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ABSTRACT

We propose a series of methods based on learning key structural
properties from traffic data-basis and on statistical model checking,
ultimately leading to the construction of a scenario catalogue captur-
ing requirements for controlling criticality for highly autonomous
vehicles. We sketch underlying mathematical foundations which
allow to derive formal confidence levels that vehicles tested by such
a scenario catalogue will maintain the required control of criticality
in real traffic matching the probability distributions of key parame-
ters of data recorded in the reference data base employed for this
process.
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1 INTRODUCTION

It is well-known (c.f. [20]) that traditional approaches for type
homologation fail for highly autonomous vehicles due to the im-
possibility of covering sufficiently many kilometers in field testing
to achieve a statistically valid basis for building safety cases, due
to the extreme variability of environmental contexts and the re-
sulting complexity in both the perception- and trajectory planning
systems of highly autonomous vehicles. The approach followed by
the German automotive industry and presented in this paper builds
on scenario catalogues to capture for all perceivable traffic situa-
tions’ requirements on such systems jointly ensuring global safety
objectives. Test drives are to be replaced to a significant extent by
placing the vehicle under test in test environments exposing the
vehicle to traffic situations covering all scenarios of the scenario cat-
alogue, and monitoring compliance of the vehicle’s reaction to such
scenarios in a virtual environment. Such test environments will al-
low testing separately the perception components (along all stages
covering preprocessed sensor data, sensor fusion, object identifi-
cation algorithms) and the trajectory planning component (which
involves exploring possible future evolutions of the currently per-
ceived traffic situation to decide on the planned maneuver). Projects
already running and pushing this approach are the Pegasus project
funded by the German Federal Ministry for Economic Affairs and
Energy, involving all major German OEMs and Tier 1 companies,
and the ENABLE-S3 project funded by the Joint Undertaking ECSEL,
including both German and French automotive companies.’

Currently, new projects are under formation to build industry
strength processes and test environment elaborating this approach.

There are several challenges which must be addressed to make
this approach viable:

(1) Can we capture at design time the space of all possible traf-
fic situations and environmental factors relevant for safe
trajectories for autonomous vehicles?

(a) Can we characterize the environmental conditions for all
elements in the perception chain under which identifi-
cation of objects can be guaranteed for a given desired
confidence level?

(b) Can we characterize the variability of dynamics of other
participants to allow safe predictions of future evolution
of traffic situations for a given confidence level?

(c) Can we find generalized risk limits for certain traffic (en-
vironmental) situations which a vehicle has to cope with?

!(european initiative to enable validation for highly automated safe and secure systems).
Grant nr. 692455-2 Call H2020-ECSEL- 2015-2-IA-two-stage call (2016)
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(d) Given the complexity space of real-world traffic situations
and relevant environmental factors, how can one at all
achieve sufficiently concise specifications to make con-
struction of scenario catalogues capturing these viable?

(e) Given the ill-structuredness of the space of real-world
traffic situations, how can we achieve completeness of
scenario catalogues, i.e. demonstrate with high confidence
that all relevant real-world situations have been captured?

(2) Given the remaining likelihood of experiencing failures in
perception and interpretation after deployment, how can we
establish a process learning from field incidents and acci-
dents leading to updates of the scenario catalogue avoiding
reoccurrence of this incident in the field?

(3) How can we assure, that the interpretation of scenarios and
thus interpretation of test results is unambiguous across all
test platforms?

The following three sections elaborate on each of the challenges
and describe possible lines of attack. Section 2 analyses the space
of all real-world traffic situations and environmental factors, iden-
tifying reasons allowing to collapse infinitely many situations into
a parametrized set of finite equivalence classes, thus addressing
Challenge 1. Section 3 elaborates the approach proposed by the
SafeTRANS Working Group on Highly Automated Systems [5] for
learning from in-field incidents to address Challenge 2. Section 4
discusses, how an ongoing standardization approach for capturing
scenarios can be extended into a formal scenario specification lan-
guage with a well-defined reference semantics allowing automatic
generation of monitors for classifying test results, thus addressing
challenge 3. Section 5 discusses related work. We conclude this
paper with an outlook on the future steps in taking the concepts
presented in this paper into reality.

2 ANALYSING THE SPACE OF TRAFFIC
SITUATIONS AND ENVIRONMENTAL
FACTORS

This section is structured as follows. Subsection 2.1 identifies key
observations allowing to ultimately reduce the space of all traffic
situations and environmental factors to a set of finitely specifiable
parametrized equivalence classes. Subsection 2.2 proposes learn-
ing based approaches to identify these equivalence classes with
quantified confidence levels. Subsection 2.3 discusses how to learn
requirements on reducing criticality.

2.1 Identifying structure

If there would be no underlying structural principles in the ex-
treme complex space of driving situations and/or environmental
conditions, humans would not be able to drive. Yet we are able,
with limitations and varying skill levels, to learn to navigate in
traffic, after a reasonable amount of training. Human drivers are
able to identify structures, which allow them to assess complex
situations and dynamics in seconds, even though miss-assessments
occur. Our approach is based on the key assumption, that today’s
machine learning algorithms are sufficiently powerful to identify
the structural principles allowing human drivers to master these
extremely complex tasks, because the wealth of data available from
in-field data, and the stimulation of such learning algorithms with
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billions of traffic situations and environmental conditions in virtual
environments, coupled with advanced techniques for refining iden-
tified concepts from too coarse abstractions, provide enough ground
truth information to identify all aspects of traffic situations and
environmental conditions relevant for determining safe trajectories
for autonomous driving.

Further evidence for the capability of automatically identifying
structure comes from recent results in formal verification of com-
plex systems. Research in counter-example guided verification of
hybrid systems [1, 23, 30] has shown how abstraction predicates
can be automatically learned to achieve a sufficiently precise finite
characterization of those aspects of non-linear hybrid systems suffi-
cient to establish their safety. Intuitively, this seemingly astonishing
result, that a finite number of abstraction predicates is sufficient
to characterize safety in spite the complexity of the uncountable
state space underlying such systems, comes from arguments based
on continuity and robustness of systems. Indeed, both safety and
liveness properties of non-linear hybrid systems have been proven
to be decidable under industrially used robustness assumptions
[9, 12, 28]. In the intersection of research on learning and research
on formal verification, it has been suggested in restricted contexts,
that machine learning techniques can be used to learn the initial
abstraction predicates in such verification approaches [2, 31].

Our overall approach can be seen as a generalization of this line
of research to the much more complex class of mathematical sys-
tems required to formally capture the dynamics of evolving traffic
situations in the space of environmental conditions, which essen-
tially requires the expressive power of dealing with unbounded
parallel compositions of (probabilistic and nondeterministic) hybrid
automata with highly non-linear dynamics [18], which are subject
to disturbances and failure events with unknown probability distri-
butions. The predicate abstractions we expect to learn have to be
able to characterize criticality of driving situations under different
environmental conditions. Much as we as humans will orient our
decisions e.g. to change a lane on an assessment of the gap available
on the lane into which we want to change (c.f. [39-41], we expect
such predicate abstractions to automatically cluster relative dynam-
ics of the ego vehicle and vehicles on the adjacent lane into a finite
set of classes. E.g., for a lane change maneuver, these will include
predicates "lane sufficiently clear” - the distance and relative speed
of vehicles behind us is such that it will not impact our planned

won

maneuver -, "gap large enough to perform lane change", "gap allows
lane change with good driving skills", "no lane change possible".
Clearly these predicates must be complemented by predicates on
prevailing weather and road conditions to determine whether a
lane change maneuver can be performed safely, such as taking into
account aquaplaning, icing, fog, etc.

In general, we need to learn all aspects relevant for judging the
criticality of driving situations, as elaborated below. Let us refine
our understanding of what this entails.

As a first approximation, criticality of driving situations is a
function of

o the complexity of traffic situations, as e.g. expressed in the
number and detail of objects and environmental conditions
which must be correctly classified,
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o the relative dynamics of involved vehicles and relevant ob-
jects

Figure 1 (a) gives a two-dimensional representation of a criticality
measure for driving situations as a function of criticality and rel-
ative dynamics, by showing qualitatively lines of equal criticality.
Note that the space of evolutions to be analyzed for taking safe
driving decisions grows exponentially in both dimensions. Figure 1
(b) shows corner cases based on first functions with probable mar-
ket introduction. If we assume that criticality is described as the
probability for an accident including its severity then we can show
that criticality is specific for vehicles because it depends on

o the observability (perception),

e the predictability (cognition) of the environmental condi-
tions including its future, and

e the controllability (motion) of the vehicle.

We thus have to refine our understanding about relevant aspects
influencing criticality by these three additional categories. Note
that these built on key intellectual properties of OEMs and Tier
1 suppliers, hence an additional challenge in setting up a generic
V&V environment is to propose characterizations of observability,
predictability, and controllability, which do not reveal IP but are
still sufficiently precise to be acceptable for type homologation. Our
approach to solving this challenge rests again on learning from
field data: we assume a sufficiently rich set of real-world observa-
tions labeled with ground truth, such that learning methods can be
used to 1) learn models about dynamics of all relevant classes of
traffic participants (e.g. through parameter learning in probabilistic
hybrid automata of vehicle dynamics), 2) learn models of control-
lability of the dynamics of the ego vehicle, and to 3) learn models
about perception errors along the complete perception chain (from
multiple sensors, sensor fusion to object identification algorithms).
Regarding item 1), this requires us to reflect on the complete rele-
vant environmental behavior in traffic. This entails that we cannot
and do not expect other vehicles to be compliant to traffic rules.
Instead, our models will reflect the typical levels of deviations seen
in different countries, in different road conditions, including rare
rowdy like behavior, with probabilities justified empirically from
the data base of real-traffic scenarios. Regarding item 2) it is neces-
sary to understand the limits of controllability (safe ego-behavior)
within the relevant dynamic of traffic environment. Here we rely
on data observed in the field regarding manufacturer independent
measures of controllability of critical driving situations. Regard-
ing item 3) it is obvious that misclassifications leading to ghost
objects, or failure to identify relevant objects in traffic situations,
drastically raise criticality, as do miss-predictions of the evolution
of the current traffic situation, e.g. because of employing poor or
(due to misclassification) even wrong models of dynamics of other
traffic participants. For establishing an overall safety case, for items
1)-3), it is thus key to characterize the confidence level of object
identification along all elements of the perception chain, assuming
sensor systems are used within their specified range, as well as
to characterize for each sensor type all environmental conditions
under which no high confidence data can be generated from this
particular sensor system. The remainder of this Section addresses
the following research questions
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e How can we ensure that the vehicle will control all typ-
ical and known traffic situations with a tolerable safety-
behavior? (treated in Subsection 2.2)

e How can we ensure that the vehicle control typical accident
situations better or at least equal to non-automated vehicles?
(treated in Subsection 2.3)

2.2 Employing learning techniques for
structure identification

We assume —as in the Pegasus Project?— a given suite of data-bases
DB of real-traffic situations, where each element in the database
represents a timed sequence of heterogeneous data showing the
evolution of a given traffic situation over time. We expect to use
data-bases which contain subsets of combination of the following

type of data (c.f. [27])

(1) Data bases coming from in-field recording with test vehicles,
including time synchronized data from all types of sensor
data (in particular including video images), vehicle dynamics
data, data relating to the perception of the environment, data
relating to control of vehicle dynamics by car and/or driver.
These data bases need to be labelled with an accuracy close
to ground truth with an at least known error.

(2) Data bases coming from infra-structures in test fields, includ-
ing video data and data on status of infrastructure control

(3) Accident data bases

The OpenScenario Initiative [33-35] is currently harmonizing
a taxonomy of the categories of objects considered to be relevant
for testing highly autonomous vehicles, such as types of traffic
participants, types of environmental conditions, types of relations
between these. This ongoing pre-standardization effort is thus al-
ready creating a key abstraction process, in that it stipulates, that
only those objects which are appearing in the ontology are relevant
for judging the criticality of driving situations. The strategies for
identifying factors influencing criticality, while building on the
current ontology, are expected to provide extensions with further
artefacts.

We factor the description of our learning process in separate di-
mensions, and use in each dimension an iterative learning approach.
In a real implementation, we expect these learning processes to be
interwoven.

Let’s assume first perfect observation. Under this hypothetical
assumption, all errors related to miss-perception are ruled out and
tests derived will assess a vehicles capability to maintain a tolerated
level of risks during all performed manoeuvres. In a first step, we
analyze all scenarios of DB with a metric to measure risks. We
initially focus our learning process on identifying all causes for
accidents or near-accident situations. More precisely, we aim, for
any given desired level of confidence cl, to identify all those real-
world artefacts observable in the data-base such that the likelihood
of having missed an artefact in the data-base contributing to an
accident observed in the data base is less than cl. If we are able to
identify such a set H (of hazards), we say that H is DB complete for
explaining accidents with confidence level cl. Note that technically
speaking elements of H are abstraction predicates: they cluster

Zwww.pegasusprojekt.de
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Figure 1: Two-dimensional representation of criticality measure

those real-world phenomena such as "road is icy", "lateral distance
too close", etc., which have been observed in DB in scenarios leading
to accidents. Such predicates p are included in H if there is at
least one accident scenario in DB leading to an accident A such
that p is DB-necessary for A, i.e. all DB scenarios not containing
a subset of p do not lead to an accident of type A. We propose an
iterative learning process using counter-example guided abstraction
refinement to derive such a set H. We initially start with already
identified hazards Hp in OpenScenario, and find counterexamples
where these are not sufficient to explain some accident type A. We
then learn from counterexamples new or refined predicates s.t. the
extension of Hy with these is DB necessary for A. For example, if
Hj would contain only the predicate "wet road surface", then for
many dynamic situations this would not be sufficient for explaining
accidents where a car crashes in a curve into a tree; only by refining
this to identify that the level of water on the surface is causing
aquaplaning will this predicate in the given dynamic situation be
causally relevant to this accident. We iterate this process until we
have found for all accident types A observed in DB all necessary
hazards with confidence level cl. A rigorous formal justification of
this process is given in a companion paper.

An orthogonal dimension refers to learning models of dynamics
of traffic participants. We are assuming perfect observation, and
can thus classify all traffic participants e.g. using the OpenScenario
taxonomy. We also assume that scenarios in DB are labelled as being
instances of a finite set of parametrized classes of elementary traffic
situations, such that all scenarios in DB can be built by combining
such elementary traffic situations (e.g. entering roundabout with X
lanes, left turn on intersection of type Y, entering highway of type
Z, ...). For each class of traffic participant tpc (such as pedestrians,
bicycles, trucks, buses, police cars, normal cars, etc., as defined
by OpenScenario) and each class of traffic situations ts we learn
probabilistic hybrid automata HA(tpc, ts) explaining the behaviors
observed in DB by parameter fitting techniques (c.f. [13]). These
learned models are key for creating virtual scenarios matching the
characteristics of DB for simulation environments. Note that these
models are not expected to conform to traffic rules nor to exclude
rowdy behavior - they simply reflect distributions of behavior of
traffic participants in real life.

Next, we learn scenarios for a test catalogue SC, testing whether
vehicles are able to control criticality in the presence of hazards.

Note that we are still assuming perfect perception; under this as-
sumption, all predicates in H are observed by the autonomous
vehicle, e.g. all types of traffic participants, and all types of traffic
situations are "known" to the vehicle, and we want to test its capabil-
ity of adequately assessing the risk in a given traffic situation with
known traffic participants in the presence of a given set of hazards.
To this end we generate scenarios on required behavior of vehicles
under test requiring the vehicle to reduce risks in all combinations
of presence of hazards, traffic situations, and traffic participants to
an acceptable tolerated level, as discussed in Subsection 2.3, assum-
ing full control. Again, we use an iterative learning approach using
counter-example guided abstraction refinement until the derived
set of scenarios is shown to be DB-complete with confidence level cl,
i.e. the remaining probability to not control risk to the given level
is less than ¢! for all combinations of hazards, traffic participants,
and elementary traffic situations. In this iterative process, we rely
on generating virtual scenarios using the dynamic models learned
as described above, and what we call guided simulations [14, 26]
driving environment models in simulations so as to increase risk
levels, as a basis for a statistical model-checking argument [11, 16]
regarding the confidence level with which a vehicle compliant to
the test catalogue is able to reduce criticality with the given level
of confidence.

The next learning processes need to relax the assumptions of
perfect observation and full control.

To relax the assumption of perfect information, we propose
the following method, initially excluding component (hardware)
failures.

(1) We learn for each sensor type S a set of hazardous environ-
mental conditions Hs s.t. Hs is DB complete for explaining
perception failures due to S with a given confidence level cl,
following the iterative learning paradigm used for hazards
to criticality under the assumption of perfect observation,
and learn probability distributions for their occurrence in
DB. For this analysis, we need to be able to assess data from
test vehicles, time synchronized with data from test-beds
for automated driving, to identify discrepancies between the
test-vehicle sensor’s perception of reality, and ground truth
provided from the test-beds infrastructure, and learn causal
dependencies between such discrepancies and environmen-
tal conditions observed through test-bed infrastructures.
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(2) We learn statistical models of the confidence level of the com-
plete perception chain assuming absence of Hs for all sensors
S, yielding a residual probability of perception failures even
in the absence of component failures and environmental
conditions hazardous to the employed sensor systems, again
relying on the availability to detect discrepancies between
the test vehicle’s perception of reality and ground truth, but
now considering only such traces, where no hazards from
Hs occur.

(3) We then test the robustness of the vehicles risk control strate-
gies by injecting hazardous environmental situations from
Hs for all S in simulated environments using the learned
probability distribution, injecting miss-classification failures
as discussed under item 2 above, and using the probability
distributions for component failures (assumed to be known).

To relax the assumption of perfect control, we need to assess two
aspects:

(1) Controllability is obviously impacted by component failures.
This is a standard topic in safety analysis, and we assume that
probability distributions of component failures are available.

(2) In SAE levels involving hand-over to drivers or higher levels
of driver control, we need to learn statistical models about
the controllability of given risk levels in given elementary
traffic situations.

We thus follow the principle of separation of concerns for reducing
the complexity of test-catalogues, in testing first the vehicles capa-
bility of risk mitigation under perfect perception and perfect control,
and then testing for robustness in perception and control failures.
A separate paper extending [11, 16] will provide a more rigorous
mathematical analysis of the justification of this decomposition
approach.

Note that risks coming from security threats demand additional
analysis.

2.3 Building up a reference for automated
vehicles

We now turn to refining the scenarios generated with techniques
from Section 2.2, in making precise the required level of risk re-
duction. This section thus addresses the societally tolerated level
of risk for autonomous driving, as defined by the finding of the
ethics commission of the German Minister of Transportation [25].
From its rule 2, we should strive to achieve at least the same level
of safety as human drivers. The risk measures employed in Section
2.2 must comply to its rule 7. The overall defensive style proposed
in rule 5 must be reflected. Finally, rule 9 must be reflected again
in risk measures. For convenience of the reader, the cited rules are
shown in Annex A. In this paper, we focus on rule 2. As a reference
about accidents statistics without highly autonomous driving we
consider all entries from the GIDAS data base maintained by BAST
with a minimum MAIS level greater than 1 (corresponding to light
injuries). Note that these data were already taken into account for
the steps in Subsection 2.2 in assessing the controllability of critical
situations - in particular we can derive from these to what extend
human drivers were able to control in particular classes of elemen-
tary traffic situations (such as driving through an intersections)
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risks factors (such as "child running out of a vehicle parked at in-
tersection”, "icy surface on intersection"), and scenarios generated
in Subsection 2.2 would enforce automated vehicles to achieve the
same level of controllability as observed in GIDAS, thus the same
level of controllability as achieved by human drivers. We note that
our ability to cluster such requirements into a finite set of require-
ment scenarios is inherently exploiting continuity arguments, in

the following sense:

(1) As mentioned before, we expect to learn probabilistic hy-
brid automata as models for all aspects of the environment.
Within one mode, dynamics follow probabilistic differential
inequalities, hence represent continuous functions.

(2) All mode changes influencing criticality are expected to be
identified in the risk analysis discussed in Subsection 2.2.

(3) The analysis of relaxing the observation on perfect informa-

tion leads to requirements on confidence levels, with which

such hazardous events are detected by the vehicle. We note
that Car2X communication is expected to significantly in-
crease our confidence levels in detecting such conditions.

Since only finitely many mode-changes occur in a finite time

window, and the continuous dynamics within one mode can

be clustered into finitely many abstraction predicates (c.f. [1,

9], we are able to characterize the risk-control requirements

in a finite set of scenarios.

—~
N
=

It must be pointed out, though, that this analysis hinges greatly on
our ability to learn such environmental models. Certainly, signifi-
cant further research is required to achieve e.g. sufficiently precise
pedestrian models (c.f. [10, 21, 22, 29, 36], to name but one critical
research area. With respect to type homologation, the environmen-
tal models used for testing should be subject to standardization,
and subject to a continuous improvement process such as discussed
in Section 3.

In order to derive requirements improving controllability of haz-
ardous situations beyond human capabilities, we consider the prob-
ability mass of accident classes in GIDAS of MAIS levels greater or
equal 3, and refine scenarios generated in the process of Subsection
2.2 by tightening the requirements on the rate of reduction of criti-
cality beyond human capabilities by selecting classes of accident
scenarios of GIDAS with comparatively high probability masses.
Note that this probability is determined by the (uncontrollable)
probability of occurrence of such hazards, the relevance of the oc-
currence of this hazard in the given elementary traffic situation, and
the remaining conditional probability of the ego car to control risk
reduction in the presence of these hazards. The degree of tightening
requirements on the controllability of the ego car is subject to a
discourse with the relevant public authorities, and can be based on
the already observed significant capabilities of accident reduction,
such as e.g. for rear-end collisions or emergency breaking in urban
environments demonstrated by the state of practice of recently
introduced ADAS systems.

Altogether, the contributions of Section 2 thus lead to the fol-
lowing result:

(1) We have proposed an approach based on learning to de-
rive scenario based requirement specifications for control-
ling criticality of autonomously driving vehicles, addressing
Challenge 1 of the introduction.
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(2) We have indicated how societal standards such as recently
proposed by the Ethics Commission of the German Ministry
of Transportation can be taking into account when building
a Scenario Catalogue used as basis for type homologation.

(3) We have explicated the dependencies of the generated sce-
nario catalogue on the quality and representativeness of
the data-bases used for learning processes. Clearly, the de-
rived Scenario Catalogue will not be sufficient when used
for type homologation in areas, where types and probability
distributions of hazards or models on environment differ
significantly from distributions observed in the reference
data-base.

(4) On the other hand, as long as the actual driving situations
experienced in field match these probability distribution,
the proposed process allows to demonstrate for any given
confidence level that automated vehicles will be compliant
to the scenario catalogue.

The following two Sections now address Challenges 2 and 3 of the
Introduction.

3 LEARNING IN THE FIELD

There is no perfect system — especially not in the beginning. Look-
ing at the extremely complex environment of traffic situations, it
is to be expected that after the homologation process of a highly
automated vehicle new unpredictable, but risky situations may oc-
cur because of a certain environmental change. Uncertainties and
risks in field have to improve the performance of all vehicles. This
implies: not one vehicle learns for itself, but it contributes its data
about such "miss situations" towards an aggregated data-base main-
tained by an independent public body. The data of many vehicles
will be analyzed (e.g. in case of near misses), based upon this - new
knowledge will be created and redistributed to adaptable vehicles —
thus creating a process which could be called "Community learning".
Related to "Community learning" is the establishment of a "Perma-
nent safety procedure” compared to today’s one-time homologation
process. The reason for this lies in the fact, that it has to be ensured,
that safety-relevant changes are proceeded by a safety—proven pro-
cess. Also related to "Community learning” is the establishment of
a "Permanent observation system" at the vehicle site which provides
e.g. the safety relevant vehicle-data for "Community learning” and
enables to cope with the safety requirement for an independent
instance and last but not least increase the safety performance of
the vehicle (e.g. by health monitoring). Taken also into account
that the increase of knowledge is growing exponentially it can be
derived that

e Future mobility systems including highly autonomous ve-
hicles will be adaptable for upgrades in the field in order
to incorporate new knowledge and changes as e.g. safety
updates resulting from the community learning process.

o The installation of an in-car observation system supporting
the community learning and of mechanisms ensuring safe
application of updates (permanent safety updates) is highly
probable.

Assuming that these key issues lead to the described system changes,
then each single OEM has to carry the complete liability risk for
content and process of each release/upgrade. Therefore, it is more
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Figure 2: (cited from [5]) In field system observations con-
tribute to community learning process.

effective, that multiple OEMs and Tiers establish a common stan-
dardized safety process - see proposal [5] by the Safetrans organi-
zation - Germany), including standardized interfaces for a common
observation and validation platform and a procedure for permanent
field-observation.

4 FORMAL SPECIFICATIONS OF TRAFFIC
SCENARIOS AND ENVIRONMENTAL
CONDITIONS

A key challenge then rests in finding a representation of test-
scenarios which are expressive enough to cope with the plethora
of environmental conditions, traffic situations, and traffic partici-
pants, while yielding concise and unambiguous interpretations.
In [6, 7, 16] we have been proposing the visual specification lan-
guage of Traffic Sequence Charts to answer this challenge, which -
much as its conceptual "father" Life Sequence Charts extends and
gives formal semantics to Message Sequence Charts — extends the
OpenScenario approach. Much as Message Sequence Charts ITU-T
2011 were lacking expressiveness and formal semantics, motivating
the extension to Live Sequence Charts [4], the ongoing industrial
pre-standardization effort for capturing scenarios, called OpenSCE-
NARIO [33-35], falls significantly short in being able to support the
methodology described in Subsection 2.2 and 2.3 to address the chal-
lenges in the introduction. OpenSCENARIO allows describing what
we called existential charts, i.e. give examples of desired behaviors,
rather than being able to specify requirements on all behaviors, such
as in what we called universal LSCs. TSCs "inherit" from LSCs the
concepts related to distinguishing between possible and mandatory
behaviors, the concepts of pre-charts which is key for characteriz-
ing those situations from when on all behaviors must comply to
universal charts, and cold and hot conditions for distinguishing
case-distinctions from failures. Having a specification language for
scenarios with a rigorously defined formal semantics is necessary
for the following reasons. Recall the challenges of the introduction,
slightly regrouped: (C1) Given the ill-structuredness of the space
of real-world traffic situations, how can we achieve completeness
of scenario catalogs, i.e. demonstrate with high confidence that all
relevant real-world situations have been captured? (C2) Given the
remaining likelihood of experiencing failures in perception and
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interpretation after deployment, how can we establish a process
learning from field incidents and accidents leading to updates of the
scenario catalog avoiding reoccurrence of this incident in the field?
(C3) Given the complexity space of real-world traffic situations,
how can one at all achieve sufficiently concise specifications to
make construction of scenario catalogs viable? (C4) How can we
assure, that the interpretation of scenarios and thus interpretation
of test results is unambiguous across all test platforms?

All these challenges can only be addressed if using a language
for capturing scenarios, which is intuitively easy to understand,
and, most prominently, which is equipped with a formal (declar-
ative) semantics. As discussed in Section 2, Challenge C1 will be
addressed by generalizing from data bases of observed traffic flows.
A minimal requirement for checking for completeness is thus the
need to formally define, whether a particular observed traffic behav-
ior is already covered or not by the current scenario catalog, thus
requiring the definition of a formal satisfaction relation. Moreover,
as experienced in the play-out approach for Live Sequence Charts
(LSCs) [4, 17] a formal semantics provides a basis for playing out
the current scenario catalog, thus generating traffic flows which
in an expert can judge for unrealistic or missing real-life traffic
flows. As described in Section 3, Challenge C2 requires a formal
semantics to identify the gaps between the space of possible worlds
described in the scenario catalogue, and the concrete in-field inci-
dent or accident. Specifically, forthcoming regulations will require
autonomously driving cars to record all those perceived environ-
mental artefacts relevant to trajectory planning as well as the car’s
trajectory control for a sufficiently long time-period. A formal se-
mantics allows to check the failed scenario(s), offering a basis for
refining the scenario specifications to cope with the observed fail-
ure in perception or interpretation of the real world. Challenge C3
demands the use of a declarative specification language, where one
single scenario specification stands for a possibly extremely large
set of real world traffic situations, defined unambiguously through
the satisfaction relation. Also, declarative specification languages
allow for separation of concerns, such as focusing on particular
kinds of critical situations in isolation, knowing that the car can
only pass the test if all scenarios are passed. Finally, Challenge
C4 can be addressed by automatically synthesizing monitors for
compliance testing, using the standardized formal semantics.

5 RELATED WORK

See [32] for a general survey of the state of the art for V&V for
ADAS and Automated Driving. This paper provides a summary of
discussion and ongoing work in a number of activities involving
both institutions of the authors. It builds on the findings of the
Pegasus Project in using scenario catalogues for type homologation
[19, 24, 27, 37], the SafeTRANS Working Group on Highly Auto-
mated Systems [5], a series of bilateral workshops between Bosch
and OFFIS, with participants listed under Acknowledgement, and
discussions of the Workshop on a future project for Verification and
Validation of autonomous vehicles at Renningen September 2016. A
scenario driven approach is also part of the strategy of the Enables3
Project funded by the Joint Undertaking ECSEL. Academic Research
has proposed a number of different approaches for formal synthesis
of controllers for autonomously driving vehicles [3, 8, 15, 38] which
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fail to address Challenge 1 of the Introduction. Statistical Model
Checking has been used as a key tool to address the scalability
challenge such as in [11, 16]. The OpenScenario Iniative [33-35]
has proposed a baseline for capturing Scenario Catalogs. The for-
mal scenario specification approach of this paper extends these
results much as Live Sequence Charts [4] extend the then industry
standard language of Message Sequence Charts ITU-T 2011.

6 CONCLUSION

The presented blueprint is a result of discussions within a wide
network of automotive safety experts and may serve as a guide-
line for a systematic approach. This joint network has to follow
up in order to establish a common safety assessment involving all
relevant stakeholder as societal bodies. Only based on common
commitments elaborated within e.g. public funded projects it will
be possible to deploy highly automated driving in terms of miti-
gation of liability risks and societal acceptance. In a next step this
process has to be deployed on a European level. One of the biggest
challenges will be to accelerate the harmonization process in order
to enable early market deployment.
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A EXCERPTS OF THE REPORT OF THE
ETHICS COMMISSION OF THE GERMAN
MINISTERY OF TRANSPORTATION AND
INFRASTRUCTURE

Rule 2: Der Schutz von Menschen hat Vorrang vor allen anderen Niit-
zlichkeitserwagungen. Ziel ist die Verringerung von Schéiden bis hin zur
vollstindigen Vermeidung. Die Zulassung von automatisierten Systemen
ist nur vertretbar, wenn sie im Vergleich zu menschlichen Fahrleistungen
zumindest eine Verminderung von Schiden im Sinne einer positiven Risiko-
bilanz verspricht.

Rule 5: Die automatisierte und vernetzte Technik sollte Unfille so gut
wie praktisch méglich vermeiden. Die Technik muss nach ihrem jeweiligen
Stand so ausgelegt sein, dass kritische Situationen gar nicht erst entste-
hen, dazu gehéren auch Dilemma-Situationen, also eineLage, in der ein
automatisiertes Fahrzeug vor der "Entscheidung” steht, eines von zwei
nicht abwagungsfihigen tibeln notwendig verwirklichen zu miissen. Dabei
sollte das gesamte Spektrum technischer Moglichkeiten — etwa von der Ein-
schrankung des Anwendungsbereichs auf kontrollierbare Verkehrsumge-
bungen, Fahrzeugsensorik und Bremsleistungen, Signale fiir gefdhrdete
Personen bis hin zu einer Gefahrenprévention mittels einer "intelligenten”
Straflen-Infrastruktur — genutzt und kontinuierlich weiterentwickelt wer-
den. Die erhebliche Steigerung der Verkehrssicherheit ist Entwicklungs-
und Regulierungsziel, und zwar bereits in der Auslegung und Program-
mierung der Fahrzeuge zu defensivem und vorausschauendem, schwichere
Verkehrsteilnehmer ("Vulnerable Road Users") schonendem Fahren.

Rule 7: In Gefahrensituationen, die sich bei aller technischen Vorsorge
als unvermeidbar erweisen, besitzt der Schutz menschlichen Lebens in
einer Rechtsgiiterabwigung hochste Prioritat. Die Programmierung ist
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deshalb im Rahmen des technisch Machbaren so anzulegen, im Konflikt
Tier- oder Sachschiden in Kauf zu nehmen, wenn dadurch Personenschiden
vermeidbar sind.

Rule 9: Bei unausweichlichen Unfallsituationen ist jede Qualifizierung
nach persénlichen Merkmalen (Alter, Geschlecht, korperliche oder geistige
Konstitution) strikt untersagt. Eine Aufrechnung von Opfern ist untersagt.
Eine allgemeine Programmierung auf eine Minderung der Zahl von Person-
enschéden kann vertretbar sein. Die an der Erzeugung von Mobilitétsrisiken
Beteiligten diirfen Unbeteiligte nicht opfern.
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