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ABSTRACT: Carbon dioxide (CO,) capture and separation are two
currently accepted strategies to mitigate increasing CO, emissions into
the atmosphere due to the burning of fossil fuels. Here, we show the
simulation results of hydrate-based CO, capture and selective
separation from the CO,/H, mixture dissolved in water, both using
single-walled carbon nanotubes (SW-CNTs). The spontaneous
formation of quasi-one-dimensional (Q1D) polygonal CO, hydrates
under ambient pressure was observed within SW-CNTs immersed in
CO, aqueous solution. Moreover, highly selective adsorption of a CO,
over a H, molecule is observed in the Q1D polygonal ice nanotube due
to a much lower value of the potential mean force (PMF) difference
for a CO, molecule than for a H, molecule enclosed in the
corresponding hydrate. The simulation results indicate that the
formation of Q1D hydrates can be an effective approach for CO,
capture or for the separation of CO, from H, in the mixture.

B INTRODUCTION

The reduction of carbon dioxide (CO,) emissions is one of the
grand challenges of the 21st century because the fast-increasing
concentration of CO, (one of the main greenhouse gases) in
the atmosphere has led to several significant environmental
issues, such as the melting of the polar ice caps, rising sea levels,
and climate change. Recently, the 13th World Meteorological

the CO, produced from steam-methane reformation into the
atmosphere.

Recently, porous material membranes such as metal-organic
frameworks (MOFs) and covalent-organic frameworks (COFs)
have demonstrated effective gas-separation capabilities and thus
have been recognized as promising media for practical gas
adsorption and separation, particularly for CO, capture.””” >
Also, carbon nanomaterials, such as porous graphene and

Organization (WMO) Global Atmosphere Watch (GAW)
annual Greenhouse Gas (GHG) bulletin reported that the CO,
concentration reached new highs in 2016 (403.3 + 0.1 ppm),
and the record increase was larger than the average growth rate
over the past decade.' Although several technologies and
processes for CO, capture, storage, and utilization have been
developed,”™*° more efforts are still needed to halt the growing
CO, concentration in the atmosphere.

The fast increase in CO, concentration is primarily due to
the enormous consumption of fossil fuels, e.g, coal, oil, and
natural gas. Therefore, one of the possible solutions is to use
renewable H, as an alternative energy source. However, to date,
more than 95% of H, used in industry is produced through
steam-methane reformation and a subsequent water—gas shift
reaction. The effluent gas typically consists of 71—75% H,, 15—
20% CO,, 4—=7% CH,, 1—4% CO, and other gases such as
H,0.”' Thus, CO, capture and separation from the mixed CO,
and H, gases is required at the least to prevent the release of
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carbon nanotubes (CNTs), have been proposed as promising
candidates for gas separation, particularly for H, purifica-
tion.”*™* However, membrane-based gas separation has to
compromise between high permeability and high selectivity.
Hydrate-based technology has been considered to be another
promising technology for gas capture and separation besides
the conventional technologies (e.g., absorption, adsorption, and
membranes) because of its relatively low cost and simple
operation.”* Clathrate hydrates are well-known crystalline
inclusion compounds formed by the enclathration of guest
species into cages of host-ice frameworks under certain
temperature and pressure conditions.”> The selective capture
of guest molecules in the clathrate hydrates offers the possibility
of effective gas separation because the conditions for the
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Figure 1. Axial views (top panels) and side views (bottom panels) of the snapshots of the Q1D (A) heptagonal, (B) octagonal, and (C) nonagonal
CO, hydrates in SW-CNTs. (D) Number of CO, molecules within SW-CNTs during the formation of 7-gonal, 8-gonal, and 9-gonal hydrates. Large
cyan and red spheres represent the carbon and oxygen atoms of CO, molecules, small cyan spheres represent the carbon atoms of SW-CNTs, small
red and white spheres represent the oxygen and hydrogen atoms of water confined in SW-CNTs, red lines represent water outside of SW-CNTs (i.e.,
aqueous solution), and green dotted lines represent hydrogen bonds.

formation of the clathrate hydrates are strongly affected by the When the pore size is reduced to subnanometer levels, the
guest species to be encaged.”***”** However, the development hydrogen-bonding network in water is disrupted by the highly
of hydrate-based CO, separation technology is still hampered confined environment, thereby affecting the kinetics of
by the slow growth rate and low selectivity during the hydrate arystallization.”””"" Our previous studies showed that thou-

sands of atmospheric pressures are needed to form monolayer
I Tt or bilayer gas clathrates within 2D nanoslits,”*""" whereas

use of additives can enhance the hydrate formation kinetics and ver & ,

4551 quasi-one-dimensional (Q1D) core—sheath polygonal hydro-

gen and CO hydrates can be formed spontaneously within

single-walled carbon nanotubes (SW-CNTs) under ambient

pressure.”””? More interestingly, the highly preferential

. Ll . adsorption of CO over H, is observed in Q1D hydrates within
promotion a;;(_l;lnhlbltlon effects on the gas hydrate nucleation SW-CNTs.”” Can the QID CO, hydrates be formed
and growth. For example, microscale confinement and the

formation process. Numerous investigations suggest that the

selectivity.

Gas hydrate formations in porous media are widespread
phenomena in nature. Previous investigations showed that
microscale confinement and surface features have both

spontaneously in SW-CNTs under ambient pressure, and can

hydrophilic surface of graphene oxide inhibit the hydrate the selective adsorption of CO, over H, (for the mixture

S8 1.
phase,” while Casco et al. found that the confinement and dissolved in water) occur within the Q1D hydrates? In this
hydrophobic surface of carbon cavities can increase the work, we have performed systematic studies to address both
methane hydrate formation rate and lower the hydrate questions. The studies can also improve our understanding of
nucleation pressures (below 4 MPa).” different gas clathrates inside a nanoconfined space. By means
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of molecular dynamics (MD) simulations, we find that the
Q1D heptagonal, octagonal, and nonagonal CO, hydrates can
be formed spontaneously within SW-CNTs under ambient
pressure. More interestingly, highly preferential adsorption of
CO, over H, is also observed within the polygonal hydrates
near ambient conditions.

B MODEL AND COMPUTATIONAL METHODS

The classical MD simulations are carried out by using the
Gromacs 4.5 software”* package to study the formation of Q1D
clathrate hydrates within SW-CNTs, where the SW-CNTs with
two open ends are immersed in the dilute CO, (or CO,/H,)
aqueous solution. Three zigzag SW-CNTs with indexes (17, 0),
(18, 0), and (19, 0) (whose diameters are 1.33, 1.41, and 1.49
nm, respectively) are considered as our previous studies
showed that under ambient pressure the guest-free clathrates
can be formed in SW-CNTs with smaller diameters (only a few
gas molecules occupy the nanochannels of ice nanotubes),
while no clathrates were observed in SW-CNTs with larger
diameters.”* Also, the (10, 10) and (12, 9) SW-CNTs with
diameters of 1.356 and 1.429 nm are considered to study the
effect of chirality on SW-CNTs. The parameters of SW-CNTs,
H,0, and H, molecules are also similar to those used in our
previous study,”” while the CO, molecule is treated using the
EPM2 model.”> All MD simulations are carried out with the
NPT ensemble for 10—500 ns, depending on temperature T
and the hydrate formation process. (A detailed simulation
description is given in the Supporting Information).

B RESULTS AND DISCUSSION

First, the system with the SW-CNTs immersed in a dilute
aqueous CO, solution is initially equilibrated at 300 K and 1
bar, followed by stepwise cooling in temperature steps of 10 K
at ambient pressure. We observed the spontaneous formation
of Q1D heptagonal and octagonal CO, hydrates in (17, 0) and
(18, 0) SW-CNTs, respectively, at 260 K and the formation of a
nonagonal CO, hydrate in (19, 0) SW-CNT at 240 K. As
shown in Figure 1A—C, CO, molecules are entrapped within
the interior space of the polygonal ice nanotubes and form a
single-file wire, akin to the formation of polygonal CO hydrates
in the same SW-CNTs.” Importantly, as shown in Figure 1D, a
heptagonal ice nanotube allows, on average, ~6.8 CO,
molecules per supercell to form the heptagonal CO, hydrate
in (17, 0) SW-CNT. Hence, many more CO, molecules are
trapped in the heptagonal nanochannel of the ice nanotube
than CO (~1.8) or H, (~3.0) molecules There are ~7.1
CO,, ~7.8 CO, or ~7.6 H, molecules” trapped in the filled
octagonal CO,, CO, or H, hydrate within (18, 0) SW-CNT,
respectlvelzf and there are ~10.5 CO,, ~9.08 CO, or ~10.2 H,
molecules,”” respectively, contained in the filled nonagonal
CO,, CO, or H, hydrates in (19, 0) SW-CNT. In other words,
equal numbers of CO,, CO, or H, molecules can be enclosed
within the octagonal (and nonagonal) hydrates. The calculated
CO, weight storage efficiencies for heptagonal, octagonal, and
nonagonal hydrates within (17, 0), (18, 0), and (19, 0) SW-
CNTs are about 2.43, 2.36, and 3.23%, respectively.

To understand the capturing capability of Q1D polygonal
hydrates in SW-CNTs, we first examined the trajectory of CO,
molecules in hydrates (Figures 2 and S1). Figures 2 and Sl
show the motions z(t) of all of the individual CO, molecules
along the nanotube axis. All of the CO, molecules in the Q1D
hydrate formed a single-file chain so that they moved
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Figure 2. Motions z(t) of individual CO, molecules along the
nanotube axis shown as colored lines inside the nanochannel of the
Q1D heptagonal CO, hydrate.

coherently. Most CO, molecules oscillate near their equilibrium
positions along the z axis. Also, the denser curves indicate more
of the CO, molecules in the hydrate. Thus, the axial CO,
density increases with increasing nanotube diameter. Also, we
noted that the highest and lowest curves (i.e., at the ends of the
CNT) are discontinuous. The discontinuity of the curves
indicates that CO, molecules exit or enter the hydrate in SW-
CNTs. Hence, the CO, exchange at the open ends of
nanotubes can be observed.

To gain more insight into the polygonal hydrates, we
computed the CO, molecular orientation and axial density
profiles within the hydrates (Figure 3A,B). Here, we define 0 as
the angle between the CO, molecular axis and the positive
direction of the z axis (tube axis). As shown in Figure 3A, this
orientation is mainly located at 9°, indicating that the CO,
molecules in a heptagonal hydrate are likely to stay along the
hydrate axis, consistent with the single-file structure of CO,
molecules within the heptagonal hydrate. With the increase in
the nanotube diameter (i.e, Q1D hydrate channel diameter),
the CO, molecular axis deviates from the z axis (Q1D hydrate
axis). The deviation can also be observed from the site—site
axial distribution functions (ADF) of the CO, molecules
(Figure 3B). In the heptagonal hydrate (Figure 3B), the first
peak of the carbon (C)—carbon (C) ADF (the center atom of
CO, molecules) is located at ~0.55 nm, indicating a CO,
molecule every 0.55 nm length along the z axis. The first and
second peaks of the carbon (C)—oxygen (O) ADF are located
at ~0.44 and ~0.67 nm, suggesting that the CO, molecule stays
along the tube axis due to the nearly equal distance of the CO,
oxygen atoms along the z axis in the hydrate (~0.23 nm) and
the length of a free CO, (about 0.23 nm). Note that the second
peak of C—C ADF is located at ~0.84 nm, and this peak value
is much lower than those of the first and third peaks. This is not
an indication of the next-nearest neighbor but of the nearest
neighbor with a large distance (i.e, vacancy). The results are
consistent with the snapshot of the heptagonal hydrate (Figure
1A). With increasing nanotube diameter (ie., QID hydrate
channel diameter), the distance of the nearest neighbor of the
CO, molecule becomes smaller (about 0.52 nm for the
octagonal hydrate and 0.40 nm for the nonagonal hydrate),
suggesting that the axial CO, density increases. Also, rapidly
decaying peaks and the shrinking distance of the first and

DOI: 10.1021/acs.jpcc.7b12700
J. Phys. Chem. C 2018, 122, 79517958


http://dx.doi.org/10.1021/acs.jpcc.7b12700
http://pubs.acs.org/action/showImage?doi=10.1021/acs.jpcc.7b12700&iName=master.img-002.jpg&w=239&h=181

The Journal of Physical Chemistry C

| Article |

(A) o074
—— 7-gonal hydrate
8-gonal hydrate
——9-gonal hydrate

0.06 <
0.05

0.04

Probability

0.03
0.02
0.01

60 80

0(°)

(B) 0.020 ] - T - T - T T

7-gonal hydrate

T T
—cC-C
0.015 ~
0.010 4

0.005 -

0.080

T T T -
0.015 4 8-gonal hydrate 1

0.010 - 3
0.005 < Aﬁ 3]
0.080 1 : I + ] + 1 " L + .

0.015 9-gonal hydrata il

axial distribution functions

0.010 4

0.005 -

0.000

0.0 0.5 1.0 1.5 2.0 28

z (nm)

Figure 3. (A) Orientation distribution of CO, within QID hydrates.
(B) Axial distribution functions (ADF) of CO, molecules within Q1D
hydrates.

second peaks of C—O ADFs for octagonal and nonagonal
hydrates indicate that the CO, molecular axis deviates from the
z axis, consistent with the snapshots of the hydrates (Figure
1B,C) and the CO, molecular orientation (Figure 3A).

Next, we studied the systems with the SW-CNTs immersed
in a dilute CO,/H, aqueous solution at ambient pressure.
Similar to the dilute CO, aqueous solution, Q1D heptagonal
and octagonal hydrates are formed spontaneously in (17, 0)
and (18, 0) SW-CNTs at 260 K, while the formation of the
nonagonal hydrate is observed in a (19, 0) SW-CNT at 240 K.
Note that many CO, molecules and few H, molecules are
trapped in the Q1D polygonal hydrates (Movies S1 and S2 and
Figure 4). Also, importantly, the heptagonal hydrate in (17,0)
SW-CNT contains, on average, about 6.4 CO, and 1.1 H,
molecules, respectively (Figure SA). Thus, the ratio of CO,/H,
trapped within the heptagonal hydrate is about S5.8. The
number of CO, molecules in the hydrate fluctuates between 5
and 9 in the course of the MD simulation, while for most of the
time, the number of H, molecules fluctuates between 0 and 2.
It appears that the QID heptagonal hydrate can entail high
efficiency to separate the CO, and H, molecules in dilute CO,/
H, aqueous solution, contrary to the dilute CO/H, aqueous
solution.” For the octagonal hydrate in (18, 0) SW-CNT, the
average number of CO, molecules is about 7.7, while that of the
H, molecules is only 0.7 (Figure SB). As a result, the ratio of
CO,/H, for the octagonal hydrate is about 11. Therefore, the
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represent the carbon and oxygen atoms of CO, molecules in the
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represent the hydrogen atoms of H, molecules in the hydrate, small
green spheres represent the hydrogen atoms of H, molecules outside
of the hydrate, small red and white spheres represent the oxygen and
hydrogen atoms of water confined in SW-CNTs, and red lines
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Figure S. Number of CO, and H, molecules within SW-CNTs during
the formation of (A) 7-gonal, (B) 8-gonal, and (C) 9-gonal hydrates.

Q1D octagonal hydrate can entail higher efficiency to separate
the CO, and H, molecules in a dilute CO,/H, aqueous
solution as well. In (19, 0) SW-CNT, the mean number of CO,
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molecules within the nonagonal nanochannel is about 12.3,
whereas that of the H, molecules is only 0.8 (Figure SC). The
ratio of CO,/H, for the nonagonal hydrate is about 15. Hence,
the nonagonal hydrate may entail much higher efficiency to
separate the CO, and H, molecules in a dilute CO,/H,
aqueous solution.

To understand the high selective adsorption of CO, over H,
in Q1D hydrates, we computed the potential of mean force
(PMF), that is, the free-energy profile, for a gas molecule
moving from the bulk solution into the polygonal ice nanotube.
(Detailed simulation description is given in the Supporting
Information.) As shown in Figure 6, the PMF profiles for the
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Figure 6. Potential of mean force (PMF) profiles for H, and CO,
molecules within the polygonal ice nanotubes. The green line
represents the end of the SW-CNTs.

heptagonal hydrate in the (17, 0) SW-CNT show that the
energy barriers for CO, and H, molecules are about —13.9 and
—4.5 kJ/mol, respectively. The PMF profiles for the octagonal
hydrate in the (18, 0) SW-CNT show that the PMF difference
for a CO, molecule is about —14.8 kJ/mol and that of a H,
molecule is ~—7.5 kJ/mol. For the nonagonal hydrate in the
(19, 0) SW-CNT, the energy barrier for a CO, molecule is
about —11.5 kJ/mol, and that of a H, molecule is ~—5.2 kJ/
mol. The negative values of the PMF barriers for CO, and H,
molecules indicate that both molecules would prefer to enter
the nanochannels of the Q1D polygonal hydrates within SW-
CNTs. More importantly, the much more negative value of the
PMEF difference for a CO, molecule indicates that a CO,
molecule is more preferred over a H, molecule to be adsorbed
in the hydrate.

To study the effect of the CNTSs  chirality on hydrate
formation and the high selectivity of CO, over H,, we carried
out additional MD simulations with (10, 10) and (12, 9) SW-
CNTs immersed in the dilute CO, (or CO,/H,) aqueous
solution. By decreasing the temperature, the helical and
octagonal hydrates are formed spontaneously within (10, 10)
and (12, 9) SW-CNTs, respectively. Also, importantly, the
highly selective adsorption of CO, over H, in the hydrates was
observed (Figure 7). The formation of 1D gas hydrates within
CNTs and the high selectivity of CO, over H, are dependent
on the SW-CNTs’ diameter rather than their chirality, as in the
case of the formation of the Q1D polygonal ice nanotube in
SW-CNTs.*

We also carried out additional MD simulations to
demonstrate that the solubility of CNTs in water does not
affect the formation of 1D gas hydrates within CNTs and the
high selectivity of CO, over H,. Here, the SW-CNT membrane
composed of (18, 0) SW-CNTs combined with two opposing
graphene sheets is used to separate the gas aqueous solution.
The spontaneous formation of the octagonal hydrate in the
CNT membrane and the high selectivity of CO, over H, in the
hydrate were observed as well (Figure 8 and Movie S4).

We performed the latest MD simulations to study the
stability of the Q1D hydrates under a gas atmosphere. In the
simulation system, many water molecules are removed, and a
few of the water molecules are adsorbed near the ends of

(A)

Figure 7. Axial views (top panels) and side views (bottom panels) of the snapshots of the Q1D (A) helical and (B) octagonal hydrates in (10, 10)

and (12, 9) SW-CNTs at 260 K.
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-]

Figure 8. Snapshot of the octagonal hydrate in the SW-CNT
membrane.

CNTs. The results show that the Q1D hydrates in SW-CNTs
are stable (Figure 9 and Movies SS and S6).
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Figure 9. Snapshots of the hydrate within the SW-CNTs under a gas
atmosphere.

B CONCLUSIONS

We have presented simulation evidence of the spontaneous
formation of Q1D polygonal (7-, 8-, and 9-gonal) CO, hydrates
within SW-CNTs under ambient pressure for SW-CNTs
immersed in a dilute CO, aqueous solution. The polygonal
CO, hydrates are very similar to the polygonal H, and CO
hydrates previously reported.”” More interestingly, the highly
selective adsorption of a CO, over a H, molecule is observed
within the QID polygonal hydrates due to the much lower
value of the PMF difference for a CO, molecule compared to
that of a H, molecule to be trapped in the hydrates. Also, our
results show that the formation of 1D gas hydrates within
CNTs and the high selectivity of CO, over H, are dependent
on the SW-CNTs’ diameter rather than their chirality, as in the
case of the formation of the Q1D polygonal ice nanotube in
SW-CNTs.** Note that our previous study also showed the
high preferential adsorptlon of a CO over a H, molecule in the
QID polygonal hydrates.”” Hence, the formation of Q1D
hydrates may be a useful approach for the capture of CO, and
for the removal of CO, and CO from H,, particularly for
hydrogen purification from the syngas in fuel-cell devices.
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