−√

2b0) or a1(
√
2a0 − ib0) = b1(−ia0 −√

2b0) implies θ( f ) = − 1
2 , unless 

det(
[
a0 a1
b0 b1

]
) = 0.

As mentioned before, A2 = P2 requires a stronger condition than just θ . If f ∈ A2 = P2, then θ( f ) = −1, but the 
reverse is not true. If f = v⊗n

0 + v⊗n
1 with v0 = [1, i] and v1 is not a multiple of [1, −i], then θ( f ) = −1 but f is not in 

A2 = P2, since any orthogonal H fixes {[1, i], [1, −i]} set-wise, up to a scalar multiple.
The next lemma, which appeared in [12], gives a characterization of A2. It says that any signature in A2 is essentially in 

canonical form. For completeness, we include its proof.

Lemma 6.13 ([12]). Let f be a non-degenerate symmetric signature. Then f ∈ A2 iff f is of the form c
([

1
i

]⊗n + β
[

1
−i

]⊗n
)
for some 

c, β �= 0.

Proof. Assume that f = c

([
1
i

]⊗n + β
[

1
−i

]⊗n
)

for some c, β �= 0. Consider the orthogonal transformation H =
[
a b
b −a

]
, 

where a = 1
2

(
β

1
2n + β− 1

2n

)
and b = 1

2i

(
β

1
2n − β− 1

2n

)
. We pick a and b in this way so that a + bi = β

1
2n , a − bi = β− 1

2n , 

and (a + bi)(a − bi) = a2 + b2 = 1. Also 
(
a+bi
a−bi

)n = β . Then

H⊗n f = c

([
a+bi

−ai+b

]⊗n + β
[
a−bi
ai+b

]⊗n
)

= c

(
(a + bi)n

[
1
−i

]⊗n + (a − bi)nβ
[
1
i

]⊗n
)

= c
√

β

([
1
−i

]⊗n +
[
1
i

]⊗n
)

,

so f can be written as

f = c
√

β(H−1)⊗n
([

1
−i

]⊗n +
[
1
i

]⊗n
)

.

Therefore f ∈ A2.

On the other hand, the desired form f = c(
[
1
i

]⊗n + β
[
1
i

]⊗n
) follows from the fact that {

[
1
i

]
, 
[

1
−i

]
} is fixed setwise 

under any orthogonal transformation up to nonzero constants. �
Remark. Notice that θ(v0, v1) = −1 for linearly independent v0 and v1 if and only if at least one of v0, v1 is 

[
1
i

]
or 
[

1
−i

]
, 

up to a nonzero scalar.

We now present the polynomial-time algorithm to check if f ∈ A1 ∪ A2 ∪ A3.

Lemma 6.14. Given a non-degenerate symmetric signature f of arity at least 3, there is a polynomial-time algorithm to decide whether 
f ∈ Ak for each k ∈ {1, 2, 3}. If so, k is unique and at least one corresponding orthogonal transformation can be found in polynomial 
time.

Proof. First we check if f satisfies a second order recurrence relation. If it does, then the coefficients (a, b, c) of the second 
order recurrence relation are unique up to a nonzero scalar by Lemma 6.1. If the coefficients satisfy b2 − 4ac �= 0, then by 
Lemma 6.2, we can express f as v⊗n

0 + v⊗n
1 , where v0 and v1 are linearly independent and arity( f ) = n. All of this must be 

true for f to be in A1 ∪A2 ∪A3. With this alternate expression for f , we apply Lemma 6.11, Lemma 6.13, and Lemma 6.12
to decide if f ∈ Ak for each k ∈ {1, 2, 3} respectively. These sets are disjoint by Lemma 6.7, so there can be at most one k
such that f ∈ Ak . �
6.2. Set of symmetric signatures

We first show that if a non-degenerate signature f of arity at least 3 is in A1 or A3, then for any set F containing f , 
there are only a small constant number of transformations to check to decide whether F is A -transformable. If f ∈ A2, 
then there can be more than a constant number of transformations to check. However, this number is at most linear in the 
arity of f .
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Notice that any non-degenerate symmetric signature f ∈ A of arity at least 3 is in F123 (introduced in Section 2.3), 
which contains signatures expressed as a sum of two tensor powers. Therefore θ( f ) is well-defined. By Lemma 2.7, to 
check A -transformability, we may restrict our attention to the sets A and 

[
1 0
0 α

]
A up to orthogonal transformations. In 

particular,

θ( f ) =

⎧⎪⎪⎨⎪⎪⎩
0 if f ∈ F1 ∪ F2 ∪

[
1 0
0 α

]
F1,

−1 if f ∈ F3,

− 1
2 if f ∈

[
1 0
0 α

]
(F2 ∪ F3).

(9)

Lemma 6.15. Let F be a set of symmetric signatures and suppose F contains a non-degenerate signature f ∈ A1 of arity n ≥ 3 with 
H ∈ O2(C). Then F is A -transformable iff F is a subset of HA , or H

[
1 1
1 −1

]
A , or H

[
1 1
1 −1

][
1 0
0 α

]
A .

Proof. Sufficiency follows from Lemma 2.7 and both H, H2 = 1√
2

[
1 1
1 −1

]
∈ O2(C).

Before we prove necessity, we first claim that without loss of generality, we may assume H ∈ O2(C) \ SO2(C). If H ∈
SO2(C), we let H̃ = H

[
0 1
1 0

]
∈ O2(C) \ SO2(C). Then f ∈ A1 also with H̃ . From 

[
0 1
1 0

]
∈ Stab(A ), it follows that H̃A = HA . 

Also 
[
0 1
1 0

][
1 1
1 −1

][
1 0
0 α

]
=
[
1 −1
1 1

][
1 0
0 α

]
=
[
1 1
1 −1

][
1 0
0 −1

][
1 0
0 α

]
=
[
1 1
1 −1

][
1 0
0 α

][
1 0
0 −1

]
, and 

[
1 0
0 −1

]
∈ Stab(A ). It follows that 

H̃
[
1 1
1 −1

][
1 0
0 α

]
A = H

[
1 1
1 −1

][
1 0
0 α

]
A .

Suppose F is A -transformable. By Lemma 4.3, there exists an H ′ ∈ SO2(C) such that F ⊆ H ′A or F ⊆ H ′
[
1 0
0 α

]
A . 

We only need to show there exists an M ∈ Stab(A ), such that H ′ = HM in the first case, and in the second case H ′ =
H
[
1 1
1 −1

]
M , and M

[
1 0
0 α

]
=
[
1 0
0 α

]
M ′ for some M ′ ∈ Stab(A ).

Since f ∈ A1 with H , after a suitable normalization by a nonzero scalar, we have

f = H⊗n
([

1
1

]⊗n + β
[

1
−1

]⊗n
)

,

where β = αtn+2r for some r ∈ {0, 1, 2, 3} and t ∈ {0, 1}. Let g = (H ′ −1)⊗n f and T = H ′ −1H so that

g = T⊗n
([

1
1

]⊗n + β
[

1
−1

]⊗n
)

.

Note that T ∈ O2(C) \ SO2(C) since H ′ ∈ SO2(C) and H ∈ O2(C) \ SO2(C). Thus T = T−1 and HT = H ′ . Let T =
[
a b
b −a

]
for 

some a, b ∈C such that a2 + b2 = 1. There are two possibilities according to whether F ⊆ H ′A or F ⊆ H ′
[
1 0
0 α

]
A .

1. If F ⊆ H ′A , then g ∈ F123 since g is symmetric and non-degenerate. Since θ(g) = 0, by (9), g ∈ F1 or g ∈ F2. We 
discuss the two cases of g separately.
• Suppose g ∈ F1. Then we have

T⊗n
([

1
1

]⊗n + β
[

1
−1

]⊗n
)

= λ

([
1
0

]⊗n + it
[
0
1

]⊗n
)

for some λ �= 0 and t ∈ {0, 1, 2, 3}. Plugging in the expression for T , we have([
a+b
b−a

]⊗n + β
[
a−b
a+b

]⊗n
)

= λ

([
1
0

]⊗n + it
[
0
1

]⊗n
)

.

Then by Lemma 6.5, we have a + b = 0 or a − b = 0. Together with a2 + b2 = 1, we can solve for T = 1√
2

[
1 1
1 −1

]
or 

T = 1√
2

[
1 −1

−1 −1

]
= 1√

2

[
1 1
1 −1

][
0 −1
1 0

]
, up to a constant multiple ±1. Since 

[
0 −1
1 0

]
∈ Stab(A ), we have T ∈ Stab(A ), so 

we are done.
• Suppose g ∈ F2. Then we have

T⊗n
([

1
1

]⊗n + β
[

1
−1

]⊗n
)

= λ

([
1
1

]⊗n + it
[

1
−1

]⊗n
)

for some λ �= 0 and t ∈ {0, 1, 2, 3}. Plugging in the expression for T , we have([
a+b
b−a

]⊗n + β
[
a−b
a+b

]⊗n
)

= λ

([
1
1

]⊗n + it
[

1
−1

]⊗n
)
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Then by Lemma 6.5, we have a + b = a − b or a + b = −(a − b). Therefore either a = 0 or b = 0. Thus T = ± 
[
1 0
0 −1

]
or 

T = ± 
[
0 1
1 0

]
and both matrices are in Stab(A ).

2. If F ⊆ H ′
[
1 0
0 α

]
A , then we have g ∈

[
1 0
0 α

]
F123. Since θ(g) = 0, by (9), g ∈

[
1 0
0 α

]
F1. That is,

T⊗n
([

1
1

]⊗n + β
[

1
−1

]⊗n
)

= λ
[
1 0
0 α

]⊗n
([

1
0

]⊗n + it
[
0
1

]⊗n
)

= λ

([
1
0

]⊗n + itαn
[
0
1

]⊗n
)

for some λ �= 0. This is essentially the same as the case where g ∈ F1 above, except that the coefficients are dif-
ferent. However, the coefficients do not affect the argument and our conclusion in this case that T = 1√

2

[
1 1
1 −1

]
or 

T = 1√
2

[
1 1
1 −1

][
0 −1
1 0

]
, up to a constant multiple ±1. Notice that 

[
0 −1
1 0

]
∈ Stab(A ). Moreover,[

0 −1
1 0

][
1 0
0 α

]
=
[
0 −α
1 0

]
=
[
1 0
0 α

][
0 −α

α−1 0

]
= −α

[
1 0
0 α

][
0 1
i 0

]
,

and 
[
0 1
i 0

]
∈ Stab(A ). �

Lemma 6.16. Let F be a set of symmetric signatures and suppose F contains a non-degenerate signature f ∈ A2 of arity n ≥ 3. Then 
there exists a set H⊆ O2(C) of size O (n) such that F is A -transformable iff there exists an H ∈ H such that F ⊆ HA . Moreover H
can be computed in polynomial time in the input length of the symmetric signature f .

Proof. Sufficiency is trivial by Lemma 4.3.

Suppose F is A -transformable. By Lemma 4.3, there exists an H ∈ SO2(C) such that F ⊆ HA or F ⊆ H
[
1 0
0 α

]
A . In 

the first case, we show that the number of choices of H can be limited to O (n). Then we show that the second case is 
impossible.

Since f ∈ A2, after a suitable normalization by a nonzero scalar, we have

f =
[
1
i

]⊗n + ν
[

1
−i

]⊗n

for some ν �= 0 by Lemma 6.13. Let g = (H−1)⊗n f . Then

g = (H−1)⊗n
([

1
i

]⊗n + ν
[

1
−i

]⊗n
)

.

There are two possibilities according to whether F ⊆ HA or F ⊆ H
[
1 0
0 α

]
A .

1. Suppose F ⊆ HA . Therefore g ∈ F123. Since θ(g) = −1, by (9), g ∈ F3. Then we have

(H−1)⊗n
([

1
i

]⊗n + ν
[

1
−i

]⊗n
)

= λ

([
1
i

]⊗n + ir
[

1
−i

]⊗n
)

for some λ �= 0 and r ∈ {0, 1, 2, 3}. Because H−1 ∈ SO2(C), we may assume that H−1 is of the form 
[

a b
−b a

]
where 

a2 + b2 = 1. Therefore

λ

([
1
i

]⊗n + ir
[

1
−i

]⊗n
)

=
[

a b
−b a

]⊗n
([

1
i

]⊗n + ν
[

1
−i

]⊗n
)

= (a + bi)n
[
1
i

]⊗n + ν(a − bi)n
[

1
−i

]⊗n
.

Comparing the coefficients, by Lemma 6.5, we have

λ = (a + bi)n and λir = ν(a − bi)n.

Hence,

ir(a + bi)n = ν(a − bi)n.
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Since (a + bi)(a − bi) = a2 + b2 = 1, we know that (a + bi)2n = νi−r . Therefore a + bi = ω2n(νi−r)1/2n , where ω2n is a 
2n-th root of unity. There are 4 choices for r, and 2n choices for ω2n . However, a − bi = 1

a+bi , and (a, b) can be solved 
from (a + bi, a − bi). Hence there are only O (n) choices for H , depending on f .

2. Suppose F ⊆ H
[
1 0
0 α

]
A . Then g ∈

[
1 0
0 α

]
F123. However, θ(g) = −1, which contradicts (9). �

Lemma 6.17. Let F be a set of symmetric signatures and suppose F contains a non-degenerate signature f ∈ A3 of arity n ≥ 3 with 
H ∈ O2(C). Then F is A -transformable iff F ⊆ H

[
1 0
0 α

]
A .

Proof. Sufficiency is trivial by Lemma 4.3.
Suppose F is A -transformable. As in the proof of Lemma 6.15, we may assume that H ∈ O2(C) \ SO2(C). By Lemma 4.3, 

there exists an H ′ ∈ SO2(C) such that F ⊆ H ′A or F ⊆ H ′
[
1 0
0 α

]
A . We show the first case is impossible. Then in the 

second case, we show that there exists an M such that H ′ = HM , where M
[
1 0
0 α

]
=
[
1 0
0 α

]
M ′ for some M ′ ∈ Stab(A ).

Since f ∈ A3 with H , after a suitable normalization by a nonzero scalar, we have

f = H⊗n
([

1
α

]⊗n + ir
[

1
−α

]⊗n
)

for some r ∈ {0, 1, 2, 3}. Let g = (H ′ −1)⊗n f and T = H ′ −1H so that

g = T⊗n
([

1
α

]⊗n + ir
[

1
−α

]⊗n
)

.

Note that T ∈ O2(C) \ SO2(C) since H ′ ∈ SO2(C) and H ∈ O2(C) \ SO2(C). Thus T = T−1 and HT = H ′ . Let T =
[
a b
b −a

]
for 

some a, b ∈C such that a2 + b2 = 1. There are two possibilities according to whether F ⊆ H ′A or F ⊆ H ′
[
1 0
0 α

]
A .

1. Suppose F ⊆ H ′A . Then g = (H ′ −1)⊗n f ∈ F123. However, θ(g) = − 1
2 , which contradicts (9).

2. Suppose F ⊆ H ′
[
1 0
0 α

]
A . Then g ∈

[
1 0
0 α

]
F123, so θ(g) = − 1

2 and g ∈
[
1 0
0 α

]
(F2 ∪ F3) by (9). We discuss these two 

cases separately.
• Suppose g ∈

[
1 0
0 α

]
F2. Then we have

T⊗n
([

1
α

]⊗n + ir
[

1
−α

]⊗n
)

= λ
[
1 0
0 α

]⊗n
([

1
1

]⊗n + it
[

1
−1

]⊗n
)

= λ

([
1
α

]⊗n + it
[

1
−α

]⊗n
)

for some λ �= 0 and t ∈ {0, 1, 2, 3}. Plugging in the expression for T , we have([
a+αb
b−αa

]⊗n + ir
[
a−αb
b+αa

]⊗n
)

= λ

([
1
α

]⊗n + it
[

1
−α

]⊗n
)

.

Then by Lemma 6.5, we have either

b − aα = α(a + bα) and b + aα = −α(a − bα)

or

b − aα = −α(a + bα) and b + aα = α(a − bα).

The first case is impossible. In the second case, we have a = ±1 and b = 0. This implies T = ± 
[
1 0
0 −1

]
∈ Stab(A ), 

which commutes with 
[
1 0
0 α

]
.

• Suppose g ∈
[
1 0
0 α

]
F3. Then we have

T⊗n
([

1
α

]⊗n + ir
[

1
−α

]⊗n
)

= λ
[
1 0
0 α

]⊗n
([

1
i

]⊗n + it
[

1
−i

]⊗n
)

= λ

([
1
αi

]⊗n + it
[

1
−αi

]⊗n
)
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for some λ �= 0 and t ∈ {0, 1, 2, 3}. Plugging in the expression for T , we have([
a+αb
b−αa

]⊗n + ir
[
a−αb
b+αa

]⊗n
)

= λ

([
1
αi

]⊗n + it
[

1
−αi

]⊗n
)

.

Then by Lemma 6.5, we have either

b − aα = αi(a + bα) and b + aα = −αi(a − bα)

or

b − aα = −αi(a + bα) and b + aα = αi(a − bα).

The first case is impossible. In the second case, we have a = 0 and b = ±1. This implies that T = ± 
[
0 1
1 0

]
. Note that [

0 1
1 0

][
1 0
0 α

]
=
[
1 0
0 α

][
0 α

α−1 0

]
and 

[
0 α

α−1 0

]
= α−1

[
0 i
1 0

]
∈ Stab(A ). �

Now we are ready to show how to decide if a finite set of signatures is A -transformable. To avoid trivialities, we assume 
F contains a non-degenerate signature of arity at least 3. If every non-degenerate signature in F has arity at most two, 
then Holant(F) is tractable.

Theorem 6.18. There is a polynomial-time algorithm to decide, for any finite input set F of symmetric signatures containing a non-
degenerate signature f of arity n ≥ 3, whether F is A -transformable.

Proof. By Lemma 6.14, we can decide if f is in Ak for some k ∈ {1, 2, 3}. If not, then by Lemma 2.9, F is not 
A -transformable. Otherwise, f ∈ Ak for some unique k. Depending on k, we apply Lemma 6.15, Lemma 6.16, or Lemma 6.17
to check if F is A -transformable. �
7. Symmetric PPP-transformable signatures

To decide if a signature set is P-transformable, we face the same issue as in the A -transformable case. Namely, a sym-
metric signature of arity n is given by n + 1 values, instead of 2n values. This exponentially more succinct representation 
requires us to find a more efficient algorithm.

The next lemma tells us how to decide membership in P1 for signatures of arity at least 3.

Lemma 7.1. Let f = v⊗n
0 + v⊗n

1 be a symmetric signature of arity n ≥ 3, where v0 and v1 are linearly independent. Then f ∈ P1 iff 
θ( f ) = 0.

Proof. Necessity is clear by Lemma 6.7 and sufficiency follows from Lemma 6.10. �
Since A2 = P2, the membership problem for P2 is handled by Lemma 6.13. Using Lemma 7.1 and Lemma 6.13, we can 

efficiently decide membership in P1 ∪ P2.

Lemma 7.2. Given a non-degenerate symmetric signature f of arity at least 3, there is a polynomial-time algorithm to decide whether 
f ∈ Pk for some k ∈ {1, 2}. If so, k is unique and at least one corresponding orthogonal transformation can be found in polynomial 
time.

Proof. First we check if f satisfies a second order recurrence relation. If it does, then the coefficients (a, b, c) of the second 
order recurrence relation are unique up to a nonzero scalar by Lemma 6.1. If the coefficients satisfy b2 − 4ac �= 0, then by 
Lemma 6.2, we can express f as v⊗n

0 + v⊗n
1 , where v0 and v1 are linearly independent and arity( f ) = n. All of this must be 

true for f to be in P1 ∪P2. With this alternate expression for f , we apply Lemma 7.1 and Lemma 6.13 to decide if f ∈ Pk
for some k ∈ {1, 2} respectively. These sets are disjoint by Lemma 6.7, so there can be at most one k such that f ∈ Pk . �

Like the symmetric affine case, the following lemmas assume the signature set F contains a non-degenerate signature 
of arity at least 3 in P1 or P2. Unlike the symmetric affine case, the number of transformations to be checked to decide 
whether F is P-transformable is always a small constant.

Lemma 7.3. Let F be a set of symmetric signatures and suppose F contains a non-degenerate signature f ∈ P1 of arity n ≥ 3 with 
H ∈ O2(C). Then F is P-transformable iff F ⊆ H

[
1 1

]
P .
1 −1
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Proof. Sufficiency is trivial by Lemma 2.10.
Suppose F is P-transformable. As in the proof of Lemma 6.15, we may assume H ∈ O2(C) \SO2(C). Then by Lemma 5.1, 

there exists an H ′ ∈ SO2(C) such that F ⊆ H ′P or F ⊆ H ′
[
1 1
i −i

]
P , where in the second case we can take H ′ = I2. In the 

first case, we show that there exists an M ∈ Stab(P) such that H ′ = H
[
1 1
1 −1

]
M . Then we show that the second case is 

impossible.
Since f ∈ P1 with H , after a suitable normalization by a nonzero scalar, we have

f = H⊗n
([

1
1

]⊗n + β
[

1
−1

]⊗n
)

for some β �= 0. Let g = (H ′ −1)⊗n f and T = H ′ −1H so that

g = T⊗n
([

1
1

]⊗n + β
[

1
−1

]⊗n
)

.

Note that T ∈ O2(C) \ SO2(C) since H ′ ∈ SO2(C) and H ∈ O2(C) \ SO2(C). Thus T = T−1 and HT = H ′ .

1. Suppose F ⊆ H ′P . Then g must be a generalized equality since g ∈ P with arity n ≥ 3. The only symmetric non-

degenerate generalized equalities in P with arity n ≥ 3 have the form λ 
([

1
0

]⊗n + β ′
[
0
1

]⊗n
)
, for some λ, β ′ �= 0. Thus

T⊗n
([

1
1

]⊗n + β
[

1
−1

]⊗n
)

= λ

([
1
0

]⊗n + β ′ [ 0
1

]⊗n
)

.

Let T =
[
a b
b −a

]
for a, b ∈C such that a2 + b2 = 1. Then

[
a+b
b−a

]⊗n + β
[
a−b
a+b

]⊗n = λ

([
1
0

]⊗n + β ′ [ 0
1

]⊗n
)

.

By Lemma 6.5 we have either a − b = 0 or a + b = 0. Together with a2 + b2 = 1, the only solutions are T = ± 1√
2

[
1 1
1 −1

]
or T = ± 1√

2

[
1 −1

−1 −1

]
= ± 1√

2

[
1 1
1 −1

][
0 −1
1 0

]
. Since ± 1√

2
I2, ± 1√

2

[
0 −1
1 0

]
∈ Stab(P), this case is complete.

2. Suppose F ⊆ H ′
[
1 1
i −i

]
P . Then g ∈

[
1 1
i −i

]
P , and θ(g) = θ(

[
1
1

]
, 
[

1
−1

]
) = 0 by Lemma 6.7.

However, any h ∈
[
1 1
i −i

]
P that is non-degenerate and has arity at least 3 must have the form c

[
1
i

]⊗n + d 
[

1
−i

]⊗n
for 

some nonzero c, d ∈ C, which implies that θ(h) = −1. This contradicts θ(g) = 0. �
Lemma 7.4. Let F be a set of symmetric signatures and suppose F contains a non-degenerate signature f ∈ P2 of arity n ≥ 3. Then 
F is P-transformable iff all non-degenerate signatures in F are contained in P2 ∪ {=2}.

Proof. Suppose F is P-transformable. Let Z = 1√
2

[
1 1
i −i

]
. Then by Lemma 5.1, F ⊆ ZP or there exists an H ∈ SO2(C) such 

that F ⊆ HP . In first case, we show that all the non-degenerate symmetric signatures in ZP are contained in P2 ∪ {=2}. 
Then we show that the second case is impossible.

1. Suppose F ⊆ ZP . Let g ∈ ZP be a symmetric non-degenerate signature of arity m. If (Z−1)⊗2g = λ[0, 1, 0] is the 
binary disequality signature up to a nonzero scalar λ ∈ C, then

g = λZ⊗2

( 0
1
1
0

)
= λ

( 1
0
0
1

)
is the binary equality signature =2. Otherwise, we can express g as

g = cZ⊗m
([

1
0

]⊗m + β
[
0
1

]⊗m
)

= c

([
1
i

]⊗m + β
[

1
−i

]⊗m
)

for some c, β �= 0 with m ≥ 2. Thus, g ∈ P2 = A2 by Lemma 6.13. We conclude that the symmetric non-degenerate 
subset of ZP is contained in P2 ∪ {=2}. Therefore, the non-degenerate subset of F is contained in P2 ∪ {=2}.
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2. Suppose F ⊆ HP . By assumption, F contains f ∈ P2 = A2 of arity n ≥ 3. After a suitable normalization by a scalar, 
we have

f =
[
1
i

]⊗n + β
[

1
−i

]⊗n

for some β �= 0 by Lemma 6.13. Let g = (H−1)⊗n f so that

g = (H−1)⊗n
([

1
i

]⊗n + β
[

1
−i

]⊗n
)

.

In particular, f and g have the same arity n ≥ 3. By Lemma 6.7, θ(g) = θ(
[
1
i

]
, 
[

1
−i

]
) = −1 since H−1 ∈ O2(C). However, 

g ∈ P must be of the form 
[
c
0

]⊗n +
[
0
d

]⊗n
for some nonzero c, d ∈ C, which has θ(g) = 0. This is a contradiction.

It is easy to see that all of above is reversible. Therefore sufficiency follows. �
Now we are ready to show how to decide if a finite set of signatures is P-transformable. To avoid trivialities, we assume 

F contains a non-degenerate signature of arity at least 3. If every non-degenerate signature in F has arity at most two, 
then Holant(F) is tractable.

Theorem 7.5. There is a polynomial-time algorithm to decide, for any finite input set F of symmetric signatures containing a non-
degenerate signature f of arity n ≥ 3, whether F is P-transformable.

Proof. By Lemma 7.2, we can decide if f is in Pk for some k ∈ {1, 2}. If not, then by Lemma 2.12, F is not 
P-transformable. Otherwise, f ∈ Pk for some unique k. Depending on k, we apply Lemma 7.3 or Lemma 7.4 to check 
if F is P-transformable. �
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