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Waveform Light Detection and Ranging (LiDAR) data have advantages over discrete-return LiDAR data in
accurately characterizing vegetation structure. However, we lack a comprehensive understanding of
waveform data processing approaches under different topography and vegetation conditions. The objec-
tive of this paper is to highlight a novel deconvolution algorithm, the Gold algorithm, for processing
waveform LiDAR data with optimal deconvolution parameters. Further, we present a comparative study
of waveform processing methods to provide insight into selecting an approach for a given combination of
vegetation and terrain characteristics. We employed two waveform processing methods: (1) direct
decomposition, (2) deconvolution and decomposition. In method two, we utilized two deconvolution
algorithms – the Richardson-Lucy (RL) algorithm and the Gold algorithm. The comprehensive and quan-
titative comparisons were conducted in terms of the number of detected echoes, position accuracy, the
bias of the end products (such as digital terrain model (DTM) and canopy height model (CHM)) from
the corresponding reference data, along with parameter uncertainty for these end products obtained
from different methods. This study was conducted at three study sites that include diverse ecological
regions, vegetation and elevation gradients. Results demonstrate that two deconvolution algorithms
are sensitive to the pre-processing steps of input data. The deconvolution and decomposition method
is more capable of detecting hidden echoes with a lower false echo detection rate, especially for the
Gold algorithm. Compared to the reference data, all approaches generate satisfactory accuracy assess-
ment results with small mean spatial difference (<1.22 m for DTMs, <0.77 m for CHMs) and root mean
square error (RMSE) (<1.26 m for DTMs, <1.93 m for CHMs). More specifically, the Gold algorithm is supe-
rior to others with smaller root mean square error (RMSE) (<1.01 m), while the direct decomposition
approach works better in terms of the percentage of spatial difference within 0.5 and 1 m. The parameter
uncertainty analysis demonstrates that the Gold algorithm outperforms other approaches in dense veg-
etation areas, with the smallest RMSE, and the RL algorithm performs better in sparse vegetation areas in
terms of RMSE. Additionally, the high level of uncertainty occurs more on areas with high slope and high
vegetation. This study provides an alternative and innovative approach for waveform processing that will
benefit high fidelity processing of waveform LiDAR data to characterize vegetation structures.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Full waveform airborne laser scanners (ALS) are increasingly
available to remote sensing data providers. The data acquired by
such systems are widely applicable to vegetated ecosystem assess-
ment and monitoring (Gwenzi and Lefsky, 2014; Hollaus et al.,
2009; Lefsky, 2010; McGlinchy et al., 2014). Waveform airborne
laser scanning is an active form of remote sensing technique that
could provide additional geometric and physical information of
the scattering substance along the path. It also gives users more
control of data interpretation (Chauve et al., 2007) compared with
the conventional discrete-return Light Detection and Ranging
(LiDAR) technique. The physical principle of the waveform LiDAR
system is similar to the conventional LiDAR system, but waveform
LiDAR system can record the entire echo scattered from illumi-
nated objects with different temporal resolutions (such as 1/2/4
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nanosecond(s) (ns)) through digital sampling. Therefore, the wave-
forms not only include responses from ground level, but also com-
prise multiple-scattering responses of illuminated surfaces along
the laser line which give more information of objects through
waveform shapes, widths, intensities and skewness. These charac-
teristics of waveform LiDAR make its processing more difficult
than discrete-return LiDAR processing which only needs to com-
bine the time between the emitted signal and received signal,
the speed of light and geolocation information (like GPS, platform
altitude of scanner). Through extracting and decoding these char-
acteristics, the physical attributes of vegetation like canopy height
(Gao et al., 2015; Gwenzi and Lefsky, 2014), target cross section
(Roncat et al., 2011), stem volume (Reitberger et al., 2009), and
above ground biomass of forest (Boudreau et al., 2008) can be mod-
eled. Thus, gaining knowledge of the forest from waveform LiDAR
data is a pivotal step toward efficient and comprehensive under-
standing forest roles in biomass change and carbon cycle under
climate change.

Generally, the waveform processing method can be categorized
into two types: one is the direct decomposition method and
another is the deconvolution and decomposition method. Each
method has been successfully applied for echo detection based
on its own physical background. For direct decomposition, the
emitted pulse is generally assumed to be Gaussian shape, as well
as the scatterers’ differential backscatter cross section (Wagner
et al., 2006). The return waveform is obtained through the convo-
lution of the Gaussian shape emitted pulse and the Gaussian sub-
stance scattering function (Wagner et al., 2006). Therefore, the
Gaussian decomposition is the most frequently used approach to
process the received signals (Mallet and Bretar, 2009). Many stud-
ies have been carried out on Gaussian decomposition to perform
processing and analysis of different types of waveform LiDAR data
such as LVIS (Laser Vegetation Imaging Sensor) data (Zhuang and
Mountrakis, 2014), ICESat (Ice Cloud and land Elevation Satellite)
data (Gwenzi and Lefsky, 2014; Harding, 2005; Keller, 2007;
Lefsky et al., 2005), airborne data (Chauve et al., 2007; Hancock
et al., 2017; Wagner et al., 2006; Wu et al., 2011). These researches
have demonstrated that the Gaussian model is sufficient for pro-
cessing waveform LiDAR data to characterize the vegetation struc-
ture, no matter whether its footprint is large or small. Fitting the
waveform with the Gaussian function can provide peak amplitude,
the width of each Gaussian component and peak location informa-
tion. The peak amplitude can be used as a criterion to filter the
points from below ground (Rowe, 2013) and it also provides us
information about surface of objects along the pulse. The echo
width has been employed as tool to characterize the crown depth,
crown variability, and topographic relief (Harding, 2005; Keller,
2007). The range or elevation of a specific reflecting surface can
be calculated using the peak location provided through Gaussian
decomposition (Hofton et al., 2000). Furthermore, these pieces of
information combined can be utilized to estimate woody cover
and biomass, classify tree species (Reitberger et al., 2008) and
map land-cover, etc. (Wang and Glennie, 2015).

The commonly used approaches to fit a sum of Gaussian func-
tions are the Non-linear Least Square (NLS) method with
Levenberg-Marquardt (LM) optimization algorithm (Hofton et al.,
2000), the maximum likelihood methods (Persson et al., 2005)
with the Expectation Maximization (EM) algorithm, and the Pro-
gressive Waveform Decomposition (PWD) method (Zhu et al.,
2011). The limitations of the first two methods are the lack of prior
knowledge about waveforms and the difficulties of identifying ini-
tialization of waveform parameters, such as the number of peaks,
peak amplitude and width. Mallet et al. (2009) employed a
stochastic method to reconstruct the waveform LiDAR by decom-
posing each echo with suitable functions like the generalized Gaus-
sian function, Weibull function, Nakagami function and Burr
function. These methods are robust and have shown good potential
for applications in waveform processes and analysis (Chauve et al.,
2007; Fieber et al., 2015; Reitberger et al., 2008). Whereas the
pulse detection method such as the Average Square Difference
Function (ASDF) (Zhu et al., 2011) may omit the important wave-
form parameters, the PWD method may lead to false echo detec-
tion due to the ringing effect.

Based on the standard LiDAR equations and real world con-
straints (Carlsson et al., 2001), the power of the received pulse
can also be expressed as the sum of echoes from N targets with sys-
tem and environment contributions (Mallet and Bretar, 2009). The
direct decomposition method does not take into account the detec-
tor and system’s contributions to the waveform, which results in
the loss of illuminated surface information. To reduce unwanted
system contribution and recover the true distribution of the illumi-
nated surface, the second approach, the deconvolution and decom-
position, is proposed. Several published studies have successfully
applied different deconvolution algorithms such as B-spline,
Richardson-Lucy (RL), Non-negative Least Squares (NNLS), Wiener
Filter (WF) (Cawse-Nicholson et al., 2014; McGlinchy et al., 2014;
Neuenschwander, 2008; Roncat et al., 2011; Wu et al., 2011),
sparsity-constrained regularization approach (Azadbakht et al.,
2016) and Bayesian inference method (Jalobeanu and Gonçalves,
2014) to recover the true cross-sectional profile of an illuminated
object.

Though the widely used deconvolution algorithms in the wave-
form LiDAR are RL (Lucy, 1974), NNLS and WF (Jutzi and Stilla,
2006), the studies of Nordin (2006) and Wu et al. (2011) have
demonstrated that the RL algorithm is superior to other algorithms
for the estimation of tree biomass and detection of unobservable
peaks. The detailed information of the above three algorithms
can be found in Wu’s study (2011). However, each algorithm has
its own advantages and limitations when applied to the deconvo-
lution. For example, the RL and NNLS can lead to more accurate
results at the expense of taking a longer time to complete the iter-
ative process; WF may require less implementation time but
results in less accurate solution. Additionally, developing open
source tools for the waveform processing is also a pressing need
for the extensive applications of waveform LiDAR data with differ-
ent format. Hancock et al. (2008) proposed the Gold’s method to
process the large-footprint waveform GLAS (Geoscience Laser
Altimeter System), however, the information contained in the
large-footprint and small-footprint data is different (Mallet and
Bretar, 2009). Large footprint data, e.g., up to 65 m, have the wave-
form returned from multiple tree crowns and is affected by topog-
raphy, especially on high slope terrain, therefore such data have a
significantly different shape compared to small footprint wave-
form data that samples a small portion of tree crowns intersected
by the laser beam, possibly not reaching the ground under dense
vegetation. Thus, the Gold’s method has not been proven in prior
studies that it is suitable for small-footprint waveform LiDAR pro-
cessing. Additionally, at the time of developing our study, we could
not identify any publication that has conducted the parameter
optimization of waveform deconvolution for vegetation applica-
tions. Results of waveform deconvolution depend significantly on
the choice of parameters used with deconvolution functions.

To enrich the existing waveform processing methods and
enhance the performance of the deconvolution, the optimized Gold
algorithm described in Section 2.3.1 is proposed to reconstruct the
differential backscatter cross section from the waveform LiDAR
collected by the National Ecological Observatory Network (NEON).
Meanwhile, there is a lack of quantitative and comprehensive com-
parisons of waveform LiDAR processing methods. The overall goal
of this research is to propose a novel deconvolution approach to
process waveform data and contribute to a better understanding
of advantages and limitations of different small-footprint
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waveform LiDAR processing approaches. Specific objectives are to:
(1) introduce a novel deconvolution algorithm, the Gold algorithm,
which is a non-negative iterative solution toward generating more
accurate and representative ground elevation and canopy height;
(2) develop an optimization methodology for finding appropriate
deconvolution parameters; (3) explore advantages and limitations
of various waveform processing techniques to derive topography
and canopy height information; (4) perform comprehensive com-
parisons of results with different approaches and assess each
approach’s accuracy and parameter uncertainty.

Our hypothesis is that better results are expected with the new
algorithm in terms of the echo detection, accuracy assessment and
parameters uncertainty analysis. The innovative aspects of this
study consist of: (1) extending the current small-footprint wave-
form processing methods by adapting the Gold algorithm to pro-
cess the small-footprint waveform LiDAR data and then
investigating their performance in different topography and vege-
tation conditions, (2) introducing an optimization process of deter-
mining the deconvolution parameters and (3) implementing
processing steps within an open source software or tools such as
R (2013) and LAStools (Isenburg, 2012).
2. Methodology

2.1. Study sites

This study was conducted using the data from three NEON ter-
restrial sites: (1) the Harvard Forest (HF), north-central Mas-
sachusetts; (2) the San Joaquin Experimental Range (SJER), north
of Fresno, California; and (3) the Ordway-Swisher Biological Sta-
tion (OSBS), near Melrose of Putnam County, Florida (Fig. 1). We
hypothesize that the performance of approaches will be affected
by factors such as topography and elevation gradients. These study
sites were selected to test the robustness of different approaches
for processing waveform LiDAR data. They were extended over
diverse ecological regions, climate and elevation gradients with
different number of flight lines.

The HF is a core wild-land site and statistically represents
unmanaged wildlife conditions across the NEON’s 30-year history
(Kampe, 2010). One flight line of the cropped waveform sample
area is chosen. The data covers about 60 m � 60 m with the center
located at 731156.6 Easting, 4712671.4 Northing, and UTM Zone
18 N (Fig. 1A). This site primarily consists of dense mixed hard-
wood trees with dominant species being white pine (Pinus strobus)
and red oak (Quercus rubra) in the center 20 m � 20 m area. The
landscape is characterized by flat terrain with an elevation differ-
ence of approximately 5 m.

The second site, the SJER, is located in the foothills of Sierra
Nevada Mountains, about 32 km north of Fresno, California. The
cropped waveform sample is about 6.25 ha (250 m � 250 m) with
the center at 256840.0 Easting, 4110820.0 Northing, and UTM Zone
11 N (Fig. 1B). The elevation ranges from 380 to 425 m dominated
by sparse blue oak (Quercus douglasii), interior live oaks (Quercus
wislizeni) and digger pine (Pinus sabiniana). The topography is com-
plex with coarse, large hills and valleys.

The OSBS is located near Melrose of Putnam County, Florida
with an elevation range from 21 to 48 m. The cropped area is cov-
ered by four flight lines and it is about 60 ha (1172 m � 534 m)
with the center at 402507.6 Easting, 3282045.1 Northing, and
UTM Zone 17 N (Fig. 1C). It is composed of homogenous forest
dominated by Longleaf Pines (Pinus palustrisMill.) and Loblolly
(Pinus taeda), areas of mixed patches of vegetation structure and
heterogonous land cover types, including water body, wetland,
open ground and road. These make the OSBS site well suited for
comparing and testing performance of different processing wave-
form LiDAR processing over a range of simple to complex vegeta-
tion communities.

2.2. LiDAR data

2.2.1. Waveform LiDAR data
The three waveform LiDAR datasets were acquired with an

Optech Gemini instrument at a nominal range of 1000 m (the air-
craft flew at 1000 m above ground level). It achieved a nominal
density of 3.82 points per square meter with a 0.8 m diameter spot
and a spot spacing of about 0.524 m in the across-track direction
and 0.5 m in the along-track direction. Both datasets were col-
lected during the leaf-on condition on August 8, 2012 for the HF
site, June 13, 2013 for the SJER site, and May 7 and May 19, 2014
for the OSBS site. All data were distributed by the NEON data cen-
ter (http://www.neonscience.org/content/airborne-data). The
detailed technical data specifications are shown in Table 1.

There was one flight line with 13,902 waveforms included in
the HF sample area. For the SJER site, two flight lines were available
with 167,019 waveforms for flight line 03 and 91,648 waveforms
for flight line 12. For the OSBS site, four flight lines were available
for our study region as shown in Fig. 1C. The number of waveforms
for four flight lines is 660,995, 859,919, 597,455 and 1,371,186,
respectively. Each waveform was segmented into 500 time bins
with 1 ns temporal spacing.

The waveforms stored the digital number (DN) of return pulses,
which can be assumed to be the amplitude of the waveform
(Fig. 2). Simultaneously, NEON provided geolocation information
and corresponding outgoing pulses that consist of 100 time bins
with a temporal resolution of 1 ns. The geolocation data comprised
Easting, Northing, height, dx (m), dy (m), dz (m), and first return
bin location. And dx, dy, and dz were the pulse direction vector
that can be used to calculate the accurate geolocation of any other
time bins in a given waveform without registration and rectifica-
tion. All data were zero padded. NEON also provided us with a pro-
totype system impulse which was a return pulse of single laser
shot from a hard ground target with a mirror angle close to nadir
and corresponding outgoing waveform (Fig. 2). This can help us
remove the outgoing pulse and system response effect and perform
a deconvolution on the waveform.

2.2.2. Reference data
To validate the performance of methods and end products of the

waveform LiDAR, the discrete-return LiDAR data and the Digital
Terrain Models (DTMs) and Canopy Height Models (CHMs) pro-
vided by NEON were used as the reference data. According to the
NEON’s discrete-return LiDAR Algorithm Theoretical Basis Docu-
ment (ATBD), the maximum horizontal accuracy of discrete-
return LiDAR is about 0.4 m, with maximum LiDAR vertical accu-
racy 0.36 m, respectively (Keith and Tristan, 2015). Discrete-
return LiDAR data will be used as reference in the Number of
echoes section test whether more points were extracted from the
waveform LiDAR data. Additionally, we compared the waveform-
based end products such as DTMs and CHMs with corresponding
reference data provided by the NEON to conduct the accuracy
assessment of our approaches.

2.3. Waveform processing

Waveform processing involves a series of steps, including noise
detection, smoothing, radiometric calibration (Briese et al., 2008),
deconvolution and decomposition, etc. Many studies have been
conducted to interpret the waveform data and used it to estimate
vegetation structure and function, such as canopy height and
above-ground biomass (Chauve et al., 2007; Gwenzi and Lefsky,
2014; Roncat et al., 2011; Wagner et al., 2006). The major steps

http://www.neonscience.org/content/airborne-data


Fig. 1. Locations of three study sites in Massachusetts (one flight line), California (two flight lines) and Florida (four flight lines) with discrete-return LiDAR points.

Table 1
Main technical specifications of the NEON waveform data.

Study sites Technical specifications

Operating altitude �1000 m
Wavelength 1064 nm
Pulse repetition

frequency
100 kHz

Scan frequency 50 Hz
Beam divergence 0.8 mrad
Scan angle range ±18.5

degree
Spot spacing 0.524 m (across-track), 0.5 m (along-track)
Footprint size 3.83 points/m2 (0.8 m)
Digitizer 1 ns (12 bit A/D, baseline signal is 200)
Outgoing pulse

width
�14 ns

Flying direction HF: East, heading 90 degree
SJER & OSBS: Northing to South or South to North,
heading 180 or 0 degree
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in the waveform processing used by these studies are signal decon-
volution and decomposition. The deconvolution is an algorithm-
based process that is used to reverse the effect of convolution on
the recorded signals, and the decomposition is a process which
can provide estimates of the location and properties of objects
along the pulse (Wagner et al., 2006). In this study, we employed
two distinct methods to process the waveform data. The first
method was direct decomposition (I), which only applied the Gaus-
sian decomposition to the waveform data. The second method was
the deconvolution and decomposition method. For the second
method, we utilized both new and classical deconvolution algo-
rithms, the Gold and RL algorithms, to explore the advantages
and limitations of deconvolution algorithms. The results from the
above deconvolution were then subjected to Gaussian decomposi-
tion and we refer to them as the Gold approach (II) and RL
approach (III) in this study. The RL algorithm was selected as a ref-
erence deconvolution algorithm because it is a superior widely
used deconvolution algorithm (Harsdorf and Reuter, 2000;
Nordin, 2006; Wu et al., 2011). Before performing analysis, we con-
verted all delivered waveform data into ASCII format and then pre-
processed them with steps, such as de-noising and mean filtering.

2.3.1. Parameter optimization for deconvolution
The returning pulses of the waveform were the product of inter-

action among outgoing pulses, atmospheric scattering, system
noise and reflecting surfaces (Briese et al., 2008). For the NEON
waveform LiDAR data, the backscatter responses can be expressed



Fig. 2. A subset of the system response impulse, a sample of outgoing pulse and corresponding raw waveform recorded by NEON’s full waveform LiDAR system.
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as the convolution of the outgoing pulse, impulse response (atmo-
spheric scattering, system noise, etc.) and effective target cross sec-
tion (Eq. (1)). The deconvolution approach can remove the effect of
the outgoing pulse and system impulse response and then improve
the separability (Neuenschwander, 2008) of close peaks and reveal
the true distribution of the scattering substances (di(t)) along the
optical path (Cawse-Nicholson et al., 2014; Wagner et al., 2006;
Wu et al., 2011).

PrðtÞ ¼
Xn
i¼1

D2

4pc2R4
i

PtðtÞ � sðtÞ � diðtÞ ð1Þ

where Pr(t) is the received laser power, Pt(t) is the outgoing pulse, s
(t) is the receiver impulse function, D is the aperture diameter of the
receiver optics, k is the wavelength, R is the range from the LiDAR
system to the target, di(t) is effective target cross section and n is
the number of targets detected along the pulse line.

The deconvolution is sensitive to the pre-processing of input
data and the choice of parameters for deconvolution. For our opti-
mization of processing parameters, we randomly selected 2000
waveforms of each dataset and processed this subset in two differ-
ent ways with all other parameters as constant: one method is to
keep all input data (the outgoing pulses, impulse response and
return pulses) as raw values as supplied by the data provider;
another method is to normalize the input data by subtracting the
minimum non-zero value of each dataset. Through comparing
the peaks’ location of deconvolved waveforms with raw wave-
forms, we determined which method was employed in the subse-
quent analysis.

The parameters of the deconvolution function used in this study
include boost, iterations and repetitions. The experiment demon-
strated that boost was not as sensitive as the other two parameters
and its recommended range was 1–2. Detailed information of these
parameters can refer to the R package Peaks (Morhac, 2012). In our
case, 1.5 was selected as a constant in the subsequent analysis. The
number of iterations and repetitions in estimated impulse
response and deconvolution algorithm are critical to the perfor-
mance of the deconvolution and decomposition method. As such,
our second step was to optimize these parameters for deconvolu-
tion. This step could be highly subjective and case-dependent for
different datasets. To avoid subjectivity and a trial-and-error
approach, we developed a general rule to find the reasonable range
of these parameters. The total number of echoes generated from
these 2000 waveforms and the percentage of matched waveforms
were selected as criteria to narrow down the parameter ranges.
The matched waveforms were defined as the deconvolved wave-
form with the similar peak locations (the difference within 3 ns)
compared to the peak locations of raw waveforms after using the
mean filter.

The preliminary experiment was conducted on about 2300
combinations of these parameters, and then we selected the poten-
tial parameter combinations based on the criteria above. In our
case, we eventually narrowed down the estimate impulse
response’s iteration and repetition to 15–30 and 2–4, respectively.
For the iteration and repetition in the deconvolution algorithms,
the range for them was 30–55 and 3–5, respectively.

In this study, the Gold algorithm (Morhac et al., 1997) and RL
algorithm were employed to deconvolve the raw waveform data,
and then we compared these two algorithms in terms of detection
of peaks, false detection rate, accuracy assessment, and parameter
uncertainty analysis. The following two sections provide the prin-
ciples of these two algorithms.
2.3.1.1. Richardson–Lucy (RL) algorithm. The RL algorithm was
developed from the Bayesian’s theorem which could reconstruct
noisy images by taking into account statistical fluctuations in the
signal (Fish et al., 1995). It was originally developed for recovering
the image by searching iteratively for solutions to deconvolution
problems. The basic idea is to calculate the most likely value ft(x)
given the observed d(x) and the known point-spread function g
(x). One waveform LiDAR profile can be seen as an image with
the dimension 1 � N and tth iteration solution written as follows
in terms of convolution (Fish et al., 1995):

f tþ1ðxÞ ¼ f tðxÞ �
dðxÞ

f tðxÞ � gðxÞ
� gð�xÞ

� �
ð2Þ

where ⁄ is the convolution operation, d(x) is the observed value at
location x, ft(x) is the most likely value at location x and g(x) is the
known point spread function, f(x) can be solved by iterating Eq. (2)
until convergence.
2.3.1.2. Gold algorithm. The Gold algorithm is a non-oscillating and
stable deconvolution method that can give us non-negative solu-
tions (Morháč et al., 2003). This vital property is suitable for the
waveform processing, since it is unreasonable and senseless if neg-
ative solutions appear. The Gold algorithm has been successfully
applied to deconvolve the c-ray spectra (Morhac et al., 1997) and
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nuclear data (Morháč et al., 2003). For discrete values, it searched
iteratively to solve the deconvolution problem using Eq. (3):

yðiÞ ¼
Xn�1

k¼0

hði� kÞxðkÞ i ¼ 0;1;2; . . . ;m ð3Þ

where x, y are input and output vector, h(i) is the impulse response
or outgoing impulse function, n is the number of samples of vector
h, i is ith sample point and x(k) represent the kth waveform’s differ-
ential backscatter cross-section. Here, the convolution system is one
dimension. After a matrix transformation, the Gold algorithm can
be expressed as Eq. (4) (Morhac et al., 1997):

xðkÞðiÞ ¼ xðk�1ÞðiÞPn
j¼1hði� jÞxðk�1ÞðjÞx

ðk�1ÞðiÞ ð4Þ

For both algorithm applications, the impulse response and out-
going pulses must be known first. The NEON waveform LiDAR data
provided each waveformwith the corresponding outgoing pulse. In
this study, three major steps were utilized to obtain the effective
target cross section (di(t)): (1) the system response was used to
deconvolve the corresponding outgoing waveform for each dataset
to derive the estimated impulse response, (2) using the return
waveform to deconvolve the outgoing pulse to get the immediate
waveform, (3) the immediate waveform was employed to decon-
volve the estimated impulse response to reveal the effective target
cross section. After deconvolution, the results from the above were
also decomposed using a mixture of Gaussian function. The major
steps were the same as described in Section 2.3.2.
2.3.2. Gaussian decomposition
Since the outgoing laser pulse of the NEON data is nearly Gaus-

sian in shape, as shown in Fig. 2, the returned waveform can be fit-
ted by a mixture of Gaussian function (Wagner et al., 2006). The
Gaussian components characterize the different targets when the
laser beam interacts with objects along the path like vegetation
and ground (Harding, 2005). The analytical expression of the Gaus-
sian function (f(x)) can be written as:

f ðxÞ ¼
Xn
i¼1

Ai exp �ðx� uiÞ2
2d2i

 !
ð5Þ

where n is number of Gaussian components, Ai is the amplitude of
peak at ith waveform component, di is the standard deviation of ith

waveform component, and ui is the time location of peak at ith

waveform component.
In this study, a mean filter was first performed on each individ-

ual waveform to remove the noise and then we normalized these
waveforms through subtracting the minimum value of each wave-
form. The return pulses were fitted with a mixture of Gaussian
functions using a NLS method and optimized using the LM algo-
rithm, which was implemented in the R package minpack.lm
(Elzhov et al., 2013). Detailed steps can refer to the study of
Chauve et al., 2007. The difficult part of using NLS to fit the Gaus-
sian function was to determine the initial values of parameters. For
the direct decomposition, we estimated the number of Gaussian
components (n) by finding the number of peaks of raw waveform
data and then used amplitude threshold to delete the ‘‘fake” peak
(s). The initial amplitude (Ai) was assumed to be 2/3 of the corre-
sponding peak value, initial echo width (di) of each component
was estimated as the half-widths of consecutive peaks and initial
peak locations (ui) were derived from corresponding raw wave-
forms’ peak locations. For the deconvolution and decomposition,
the initial n, ui and Ai were derived from corresponding decon-
volved waveform with the same step as the direct decomposition.
However, the initial di for each deconvolved waveform was
estimated as half of the difference between peak location and the
closest time bin with negative lagged difference.

2.3.3. Geolocation extraction
Through deconvolving the waveforms and fitting echoes to a

mixture of Gaussian function with the LM algorithm, the time of
peak positions, intensity and width were obtained. The 3D point
cloud was generated based on the time of peak positions, the loca-
tion of the first time bin of the return pulse and position change of
pulse per nanosecond (dx, dy, dz).

For the direct decomposition method, the leading edge position
of each waveform was used to calculate the geolocation of any
time bin in a return waveform by incorporating the full width at
half maximum (FWHM). The waveform is fitted with Gaussian
function, so FWHM can be obtained through the standard devia-
tion (r). Therefore, the leading edge position can be calculated
by Eqs. (6) and (7).

FWHM ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln2

p
r ð6Þ

tl ¼ tp � 0:5 � FWHM ð7Þ
where tl is the leading edge position for each echo, tp is the time of
peak position for each echo and r is the standard deviation of indi-
vidually fitted function. tp and r can be obtained from Gaussian
decomposition. Then the new geolocation of any time bin for given
waveform can be calculated by Eq. (8).

X ¼ ðtl � trÞ � dxþ Xr

Y ¼ ðtl � trÞ � dyþ Yr

Z ¼ ðtl � trÞ � dzþ Zr

9>=
>; ð8Þ

where X, Y, Z is the new geolocation of peak, tr is the first return ref-
erence bin location, dx, dy, dz are the position change for every ns,
Xr, Yr, Zr are the Easting, Northing and height of the first return. tr,
dx, dy, dz, Xr, Yr, Zr are provided by the NEON geolocation dataset.

The new geolocation was determined by using the time of peak
location (tp) for the deconvolution and decomposition method,
since the deconvolution can reveal the real geometry of objects.
The NEON datasets provided us another geolocation dataset for
deconvolution and decomposition method. The new geolocation
is computed as:

X ¼ ½ðtp � trÞ � ðtop � torÞ� � dxþ Xr

Y ¼ ½ðtp � trÞ � ðtop � torÞ� � dyþ Yr

Z ¼ ½ðtp � trÞ � ðtop � torÞ� � dzþ Zr

9>=
>; ð9Þ

where top is the time of peak location for the each outgoing pulse
and tor is the time of corresponding reference bin location for the
outgoing pulse. Both can be found in the NEON geolocation
datasets.

2.3.4. Digital models extraction
The original point cloud derived from the decomposition step

had some noisy points, since some raw waveforms were not
exactly Gaussian shape. We filtered these points based on the
intensity and height, which was achieved through the LAStools
(Isenburg, 2012).

Digital terrain models (DTMs) and canopy height models
(CHMs) were generated from these filtered 3D point cloud for each
method using the LAStools (Isenburg, 2012). DTMs and CHMs were
chosen mainly because sets of vegetation metrics were derived
from CHMs, and any error of DTMs would propagate to affect the
accuracy of CHMs. To derive a DTM from waveform LiDAR data,
the point cloud has to be classified into ground and non-ground
points. Generally, the intensity and width of the last echoes can
be used as criteria to remove the non-ground laser points. The



1 For interpretation of color in Figs. 4, 5, and 12, the reader is referred to the web
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intensity of the echoes can provide additional information about
the reflectance properties of an object, such as judging whether
the echoes came from below ground response (Chhatkuli et al.,
2012). The echo width not only gives information on the range dis-
tribution of individual object that produce a single echo, but it also
can assist to decide whether a pulse was reflected from solid
ground or vegetation (Doneus et al., 2008; Ioannides et al., 2006).
In this study, we employed the intensity and width of echoes to fil-
ter the non-ground points or noise. After exploring different
thresholds of width and intensity of echoes, a width threshold of
20 was applied to remove noise or wrongly fitted echoes, and
1/10 of the corresponding maximum intensity of each waveform
was selected as a threshold to remove the below ground response.
These thresholds may not be universally valid, as they may vary by
regions and types of data. Finally, the filtered points were imported
into the LAStools to generate a refined DTM. To further evaluate
the performance of the methods, the CHM was generated from
the non-ground points based on the steps described by
Khosravipour et al. (2014).

2.4. Algorithms’ performance comparisons

2.4.1. Accuracy assessment
The discrete-return LiDAR data and its derived end products can

be regarded as the ground truth data due to that they can poten-
tially achieve better accuracy than direct field measurement
(Chen, 2007). In this study, the discrete-return LiDAR data were
adopted as reference data to verify whether more points can be
extracted from the waveform LiDAR data. Additionally, we
employed the reference DEMs and CHMs provided by the NEON
to conduct accuracy assessment of our results generated from
waveform LiDAR data from both visual and statistical perspectives.
The SJER site was selected to show the visual comparison results
for its complex topography. The results of the statistical compar-
isons were measured by mean difference, standard deviation
(SD), root mean square error (RMSE) and percentage of spatial dif-
ference within 0.5, 1, 2 and >2 m of each study site.

2.4.2. Parameter uncertainty
The predictive parameter error estimates not only enable us to

objectively quantify the expected quality of the results from avail-
able data but also allow us to estimate the rigorous error propaga-
tion through to the end products. Through the approaches we
employed in this study, the standard error (se) of peak location
for each estimated echo was obtained. Parameter uncertainty
was represented by the 95% confidence interval (95% CI) of peak
location. For each echo, the estimated peak location’s confidence
bounds were calculated using Eqs. (10) and (11):

tll ¼ tl � 1:96 � se ð10Þ

tlu ¼ tl þ 1:96 � se ð11Þ

The above equations were for the direct decomposition
approach, while tl became tp for the Gold approach and RL
approach. The above biased peak locations (tll, tlu) would form
two datasets for each approach: the 95% lower confidence level
dataset (Lower dataset) and 95% upper confidence level dataset
(Upper dataset). Once six DTMs and six CHMs for these three
approaches were generated using these uncertainty datasets, we
compared them with the DTMs and CHMs derived from the origi-
nal decomposition to get the biases and quantitatively assess the
approaches’ robustness. The parameter uncertainty for each
method was calculated as follows:

LU ¼ EGEL � EGE ð12Þ
UU ¼ EGEU � EGE ð13Þ
where EGE was the estimated ground elevation generated from
dataset of peak locations, EGEL was the estimated ground elevation
generated from Lower dataset of peaks locations, EGEU was the esti-
mated ground elevation generated from Upper dataset of peak loca-
tions, LU was the lower uncertainty and UU was the upper
uncertainty. The uncertainty of maximum CHM was calculated in
the same way. The visual comparisons of parameter uncertainty
were also conducted using the site which had the largest uncer-
tainty based on the statistical results.

In order to quantify the effect of factors such as slope and veg-
etation height on the parameter uncertainty, the uncertainty was
divided into three levels: high (>2.00 m and <�2.00 m), medium
(�2.00 to �0.51 m and 0.51–2.00 m) and low (�0.5 to 0.5 m).
The slope and vegetation height for each corresponding level were
also extracted. The Upper dataset and Lower dataset of SJER site
were combined for each approach. The Analysis of variance
(ANOVA) was used to analyze the effect of factors like slope and
vegetation on uncertainty levels, and identify which region may
be more likely to have higher uncertainty. Box plots were chosen
to visualize the uncertainty’s statistical results. An overview of
the whole waveform processing and comparisons procedure is
given in Fig. 3.
3. Results and discussion

3.1. Deconvolution parameters optimization

Since deconvolution was sensitive to the input data, we first
explored different pre-processing steps of the input data. The three
sample results of deconvolution by the RL and Gold algorithms
were plotted in Fig. 4, with different pre-processing steps against
corresponding original waveforms after noise deletion.

Fig. 4 shows that the peaks of the waveforms with deconvolu-
tion were much easier identified and that the shape of waveform
components was closer to the Gaussian distribution. This verified
our assumption that the waveform can be simulated by a mixture
of the Gaussian components after removing the system impulse’s
contribution. Also, the intensity of the waveforms was much
higher and the width of the waveform was narrower than the
raw waveform, which could be conducive to precisely revealing
the geometry of objects along the pulse.

It was evident that input data with different preprocessing
steps could impact the deconvolution results. Compared with the
original waveform, the results using the raw data were more likely
to detect a wrong peak (green1 circle) as shown in Fig. 4(b). There-
fore, we adopted adjusted data to do the subsequent steps in this
study, which was consistent with the same pre-processing steps
described by Wu et al. (2011). However, when using the adjusted
data, we observed a downward shift in the time bin axis for both
deconvolution algorithms. This was also found in the study of
Cawse-Nicholson et al. (2014). The main reason may be that the sys-
tem impulse was not acquired under the ideal condition, which led
to the inaccurate deconvolved impulse response. However, this kind
of inaccuracy of the deconvolution could be improved by obtaining
more accurate system impulse.

In Fig. 4(a), the original waveform had noise in both edges that
made the direct decomposition very difficult when we had no
knowledge about the number of the reflecting objects along the
pulse line. But, after removing the system response, the number
and position of the peaks were evident. As shown in Fig. 4
(b) and (c), the local peaks could also be clearly distinguished after
version of this article.



Fig. 3. Flowchart for waveform LiDAR data processing and comparisons.
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deconvolution for more complicated waveforms. However, it
should be noted that the deconvolution cannot break down pulses
from surfaces that are too close which could result in one larger
pulse as shown in Fig. 4(b). This kind of peaks overlaying could
be solved by increasing the number of iterations and repetitions
in the deconvolution algorithm, but this may cause additional
minor peaks that are adjacent to the major local peak as described
in the study of Wu et al. (2011). Therefore, to set up the optimal
number of iteration was critical to the detection of peaks. In this
study, exploratory analysis helped us narrow down the range of
parameters and final optimal combinations of iteration and repeti-
tion were (30, 4), (35, 5), and (40, 5) for the HF, SJER and OSBS sites,
respectively.

3.2. Number of echoes

To provide a more comprehensive comparison, the quantita-
tive results for the three study sites are shown in Tables 2 and
3, respectively. For the deconvolution and decomposition method,
the performance of the Gold algorithm was better than the RL
algorithm from the perspective of the number of echoes detected.
Additionally, the Gold algorithm mostly detected higher number
of echoes with lower false detection rate. For instance, more
waveforms were decomposed into three, four or five echoes for
individual waveform using the Gold algorithm than the RL algo-
rithm for all study sites. This indicated that the Gold algorithm
had a higher potential to detect the hidden peaks than the RL
algorithm for complex waveforms. The direct decomposition’s
performance was similar to the RL algorithm in terms of the
number of echoes detected. The direct decomposition was more
capable of detecting a higher number of echoes than the RL algo-
rithm for those study sites when we compared the number of
waveforms with different echoes. However, the likelihood of
detecting the false echoes was increased with the direct decom-
position method compared with the deconvolution and decompo-
sition method (Tables 2 and 3).

Interestingly, the false echoes rate of the SJER site was lower
than the HF and OSBS sites for all approaches (Tables 2 and 3).
Comparing the three sites’ decomposition results with their corre-
sponding discrete-return LiDAR data demonstrated that the false
echo detection rate of the SJER site was highest. The possible rea-
son is that the SJER site was comprised of dense vegetation that
could result in weak returns and overlapping echoes of the
reflected waveforms, and potentially higher false echo detection
rate was expected (Chauve et al., 2009). Another interesting find-
ing was that the deconvolution and decomposition method can
reduce the false echoes rate significantly as shown in Tables 2
and 3.

Hence, based on the visual inspection and quantitative compar-
isons of different methods, we concluded that the deconvolution
and decomposition method outperformed the direct decomposi-
tion method. The Gold algorithm was superior to the RL algorithm
based on the number of echoes and false echo detection rate. We
also found that pre-processing of data significantly affected the
echo detections; assigning zero-padded values of the return pulse
to NA and utilizing the adjusted input data (the outgoing pulse,
system response pulse and return pulse) could achieve better
and more accurate results.



Fig. 4. Three samples of original waveforms (a, b and c) versus deconvolved waveforms by the RL algorithm and Gold algorithm with different pre-processing steps:
Deconvolved waveform with adjusted data where the input data (the outgoing pulse, impulse response and return pulse) of deconvolution were normalized by subtracting
minimum non-zero values; Deconvolved waveform with raw data where the input data (the outgoing pulse, impulse response and return pulse) of deconvolution were raw
pulse values, excluding the zero padded values. The blank section in the original waveform of Fig. 4(c) resulted from unrecorded values in the raw data.

Table 2
Number of echoes estimated by the direct decomposition method and deconvolution and decomposition method with different input data for HF site.

Methods Number of echoes Direct decomposition Adjusted data Raw data

Deconvolution + Decomposition Deconvolution + Decomposition

RL algorithm (NA)a Gold algorithm (NA)a Gold algorithm (0)b RL algorithm (NA)a Gold algorithm (NA)a

Number of waveforms

1 5533 6057 4261 3160 8438 7454
2 4313 3088 2783 2990 3164 4024
3 2398 3493 5049 5626 1336 1438
4 685 322 765 1088 150 169
5 133 116 221 214 4 7
6 23 13 13 14 0 0
7 7 3 0 0 0 0
False echoes 2508 (10.05%) 370 (1.50%) 207 (0.71%) 296 56 102
Total echoes 24,945 24,679 29,217 31,524 19,394 20,527
Effective echoes 22,437 24,309 29,010 31,228 19,348 20,425

a The intensity with an original value of 0 assigned to NA after deconvolution.
b The intensity of each pulse maintained as 0 after deconvolution.
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3.3. Position of echoes

To further demonstrate the performance of different
approaches, we also explored the position of echoes. Fig. 5 shows
that the three sample waveforms were decomposed by the three
approaches: direct decomposition approach, RL approach and Gold
approach. Here, the direct decomposition approach detected a
higher number of echoes for each pulse than the other two decon-
volution approaches, as shown in Fig. 5(a), (b) and (c) with 7, 6 and
3 Gaussian components, respectively. However, a closer examina-
tion revealed that the direct decomposition was likely to detect
some unreasonable echoes. For example, the red Gaussian compo-
nent in the direct decomposition of Fig. 5(b) is almost overlaid with
the green component; the yellow component looks like a supple-
ment to the other echoes and neither agrees well with the reality.
Furthermore, the blue component in the direct decomposition of
Fig. 5(c) is higher than the original waveform. These may explain
why there was higher false echo detection rate for direct decompo-
sition as shown in Tables 2 and 3.

It was evident that deconvolved waveforms performed better
on decomposition with explicit Gaussian components in terms of
visual comparisons. The performances of the RL and Gold
approaches were similar in our example and almost had the same
peak positions and shape, but the Gold approach worked better
when the original waveform was composed of many peaks with
noise. As shown in Fig. 5, the Gold approach could detect more



Table 3
Number of echoes estimated by the direct decomposition method and deconvolution and decomposition approach with different input data for SJER and OBOS sites.

Methods Number of echoes SJER Adjusted data OSBS Adjusted data

Direct decomposition Deconvolution + Decomposition Direct decomposition Deconvolution + Decomposition
RL algorithm Gold algorithm RL algorithm Gold algorithm

Number of waveforms Number of waveforms

1 197,304 204,129 174,060 2,528,608 2,908,389 2,310,732
2 41,184 33,047 55,748 710,240 327,386 350,303
3 14,304 16,197 19,243 202,117 46,246 245,509
4 4392 4614 6862 41,085 4490 134,299
5 1166 620 1993 6537 306 67,185
6 267 59 551 866 18 19,544
7 42 1 171 81 2 4976
8 7 0 32 10 0 1861
9 1 0 6 0 0 632
10 0 0 0 0 0 160
11 0 0 1 0 0 28
12 0 0 0 0 0 3
False echoes 17,913 (5.15%) 378 (0.11%) 1223 (0.32%) 563,974 (11.85%) 14,709 (0.40%) 66,226 (1.38%)
Total echoes 34,7943 340,731 385,522 4,758,307 3,736,220 4,861,828
Effective echoes 330,030 340,731 384,299 4,194,333 3,721,511 4,795,602

Fig. 5. Comparisons of the decomposition results with the direct decomposition approach, RL approach and Gold approach for three sample pulses (a, b, c). The solid black
line is the original waveform. The colored dash lines are Gaussian components after decomposition.
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echoes for the same pulse and may reconstruct more accurate
cross sections of vegetation and terrain. The RL approach was less
capable of detecting the last echoes that may represent the ground
when we interpreted the waveform LiDAR data. However, it was
worthy to note that the Gold approach may cause the ringing effect
as shown in the second Gaussian component (green part) of the
deconvolution by the Gold algorithm (Fig. 5(a)). This kind of minor
peak around the major local peaks may be caused by a wavelike
artifact that resulted from the sum of remaining low-frequency
components after the loss of high-frequency components
(Wu et al., 2011).

3.4. Point clouds

After geo-referencing, the point clouds generated from full
waveform LiDAR data using different methods with number of
points (n) are shown in Fig. 6. As the figure shows, the point clouds
derived from waveform LiDAR data (Fig. 6(3), (4), (5)) are denser



Fig. 6. Comparison of point clouds generated from discrete-return LiDAR data and waveform LiDAR data with different processing methods. (1) Point cloud derived from
discrete-return LiDAR data. (2) Point cloud generated by geo-referencing every time bin of waveforms. (3) Point cloud derived from direct decomposition method. (4) Point
cloud derived from Gold deconvolution and decomposition method (the Gold approach). (5) Point cloud derived from RL deconvolution and decomposition method (the RL
approach).
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than discrete-return LiDAR data (Fig. 6(1)), while they contained
some noisy points in some vegetation parts. The point cloud gener-
ated by geo-referencing every time bin (Fig. 6(2)) could show a
good shape of tree canopy with very high density points, but it
was noisy with ‘‘false ground” and ‘‘false canopy height”. The point
cloud generated from the direct decomposition (Fig. 6(3)) was
comparable to that used the deconvolution and decomposition
(Fig. 6(4), (5)) results. However, the number of points generated
from these methods of the same study extent revealed that the
Gold approach is larger than the RL approach and the direct
decomposition approach. Overall, these results provide important
insights into the selection of waveform processing methods, as
some of these approaches may provide more information on the
three-dimensional vegetation structure.
3.5. Accuracy assessment

Qualitative and quantitative accuracy assessments for the
derived end products (DEM and CHM) were conducted in terms
of visual and statistical comparisons. The results from SJER were
used as an example to demonstrate the visual comparison results.
3.5.1. Digital terrain model
Fig. 8 shows that the DTMs generated from waveform LiDAR

data with different approaches in the SJER study site almost have
identical elevation distribution in comparison to the reference
DTM. The range of the DTM derived fromwaveform LiDAR was also
consistent with the reference DTM. However, a lower elevation
range was observed for all approaches with the direct decomposi-
tion approach ranging from 381.9 to 424.2 m, Gold approach from
381.3 to 423.2 m and RL approach from 381.3 to 423.0 m. It should
be noted that there were some blank regions on the edges of DTMs,
which may be due to no waveform or no information extracted
from the sparse waveforms in those regions.

To further validate the performance of DTM results generated
from different approaches, the statistical results for the DTMs are
shown in Table 4. It was noticeable that for all study sites, DTMs
derived from waveform LiDAR were lower than the reference
DTM from the perspective of range, and the direct decomposition
approach outperformed the other two approaches generally. More
precisely, the direct decomposition and gold approaches had sim-
ilar performances for the HF study area in terms of root mean
square error (RMSE) and mean difference (MD). Unlike the results
of the HF site, the SJER and OSBS sites’ direct decomposition
approach outperformed the Gold and RL approaches. Especially
for the SJER site, larger variances and RMSEs (Table 4) were
reported that probably resulted from the downward shift of
detected peaks after we utilized the shifted estimated impulse
response to deconvolve the waveforms. As shown in Fig. 7, the esti-
mated impulse response of the SJER site (red) is shifted downward
compared with the estimated impulse response of the HF site.
Additionally, there is an extra peak at the end of the SJER site’s
impulse response which is an artifact, since the impulse response
was reflected from flat ground that should have one peak. The
deconvolution is sensitive to the input data such as impulse
response and any shift of impulse response will propagate to the
position accuracy of the detected peaks (Cawse-Nicholson et al.,
2014). On the contrary, the impulse response for HF was more rea-
sonable with only one significant peak. These may explain why the
HF site’s DTMs derived from the Gold approach and the RL
approach were better than for the SJER site with the same
approaches. However, through obtaining more accurate impulse
response, the accuracy of the SJER DTM could be improved.



Fig. 7. The comparisons of the impulse response used for deconvolution provided by the NEON datasets.

Fig. 8. Comparisons of (1) Reference DTM to waveform-based DTM generated from (2) the direct decomposition, (3) the Gold deconvolution and (4) the RL deconvolution
approaches for the SJER site.
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Assuredly, the topography of the study areas, resolution of the
DTM, and ground points’ classification method may also contribute
to larger variance of the results.
The percentage of the spatial elevation difference between
DTMs derived from waveform LiDAR and reference data for the
three study sites was also analyzed as shown in Table 4. Almost



Table 4
Summary statistics of DTMs (1 m resolution) generated from the three approaches (Direct decomposition, Gold algorithm and RL algorithm) for the HF, SJER and OSBS sites.

Approaches Range (m) SD (m) MD (m) RMSE (m) PW0.5 (%) PW1 (%) PW2 (%) PW3 (%)

HF
Reference 313.5–318.0
Discrete 313.9–318.1 0.18 �0.28 0.24
Direct 313.7–317.9 0.23 �0.35 0.42 75.36 99.91 100 100
Gold 313.6–317.7 0.25 �0.35 0.31 68.82 97.68 100 100
RL 313.9–318.3 0.70 �0.21 0.70 60.43 80.45 93.40 100

SJER
Reference 381.5–424.0
Discrete 382.1–424.5 0.15 �0.12 0.15
Direct 381.9–424.2 0.25 �0.24 0.26 93.87 99.70 100 100
Gold 381.3–423.2 0.30 �1.04 1.15 3.53 25.65 99.20 100
RL 381.3–423.0 0.31 �1.16 1.26 2.23 18.80 99.50 100

OSBS
Reference 21.0–46.9
Discrete 21.7–47.6 0.12 �0.08 0.15
Direct 21.0–47.4 �0.31 0.35 0.36 94.10 99.78 100 100
Gold 20.6–47.0 0.40 �0.14 0.42 60.56 94.56 99.88 100
RL 20.5–46.6 0.35 �0.54 0.62 49.68 92.47 99.94 100

Reference: Reference DTM; Discrete: Discrete-return LiDAR derived DTM; Direct: Direct decomposition approach; Gold: Gold approach; RL: RL approach. SD: standard
deviation; MD: Mean elevation difference between DTM derived from waveform LiDAR and reference data; PW0.5: the percentage of difference within 0.5 m (�0.5 to 0.5);
PW1: the percentage of difference within 1 m (�1 to 1); PW2: the percentage of difference within 1 m (�2 to 2); PW3: the percentage of difference beyond 2 m (>2.0 and
<�2.0).
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all elevation differences (>94%) were within 0.5 m when we used
the direct decomposition approach for the SJER and OSBS study
sites. The performance of direct decomposition, Gold and RL
approaches significantly varied on the SJER and OSBS sites when
only the elevation difference within 0.5 (PW0.5) or 1 m (PW1)
was considered. However, the elevation difference within 2 m
(PW2) for this site was almost the same for these three approaches.
As we explained above, the estimated impulse response may be the
main reason for the lower performance of this site. For the decon-
volution and decomposition method, the Gold approach had a bet-
ter performance than the RL approach with a higher percentage of
spatial difference located in the ranges from �0.5 to 0.5 m and �1
to 1 m for all study sites.
3.5.2. Canopy height model
Fig. 9 displays the CHMs generated from the direct decomposi-

tion, Gold and RL approaches for the SJER site. All approaches
yielded similar results to our reference data in terms of the range
and spatial distribution. It was worthwhile to note that the values
in some regions of the reference data were zero (dark red), while
the canopy height of the same region derived from waveform data
was slightly higher as marked with ellipse shape. As noted from
the regions marked by the circle, the Gold and RL approaches’
results give more detail information about low vegetation than
the direct decomposition approach.

These differences may demonstrate that the waveform LiDAR
data was more capable of detecting the low vegetation than the
discrete-return LiDAR data, and the deconvolution and decomposi-
tion method had higher potential to detect low vegetation. The
findings may provide insights into detecting understory layers
below the forest canopy or grassland vegetation by using wave-
form LiDAR data. The range shift was not observed for CHMs using
the Gold and RL approaches as noted for the DTMs, because the
CHMwas obtained by subtracting the DTM from the digital surface
model (DSM) and the time shift was offset after subtraction.

In addition to the visual comparisons, the quantitative compar-
isons between waveform-based CHMs with different approaches
and reference CHM data are shown in Table 5. The Gold approach
had the best performance with smallest standard deviation and
RMSE for all sites. The result of the RL approach at the OSBS site
had the smallest height difference but larger RMSE than direct
decomposition approach, which may be primarily caused by the
wider range of the height difference. However, it was still compa-
rable to the result of direct decomposition approach. These obser-
vations may further indicate that the three approaches were
reliable to extract the vegetation structure from the waveform
LiDAR data and the Gold approach outperformed the other two
approaches.

Analysis of percentage of the region’s difference between max-
imum CHM derived from waveform LiDAR and the reference data
further confirmed this conclusion (Table 5). From the perspective
of the percentage of height difference within 2 m, about 96% of
regions in HF site and 90% of region in other two sites, the perfor-
mance of these three approaches were satisfactory. The majority of
height differences >2 m occurred at the boundary of trees and
ground. The reason behind this was that the small change of peak
(t) not only lead to the slight change of height (z), but also resulted
in the synchronized change of XY locations, as implied in Eqs. (8)
and (9). When compared with the reference data, the boundary
of trees and ground most likely yielded larger height differences
due to this kind of XY location shift.

However, the performance of the three approaches varied at dif-
ferent sites in terms of the height difference within 0.5 and 1 m.
The Gold approach worked best at the HF and SJER sites, while it
did not work as well as the direct decomposition in the OSBS site.

Globally, the CHMs generated from the waveform LiDAR data
using the three approaches were satisfactory compared to the ref-
erence data for these three study sites. The Gold approach worked
slightly better with smaller standard deviation and RMSE for all
sites. However, the direct decomposition approach outperformed
the Gold approach with higher percentage of area located in the
given spatial difference range, especially when the spatial differ-
ence range was within 0.5 and 1 m at OSBS site. This may be
because the HF study area was flatter than SJER study area and
potentially proved that Gold approach could work well in regions
with different topography.
3.6. Parameter uncertainty

3.6.1. Digital terrain model
Fig. 10 shows that the DTMs’ spatial uncertainty of the SJER site

for the three approaches mostly ranges from �1 m to 1 m, and the



Fig. 9. Comparisons of (1) Reference CHM to waveform-based CHM generated from (2) the direct decomposition approach, (3) the Gold approach (4) and the RL approach for
the SJER site.

Table 5
Summary of comparison of CHMs (resolution 1 m) generated from the three approaches (Direct decomposition, Gold approach and RL approach) for the HF, SJER and OSBS sites.

Approaches Range (m) SD (m) MD (m) RMSE (m) PW0.5 (%) PW1 (%) PW2 (%) PW3 (%)

HF
Reference 9.10–23.06
Discrete 9.19–23.06 0.42 0.25 0.51
Direct 9.19–23.40 0.70 0.65 0.95 50.61 80.95 96.39 100
Gold 10.83–22.91 0.45 0.38 0.72 65.53 88.28 98.37 100
RL 9.95–23.67 0.98 0.28 1.02 42.45 69.31 95.28 100

SJER
Reference 0.00–24.56
Discrete 0.00–24.49 0.32 0.15 0.35
Direct 0.00–24.68 1.40 0.50 1.65 60.87 75.08 88.03 100
Gold 0.00–25.12 1.28 �0.12 1.06 72.65 81.82 89.62 100
RL 0.00–24.57 1.39 0.35 1.51 34.56 80.34 88.89 100

OSBS
Reference 0.00–27.35
Discrete 0.00–27.77 0.28 0.11 0.31
Direct 0.00–27.58 1.67 0.75 1.40 68.25 83.48 92.56 100
Gold 0.00–27.81 1.54 0.30 1.62 48.59 79.68 88.25 100
RL 0.00–28.50 1.93 0.13 1.87 38.25 68.37 86.87 100

Reference: Reference CHM; Discrete: Discrete-return LiDAR derived CHM; Direct: Direct decomposition approach; Gold: Gold approach; RL: RL approach. SD: standard
deviation; MD: Mean height difference between CHM derived fromwaveform LiDAR and reference data; PW0.5: the percentage of difference within 0.5 m (�0.5 to 0.5); PW1:
the percentage of difference within 1 m (�1.0 to 1.0); PW2: the percentage of difference within 1 m (�2.0 to 2.0); PW3: the percentage of difference beyond 2 m (>2.0 and
<�2.0).
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Fig. 10. The spatial uncertainty of the DTM caused by the parameter uncertainty in the SJER site using the direct decomposition approach (left), Gold approach (middle) and
RL (right) approach, respectively. The above was the result from the corresponding Lower dataset and the bottom was the result from the corresponding Upper dataset.
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DTMs derived from the Lower datasets are smoother than the
Upper datasets. More specially, the direct decomposition approach
had the smallest variation of spatial uncertainty with >86% of the
prediction error within 0.50 m for the Lower dataset, and 89% of
the prediction error was located in the range from 0.00 to 0.49 m
for the Upper dataset. The RL approach yielded similar result as
the Gold approach when using the Lower dataset and most of the
uncertainty ranged from 0.51 to 1.00 m. The spatial uncertainty
using the Upper dataset with the RL approach had less variation
compared to the Gold approach that was consistent with the stan-
dard deviation in Table 6. It was worth noting that the spatial dis-
tribution of uncertainty derived from the Lower dataset was not
consistent with that of the Upper dataset. This may be mainly
attributed to the fact that the NEON data could provide x, y, z
change per nanosecond for each waveform which can result in
the synchronized change of points’ x, y, z when the peak location
with 95% uncertainty level was considered. In addition, the inter-
polation and the smoothing process may also lead to this kind of
inconsistency.

Global statistics for the DTMs’ parameter uncertainty is pre-
sented in Table 6. For all study sites, all approaches’ absolute mean
spatial uncertainties were below 0.25 m, except for the Upper
dataset using the RL approach, indicating that biases caused by
parameter uncertainty were relative low. The RMSE ranged from
0.08 to 0.36 m, which was almost consistent with the standard
deviation. From the statistics in Table 6, there is no obvious differ-
ence among these three approaches in terms of the RMSE and SD.
However, the Gold approach outperformed the other two
approaches when the MU was taken into account.
The RL approach had larger minimum error and maximum error
in the HF site that resulted in larger RMSE andmean absolute errors
at the HF site. The RL approach’s performance enhanced substan-
tially when it came to the SJER and OSBS sites with smaller RMSE.
For instance, the RL approach’s RMSE for the Lower and Upper data-
set were 0.14 and 0.28 m at the SJER site, when compared to 0.42
and 0.94 m at the HF site. The only one flight line may contribute
to higher SD and RMSE at the HF site since there was no overlap
in the study region with less dense raw waveform data. It was sur-
prising to find that the Upper datasets for all approaches have larger
range and RMSE than the corresponding Lower datasets. It may be
attributed to the fact that most of the Upper dataset’s points were
lower than reference DTM, which had a more weight on the effect
of the DTM generation than using the Lower dataset.

The direct decomposition method worked well and consistently
in these three sites, but the deconvolution and decomposition
method (either the Gold or RL approach) was more likely to gener-
ate smaller RMSE than the direct decomposition approach.

To further identify areas where DTM surfaces of low quality
with high uncertainty, and compare the performances of
approaches under different conditions, the slope and the vegeta-
tion height were taken into account as important predictors for
the categories of uncertainty. Here, the HF and SJER sites were
selected as examples to demonstrate the effect of the slope and
vegetation height.

The ANOVA analysis showed that vegetation height and slope
had a significant effect on the uncertainty levels of DTMs for the
three approaches at the HF site, with all p-values smaller than
0.05 (Fig. 11a and b). The green line (median) increased with



Table 6
Global statistics summarizing validation errors caused by parameter uncertainty for DTMs.

Approaches Dataset Range (m) SD (m) MU (m) MinU (m) MaxU (m) RMSE (m)

HF
Direct Low 313.89–318.15 0.15 0.23 �0.06 0.76 0.32

Up 313.69–317.50 0.18 �0.24 �0.79 0.60 0.32

Gold Low 313.40–318.00 0.07 0.04 �0.21 0.28 0.08
Up 313.31–317.97 0.09 �0.03 �0.49 0.21 0.09

RL Low 313.74–317.48 0.39 �0.15 �2.12 0.88 0.42
Up 313.35–316.2 0.52 �0.78 �3.05 0.22 0.94

SJER
Direct Low 382.09–424.05 0.12 0.05 �1.24 1.53 0.21

Up 381.69–424.11 0.18 �0.10 �2.51 1.29 0.13

Gold Low 381.39–423.11 0.17 0.03 �1.61 1.43 0.17
Up 380.78–423.15 0.36 �0.04 �2.59 2.53 0.36

RL Low 381.39–423.11 0.14 0.03 �2.21 2.59 0.14
Up 381.35–422.92 0.26 �0.10 �3.77 1.89 0.28

OSBS
Direct Low 21.88–47.10 0.16 0.08 �1.57 2.48 0.18

Up 20.96–47.02 0.26 �0.13 �2.27 1.42 0.29

Gold Low 20.94–45.46 0.11 0.01 �1.59 1.38 0.11
Up 20.99–45.61 0.18 0.02 �1.88 1.51 0.18

RL Low 20.48–46.67 0.10 0.01 �1.84 1.78 0.10
Up 20.99–46.63 0.11 0.00 �2.54 1.74 0.11

Direct: Direct decomposition approach; Gold: Gold approach; RL: RL approach. SD: standard deviation; MU: Mean uncertainty caused by parameters between DTM derived
from uncertainty dataset and DTM derived from peak location dataset; MinU: Minimum change caused by parameter uncertainty; MaxU: Maximum change caused by
parameter uncertainty; low: Lower dataset; up: Upper dataset.

Fig. 11. a. Box-plot of DTMs and CHMs’ Uncertainty levels vs. Slope for the HF site.
b. Box-plot of DTMs and CHMs’ Uncertainty levels vs. Vegetation Height for the HF
site. c. Box-plot of DTMs and CHMs’ Uncertainty levels vs. Slope for the SJER site. d.
Box-plot of DTMs and CHMs’ Uncertainty levels vs. Vegetation Height for the SJER
site. *Green lines indicated median of dataset, the height of the box portion was
given by the IQR of the dataset and the ends of the whiskers meant 1.5 IQR of lower
quantile and 1.5 IQR of upper quantile. Blue points were the mean of the
corresponding variable. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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uncertainty levels for the three approaches, which demonstrated
that larger slope and higher vegetation height were more likely
to cause high uncertainty of DTM. For the SJER site, the uncertainty
levels vs. slope showed that all approaches’ p-values were zero
except the Gold approach’s p-value was 0.917. This indicated that
the slope had no effect on the uncertainty levels and the Gold
approach may be robust when dealing with complex topography.
The average slope and slope distribution of the three uncertainty
levels for the other two approaches were similar to each other,
even the ANOVA analysis showed that slope was a significant fac-
tor for determining the uncertainty levels. This may potentially
imply that slope could influence the uncertainty levels, but its
cause-effect relationship is not so strong. Unlike slope, the vegeta-
tion height’s effect on the uncertainty levels was more significant
with regards to mean, median and interquartile range (IQR) as
shown in Fig. 11c and d. Additionally, the higher the vegetation
height, the more likely for this area to have higher uncertainty
level. It was worthy to note that the median was not consistent
with the mean for the corresponding uncertainty level. Most of
the low and medium uncertainty occurred on the ground with
mean and median being zero for low uncertainty levels (Fig. 11d).

In summary, the analysis identified that high prediction uncer-
tainty of DTM was more likely to occur at larger slope and higher
vegetation for all approaches in flat topography with dense vegeta-
tion. The vegetation height’s effect on the DTM’s uncertainty levels
was more significant than slope when it came to the complex
topography. The ground was more prone to lower spatial uncer-
tainty level which may result from that waveforms in the ground
region were simpler than in the slope and vegetation regions.

3.6.2. Canopy height model
Visual comparisons of the maximum CHM of the HF site for the

three approaches are shown in Fig. 12. With regards to different
datasets for the three approaches, the spatial distribution of uncer-
tainty was similar, but not identical. The Gold approach had the
smallest variance with similar spatial distribution using the two
different datasets. The RL approach had the largest variance, which
was coincident with the global statistic of Table 7. Somewhat sur-
prisingly, the largest uncertainty level (dark red or dark blue) for
the RL approach was more likely to occur at the edges of the HF site



Fig. 11 (continued)

Fig. 11 (continued)

Fig. 11 (continued)
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rather than at the boundary of trees and ground (Fig. 12). After a
closer examination, we found that the large uncertainty level
was located in dense vegetation areas, which may further imply
that the Gold approach was less suitable for dense vegetation
regions.

The quantitative assessment of the CHMs’ parameter uncer-
tainty (Table 7) yielded similar results to those of DTMs. The abso-
lute mean spatial difference for all approaches ranged from 0.00 to
0.27 m, which was smaller than the DTMs’ result derived from the
corresponding datasets. It was not surprising to see that the mini-
mum uncertainty and maximum uncertainty for each dataset of
CHMs were larger than corresponding DTMs’ results, since DTMs
were much flatter than CHMs and relatively lower uncertainty
was expected. In addition, the CHM was generated with additional
steps compared with DTM that may bring more error into the CHM
products. Most of these large uncertainties occurred at the bound-
ary of trees and ground, and a small shift of XY location from
parameter uncertainty would result in a large difference of canopy
height.

The Gold approach had the smallest RMSE for CHMs in the HF
and OSBS sites, but it had the largest RMSE for the SJER site. By con-
trast, the RL approach yielded the opposite results with the small-
est RMSE at the SJER site, and the largest RMSE and mean error for
the HF site. These trends were consistent with the DTMs’ results. It
confirmed the previous conclusion that the Gold approach may be
more suitable in flat terrain areas and RL approach tended to per-
form better in complex topography conditions. The direct decom-
position method performed well in both study areas, but not as
good as the deconvolution and decomposition method (either the
Gold or RL approach) that may further indicate the advantages of
the deconvolution. Assuredly, the relationship between vegetation,
and topographic conditions and deconvolution results is complex,
the simulated waveform data with different topographic and veg-
etation conditions will be the ideal datasets to further test the
approaches and provide insights into selecting approaches under
different conditions of topography and vegetation.

The ANOVA analysis of CHMs at the HF site (Fig. 11a) demon-
strated that the median, mean and IQR of slope were similar for
different CHMs’ uncertainty levels using the direct decomposition
approach. This result indicated that the slope had no effect on
the CHMs’ uncertainty levels for the direct decomposition
approach in terms of the statistical perspective. However, this fac-
tor’s effect on the uncertainty levels was significant (p < 0.050) for
the Gold and RL approaches. Likewise, the vegetation height also



Fig. 12. The spatial uncertainty of CHM caused by the parameter uncertainty in HF region using the direct decomposition approach (left), Gold approach (middle) and RL
(right) approach, respectively. The above was the result from the Lower dataset and the bottom was the result from the Upper dataset.

Table 7
Global statistics summarizing validation errors caused by parameter uncertainty for CHMs (unit: m).

Approaches Dataset Range SD MU MinU MaxU RMSE

HF
Direct Low 11.44–24.13 0.46 �0.07 �2.85 4.82 0.47

Up 11.76–23.38 0.38 0.13 �1.74 2.33 0.40

Gold Low 10.71–22.75 0.18 �0.04 �2.34 0.92 0.19
Up 10.84–23.16 0.19 0.01 �1.64 1.71 0.20

RL Low 9.90–22.86 0.88 �0.27 �2.73 2.66 0.92
Up 10.19–23.71 0.95 0.25 �3.77 2.56 0.98

SJER
Direct Low 0.00–24.85 0.43 0.06 �6.32 11.00 0.44

Up 0.00–24.70 0.40 0.01 �6.42 8.87 0.39

Gold Low 0.00–24.70 0.51 0.15 �7.06 10.22 0.53
Up 0.00–24.24 0.49 0.04 �8.86 9.26 0.49

RL Low 0.00–24.78 0.33 0.00 �9.44 8.70 0.33
Up 0.00–24.63 0.35 0.09 �6.19 5.50 0.37

OSBS
Direct Low 0.00–27.36 0.61 0.00 �17.2 17.05 0.61

Up 0.00–27.73 0.69 0.07 �14.56 17.70 0.69

Gold Low 0.00–28.61 0.01 0.00 0.00 2.71 0.01
Up 0.00–28.59 0.58 �0.03 �13.71 16.22 0.57

RL Low 0.00–28.37 0.48 0.03 �18.18 19.20 0.49
Up 0.00–28.12 0.46 �0.01 �17.20 17.12 0.46

Direct: Direct decomposition approach; Gold: Gold approach; RL: RL approach. SD: standard deviation; MU: Mean uncertainty caused by parameters between DTM derived
from uncertainty dataset and DTM derived from peak location dataset; MinU: Minimum change caused by parameter uncertainty; MaxU: Maximum change caused by
parameter uncertainty; low: Lower dataset; up: Upper dataset.
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had an impact on the uncertainty levels using the Gold and RL
approaches, but not for the direct decomposition approach at the
HF site as shown in Fig. 11b. Generally, higher uncertainty level
was more likely to occur at the higher slope and vegetation height
for the Gold and RL approaches.

For the SJER site, the analysis showed that the uncertainty levels
of CHMs were influenced by the vegetation height for all
approaches (p = 0.000), and there was a large difference between
mean and median of vegetation height for different uncertainty
levels (Fig. 11d). Most of the uncertainty was more likely to occur
at the lower vegetation and ground, especially for the Gold
approach. The analysis of the slope (Fig. 11c) showed that the Gold
approach’s uncertainty levels were robust to slope changes
(p = 0.094). The p-values of the other two approaches’ were zero,
which indicated that the uncertainty of CHM was likely to be
affected by slope changes. However, these two approaches’ med-
ian, mean and IQR were similar for different uncertainty levels
which may imply that the slope did not play as an important role
as vegetation height in determining uncertainty levels.

In summary, the analysis identified that higher uncertainty of
CHM was prone to occur at higher vegetation for all approaches
in the complex topography with less dense vegetation areas. For
the flat topography, there was no obvious pattern for the Gold
and RL approaches for different uncertainty levels. The direct
decomposition approach outperformed other two approaches and
was robust to the change of slope and vegetation height under such
topography condition.
4. Conclusions

This study proposes a new waveform LiDAR deconvolution
algorithm called the Gold algorithm as a preprocessing step, and
comprehensively compares different methods of processing the
waveform LiDAR data at three different ecological sites from both
visual and quantitative perspectives.

Our work has demonstrated the advantage of the deconvolution
and decomposition method with more echoes of waveforms
detected and less false echoes generated, especially when the Gold
approach is used. Furthermore, the accuracy assessment of the end
products (DTMs and CHMs) shows that the three approaches can
generate satisfactory results, while the best performances vary
when different criteria are used: the Gold approach has better per-
formance with smaller RMSE, and the direct decomposition
approach outperforms others in terms of the percentage of spatial
difference within 0.5 and 1 m. According to the parameter uncer-
tainty of end products, the factors like the vegetation height and
slope both have an effect on the robustness of approaches, while
the slope becomes a less significant factor when it comes to the
spatial uncertainty of CHMs. Specifically, the Gold approach tends
to have better performance in the dense vegetation region and the
RL approach works better in the sparse vegetation region. There-
fore, the important contributions of this study lie in successfully
introducing a novel deconvolution algorithm, the Gold algorithm,
for waveform LiDAR processing, and providing a comprehensive
comparison and a quantifiable basis selection of different wave-
form LiDAR processing methods for different topography and veg-
etation conditions. Potential future studies could use the proposed
method to process waveform LiDAR data and extract semantical
information, such as individual tree crown mapping, understory
tree detection, and to estimate forest structure and biophysical
parameters. In addition, future investigations could benefit from
expanding the availability of new waveform LiDAR datasets to
cover varied vegetation conditions in multiple ecosystem types
and complex topography, urban areas, in rangelands and
grasslands.
Acknowledgement

The authors gratefully acknowledge the support provided by
NASA New Investigator Program (Grant #NNX08AR12G), NSF Doc-
toral Dissertation Improvement Grant (DEB 1702008), and the
graduate student support provided by the Department of Ecosys-
tem Science and Management and the College of Agriculture and
Life Sciences at Texas A&M University. We also thank Dr. Thadeus
Bowerman and Shruthi Srinivasan for patient proofreading of the
first draft of the paper. We express our sincere gratitude to two
anonymous reviewers for their insightful comments.

References

Azadbakht, M., Fraser, C., Khoshelham, K., 2016. A sparsity-based regularization
approach for deconvolution of full-waveform airborne Lidar data. Remote
Sensing 8 (8), 648. http://dx.doi.org/10.3390/rs8080648.

Boudreau, J., Nelson, R., Margolis, H., Beaudoin, A., Guindon, L., Kimes, D., 2008.
Regional aboveground forest biomass using airborne and spaceborne LiDAR in
Québec. Remote Sens. Environ. 112 (10), 3876–3890. http://dx.doi.org/10.1016/
j.rse.2008.06.003.

Briese, C., Höfle, B., Lehner, H., Wagner, W., Pfennigbauer, M., Ullrich, A., 2008.
Calibration of full-waveform airborne laser scanning data for object
classification. In: Paper Presented at the SPIE Defense and Security Symposium.

Carlsson, T., Steinvall, O., Letalick, D., 2001. Signature Simulation and Signal Analysis
for 3-D Laser Radar. Month, 4, C4ISR.

Cawse-Nicholson, K., van Aardt, J., Hagstrom, S., Romanczyk, P., Schaaf, C., Strahler,
A., Krause, K., 2014. Improving waveform lidar processing toward robust
deconvolution of signals for improved structural assessments. In: Paper
Presented at the SPIE Defense + Security.

Chauve, A., Mallet, C., Bretar, F., Durrieu, S., Deseilligny, M.P., Puech, W., 2007.
Processing full-waveform lidar data: modelling raw signals. In: Paper Presented
at the International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences 2007.

Chauve, A., Vega, C., Durrieu, S., Bretar, F., Allouis, T., Pierrot Deseilligny, M., Puech,
W., 2009. Advanced full-waveform lidar data echo detection: Assessing quality
of derived terrain and tree height models in an alpine coniferous forest. Int. J.
Remote Sens. 30 (19), 5211–5228. http://dx.doi.org/10.1080/
01431160903023009.

Chen, Q., 2007. Airborne lidar data processing and information extraction.
Photogramm. Eng. Remote Sens. 73 (2), 109.

Chhatkuli, S., Mano, K., Kogure, T., Tachibana, K., Shimamura, H., 2012. Full
Waveform Lidar Exploitation Technique and its Evaluation in the Mixed Forest
Hilly Region. ISPRS-International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, pp. 505–509.

Doneus, M., Briese, C., Fera, M., Janner, M., 2008. Archaeological prospection of
forested areas using full-waveform airborne laser scanning. J. Archaeol. Sci. 35
(4), 882–893. http://dx.doi.org/10.1016/j.jas.2007.06.013.

Elzhov, T.V., Mullen, K.M., Spiess, A.-N., Bolker, B., 2013. minpack. lm: R Interface to
the Levenberg-Marquardt Nonlinear Least-Squares Algorithm found in
MINPACK, Plus Support for Bounds. R Package Version 1.1-8.

Fieber, K.D., Davenport, I.J., Tanase, M.A., Ferryman, J.M., Gurney, R.J., Becerra, V.M.,
Hacker, J.M., 2015. Validation of canopy height profile methodology for small-
footprint full-waveform airborne LiDAR data in a discontinuous canopy
environment. ISPRS J. Photogramm. Remote Sens. 104, 144–157.

Fish, D., Brinicombe, A., Pike, E., Walker, J., 1995. Blind deconvolution by means of
the Richardson-Lucy algorithm. JOSA A 12 (1), 58–65.

Gao, S., Niu, Z., Sun, G., Zhao, D., Jia, K., Qin, Y., 2015. Height extraction of maize
using airborne full-waveform LIDAR data and a deconvolution algorithm. IEEE
Geosci. Remote Sens. Lett. 12 (9), 1978–1982.

Gwenzi, D., Lefsky, M.A., 2014. Modeling canopy height in a savanna ecosystem
using spaceborne lidar waveforms. Remote Sens. Environ. 154, 338–344. http://
dx.doi.org/10.1016/j.rse.2013.11.024.

Hancock, S., Anderson, K., Disney, M., Gaston, K.J., 2017. Measurement of fine-
spatial-resolution 3D vegetation structure with airborne waveform lidar:
Calibration and validation with voxelised terrestrial lidar. Remote Sens.
Environ. 188, 37–50. http://dx.doi.org/10.1016/j.rse.2016.10.041.

Hancock, S., Lewis, P., Disney, M., Foster, M., Muller, J., 2008. Assessing the Accuracy
Of Forest Height Estimation with Long Pulse Waveform Lidar through Monte-
Carlo Ray Tracing. Silvilaser, Edinburgh (September, 17, 18).

Harding, D.J., 2005. ICESat waveform measurements of within-footprint
topographic relief and vegetation vertical structure. Geophys. Res. Lett. 32
(21). http://dx.doi.org/10.1029/2005gl023471.

Harsdorf, S., Reuter, R., 2000. Stable Deconvolution of Noisy Lidar Signals. tc, 10, 1.
Hofton, M.A., Minster, J.B., Blair, J.B., 2000. Decomposition of laser altimeter

waveforms. IEEE Trans. Geosci. Remote Sens. 38 (4), 1989–1996.
Hollaus, M., Mücke, W., Höfle, B., Dorigo, W., Pfeifer, N., Wagner, W., Regner, B.,

2009. Tree species classification based on full-waveform airborne laser
scanning data. Proc. Silvilaser 2009, 54–62.

Ioannides, M., Arnold, D., Niccolucci, F., Mania, K., 2006. Digital Terrain Modelling
for Archaeological Interpretation within Forested Areas using Full-Waveform
Laserscanning.

http://dx.doi.org/10.3390/rs8080648
http://dx.doi.org/10.1016/j.rse.2008.06.003
http://dx.doi.org/10.1016/j.rse.2008.06.003
http://dx.doi.org/10.1080/01431160903023009
http://dx.doi.org/10.1080/01431160903023009
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0040
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0040
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0045
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0045
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0045
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0045
http://dx.doi.org/10.1016/j.jas.2007.06.013
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0060
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0060
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0060
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0060
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0065
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0065
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0070
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0070
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0070
http://dx.doi.org/10.1016/j.rse.2013.11.024
http://dx.doi.org/10.1016/j.rse.2013.11.024
http://dx.doi.org/10.1016/j.rse.2016.10.041
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0085
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0085
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0085
http://dx.doi.org/10.1029/2005gl023471
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0100
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0100
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0105
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0105
http://refhub.elsevier.com/S0924-2716(16)30496-8/h0105


150 T. Zhou et al. / ISPRS Journal of Photogrammetry and Remote Sensing 129 (2017) 131–150
Isenburg, M., 2012. LAStools-Efficient Tools for LiDAR Processing. Available at:
<http://www.cs.unc.edu/~isenburg/lastools/> (accessed October 9, 2012).

Jalobeanu, A., Gonçalves, G., 2014. Robust ground peak extraction with range error
estimation using full-waveform LiDAR. IEEE Geosci. Remote Sens. Lett. 11 (7),
1190–1194.

Jutzi, B., Stilla, U., 2006. Range determination with waveform recording laser
systems using a Wiener filter. ISPRS J. Photogramm. Remote Sens. 61 (2), 95–
107. http://dx.doi.org/10.1016/j.isprsjprs.2006.09.001.

Kampe, T.U., 2010. NEON: the first continental-scale ecological observatory with
airborne remote sensing of vegetation canopy biochemistry and structure. J.
Appl. Remote Sens. 4 (1), 043510. http://dx.doi.org/10.1117/1.3361375.

Keith, K., Tristan, G., 2015. NEON L0-TO-L1 Discrete-Return LiDAR Algorithm
Theoretical Basis Document (ATBD). Retrieved from <http://data.neonscience.
org/documents>.

Keller, M., 2007. Revised method for forest canopy height estimation from
Geoscience Laser Altimeter System waveforms. J. Appl. Remote Sens. 1 (1),
013537. http://dx.doi.org/10.1117/1.2795724.

Khosravipour, A., Skidmore, A.K., Isenburg, M., Wang, T., Hussin, Y.A., 2014.
Generating pit-free canopy height models from airborne Lidar. Photogramm.
Eng. Remote Sens. 80 (9), 863–872. http://dx.doi.org/10.14358/pers.80.9.863.

Lefsky, M.A., 2010. A global forest canopy height map from the Moderate Resolution
Imaging Spectroradiometer and the Geoscience Laser Altimeter System.
Geophys. Res. Lett. 37 (15). http://dx.doi.org/10.1029/2010gl043622. n/a–n/a.

Lefsky, M.A., Harding, D.J., Keller, M., Cohen, W.B., Carabajal, C.C., Del Bom Espirito-
Santo, F., de Oliveira, R., 2005. Estimates of forest canopy height and
aboveground biomass using ICESat. Geophys. Res. Lett. 32 (22). http://dx.doi.
org/10.1029/2005gl023971.

Lucy, L.B., 1974. An iterative technique for the rectification of observed
distributions. Astronom. J. 79, 745.

Mallet, C., Bretar, F., 2009. Full-waveform topographic lidar: state-of-the-art. ISPRS
J. Photogramm. Remote Sens. 64 (1), 1–16. http://dx.doi.org/10.1016/j.
isprsjprs.2008.09.007.

Mallet, C., Lafarge, F., Bretar, F., Roux, M., Soergel, U., Heipke, C., 2009. A stochastic
approach for modelling airborne lidar waveforms. Laserscanning, 201–206.

McGlinchy, J., van Aardt, J.A.N., Erasmus, B., Asner, G.P., Mathieu, R., Wessels, K.,
Cawse-Nicholson, K., 2014. Extracting structural vegetation components from
small-footprint waveform lidar for biomass estimation in savanna ecosystems.
IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 7 (2), 480–490. http://dx.doi.
org/10.1109/jstars.2013.2274761.

Morhac, M., 2012. Peaks: Peaks. R Package Version 0.2.
Morhac, M., Kliman, J., Matousek, V., Veselsky, M., Turzo, I., 1997. Efficient one- and

two-dimensional gold deconvolution and its application to gamma-ray spectra
decomposition. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectr.
Detectors Assoc. Equip. 401 (2–3), 385–408. http://dx.doi.org/10.1016/S0168-
9002(97)01058-9.
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