Remote Sensing of Environment 200 (2017) 43-62

Contents lists available at ScienceDirect = :

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Bayesian decomposition of full waveform LiDAR data with uncertainty
analysis

@ CrossMark

Tan Zhou*, Sorin C. Popescu

LiDAR Applications for the Study of Ecosystems with Remote Sensing (LASERS) Laboratory, Department of Ecosystem Science and Management, Texas A & M University,
College Station, TX 77450, United States

ARTICLE INFO ABSTRACT

A thorough understanding of full waveform (FW) LiDAR data processing and associated uncertainty is critical to
vegetation applications such as retrieving forest structure variables and estimating forest biomass. This paper
applies the Bayesian non-linear modeling concept to process small-footprint FW LiDAR data (the Bayesian de-
composition) collected at a study site of the National Ecological Observatory Network (NEON) to investigate its
potential for waveform decomposition and uncertainty estimation. Specifically, several possible models suitable
for fitting waveforms were assessed within the Bayesian framework, and the Gaussian model was selected to
perform the Bayesian decomposition. Subsequently, we conducted performance evaluation and uncertainty
analysis at the parameter, derived point cloud and surface model levels. Results of the model reasonableness
show that the Gaussian model is superior to alternative models with respect to uncertainty, physical meaning
and processing efficiency. After converting waveforms to discrete points, the model comparisons demonstrate
that the Bayesian decomposition can be utilized for FW LiDAR data processing, and its results are comparable to
the direct decomposition (DD), Gold and RL (Richardson-Lucy) approaches in terms of the root mean squared
error (RMSE < 0.93 m) of the point distances between the waveform-based point cloud and the reference point
cloud. Additionally, more points can be extracted from FW LiDAR data with these methods than discrete-return
LiDAR data, especially at the mid-story of vegetation based on the results of height bins, percentile heights and
canopy LiDAR density at the individual tree level. Moreover, uncertainty estimates from the Bayesian method
enhance the credibility of decomposition results in a probabilistic sense to capture the true error of estimates and
trace the uncertainty propagation along the processing steps. For example, results of the surface model yield
larger RMSE values (1.38 m vs. 0.65 m) with a wider credible interval than quantile point clouds with a more
compact distribution. In contrast to commonly used deterministic approaches, the Bayesian decomposition
method can produce an ensemble of reasonable parameter estimates with probability through Markov Chain
Monte Carlo (MCMC) sampling from the posterior distribution of model parameters. These parameter estimates
and corresponding derived products can be queried to provide meaningful interpretation of results and asso-
ciated uncertainty. Both the flat priors and empirical priors can achieve good performance of the decomposition
while the empirical priors tend to significantly speed up the model convergence. The Bayesian approach also
renders an important insight into the uncertainty of the model performance evaluation using field data by
generating reasonable prediction intervals to reduce inherent errors of field measurements.
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1. Introduction

Light Detection and Ranging (LiDAR) has been adopted as a valu-
able survey tool reducing the need for field measurement to accurately
characterize vegetation structure for the past decades (Hancock et al.,
2015; Popescu et al., 2003; Wulder et al., 2012; Zhao et al., 2009).
Especially, the advent of the full waveform (FW) LiDAR system, which
is capable of recording entire reflected energy along the pulse line, has
enabled this advantage to become more conspicuous (Cawse-Nicholson
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et al., 2014; Wagner et al., 2006; Wulder et al., 2012). The FW LiDAR
data primarily consists of two parts: a pulse part that keeps geo-re-
ference locations derived from range measurement between the laser
sensor and the reference location, and a wave part which fully stores
digitized return energy starting from the reference location till the end
of digitized samples. Within a forest environment, FW LiDAR energy
could penetrate dense canopies through small gaps in the canopy and
achieve a full time-versus-intensity profile. Consequently, more detailed
vertical information of vegetation structure can be revealed through
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these data.

Generally, FW LiDAR data can be classified as large- (~50 m or
larger), medium- (~10-30 m) or small-footprint waveform (< 1 m)
based on their transmitted laser size (Wang and Weng, 2013). Some of
the first FW sensors known as large footprint profilers included SLICER
(Scanning LiDAR Imager of Canopies by Echo Recovery, 10 m foot-
print), LVIS (Laser Vegetation Imaging Sensor, 25 m footprint) and
GLAS (the Geoscience Laser Altimeter System, 70 m footprint). All of
them have been successfully applied to estimate various forest para-
meters and vegetation studies worldwide (Blair et al., 1999; Drake
et al., 2002; Harding and Carabajal, 2005).

Recent advances of commercial LiDAR systems have promoted the
availability of small-footprint FW LiDAR data from remote sensing in-
dustry providers. However, extensive applications of such systems to
characterize forest structure and biomass are limited (Wulder et al.,
2012). There are three main reasons behind this: (1) there is no stan-
dard format of FW LiDAR data, (2) large data volume required for
storing the information, which leads to difficulties of data distribution
and processing, (3) high cost of data acquisition, with added cost
compared to discrete-return (DR) LiDAR data that hinders their adop-
tion for many potential applications (Pirotti, 2011). In addition, while
there are many software packages and applications available for pro-
cessing DR LiDAR data, only few software developments are currently
available for processing FW LiDAR. Therefore, the development of ro-
bust and dedicated methods and non-proprietary software for proces-
sing small-footprint FW LiDAR data are urgently needed.

Existing methods for FW LiDAR processing can be mainly categor-
ized into two types: the decomposition method and the combined de-
convolution and decomposition method. The most commonly used
approach for the decomposition method is the direct decomposition
(DD) which models the waveform with a mixture of Gaussian functions.
Typical approaches such as Non-linear least-squares (NLS) (Hofton
et al., 2000) or maximum likelihood estimation using the Expectation-
Maximization (EM) algorithm (Persson et al., 2005) have been devel-
oped for fitting the waveform to extract 3D points and related para-
meters. However, these approaches are sensitive to the initialization of
unknown parameters. Another popular method for recovering the true
cross section of objects along the pulse line is the combined deconvo-
lution and decomposition method. Multiple deconvolution algorithms,
such as the Gold, Richardson-Lucy (RL), Non-negative least squares
(NNLS), and Wiener Filter (WF) (Cawse-Nicholson et al., 2014;
McGlinchy et al., 2014; Neuenschwander, 2008; Roncat et al., 2010;
Rowe, 2013; Wu et al., 2011; Zhou et al., 2017) have been successfully
introduced for reconstructing the differential backscatter cross section.
One practical issue of these methods is that they are pertinent to the
choice of proper parameter combinations for the deconvolution, which
typically requires parameter optimization before data processing (Zhou
et al., 2017). Although these methods have been proven to be able to
generate sufficient fitting models, we cannot characterize the un-
certainty with these models. They are calculated based on the de-
terministic models, which only seek a point value for the parameter of
interest (Edwards et al., 2003). Without uncertainty analysis, the
models are less informative or even useless when they are applied to the
real-world problems (Zhao et al., 2011).

In the domain of LiDAR applications, the observations or data are
inherently subject to various errors such as system setting, system ca-
libration, and range measurement errors (Griewank and Walther,
2008). Additionally, the LiDAR vendors often do not clearly state what
errors are considered when the data are provided. Thus, uncertainty of
“truth” is ubiquitous and inherently present in the realities of LiDAR
data modeling. Some studies associated with uncertainty mainly focus
on the DR LiDAR data applications (Chauve et al., 2009; Chen et al.,
2015; Frazer et al., 2011), while few published studies have explored
FW LiDAR data's uncertainty for vegetation characterization. Further-
more, the models used here are based on the non-linear functions that
generally suffer from problem of non-uniqueness (Sen and Stoffa,
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1996), which can generate different parameter combinations given the
same observational data and model, or several models can fit ob-
servational data at the expense of violating the physical meaning and
theoretical assumption of the “real” model. These problems are more
evident for the sophisticated models with multiple peak components in
the waveform decomposition. Thus, estimating model uncertainty is
imperative for an in-depth understanding of information derived from
data and the estimation accuracy. This kind of uncertainty analysis has
been inadequately addressed in many preceding studies due to the great
diversity of remote sensing-based information retrieval procedures
(Zhao et al., 2011) and the absence of efficient and universal methods
to capture the uncertainty of data modeling.

One strategy to overcome these problems is to adopt a Bayesian
paradigm of statistical inference by considering the model parameters
to be realizations of random variables. Within a Bayesian framework,
we combined prior information about unknown parameters with ob-
served data using the Bayes' rule. Using a Markov Chain Monte Carlo
(MCMCQ) (Gelfand and Smith, 1990) algorithm, we were able to sample
from the posterior distribution of the unknown model parameters of
interest. Through the posterior distribution, uncertainty bounds on the
resulting model parameters and model reasonableness can be mea-
sured. This approach generally takes more time to reach a solution, but
the non-uniqueness of the model parameter estimates can be avoided by
describing these parameters in terms of probability density functions
(PDFs) in the model space (Hong and Sen, 2009; Sen and Stoffa, 1996).
Additionally, computational advances and the introduction of the more
efficient Hamiltonian Monte Carlo (HMC) algorithm (Neal, 2011) have
contributed enormously to the growing interest in applying Bayesian
approaches to remote sensing data processing.

Recently, Bayesian analytical approaches have been applied to di-
verse domains related to waveform data as an alternative to traditional
deterministic techniques. For example, Qin et al. (2016) analyzed
ground-penetrating radar (GPR) data to detect the defect of under-
ground structure using a Bayesian inversion method. Roonizi and Sassi
(2016) elaborated how the electrocardiogram (ECG) waveform se-
paration was conducted in a Bayesian framework to evaluate cardiac
health status. In the geophysical field, the Bayesian approach was used
for marine seismic waveform data to characterize subsurface re-
flectivity (Ray et al., 2013). For LiDAR applications, Bayesian methods
are mainly used in a spatial modeling context to predict and map forest
variables (Finley et al., 2013) or image construction (Hernandez-Marin
et al., 2008). However, employing Bayesian approaches to decompose
FW LiDAR data for vegetation studies is rarely reported in the current
literature.

Therefore, the overall goal of this paper is to explore a Bayesian
statistical method with the HMC algorithm to process small-footprint
FW LiDAR data and quantify the uncertainty from data and models.
More specifically, we attempt to (1) evaluate the reasonableness of
models suitable for FW LiDAR data within a Bayesian framework; (2)
develop a robust and dedicated Bayesian decomposition method to
process FW LiDAR data for vegetation, and implement thorough com-
parisons with other FW LiDAR data processing methods; and (3) obtain
reliable estimates of error and uncertainty in different steps (the para-
meter estimates, point cloud and surface models) using the Bayesian
decomposition method. The motivation for the first objective is to check
the validity of previous studies' underlying assumptions that the
Gaussian model is sufficient for FW LiDAR data decomposition (Mallet
and Bretar, 2009; Pirotti, 2011; Wagner et al., 2006), and to further
reduce the uncertainty caused by the theoretical model error. The in-
novative aspects of this study consist of (1) integrating the nonlinear
Bayesian concept with waveform data to provide a novel decomposition
method for small-footprint FW LiDAR data; and (2) generating a con-
sistent, transparent knowledge learning framework to quantify the
uncertainty emerging from data and trace the uncertainty propagation
along the processing steps. In this study, we did not intend to use the
Bayesian decomposition as a proof of concept, but instead we applied
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this approach to processing millions of waveforms in our study sites to
provide insights into model justification and derive a benchmark for the
uncertainty quantification of FW LiDAR data.

2. Materials and methods
2.1. Study site and data

2.1.1. Study site

The study site is located at the San Joaquin Experimental Range
(SJER), which is in the foothills of Sierra Nevada Mountains, about
32 km north of Fresno, California. Two study regions were investigated
as shown in Fig. 1. One waveform sample region (SJER1) is about
6.25ha (250 m x 250 m) with the center at 256,840.0 Easting,
4,110,820.0 Northing, and UTM Zone 11N. The SJER1 is composed of
vegetation dominated by blue oak (Quercus douglasii), interior live oaks
(Quercus wislizeni) and digger pine (Pinus sabiniana) with scattered
shrubs and a nearly continuous cover of herbaceous plants. This study
region was used mainly to develop the proposed model of the present
paper and to compare its performance with existing approaches such as
the DD, Gold and RL. Another study region (SJER2) covers approxi-
mately 136 ha with the center at 255,977.6 Easting, 4,110,780.2
Northing, and UTM Zone 11N, which primarily aims to demonstrate
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Fig. 1. Map of the San Joaquin Experimental Range (SJER) with location of study regions in California (left panel) and discrete-return LiDAR point image with terrain and vegetation
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that the proposed model can be applied to a relatively large area, in-
stead of a small concept-area. This region consists of mixed patches of
vegetation structure and heterogeneous land cover types, including
grassland, forest, water body, open ground and road.

2.1.2. LiDAR data

The LiDAR data were collected through the National Ecological
Observatory Network (NEON) Airborne Observation Platform (Kampe,
2010) which carried sensors such as a hyperspectral imaging spectro-
meter, a FW LiDAR sensor and a DR LiDAR sensor flying at about
1000 m above ground level. This design can achieve sub-meter to meter
scale ground resolution of study sites. Detailed technical specifications
of data can be found in the study of Zhou et al. (2017).

In this study, two regions were chosen as displayed in Fig.1. The
SJERI1 region had 258,667 waveforms with two flight lines, while the
SJER2 region had 20,040,883 waveforms with four flight lines. The
original waveform is composed of 500 time bins with 1 ns temporal
resolution. Each time bin stores the digital number (DN) or intensity of
corresponding backscattered pulse. The time bins with non-recorded
values are assigned as zero (zero-padded) to keep the length of the
waveforms constant. For geolocation of corresponding waveform, 16
basic geolocation information attributes associated with waveforms are
provided. Among them, the dx, dy, and dz. are the pulse direction
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vector that can measure position change per nanosecond. In the sub-
sequent analysis, eight items were used for calculating the geolocation
of desired time bin after decomposition. The eight items are the Easting
of first return xo (m), the Northing of first return y, (m), the height of
first return zo(m), dx (m), dy (m), dz. (m), the outgoing pulse reference
bin location (leading edge 50% point of the outgoing pulse), and first
return reference bin location (leading edge 50% point of the first re-
turn).

The DR LiDAR data for corresponding study regions were also col-
lected with the maximum horizontal accuracy of 0.4 m and maximum
vertical accuracy of 0.36 m based on the NEON'S LiDAR Algorithm
Theoretical Basis Document (ATBD) (Keith and Tristan, 2015).

2.1.3. Field data

As part of the NEON's data collection efforts, extensive annual
ground measurements of vegetation structure were conducted by the
NEON Airborne Observation Platform and the Terrestrial Instrument
System (TIS) programs. The plot design followed the protocol of the
NEON Terrestrial Observation System, and each plot is restricted to a
20 x 20 m region. The plot locations have been established by NEON's
Field Sentinel Unit for long-term plant, insect and soil measurements.
There were six field plots with 151 individual trees collected during
June 2013, which were available for these two study regions. One field
plot including 16 trees was located in the SJER1 study region and the
other five field plots with a total of 135 individual trees were located in
the SJER2 study region. The key vegetation structure variables for each
tree were measured such as the location (Easting, Northing), the max-
imum height, and the tree species.

2.2. Bayesian decomposition

2.2.1. Theoretical background

In a Bayesian statistical framework, deterministic models are spe-
cified via mathematical equations, e.g., linear or nonlinear functions,
and unknown model parameters are treated stochastically with various
probability distributions.

Based on Bayes' rule, the unknown parameters of a statistical model
can be written as:

p(®ly) x p(y | €)p(6) @

where y is a vector of observed data which has a probability distribu-
tion depending on an unknown vector of parameters denoted as p(y | 0),
which is also known as the likelihood function. The prior distribution of
model parameter vector 0 is a probability distribution that represents
the experimenter's beliefs about unknown parameters prior to obser-
ving the data and was denoted as p(0) (Hoff, 2009). p(@|y) is the
posterior distribution of the unknown vector of parameters.

Eq. (1) is fundamental to understanding that the posterior dis-
tribution of unknown parameters is proportional to the prior belief
about unknown model parameters, p(0), and the probability distribu-
tion of observed data given 6 (p(y|0)). In this way, the posterior dis-
tribution expresses the experimenter's updated beliefs about 0 in light
of the observed data y.

The main controversy in the Bayesian approach lies in the pre-
paration of prior information which is subjective (Ulrych et al., 2001).
Three legitimate arguments for this subjectivity are: (1) it is natural that
one's conclusion is affected by one's prior opinions, (2) the priors have
little effect on the posterior when a large amount of data are available,
and (3) the non-informative priors can be used to express ignorance
about the unknown parameters which can be assumed to be objective
(Hoff, 2009). Generally, there are two kinds of prior distributions fre-
quently used. One is the non-informative priors that are commonly used
when nothing is known about the value of parameters. Another is the
informative priors or the empirical priors, which can be obtained from
the previous evidence or empirical data.

Based on the previous study (Wagner et al., 2006), an individual
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waveform can be modeled with a mixture of Gaussian distributions.
Therefore, it is natural to assign the distribution of the waveform as p
(y|©) with a mixture of Gaussian distributions, which can be also in-
terpreted as the likelihood of model. The shape of the waveform is
determined by the parameters of the Gaussian distribution that can be
easily obtained as the prior distribution of parameters through the peak
identification algorithm (Zhou et al., 2017). The core of this algorithm
is to identify the peaks by comparing the three adjacent intensities of
the waveform and then selecting peak(s) when the corresponding peak
intensity is higher than one-fifth of maximum intensity of the given
waveform. Meanwhile, the number of peaks for the waveform is also
obtained through this process.

Once we formulated the prior distribution of the parameters and the
likelihood function, the concept of Eq. (2) can be used to derive the
posterior distribution of model parameters through MCMC simulation
(Gelfand and Smith, 1990). MCMC is a crucial technique for the rapid
expansion of the Bayesian inference in science. There are cases that
some parameters' posterior distributions are difficult or impossible to
sample when the non-conjugate priors are used or the integration of
parameters is conducted over a high dimensional parameter space
(Hoff, 2009). In such conditions, the MCMC method can be helpful by
approximating the true posterior distribution using the joint distribu-
tion p(y|0)p(0) instead of directly sampling from the integration of
posterior distribution for parameters of interest p(0|y).

2.2.2. Waveform decomposition application
In a Bayesian context, the nonlinear model can be formulated in the
following form

y;, = f(x,0)%¢ 2

where y; is the observed data, f(x;,0) is a nonlinear function with
parameters 0 and predictor x;, €; is an independent error with loge; ~N
(0,7, 7 is the standard deviation of loge;, and x; is the i™ time bin of
the waveform. Each waveform is reconstructed in terms of the main
model part (f(x;,0)) with a set of parametric functions and the error
part. For the main model part, the coherence between proposed con-
figurations and the real waveforms is measured. The multiplicative
error is used here mainly because FW LiDAR data are typically re-
stricted to be nonnegative (Gelman et al., 2015), and the multiplicative
format is also convenient to formulate distribution for the error part.
These formulations are consistent with the real FW LiDAR data as de-
monstrated in Fig. 2(a). There is a difference between the ideal Gaus-
sian waveform (IGW) f(x;,0) (black dash line) and the raw waveform
(RW) f(x;,0)"¢; (purple line) that corresponds to error part (¢; — 1)*f
(x;,0). The ideal Gaussian waveform is derived from Eq. (3) by sum-
ming four Gaussian components (j = 1, 2, 3 and 4) as shown in Fig. 2
with dash lines with different colors.

n 2
f(x,0) = Z Ajexp(—(xzazuj)]
j=1 j 3)

where n is the number of the Gaussian components, A;, §; and u; are the
amplitude of the peak, the standard deviation and the time location of
the peak for j'" waveform component, respectively. Eq. (3) gives rise to
total 3 * n parameters associated with the number of Gaussian com-
ponents. Aj,u; and §; are restricted to nonnegative values.

To reduce the impact of detected “false” peaks of the raw waveform
resulted from noise, especially at the beginning and tail of the wave-
form, a mean filter was conducted prior to subsequent processing. We
called the waveform after filtering as the smoothed waveform (SW) (red
line) that would be employed for subsequent analysis. A visual in-
spection showed that the smoothed waveform was nearly overlapping
with the ideal Gaussian distribution waveform (Fig. 2(a)) which may
justify the use of the Gaussian model for fitting FW LiDAR data. We
explored more details of model choices in the Section 2.4 to quantita-
tively test whether this assumption was valid. The number of Gaussian
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Fig. 2. (a). Illustration of ideal Gaussian distribution
waveform (IGW, black dash) vs. real waveform (RW,
purple) and smoothed waveform (SW, red). The
number (1, 2, 3 and 4) represent the individual
Gaussian components. (b). Empirical priors derived
from the SW through peak identification algorithm.
(For interpretation of the references to color in this
figure legend, the reader is referred to the web version
of this article.)

0 15 30 45 60
(a) Time(ns)

components, n, for each waveform varies depending on the number of
peaks detected along the pulse line. The unknown parameters 0 include
Ai,u1,84,...,A,,u,,8,.

After log transformation of the Eq. (2), the log-likelihood of y; can
be written as:

loge; = logy; — log f(x;, 0) 4)

logy, — logf(x;, ©))?
p (logy; | 6,7) = N(log f(x;,0),7%) = —( 0gy; — l0gf(xi,8)) )

1
ex|
\2mt? p( 212
()

To compare the influence of prior information on the model per-
formance, the non-informative priors and the empirical priors derived
from the raw waveforms were assigned to the model. Here, the non-
informative priors indicated that assigning equal probabilities to all
possible values of parameter space, named it the flat priors in sub-
sequent analysis.

Based on the statistical summary of raw FW LiDAR data, we nar-
rowed down the reasonable range of these parameters to [10, 150], [15,
100] and [4, 15] as the parameter space of Aj,u;and §;, respectively.
Hence, a uniform distribution (U) was assigned to each parameter to
express the ignorance of the effect of parameters' prior distribution on
the outcomes, and the prior distribution for each parameter followed
A;~U(10,150),u;~U(15,100) and &~ U(4,15). Another option for
specifying the priors were to use the empirical priors that were derived
from the corresponding SWs through peak identification algorithm
(Zhou et al., 2017). This algorithm is mainly to estimate the number of
Gaussian components n and approximated peak locations. According to
Fig. 2(b), the time bin for the peak of one waveform component m; (m;,
m,, mz and m,) was associated with the location of the peak that cor-
responds to u;. The corresponding intensity I; (I;, I, Is and I4) at the
peak was related to A; in Eq. (4). 8; was much more difficult to interpret,
therefore we used a third of the difference between consecutive peaks
(sj/3) to roughly represent prior information of §;. To sum up, we
specified the prior distribution of A;,u;and §; to follow the normal
distribution (N) with Aj~N(Jj;,10%), u;~N(m;, 5%), § ~N(s;/3,3%) and
7~N(0,0.5%).

A log posterior distribution of the model was obtained through all
prior information about parameters of interest and the data distribution
p(y|x,0,1). For the flat priors, the posterior distribution was the like-
lihood of data (Eq. (6)). For the empirical priors, the posterior dis-
tribution of model was expressed in Eq. (7):

p®, tly) xp(y! 6,7)p(€) p(x)

o T 2 exp( 15 Gogy; ~ logt(x. 0 p(@p(o)

i=1

Flat priors:oci exp —% Z (logy, — logf(x;,0))?
™ 7o 6)

(b) Time(ns)

Empirical priors

o exp(—% 2, (logy; — logf(xi,e»Z) I p:A)p, ) 23 (8) p(0
i=1

j=1

@
Py (A)-N(L;, 10%; p,(u)~N(m;52); pg(aj)~N(§, 32); p(D)-N(0,0.52)

It is reminded that m is the number of observations for each wa-
veform and n is the number of Gaussian components of the corre-
sponding waveform.

2.3. Model implementation

Our aim was to decompose the waveform data using the above
models to perform inference about quantities of the unknown para-
meters of interest. The model was implemented in R using the brms
packages (Buerkner, 2016) which can fit generalized non-linear mixed
models using Stan by performing the Bayesian inference and the opti-
mization for the user-specified model (Gelman et al., 2015). Stan is a
C+ + program to perform Bayesian inference which is composed of
four main blocks: variable declarations, parameter statements, trans-
formed parameters and model blocks. Detailed descriptions of model
structure and procedures are given in Appendix A.

2.3.1. Model dialogistic

We measured the model's convergence using the potential scale
reduction factor, named Rhat (R), which is a statistical criterion to test
how well the Markov Chains are mixing, or moving around the para-
meter space. R close to one indicates convergence, while high R value
implies that we should run a longer chain to improve convergence to
the stationary distribution. The effective sample size was also generated
to represent the equivalent number of independent iterations of the
chain. It is a criterion for the estimation efficiency. Generally, the
higher the effective sample size, the more reliable estimates can be
achieved (Gelman et al., 2014).

2.3.2. Model inference

The total samples may have divergent values before the chain
reaches a stationary state, therefore the model inference was conducted
on the posterior samples after dropping burn-in samples. Generally,
through these posterior samples, the distribution of parameters (6) and
summary measures, such as mean, mode, standard deviation and per-
centiles for each parameter can be derived. The main advantage of si-
mulating from posterior samples is that we can generate as many values
as we wish and thereby minimize errors in approximating quantities of
interest. For each parameter, these draws could be used to approximate
credible interval (CI) as shown in Fig. 3(b).
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Fig. 3. Illustration of uncertainty propagation from data to the parameter estimates, point, point cloud and surface model such as CHM using Bayesian decomposition method. (a) The
uncertainty of peak location (parameter uncertainty) using Bayesian method to fit the waveform. SW (black) represents the original waveform after smoothing, WW (red dash) represents
the waveform using the mode estimates of Bayesian method, and the gray shadow represents the possible solutions for fitting the waveform. (b) The 99 quantile estimates of the possible
peak locations from the u; posterior distribution. (c) The point uncertainty propagated from the parameter uncertainty through geolocation transformation at a sample region with the
background of u;s point cloud. (d) Possible point clouds generated from 1% quantile estimate and 99% quantile estimated peak locations as examples. (e) Possible surface models such as
Canopy Height Models (CHMs) generated from u;; quantile point cloud and u;e9 quantile point cloud as examples. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

2.4. Model reasonableness

The Gaussian function has been mostly used to decompose the
waveform LiDAR data, under the implicit assumption that the Gaussian
model is capable of reconstructing detected objects based on waveform
shapes. However, few studies have quantitatively or statistically justi-
fied the reasonableness of this assumption.

According to the previous study (Mallet et al., 2009), several models
that could be used to fit waveform LiDAR data. In this study, we em-
ployed three representative models to explore the reasonableness of
models in a Bayesian context: the Weibull model, the Adaptive Gaussian
model and the Gaussian model. The Gaussian model is most frequently
used model for waveform decomposition. The Adaptive Gaussian dis-
tribution has the form as Eq. (8) which can minimize the residual of the
model by introducing another variable which is also known as rate
parameter (A\).

n i
fac(x,8) = Y A exp(—@)
Pt 25; (®)
In this study, the rate parameter A, as a stochastic variable, was
assigned to follow normal distribution N ~ (2, 0.25), because the rate
parameter in the Gaussian model is 2 and the Adaptive Gaussian
model's rate parameter should be close to this value.
The Weibull model was introduced since it enables us to simulate
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either symmetric or asymmetric peaks with four unknown parameters.
This model has been successfully applied for Synthetic Aperture Radar
(SAR) image processing (Tison et al., 2004). The Nakagami and Bur
functions (Mallet et al., 2009) are also capable of simulating the wa-
veform shape with four parameters as the Weibull function. These three
functions share the same feature that all can simulate asymmetric and
symmetric waveforms with the same number of parameters. Here, the
Weibull function was selected to represent this class of potential models
for the waveform decomposition. The Weibull distribution function
used here can be written as:

(52 eol-552 )
exp| —

8 8
where A; is the amplitude, k (> 0) is the shape parameter that controls
the behavior or the shape of the distribution, and 8; (> 0) is the scale
parameter that controls the spread of the distribution. The shape
parameter can capture the asymmetry or skewness of the waveforms
that overcomes the disadvantage of the Gaussian function, which is
only suitable for symmetric distributions. u; is a location parameter in
the Weibull model. However, this parameter is not useful in waveform
interpretation and subsequent geolocation transformation, since it does
not have any physical meaning in our case.

The predictive accuracy of models is generally measured with the
deviance information criterion (DIC) for the Bayesian model selections.

-,k
fw(x,0) = 3 Air-
i=1 i

)
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In the present study, a more relevant criterion, the Watanabe-Akaike
information criterion (WAIC), was adopted to provide a basis for model
assessment and model selection (Vehtari et al., 2016). WAIC is a fully
Bayesian criterion that uses posterior distribution of existing simulation
draws rather than a point estimate to approximate leave-one cross va-
lidation for estimating pointwise out-of-sample prediction accuracy.

One hundred forty waveforms with a different number of waveform
components that represented different levels of model complexity were
randomly selected as samples to check the model reasonableness of
waveform decomposition. Each waveform was fitted with the above
three models (f(x,0),fac(x,0),and fw(x,0)) and WAIC, uncertainty
bounds and residual standard error of model (SE) were reported. The
model choice would be based on these criteria, physical meaning of
corresponding parameters and processing efficiency.

2.5. Model efficiency

There are several commonly used MCMC methods such as Gibbs
sampling, Metropolis algorithm, and Metropolis-Hastings (MH) algo-
rithm. In this study, the MCMC simulation was achieved using the
Hamilton Monte Carlo (HMC) algorithm to enhance the model effi-
ciency.

The HMC is a relatively new MCMC algorithm that applies the
concept of Hamiltonian dynamics to Metropolis update for simulating a
Markov chain (Neal, 2011). The No-U-Turn Sampler (NUTS) (Hoffman
and Gelman, 2014) was used to implement the sampling procedures of
HMC and more details can be found in Appendix B.

In addition, the effect of different priors on the efficiency of the
model was also explored using the same sample waveforms as used in
Section 2.4. Each waveform was decomposed twice using the flat priors
and empirical priors with the Gaussian model. The computation time
for each model was recorded and the average time for given number of
waveform components was reported. In this step, the number of itera-
tions and burn-in had been assumed to be adequate to derive the ac-
curate approximation of parameters no matter which prior was used.
According to Table B1, the empirical priors converge faster. As a result,
we used the empirical priors to process all other waveforms.

2.6. Geolocation transformation

The Bayesian decomposition can provide estimated quantiles (uj;,
from 1% to 99% of posterior samples including mode estimate u;so) for
possible target time bin locations (u;), corresponding standard error,
effective sample size and R of A;, u;,0; for each waveform. The 3D point
clouds were generated by combing the original georeferenced data such
as Xo, Yo, Zo, dx, dy and dz. provided by the NEON datasets with the
estimated time bin (u;, Wj;...Uj09). The leading edge position for each
detected peak was used to compute the geolocation of desired time bin
by incorporating the full width at half maximum (FWHM).The detailed
calculation processes are given in (Zhou et al., 2017).

2.7. Performance evaluation

Both the DD and Bayesian decomposition methods can be classified
as the decomposition method instead of the combined deconvolution
and decomposition method in terms of processing steps. However, the
DD method is different from the Bayesian decomposition method which
belongs to the probabilistic approach, but the DD, Gold and RL methods
are the deterministic approach which only has one estimate for a
parameter or possible target position. Bayesian decomposition method
here generates the distributions for the parameters, from which mul-
tiple possible estimates for the parameter values could be obtained e.g.,
using the quantiles. In our case, we generated 99 possible quantile es-
timates for the parameter u; with probability as shown in Fig. 3(b),
which resulted in 99 possible point clouds after geolocation transfor-
mation. To compare the performances of the Bayesian decomposition
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method with deterministic methods, the point cloud with highest
probability using the mode estimate (u;s0) for geolocation transforma-
tion was selected to conduct the performance evaluation.

The Bayesian decomposition cannot converge for the extremely ir-
regular or noisy waveforms, which results in some noisy points after
geolocation transformation. With the aid of LAStools (Isenburg, 2012),
the noisy points were deleted before conducting the method compar-
isons of the point cloud. In this study, the point cloud obtained using
mode estimates (u;s50) with Bayesian decomposition method was com-
pared with the DD, Gold and RL approaches from the previous study
(Zhou et al., 2017) at two different levels: point cloud and individual
tree's metrics such as the number of points at various height bins,
percentile heights and canopy point density.

2.7.1. Point cloud comparisons

Point clouds are the primary result of waveform decomposition and
their accuracy significantly influences the quality of their derived
products such as percentile heights and Digital Terrain Models (DTMs).
Thus, we computed the Hausdorff distances (Mémoli and Sapiro, 2004)
between the waveform-based point cloud derived from different
methods and the DR LiDAR point cloud. This comparison was named
C2C in subsequent analysis. The thrust for the Bayesian decomposition
method is to avoid the error brought by interpolation and variability of
area based products such as DTM caused by various grid cell sizes. In
addition, the point cloud comparison is a natural and direct way to
evaluate the surface representation without adding any intermediate
step (Mémoli and Sapiro, 2004).

The principle of the Hausdorff distance is that for each point of a
compared cloud, the nearest neighbor method is used to search the
nearest point in the reference cloud (the DR point cloud) and then
compute their Euclidean distance. This process was implemented in the
CloudCompare software (Girardeau-Montaut, 2015). Meanwhile, all
points' X, Y, Z differences were also generated for the Bayesian de-
composition, DD, Gold and RL approaches.

2.7.2. Individual tree metrics comparisons

In addition to the comparisons for the grand picture such as point
clouds, the comparisons at the individual tree level were also explored
to present a more comprehensive comparison of methods' perfor-
mances. Individual tree dimension's LiDAR metrics such as percentile
heights, median height and crown density are crucial for characterizing
canopy structure and estimating biomass (Falkowski et al., 2009;
Popescu, 2007; Zhao et al., 2011). We randomly selected 121 trees from
the SJER to compare their total number of points, the number of non-
ground points (the elevation larger than reference DTM), the non-
ground canopy point density, the percentile heights and median height
using the Bayesian decomposition method with corresponding DR
LiDAR data results. Additionally, the results of individual tree level
from the DD, Gold and RL approaches were also incorporated into
comparisons that had been done in the previous study.

Due to fewer points at lower heights corresponding to the unders-
tory, the height bin width was 2 m when the tree height was below 4 m,
and it became 1 m when the tree height was larger than 4 m. The total
number of points and corresponding ratio of points in each height bin
were summarized. To further compare the performance of different
waveform processing methods, the normalized percentile heights
(subtracting the minimum elevation for each tree boundary) were cal-
culated. Given the point cloud of one tree, ten height metrics including
10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th and 100th (max-
imum height) percentile heights were extracted to demonstrate the
vertical structure of vegetation based on the height of LiDAR points.
These metrics not only help to predict biomass, but also can quantita-
tively measure the waveform LiDAR data's penetration advantage.

The canopy point density for individual trees was also analyzed for
different approaches since it was beneficial to map tree stem and crown
(Lee and Lucas, 2007). We randomly selected 21 trees from 121 trees to
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show detailed results of the comparisons. Here, the canopy point den-
sity was represented by the number of above ground points per square
meter.

2.7.3. Field data calibration

What the above comparisons share is that DR LiDAR data were
adopted as reference data that had been successfully applied in many
studies (Allouis et al., 2013; Chen, 2007; Zhou et al., 2017) for its high
accuracy of measuring height. In this study, we not only compared the
point cloud and individual trees' metrics derived from FW LiDAR data
to corresponding DR LiDAR (reference) provided by the NEON, but also
used the field-measured tree height to evaluate results. To facilitate
comparisons of different methods' performances, the average bias,
standard deviation and Root Mean Squared Error (RMSE) of their dif-
ferences were computed. According to 151 field-measured trees' loca-
tions, the values from waveform-based Canopy Height Models (CHMs)
using ujso were extracted. To make our extracted values more re-
presentative, we generated a 1 m buffer for each location and then
averaged the values fell in each buffer.

2.8. Uncertainty analysis

2.8.1. Uncertainty propagation

The essential feature of the Bayesian approach is the explicit
quantification of uncertainty introduced by incorporating multiple le-
vels of randomness or various sources of errors. Through estimating the
predictive parameter uncertainty, rigorous error propagation along the
processing steps can be quantified. In this study, there were different
sources of uncertainty originating from data themselves and along the
processing steps, which would accumulate and propagate to the final
products. Most of the previous studies are based on the deterministic
models or approaches that only seek a single value and ignore the noise
or error inherent in the data and approaches. To this end, we conducted
a comprehensive uncertainty analysis to quantify the uncertainty of
results at different steps including parameter estimates, point cloud
generation and surface model generation (Fig. 3).

Through the probability distribution of inference using the Bayesian
approach, the summary measures of unknown parameters such as
mode, percentiles and standard deviation are obtained instead of a
single estimate. Unlike the deterministic method, the Bayesian credible
region is characterized by the 95% highest posterior density (HPD)
region rather than 95% confidence interval. The main difference is that
the HPD region can be discontinuous when the parameter's posterior
density is multimodal or asymmetric (Hoff, 2009), while the confidence
interval region is always continuous. At this stage, the Gaussian model
had been chosen to fit the waveforms that gave us suitable physical
interpretation and accurate estimation of parameters. The posterior
density of the individual parameter was generally used to obtain their
CIs. The fitting functions used here followed the normal distribution
which was symmetric. Thus, we directly used the empirical quantiles of
the posterior samples to approximate the uncertainty of the peak lo-
cations (blue dash) as displayed in Fig. 3(a). The value of peak location
was regarded as a realization of MCMC process. The distribution of
possible peak locations with probability from the posterior samples
after Bayesian decomposition was shown in Fig. 3(b). The estimated
quantile peak locations uj; starting from 1% to 99% of posterior samples
were chosen to conduct geolocation transformation to derive possible
points located along the blue arrow (Fig. 3(c)). We used the mode es-
timate u;so of possible peak locations to generate the point cloud as the
background in Fig. 3(c), and several points with different length of
arrows were selected as examples to demonstrate the uncertainty of the
corresponding point when we used their quantile estimates (u;; ... Ujg9).
However, quantifying uncertainty of these individual points separately
was not useful to some extent, since most of the subsequent studies
were conducted on products derived from these points instead of in-
dividual points, such as the point clouds (Fig. 3(d)), DTM and CHM
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(Fig. 3(e)). The uy quantile point cloud was composed of the points
derived from the geolocation transformation using u;; for all waveforms
located in the region. Fig. 3(d) demonstrates the u;; and uj99 point
clouds to demonstrate the possible maximum uncertainty of point cloud
products in a sample region. Due to the relatively small differences
among 99 point clouds, we showed only two point clouds. As men-
tioned earlier, the Hausdorff distance was employed to calculate the
distance of these waveform-based u;; quantile point clouds and the DR
LiDAR point cloud. For each u; point cloud, the average bias (mean),
standard deviation and RMSE of X, Y, Z and point distances were de-
rived. The uncertainty of point cloud distances was characterized by the
distribution of average bias and RMSEs derived from these quantile
point clouds. A similar method was also conducted on the waveform-
based surface models such as DTM and CHM. More specifically, the
DTM for each quantile point cloud were generated through the las-
ground and las2dem implemented in LAStools after deleting noisy
points. Regarding the CHM, we followed the steps described by
Khosravipour et al. (2014) and implemented these steps in LAStools to
obtain the 99 quantile CHMs. To further quantify the performance of
these methods, we compared the waveform-based DTMs and CHMs
from quantile point clouds with corresponding reference data and
computed the evaluation criteria such as the average bias and RMSE.
The graphical and statistical methods were employed to analyze the
comparison results and their corresponding uncertainties.

2.8.2. Uncertainty of accuracy assessment with field data

A limited number of field observations and imprecise field-mea-
sured data significantly affect the calibration results and accuracy as-
sessment (Yao et al., 2012). Both require us to conduct uncertainty
analysis of field data to enhance the credibility of calibration. However,
the uncertainty of field data is difficult or impossible to quantify since
data providers do not clearly state which error sources were considered.
In this study, we assumed the field data were “true”, and the un-
certainty of estimated tree height using the Bayesian decomposition
method was analyzed. Specifically, 1 m buffers generated from field-
measured individual tree locations (X and Y) were first used to extract
possible tree points from the u;s¢ point cloud. For each buffer, the Z
values of the points above 95th percentile height were selected as the
possible tree height and these points were employed to identify the
waveform(s) that fell in the tree region. The uncertainty of these in-
dividual trees' height was quantified through the 95% CI of peak lo-
cations from selected waveform(s) after the Bayesian decomposition.
Moreover, we calculated the uncertainty of RMSE for the estimated tree
height based on the nearest possible value and farthest possible value
from each tree's 95% CI to the field-measured data. An overview of the
proposed methodology was generated to summarize the major steps
implemented in this paper as shown in Fig. 4.

3. Results
3.1. Model reasonableness

We modeled 140 sample waveforms with different complexities (the
number of components) using the Weibull, Adaptive Gaussian and
Gaussian models within the Bayesian framework, and three re-
presentative examples of decomposition results including waveform
components (colored dash lines), uncertainty (gray shadow), the cor-
responding WAIC and SE of model are demonstrated in Fig. 5. As ex-
pected, all models worked well with a relatively small difference when
we visually inspected the SW and MW. There was no noticeable loss of
the fitting accuracy using these three models when the waveform was
relatively simple.

However, the Weibull function model became less fitted and yielded
a wider gray shadow with larger uncertainty when the waveform had
higher number of Gaussian components. The statistics summary of the
models further confirmed this inspection, as the Weibull model always
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Fig. 4. Flowchart for the Bayesian decomposition of waveform LiDAR data with uncertainty analysis.

achieved the largest WAIC and SE given the same waveform. Moreover,
most of the waveforms in the study site were close to symmetric dis-
tributions, which diminishes the advantage of the Weibull model that is
capable of modeling the asymmetric waveforms. Among these three
models, the smallest WAIC was achieved using the Adaptive Gaussian
model to fit complex waveforms with more than one peak. However,
this model might face the problem of overfitting, since the rate para-
meter (A) of the Adaptive Gaussian model for each waveform was ad-
justed mainly for minimizing residuals of the fitted model.
Consequently, the noise contained in the data might be considered as
the main model part (f(x;,0)) instead of the error part. The experiment
of sample waveforms showed that 68 out of 95 waveforms with one
component could generate the smallest WAIC using the Gaussian
model. Additionally, over 75% of all waveforms in the SJER study site
were considered to be one component according to the inspection of the
waveform components (n). These gave us more confidence to utilize the
Gaussian model instead of the Adaptive Gaussian model to perform
waveform decomposition in terms of model accuracy and uncertainty.
In addition, the physical interpretation of the parameters was also
limited when we applied the Weibull model or Adaptive Gaussian
model. For the four-parameter Weibull model, the estimates can't be
employed as a location like Gaussian model's peak location to calculate
the geolocation of the extracted points. It was meaningless or difficult
to interpret the rate parameter of the Adaptive Gaussian model from the
decomposition  perspective and  geolocation transformation.
Furthermore, the experiment of these waveforms showed that the
Weibull and Adaptive Gaussian models took more time to find opti-
mized parameters and reach convergence for an additional parameter.
Therefore, we concluded that the Gaussian distribution model was the
most suitable model for FW LiDAR data decomposition based on the
accuracy, uncertainty, physical meaning and processing efficiency.
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3.2. Performance evaluation

3.2.1. Point cloud comparisons

The C2C validation of the SJER1 study region was executed as
displayed in Fig. 6(b). To associate the C2C distances across the study
site with the vegetation distribution, the CHM derived from the Baye-
sian decomposition method (Fig. 6(a)) was plotted against the C2C
distances' spatial distribution pattern. It was worthy to note that larger
C2C absolute distances (> 0.5 m) were more likely to occur at the
vegetation part with higher CHM values. The ground region was the
most accurate portion with relative small distance when we compared
waveform-based point cloud to the corresponding DR LiDAR point
cloud.

Fig. 7 depicts the distribution of point cloud distances, horizontal
(X, Y) and vertical (Z) distances between the waveform-based point
cloud using the mode dataset with the Bayesian decomposition method,
and the DR point cloud. When examining these three 1D distances
(gray), it was evident that the horizontal (X and Y) and vertical (Z)
distances' distributions were symmetric around 0 m with almost the
same distribution. However, a closer examination revealed that com-
pared with the horizontal distances, the vertical distances were greater,
but not markedly greater, with larger SD and RMSE. These three 1D
distance's distribution together contributed to the point distances' dis-
tribution (3D) with the mean point distances and their corresponding
RMSE were 0.51 m and 0.67 m, respectively. As expected, the absolute
MDs and RMSEs of X, Y, Z coordinates' C2C distances were all smaller
than point distances.

To further illustrate, more detailed C2C point cloud comparisons
between waveform-based point clouds using four methods (the
Bayesian decomposition, DD, Gold and RL) and reference point cloud
were summarized in Table 1. All methods generated satisfactory point
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legend, the reader is referred to the web version of this article.)

clouds with acceptable mean point distances (< 0.84 m) and RMSEs of
point distances (< 0.93 m) compared to the DR point cloud. Upon
closer examination of results with different methods, the DD method
outperformed the other three methods with the smallest average point
distances, X, Y, Z distances, and corresponding RMSEs. Especially for
the horizontal distances (X and Y), there was a tiny difference of the
four methods in terms of the MD and RMSE. However, a relatively
larger difference of the methods' MD and RMSE occurred at the vertical
direction (Z) that consequently leads to the same pattern of four
methods' point distances.

3.2.2. Individual trees' metrics

This section provided a comparison and evaluation of the FW LiDAR
processing methods at the individual tree level. To demonstrate the
robustness of approaches and reduce the selection bias, 121 randomly
selected trees' height bins, percentile heights and canopy point densities
were generated (see examples in Fig. 8 and Table 2). There were two
patterns observed with respect to the point density of individual trees.
Thus, two representative trees derived from waveform-based point
clouds using the Bayesian decomposition, DD, Gold and RL approaches
were chosen to demonstrate these patterns: one tree with higher point
density (Tree 1), and another tree with lower point density (Tree 2)
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were compared to the DR LiDAR data. Overall, about 91% of all se-
lected waveform-based tree point clouds had more dense point clouds
than their corresponding DR LiDAR data. As shown in Table 2, 16 out
21 trees' waveform-based point densities were higher than the corre-
sponding region's DR LiDAR data, which followed the pattern of the
Tree 1. Fig. 8 shows the absolute and normalized point frequency in
each height bin of FW LiDAR data using four approaches and DR LiDAR
data. As expected, more points were extracted from FW LiDAR data
with these four approaches when examining the Tree 1's middle height
bins from 6 to 22 m. The Gold and Bayesian decomposition methods
outperformed other methods from the perspective of the number of
points extracted from the mid-story of the tree.

This trend was not so obvious for the Tree 2, where higher point
frequency in most of the height bins was observed using DR LiDAR data
rather than FW LiDAR data, especially the absolute point frequency.
While the normalized point frequency demonstrated advantages of FW
LiDAR data for characterizing the mid-story of the tree, but the evi-
dence was not as strong as for the Tree 1. The common feature of all
trees shares was that DR LiDAR can detect more points in the lower part
of their height or on the ground than FW LiDAR. This might be at-
tributed to the fact that the tree had a dense canopy and the transmitted
energy rarely reached the ground.
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Fig. 6. (a). The canopy height model (CHM) generated from Bayesian approach (Left). (b). The spatial distribution of the distance between waveform-based point clouds using Bayesian

decomposition method and the DR point clouds (C2C) at SJER1 region (Right)

The percentile heights' results for these two examples demonstrated
similar trend as height bin results (Fig. 9). For Tree 1, the significant
differences among different processing methods occurred around the
median percentile, especially for the Bayesian decomposition and DD
methods. Surprisingly, the four approaches and DR LiDAR data's per-
centile heights reached an agreement after 80th percentile height. This
may indirectly imply that more points were extracted from the wave-
forms at the mid-story of tree height.

To reduce the ground points' effect on the comparisons, the trees'
non-ground part was used to compare different methods' performances.
We used 21 representative trees from the SJER1 to demonstrate com-
parison results. According to Table 2, only 5 out of 21 trees' DR LiDAR
data results (with bold) yielded higher canopy point density than wa-
veform LiDAR data using these four methods. Additionally, the DR
LiDAR results detected more ground points than waveform-based

results as shown in Table 2. There was no evident trend for the other
three methods, however, the canopy point density results of all methods
indicated that waveform LiDAR data can provide more non-ground
points than DR LiDAR data. A closer examination of five individual
trees with fewer points than corresponding DR LiDAR data shows that
three of them (the Tree 2, Tree 12 and Tree 20) are located in the
regions with fewer flight lines overlaid which may mainly contribute to
the reduction of points detected.

3.2.3. Field data calibration

The accuracy of the maximum height derived from DR-based and
waveform-based CHMs were assessed by comparing the field-measured
data at the SJER1 study region. Overall, there was no significant dif-
ference among four waveform processing methods with regards to the
average bias, standard deviation and RMSE. All of these methods
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Table 1

Summary statistics of the distances between waveform-based point clouds with the four
methods (Bayesian decomposition (Bayesian), DD, Gold and RL) and the reference point
cloud at the SJER site.

Items Methods MD SD RMSE MAX MIN

Point distances(m) Bayesian 0.51 0.44 0.67 5.07 0.00
DD 0.48 0.37 0.61 3.98 0.01
Gold 0.78 0.36 0.86 4.74 0.00
RL 0.84 0.40 0.93 4.57 0.01

X distances(m) Bayesian 0.02 0.34 0.34 3.74 —-3.73
DD —-0.01 0.30 0.30 2.45 - 3.60
Gold 0.00 0.36 0.36 3.64 —3.68
RL 0.00 0.39 0.39 3.47 —3.44

Y distances(m) Bayesian —0.02 0.35 0.35 3.69 —3.81
DD 0.02 0.29 0.29 2.59 —-3.00
Gold 0.05 0.34 0.35 3.23 -3.59
RL 0.05 0.38 0.38 3.71 —3.46

Z distances(m) Bayesian —-0.09 0.46 0.46 4.37 —4.62
DD -0.17 0.42 0.45 3.24 -3.07
Gold —-0.48 0.51 0.70 3.98 —4.61
RL —0.47 0.59 0.75 3.56 -4.23

*MD: the mean point distances between waveform-based point clouds and DR point
clouds. SD: the standard deviation of distances. RMSE: the root mean square error of
distances. MAX: the maximum of distances. MIN: the minimum of distances.

generated comparable and acceptable results compared with the field-
measured data. Specifically, the comparison between DR LiDAR data
and the measured data produced the smallest RMSE with 1.11 m, and
the DD method consistently yielded the least accurate results with the
largest average bias and RMSE. The superior waveform processing
method varied with different statistics criteria used: the RL method was
superior with the smallest RMSE (1.35 m), and the Gold method out-
performed others with the smallest average bias.

3.3. Uncertainty analysis

3.3.1. Individual parameter uncertainty
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sampling processes and the marginal posterior distribution of the
parameters (A, u, 8) using the flat priors and empirical priors. From the
trace plot (Left), we can see an obvious difference at the beginning of
the parameter sampling and the flat priors (sky blue) takes more steps
to reach the stable status, especially for A and 8. Given the same
number of iterations, the distributions of the parameters were nearly
symmetric following the normal distribution with the empirical priors
(gray), while the results of the flat priors (sky blue) were not symmetric
which implied the posterior sampling of the parameters did not reach
the stationary stage. The Model efficiency experiment using different
parameters' prior distribution showed that the performance of the flat
priors can reach the same level as the empirical priors with more burn-
in steps and total iterations.

From Table 4, a general trend has emerged that more time is taken
to process the waveform with a larger number of components no matter
which priors were used. Interestingly, there was an abrupt rise of time
cost when the waveform's number of components became four. The
comparison between the flat priors and the empirical priors demon-
strated that there was little difference of time cost when the waveform
was relatively simple with one or two waveform component(s). How-
ever, the computation time using the empirical priors was much shorter
than when using the flat priors for complex waveforms. This reduction
of time could make a substantial difference when millions of waveforms
need to process and the efficiency of using the empirical priors will
become more evident. Without the consideration of the computation
cost and time, the impact of different priors on the parameter estimates
and the performance of the Bayesian models were negligible.

3.3.2. Point cloud uncertainty

The PDFs of descriptive statistics (Mean and RMSE) for point dis-
tances (sky blue), X, Y and Z distances (gray) through comparing the
waveform-based LiDAR quantile point cloud datasets with the DR da-
taset are displayed in Fig. 11.

The uncertainty of average bias and corresponding RMSE for point
distances were larger than the other three individual coordinates' de-
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Table 2
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Summary of the total number of points/number of non-ground points/non-ground canopy point density for 21 individual trees using DR LiDAR data (Discrete), and waveform LiDAR data
with the DD, Gold, RL and Bayesian decomposition (Bayesian) methods.

Tree index Discrete DD Gold RL Bayesian
Tree 1 1465/867/7.3 1554/1114/15.0 1607,/980/13.2 1429/831/12.7 2008/1593/21.3
Tree 2 2534/1337/10.8 1616/947 /7.4 1761/1014/8.0 1490/838/6.6 1982/1367/10.7
Tree 3 827/353/7.0 858/448/18.1 879/425/19.1 833/419/15.9 1035/569/28.7
Tree 4 887/327/7.1 898/432/15.7 1053/399/18.0 903/439/16.5 102/499/19.3
Tree 5 3029/1216/16.7 1128/610/13.2 1190/569/13.1 1085/546/10.7 1326/744/15.0
Tree 6 3873/1211/11.2 2306/1059/9.8 2315/1079/10.0 2257/1046/9.7 2312/1202/11.2
Tree 7 2186/678/6.6 1880,/880/8.6 1877/737/7.2 1859/862/8.5 1816/872/8.6
Tree 8 1698/999/7.2 2256/1335/9.7 2385/1243/9.0 2422/1448/10.5 2559/1681/12.2
Tree 9 543/295/7.5 659/445/11.5 669/432/11.0 652/430/10.6 671/448/11.3
Tree 10 552/316/7.2 405/283/6.4 558/322/7.3 569/358/8.1 563/387/8.8
Tree 11 499/193/8.1 444/184/7.8 521/239/10.1 509/268/11.3 500/243/10.2
Tree 12 1945/649/17.7 893/445/12.1 946/386/10.5 885/398/10.9 897/412/11.2
Tree 13 773/331/7.9 834/454/10.8 883/433/10.3 876/500/11.9 832/465/11.1
Tree 14 1278/718/7.2 1484/951/9.5 1563/964/9.7 1553/953/9.5 1609/1101/11.0
Tree 15 1275/647/7.4 1748/988/11.2 1910/1161/13.2 1853/1090/12.4 1988/1467/16.7
Tree 16 1788/1071/6.5 2098/1407/9.0 2439/1596/10.2 2428/1512/9.7 2624/2086/13.4
Tree 17 708/329/7.4 625/315/7.1 813/327/7.4 765/393/8.8 749/377/8.5
Tree 18 770/303/7.1 691/309/7.3 747/297/7.0 753/356/8.4 746/356/8.4
Tree 19 1847/902/7.2 2437/1696/13.6 2687/1678/13.5 2737/1700/13.6 3027/2423/19.5
Tree 20 1116/575/11.4 758/531/10.5 829/525/10.4 824/531/10.5 811/548/10.9
Tree 21 1660/805/6.8 2004/1182/9.9 2041/1104/9.3 2042/1100/9.2 2267/1589/13.4
7 % Discrete # 7 % Discrete Fig. 9. The individual trees' percentile heights (Left:
Q+{~DD - Q+{4DD Tree 1; Right: Tree 2) using DR LiDAR data (Discrete),
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corresponding distribution. For example, the mode of average distances
of the X, Y and Z centered around — 0.02, 0.02 and — 0.08 m, respec-
tively. The counterpart of point distances was much larger which cen-
tered around 0.51 m with more flat distribution. The RMSE demon-
strated a similar pattern that the distribution of point distances was less
compact than other three coordinates' distribution with a larger mode.
Interestingly, there was no significant difference between the distribu-
tion of X distances and Y distances, while the distributions of Z dis-
tances varied with the X and Y distances with larger absolute mode and
uncertainty.

3.3.3. Surface model uncertainty

The uncertainty of surface models derived from these quantile point
clouds using the Bayesian decomposition method is demonstrated in
Fig. 12. The distribution of the CHM's mean bias and RMSE (dark gray)
tended to be wider than DTM counterparts. For instance, the estimated
RMSE for the CHM was 1.38 m and 95% CI ranged from 1.31 to 1.61 m,
both of which were larger than the RMSE of the DTM. The distribution
of the average difference for DTM was likewise smaller than CHM's
average difference from the perspective of 95% CI. Therefore, it was
evident that the uncertainty of DTM was smaller than the uncertainty of
CHM in terms of their corresponding distribution of the average bias
and RMSE.

Compared to the point clouds' uncertainty (Fig. 11), the surface
models yielded larger uncertainty with wider CIs, which could re-
present the propagation of true estimation error along the processing
steps. Using the RMSE of CHM as an example, it demonstrated a larger
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median and more flat pattern distribution than point clouds' RMSE
(Fig. 11).

3.3.4. Uncertainty of accuracy assessment with field data

Estimated tree height's uncertainty yielded from the Bayesian de-
composition method at individual tree level against the field-measured
data is displayed in Fig. 13. It was observed that data points (blue
circle) of estimated tree height (ETH) versus field-measured tree height
mostly followed tightly around Y = X line that indicated the Bayesian
decomposition method can accurately capture the height of these in-
dividual trees. In addition, almost all trees' 95% CIs of ETH (145 out
151 individual trees), as indicated by the horizontal error bar (sky
blue), were intercepted by Y = X line. The uncertainty of ETH's RMSE
confirmed good agreement with the field-measured height that resulted
in the uncertainty of RMSE ranges from 0.69 to 2.05 m. To avoid the
proliferation of figures, two individual trees (Tree 1621 and Tree 1647,
orange) were used as examples to further demonstrate final results of
tree height estimation using the Bayesian decomposition method as
shown in the right panel of Fig. 13. This figure provided more than just
one value of ETH that generally obtained from the deterministic
methods, and yielded more informative estimates of tree height with
probability for the individual tree.
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Fig. 12. Uncertainty of the average difference and RMSE
between waveform-based surface models (the DTM and
CHM) and reference surface models using Bayesian de-
composition method at the SJER site. CI: Credible interval.

CHM RMSE

median= 1.38
95Cl:[1.31,1.61]

™~ DTM Mean
‘r)ned_ian= -0.52
© | 95%CI:[-0.61,-0.45] DTM RMSE
median=0.70
95%Cl:[0.62,0.82]
o 4
> ¥ 7
:“?)’
b CHM Mean
a © A median= 0.30
95CI:[0.11,0.61]
~ 4
N )
I T T T T T T T T T T
-09 -07 05 -03 -01 01 03 05 07 09 11
Uncertainty(m)

4. Discussion
4.1. Model reasonableness

Several potential models such as the Generalized Gaussian, Burr and
Weibull models have been proposed to fit the airborne LiDAR wave-
forms (Mallet et al., 2009), while most of them are unrealistic models
which may violate theoretical considerations or misinterpret their real-
world's physical meanings. Thus, the choice of model is crucial for the
subsequent FW LiDAR data processing and outcome interpretation.

The results of model reasonableness in the present study justify that
the Gaussian model is more suitable for reconstructing the waveform
LiDAR signals in terms of efficiency, physical interpretation and un-
certainty. Three representative models suitable for FW LiDAR data
processing including the Weibull, Adaptive Gaussian, and Gaussian
models were explored. In our case, the Adaptive Gaussian model better
fitted waveforms compared to the Gaussian model. However, the
Adaptive Gaussian model is prone to overfit the model and incorrectly
considers data noise as real waveform signals by adjusting the rate
parameter to pursue the smallest residual of model fitting. The Weibull
model is more difficult to constrain than the other two models with
larger CIs or uncertainty. Moreover, there is no explicit way to explain
the physical meaning of the corresponding parameters. Hence, the
Gaussian model is a suitable trade-off between accuracy and mean-
ingful solution to extract useful information form FW LiDAR data.

Simultaneously, the quantification of uncertainty using these
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models demonstrates the attractive features of the Bayesian method and
allows us to interpret results in a more natural way with posterior
distribution of estimates. Moreover, we can explicitly trace the un-
certainty inherent in any inference and monitor the uncertainty pro-
pagation through the use of quantiles for different parameters, quantile
datasets and models (Fig. 3).

4.2. Performance evaluation

4.2.1. Point cloud

The calibration and comparison conducted on the point clouds
eliminate the reliance on the underlying surface derived from local
parametric estimates. Additionally, we compare every point of the
waveform-based point cloud with the corresponding reference point
cloud instead of mainly comparing a subset of the total points in the
specified grid cells when the area based method (DTM or CHM) is used.
This can avoid the error introduced by interpolation and poor choice of
gridding size, and ultimately make the comparisons become more
convincing and comprehensive. The C2C results show the Bayesian
decomposition method is applicable for extracting information from FW
LiDAR data to characterize the vegetation structures. The contribution
made by the Z direction to the point distances is much larger than the X
and Y directions. A reasonable explanation for the difference is that
pulse direction vector of the Z direction (~ — 0.15 m/ns) is much larger
than the X and Y directions (~—0.02 and — 0.01 m/ns). As a con-
sequence, the relative change in the Z direction is much higher than in
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Fig. 13. Uncertainty of the individual trees' height as obtained from the Bayesian decomposition method vs. field-measured tree height at the SJER study site. The left panel refers to all
individual trees' 95% credible interval (sky blue), and the right to the distribution of two possible estimated tree heights with 95% credible interval (blue). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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the X and Y directions given the same change of time. This may also
suggest that FW LiDAR data's horizontal precision is higher than the
vertical precision. The uncertainty of the point cloud (Fig. 11) further
substantiates this finding with larger average distance and RMSE in the
Z direction.

Overall, the C2C method's results support that the four waveform
processing methods can generate relatively satisfactory results with all
methods' RMSE values being < 0.93m (Table 1). However, a closer
examination of the point clouds comparison results reveal that the
decomposition method (the DD and Bayesian decomposition) may
generate more accurate point clouds than the combined deconvolution
and decomposition method (the Gold and RL) in terms of the de-
scriptive statistics such as the MD and RMSE. Specifically, the DD
method is prone to outperform other three methods with slightly
smaller average distance and corresponding RMSE. This conclusion
backs up the results using the area based method of Zhou et al. (2017)
that the DD method potentially yields more accurate DTMs and CHMs
than the Gold and RL methods.

4.2.2. Individual tree metric

The C2C comparison yields a general view about the waveform
processing methods on a large scale. Examining metrics derived from
different methods at the individual tree level further reveal advantages
and disadvantages of these methods. Most of the individual trees de-
rived from waveform LiDAR data can obtain more points - by as many
as 80% of trees (16/21) at the SJER1 study region - compared with the
corresponding DR LiDAR data. Two illustrative examples of individual
tree's point distribution at different height bins, percentile heights and
canopy point density depict a similar trend that FW LiDAR data are
capable of extracting more points at the mid-story of the vegetation.
Surprisingly, by comparing the DR LiDAR data results, FW processing
based methods are less likely to detect ground points that maybe the
disadvantage of using FW LiDAR data.

4.2.3. Field data calibration

Various factors could affect the field calibration results, such as the
number of sample plots, the accuracy of measured instruments and the
mis-registration error between LiDAR data and field plots (Zhao et al.,
2011). Although field calibration is necessary for LiDAR applications,
caution should be exercised when using calibration results, given the
survey error was inherently unavoidable and ubiquitous. Table 3 de-
monstrates that DR LiDAR data (RMSE < 1.1 m) can be an alternative
for field-measured data when they are not available. This conclusion is
also consistent with the previous studies' claims that DR LiDAR data can
accurately measure the tree height (Chen, 2007). In addition, the un-
certainty of ETH (Fig. 13) is generated to indicate the true magnitude of
estimation error and enhance the credibility of field calibration results
by reducing the error introduced by the field measurements. For the
Bayesian decomposition method, the calibration results are not just
represented by one RMSE value like the DD, Gold and RL methods
yielded (Table 3), but all possible RMSE values with probability are
provided. This situation renders an intuitive and reasonable way to
address the real-world model calibration problem.

Table 3
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4.3. Uncertainty analysis

Quantification of uncertainty is one of the notable advantages for
adopting the Bayesian method. The uncertainty is retained throughout
all processing steps including parameter estimates, geolocation trans-
formation and surface model generation, a full disclosure of uncertainty
of these processing steps is crucial for the result interpretation and the
potential applications. In the present study, a thorough uncertainty
quantification method is conducted on parameters, quantile point
clouds and surface models (DTMs and CHMs) to ensure the quality of
the results. The Bayesian approach gives us all possible estimates with
probability for unknown parameters (Fig. 3) instead of just providing a
single value within a frequentist framework. This enables the re-
searchers to view where the most probable locations of the waveforms
to represent the illuminated object along the pulse line. Furthermore,
the probability distribution of the estimates also essentially precludes
non-uniqueness problem, which is common in the waveform decom-
position. Actually, this problem has been faced by the users who em-
ployed advanced statistical models to tackle inversion problems in
various fields (Gouveia and Scales, 1998; Oh and Kwon, 2001).

The Bayesian method has been subjected to criticism for its sub-
jectivity by introducing prior information. In the present study, the
results of using different priors showed that this subjectivity can be
overcome by using the flat priors (non-informative priors). The nearly
identical performance as empirical priors can be achieved at the ex-
pense of more computation cost and time using the flat priors, which
agrees well with Ellison's conclusion (Ellison, 2004). While this con-
clusion is not consistent with Denham's study (Denham et al., 2009),
using the empirical priors tends to increase the precision of the para-
meters. There are factors that contribute to this inconsistency, such as
data noise, setting of non-informative prior and the main model used in
the simulation. However, all results demonstrate that the Bayesian
approach is capable of data analysis such as parameters extraction from
waveforms with reasonable accuracies. To reach the same performance
of the empirical priors, the computation time using the flat priors is
markedly longer (Table 4). This indirectly reflects that the empirical
priors are capable of reducing the complexities of Bayesian decom-
position method with accurate outputs.

The Bayesian decomposition method may appear to require more
computation cost than the other three methods, however, it can over-
come the parameter initialization problem of the DD method, and
avoids the step of parameters optimization for deconvolution when the
combined deconvolution and decomposition method is used. Results of
this study demonstrate the potential and advantages of using the
Bayesian approach to characterize uncertainty of parameter estimates.
Moreover, it allows researchers to trace the propagated error and un-
certainty explicitly through PDFs of corresponding evaluation criteria
from parameters to points, point clouds and surface models (Fig. 3).
Assuredly, the unsuccessful Bayesian decomposition may occur when
the waveform is extremely noisy or irregular. Assigning the number of
Gaussian components (n) as a random variable is expected to be one
potential solution which could be one aspect of further research.

The uncertainty results for the quantile point cloud datasets are
represented by a probability distribution, which can characterize the
variability, extent of average distance and RMSE in a probabilistic sense
to assess the performance of the Bayesian method. As expected, the

Summary of the comparisons between the field-measured tree height and maximum tree height derived from the CHMs using DR LiDAR data, and FW LiDAR data with the DD, Gold, RL

and Bayesian decomposition (Bayesian) methods.

Study site Statistics criteria Discrete (m) DD (m) Gold (m) RL (m) Bayesian (m)
SJER Average -0.24 0.73 -0.15 —0.32 -0.26
Standard deviation 1.11 1.64 1.52 1.36 1.48
RMSE 1.11 1.75 1.49 1.35 1.50
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Table 4
Average processing time for a single waveform with different number of peaks.

Number of Number of Average time Average time
components per waveforms (flat priors, (empirical priors,
waveform seconds) seconds)

1 95 2.43 1.91

2 21 12.40 10.49

3 10 67.38 45.36

4 6 235.60 114.70

5 4 364.65 162.00

6 2 462.60 267.00

7 2 511.20 276.90

horizontal precision of FW LiDAR data is better than their vertical
precision and the main uncertainty of the point clouds come from the
vertical direction.

The surface model's uncertainty results reveal that the DTM has
smaller variance and uncertainty than the CHM, which yields a larger
average bias and a wider range of the RMSE (Fig. 12). Various factors
can degrade the accuracy of the DTM, such as sampling size, point
density, terrain conditions and processing methods (Vincent et al.,
2012). To some extent, the quality of the DTM significantly affected the
CHM quality. Consequently, larger error or uncertainty of CHM accrued
might mainly due to the fact that CHM was generated by subtracting
DTM from Digital surface model (DSM) and an additional error was
likely to be introduced with this step. This kind of uncertainty propa-
gation was also observed through comparing the average bias and
corresponding RMSE of the point clouds (Fig. 11) with the surface
models (Fig. 12). More specifically, the point clouds' RMSE varied from
0.62 to 0.71 m, while the uncertainty of the RMSE for the waveform-
based DTM and CHM were 0.62-0.80 m and 1.31-1.61 m, respectively.
It is evident that the error and uncertainty are increasing along the
processing steps and an additional processing step brings more error
and uncertainty. The uncertainty analysis captures the fact the error
introduced into the estimation steps and provides more informative
information which consequently gives us more confidence to interpret
and apply results to real-world problems such as tree species identifi-
cation.

Actually, most of the remote sensing applications such as variable
extraction and biomass estimation using various sources of remote
sensing data are inadequately addressed or overlooked the uncertainty
analysis of their results (McRoberts et al., 2010; Zhao et al., 2011). The
Bayesian concept or approach can be transplanted to these applications
to quantify the estimate of error or uncertainty by employing statistical
inference of posterior distribution for the subjects of interest. At the
current stage, the Bayesian approach appears complicated which re-
quires users to have knowledge about the concepts and procedures, and
needs extensive computation time (De Lannoy et al., 2014) for MCMC
sampling. These aspects have hindered the broad applications of
Bayesian approaches, however, the advances in computation and de-
velopment of generalized tool such as BUGS, JAGS and Stan will likely
contribute to the popularity of Bayesian models in the foreseeable
further.

5. Conclusion
This paper has incorporated the Bayesian concept with waveform
Appendix A. Model implementation

A.1. Model structures
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decomposition to develop an innovative method to extract information
from FW LiDAR data and conduct a thorough uncertainty analysis along
the processing steps. Built upon the deterministic method for waveform
decomposition of Zhou et al. (2017), a more comprehensive exploration
of the extant methods and the proposed Bayesian method are conducted
at the point, point cloud and surface model levels.

The Bayesian method contributes to the waveform decomposition in
several ways. As demonstrated, the solutions of decomposition using
the Bayesian method are represented by a probability distribution over
parameter estimates instead of producing a single value for each
parameter using the deterministic approach. Additionally, it permits
the users to interpret the results in a probabilistic sense that is stable
enough to provide a feasible solution to the decomposition problem.
Moreover, the adoption of Bayesian analytics generates a systematic
and transparent knowledge learning framework to estimate uncertainty
emerging from parameters, points, the point cloud and the surface
model via the use of quantiles of the probability distribution.
Meanwhile, the uncertainty propagation can be explicitly traced and
observed from data to the parameter estimate, the point, the point
cloud and the surface model (Fig. 3). We also explored the non-un-
iqueness problems of waveform decomposition within Bayesian fra-
mework to reduce the theoretical error from the model itself and justify
the reasonableness of using the Gaussian model for FW LiDAR data
decomposition in terms of uncertainty, physical meaning and proces-
sing efficiency. The superior method of FW LiDAR data processing
varies from the perspective of different criteria and waveform-derived
products. Results of point cloud comparisons demonstrate that the
Bayesian decomposition method can achieve comparable accuracy as
the DD, Gold and RL methods. Results from the individual tree level
highlight that FW LiDAR data can characterize more detail of the mid-
story of vegetation with more dense points. The combined deconvolu-
tion and decomposition method (the Gold and RL approaches) out-
performs the decomposition method (DD and Bayesian decomposition)
in terms of the surface model's results. In addition, field data for cali-
bration results using the Bayesian method provide a reasonable way to
reduce the effect of field measurement error on the model calibration.
Further, the Bayesian method is expected to become more efficient and
user-friendly with the aid of computational advances and convenient
implementation tools. In addition, more research efforts are still needed
to apply FW LiDAR data for vegetation studies, such as tree species
identification and biomass estimation over extensive regions.
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The models were built on the Stan inference engine. It consists of four blocks: variables declarations, parameter statements, transformed
parameters and model blocks The data block is functional as input data declaration; the parameters block is to introduce all unknown parameters of
interest; the transformed parameters block is mainly for the conversion of data and parameters to the readable way, and the model block is to
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compute the log posterior density. Stan first translated a model into C + + and then compiled the code for each waveform. Different waveforms may
have a different number of Gaussian components, which generates a different posterior distribution and model for each waveform. The challenge is
that the model always changes based on the number of Gaussian components which requires users to compile a new model for each waveform.
Meanwhile, a new dynamic link library (DLL) was generated to store the model. This would exceed the maximum number of DLLs can be loaded on a
computer after the model fitting a certain amount of waveforms. In order to solve this problem, the update function of brms was used to avoid
recompilation issues. This function requires the structure of the input model or the posterior distribution should be exactly the same format.
Therefore, we grouped the waveforms with the same number of peaks, and then employed the update function for fitting these waveforms. This
strategy could save the compilation time and make the processing much more efficient. In addition, the parallel computing is also automatically
implemented in brms package by specifying the number of clusters and chain. In this analysis, we assigned them both as 2. All of these components in
brms package make HMC converge much faster to a target distribution.

A.2. Model convergence

The model convergence is measured with R and is computed as follows:

— 1 1
Var(0) = (1 - T)W + TB (A.1)

S [Var(®)
R= W (A.2)

where W is the mean variances of stationary distribution for each chain, B is the variance of stationary distribution at the between-chain level, 1 is the
number of draws in each chain, and Var () is the variance of the stationary distribution as a weighted average of W and B. Here, the chain of R was
the split chain that discarded the burn-in iterations.

Appendix B. Model efficiency

Recently, the inference engine Stan (Gelman et al., 2015) has been introduced to implement HMC sampling. Stan employs a reverse mode
automatic differentiation rather than a numerical differentiation to compute the gradient (Griewank and Walther, 2008). Furthermore, the No-U-
Turn Sampler (NUTS), a variant of HMC, was used to automatically tune two parameters in the leapfrog method. Specifically, the step length L is
achieved by means of a recursive algorithm with doubling procedure devised by Neal (2003) for slice sampling, and step size e via an adaptation of
dual averaging algorithm of Nesterov (2009).

These enable NUTS to run more efficiently than other MCMC algorithms and to become desirable for those who have little experience of tuning
HMC without user intervention. Fig. B1 displays the relationship between the log posterior of the model (x-axis) and acceptance rate (y-axis) using
NUTS samplers to demonstrate the efficiency of HMC or NUTS. Our experiment demonstrates that the sampling acceptance rate of NUTS is much
higher (around 85-95%) than the desired acceptance rate of Metropolis algorithm which generally ranges from 23% to 50% (Roberts et al., 1997)
(Fig. B1).

The exploration of these waveforms also demonstrated that assigning the proper number of and total iterations of MCMC was critical to the model
efficiency. The above sample waveforms were also used to explore optimized combinations of the number of burn-in samples and total iterations. To
balance the processing time and accuracy, the optimization of these parameters was conducted. R < 1.1 was employed to judge the number of total
iterations and samples were enough to obtain the acceptable results. The summary of these parameter combinations after optimization was shown in
Table B1. The number of chains used in this analysis was 2. To save the computation time and reduce the autocorrelation of draws in MCMC

simulations, we saved every third iteration of each chain by thinning posterior samples.
250
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Fig. B1. An example of histogram for log posterior and final Metropolis acceptance rate, and distribution of log posterior vs. Metropolis acceptance rate using HMC algorithm.
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Table B1

The final parameters of MCMC simulation for different waveform components.

Remote Sensing of Environment 200 (2017) 43-62

Number of component per waveform

Number of total iterations

Number of burn-in

1 9000 2000
2 10,000 2500
3 12,000 3000
4 15,000 4000
5 18,000 5000
6 20,000 6000
7 22,000 7000

> 8 25,000 8000
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