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Abstract—We present a shooting-bouncing approach to ray-
tracing as applied to signal propagation modeling in electrically
large waveguides, such as underground mine tunnels at wireless
communication frequencies. The method is verified for a
dominant-mode rectangular metallic waveguide excited by a
dipole antenna.
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I. INTRODUCTION

This paper addresses application of computational
electromagnetics (CEM) to signal propagation modeling in
underground mines. One of our main approaches to the
wireless propagation analysis of underground mines, which is
an extremely challenging CEM problem, relies primarily on
shooting-bouncing rays (SBR) ray-tracing (RT).

Using traditional full-wave EM solvers for microwave
frequencies in an underground mine may prove impractical in
many cases due to computation run time required, as well as
memory requirements, depending on the particular technique
employed. Ray-tracing provides a significant decrease in
computational run time for these electrically large structures.
Ray-tracing methods enable propagation modeling in very
complicated scenarios such as railway stations, and they can
provide useful prediction of signal loss characteristics [1,4].

II. RAY TRACING THEORY

The shooting-bouncing rays approach in RT involves
launching a set of test rays in all directions in which
propagation from the source can be expected. These rays are
then traced through the scene, and their intersections with
objects in the scene recorded. This method is described in
detail in [1]. The electric field at a desired location in the
scene is then found by employing an ideal plane wave
approximation for each ray. Then, using the reflection
coefficients based on surface parameters for each reflection,
the final electric field at the desired observation point can be
approximated due to each ray path between the source and
observation point [3]. This process may be repeated for several
observation points to produce a 2D or 3D field profile at a
desired location in the scene.
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When a 2D field profile is desired, we discretize the plane
of the desired field profile into a grid of uniform pixels or grid
blocks. The complex-valued field vectors of all rays
intersecting a given block are added to approximate the total
field at that block due to the given source and scene geometry.
This process naturally approximates interference. While this
introduces phase and magnitude error, the error can be
minimized by ensuring the grid blocks are small relatively to
the wavelength, and that a large number of rays are used, such
that each block has a sufficiently high sample density to
accurately approximate the field.

The shooting-bouncing approach to ray-tracing is
advantageous because it is conveniently parallelizable which
allows for efficient and expeditious computations. This is
essential because it enables analysis of problems that require
very high ray counts to achieve sufficient sample density for
field convergence. Another benefit to the acceleration (by
parallelization) of ray-tracing is that larger structures can be
evaluated for signal propagation characteristics more easily
and more quickly. This technique may be further accelerated
by reducing the total cost of ray to facet (environment objects)
intersection tests. The rays that propagate in this model
interact with environment objects that cause the rays to be
reflected. These interactions with the environment can be
optimized using space-partitioning trees that efficiently store
and access obstacles located in the environment (similar to a
binary search tree) [1,2].

III. RESULTS AND DISCUSSION

Testing of the ray-tracing method we developed was
conducted on a perfect electric conductor (PEC) rectangular
waveguide. This scene was chosen because of the ability to
compare with an analytic solution for verification. The
waveguide dimensions are chosen to be 0.5842 m x 0.2921 m,
and the waveguide was excited with a Hertzian dipole antenna
of unit peak field magnitude and frequency 350 MHz. The
observation plane was placed 50 cm from the source.
Operation frequency was chosen to only propagate the
dominant TE o mode in this waveguide.

This waveguide embodies a very challenging case for ray-
tracing, as it is PEC, so all reflections must be considered (this
is a completely convex scene), and it is not electrically very
large, as convenient in ray-tracing technique.



The analytical solution for the dominant mode in the
rectangular PEC waveguide states that the electric field should
be uniform in the direction parallel to the short axis of the
waveguide, and vary with a half-cosine in the axis parallel
with the long axis of the waveguide. Fig. 1 shows the result of
the ray-tracing method on this scene.
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Fig. 1. Magnitude of the electric field for the waveguide excited with a

Hertzian dipole at 350 MHz. The cutoff frequency for the waveguide is 256
MHz, which only allows propagation of the TE,, mode.

We observe in Fig. 1 the expected trends along both axes.
The magnitude varies only slightly along y for any x
coordinate in the waveguide, and the magnitude is peaked in x
at the center of the waveguide, and is relatively symmetrical
about the center of the waveguide.

The final electric field is found by summing a discrete
number of uniform plane waves at the observation plane. The
number of rays that intersect the observation plane determines
the number of plane waves. The solution generated by a ray-
tracing method should converge to the analytical solution as
the number of rays increases. Fig. 2 shows the electric field
magnitudes for a cross section of the waveguide for varying
numbers of rays.
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Fig. 2. Electric field magnitude in the cross section of the waveguide, with the
waveguide parameters and excitation frequency remaining identical to Fig. 1.
The number of rays was varied from 100 thousand rays to 10 million rays.

We observe from Fig. 2 the expected convergence of the ray
tracing results with increasing the number of rays in the
simulation. As the number of rays increases, the cross-section
magnitude begins to smoothen to a cosine. The analytical
solution states the electric field should be zero at the walls of
the waveguide. The ray-tracing method results in a
symmetrical offset of approximately 0.2 units on the edges.
The offset is a result of the loss of accuracy from sending a
finite number of rays resulting in a finite sampling density.

Each ray is terminated after a given number of reflections;
if it did not reach the observation plane within the reflection
limit, it will not contribute to a field at observation location.
The solution should converge as the number of permissible
reflections increases, as each additional ray that intersects the
observation plane increases the sampling density. Fig. 3 shows
the cross-sectional magnitude for varying number of
reflections.
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Fig. 3. Electric field magnitude based on the reflection order. The waveguide
parameters remain identical to Fig. 1. The reflection order allowed varied
from 1 to 25.

We observe from Fig. 3 a good convergence of the ray
tracing results to the offset cosine as reflection order increases.
The error is worst for low reflection order, and best for high
reflection order, as expected.
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