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Abstract—This paper presents extraction technique applied
to the double higher order surface integral equation method of
moments and discusses the numerical results compared with
previously implemented extraction method and numerical
Gauss-Legendre integration.
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I. INTRODUCTION

This paper presents our ongoing study of convergence
behavior of near-singular (potential) and near-hypersingual
(field) integrals for double higher order large-domain
surface integral equation method of moments (SIE-MoM).
The fast and accurate integral computation that will
effectively give the MoM matrix entries is essential in the
computational  electromagnetics (CEM). The main
challenge arises with small source-to-field distances which
often occur in microstrip and printed circuit design but are
part of almost any model analysis. The technique for
integral evaluation presented here uses the singularity
extraction method. The analytically evaluated integral of the
principal singular part is computed over a parallelogram
which surface is defined to be similar to the surface of the
generalized quadrilateral in the near area of the singular
point. Numerical integrals over parallelogram and
quadrilateral are using Gauss-Legendre quadrature formula.

II. THE METHOD

A. 2D Double Higher Order Integrals

In the double higher order SIE-MoM the 2D surface
integrals are defined on the Lagrange-type generalized
curved parametric quadrilateral MoM-SIE surface elements
(in Fig. 1) defined in the parametric u-v domain as [1]:
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where ry are vector coefficients and K, and K, are
geometrical orders (K,, K, = 1). The current is approximated
by higher order polynomial basis functions [1] leading to 2D
integrals over the quadrilateral having the following form:
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for -1 <u,v =1, (1)

where s and hs represent s1ngu1ar and hypersingular
integrals respectively, i and j are arbitrary polynomial orders

of the basis functions, B=2af\/en, [ is the operating

frequency, € and p are permittivity and permeability of the
dielectric medium respectively and R is the distance of the
source point from the field point.

Fig. 1. Quadrilateral element.

B. Defining the Paralelogram for the Extraction Technique

The quadrilateral element and the parallelogram
constructed at projection point (o, vo) are shown in Fig. 2.
The distance of the point on the parallelogram and singular
point is defined as:

R =d’+a,Au’ +a; AV’ +2a,a, cosohudv,  (3)
where a,, a, and cosa are computed to take into account the
curvature of the quadrilateral element, Au=u—u,,
Av=v—v;and d is the distance between singular point and
the close point projection on the quadrilateral element.

Fig. 2. Quadrilateral patch and parallelogram constructed at projected point.



C. Taylor’s Expantion and Analytical Integration

The relation between quadrilateral and parallelogram
parametric surfaces is given by:

R(u,v)* = R} (u,v) +t(u,v), Ru,v)=Ro/1+x(u,v), (4)
where  x(u,v) = #u,v)/R,*(u,v). The singular and
hypersingular parts of integrands for the integration over the
parallelogram are represented through Taylor’s expansion
over x having in mind (4). Analytical integrals are computed
by dividing parallelogram into triangles and using recursive
formulas similarly to the procedure described in [2].

D. Projected Points Outside of the Patch
For the case of large and negative 2a,a, cos cAuAv

contribution in (3), |x(u,v)| becomes large because Rp*(u,v) is
taking a small value. As a result, the Taylor’s expansion
over x does not approximate the (hyper) singular function
well. In this situation, when the projection point is outside of
the element domain, the parallelogram is constructed using
parameters at the closest point, i.e. the most singular point
on the quadrilateral. For the large values of |x(u,v)|, the
patch is divided into four parts and the extraction method is
applied to each part separately (example in Fig. 5).

III. RESULTS

The results shown in this section are computed for
second order curvilinear patch (one of the six patches
modeling 1 m radius sphere) shown in Fig. 2. The integral
convergence is obtained for d=5e-7 and P =
0.775462658083873 and results are compared to Gauss-
Legendre numerical integration and previously implemented
traditional (old) extraction technique.

Singular integral
]

2 —‘—-—--"_—'—-——-___

T

= 3
-10 e New Extracton
=== (ld Extraction
42 = Gauss-Legandre integration
14
-16
2 4 6 8 10 12 14 16 18 20

NGL
Fig. 3. Singular integral convergence for uy = 0.1, vy=-0.1 (the projection
point) and i=0, /=0 orders of the basis function.

The NGL label on the graphs represents the square root
of the number of Gauss-Legendre points used for the
numerical integration over quadrilateral or parallelogram.
The relative convergence error is computed as

d=log, ‘I -1 ‘ / ‘7 ‘ , where I is the integral computed using

described extraction method with high value of Gauss-
Legendre points and / represents the integrals as function of
NGL.
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Fig. 4. Singular integral convergence for 1y = 0.1, vy=-0.1 (the projection
point) and i=6, j=6 orders of the basis function.

Results in Fig. 5 are computed for the point described in
part D of previous section and the improvement in
convergence is shown for the divided patch method.
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Fig. 5. Hypersingular integral convergence comparison for the projection

point uy = 1.1, ve=1.1 and =0, j=0 orders of the basis function. Patch is

divided at (0.8, 0.8) point in u-v domain.

IV. CONCLUSION

New extraction method is introduced and the method is
verified with results. The convergence improvement is
shown compared to the traditional extraction technique as
well as further improvements achieved by dividing the
patch. The convergence improvement is due the integral of
the difference of the two functions defined over the
constructed parallelogram and quadrilateral being accurately
evaluated with small number of integration points.
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