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ABSTRACT

We propose a series of methods based on learning key structural

properties from tra�c data-basis and on statistical model checking,

ultimately leading to the construction of a scenario catalogue captur-

ing requirements for controlling criticality for highly autonomous

vehicles. We sketch underlying mathematical foundations which

allow to derive formal con�dence levels that vehicles tested by such

a scenario catalogue will maintain the required control of criticality

in real tra�c matching the probability distributions of key parame-

ters of data recorded in the reference data base employed for this

process.
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1 INTRODUCTION

It is well-known (c.f. [20]) that traditional approaches for type

homologation fail for highly autonomous vehicles due to the im-

possibility of covering su�ciently many kilometers in �eld testing

to achieve a statistically valid basis for building safety cases, due

to the extreme variability of environmental contexts and the re-

sulting complexity in both the perception- and trajectory planning

systems of highly autonomous vehicles. The approach followed by

the German automotive industry and presented in this paper builds

on scenario catalogues to capture for all perceivable tra�c situa-

tions’ requirements on such systems jointly ensuring global safety

objectives. Test drives are to be replaced to a signi�cant extent by

placing the vehicle under test in test environments exposing the

vehicle to tra�c situations covering all scenarios of the scenario cat-

alogue, and monitoring compliance of the vehicle’s reaction to such

scenarios in a virtual environment. Such test environments will al-

low testing separately the perception components (along all stages

covering preprocessed sensor data, sensor fusion, object identi�-

cation algorithms) and the trajectory planning component (which

involves exploring possible future evolutions of the currently per-

ceived tra�c situation to decide on the planned maneuver). Projects

already running and pushing this approach are the Pegasus project

funded by the German Federal Ministry for Economic A�airs and

Energy, involving all major German OEMs and Tier 1 companies,

and the ENABLE-S3 project funded by the Joint Undertaking ECSEL,

including both German and French automotive companies.1

Currently, new projects are under formation to build industry

strength processes and test environment elaborating this approach.

There are several challenges which must be addressed to make

this approach viable:

(1) Can we capture at design time the space of all possible traf-

�c situations and environmental factors relevant for safe

trajectories for autonomous vehicles?

(a) Can we characterize the environmental conditions for all

elements in the perception chain under which identi�-

cation of objects can be guaranteed for a given desired

con�dence level?

(b) Can we characterize the variability of dynamics of other

participants to allow safe predictions of future evolution

of tra�c situations for a given con�dence level?

(c) Can we �nd generalized risk limits for certain tra�c (en-

vironmental) situations which a vehicle has to cope with?

1(european initiative to enable validation for highly automated safe and secure systems).
Grant nr. 692455-2 Call H2020-ECSEL- 2015-2-IA-two-stage call (2016)
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(d) Given the complexity space of real-world tra�c situations

and relevant environmental factors, how can one at all

achieve su�ciently concise speci�cations to make con-

struction of scenario catalogues capturing these viable?

(e) Given the ill-structuredness of the space of real-world

tra�c situations, how can we achieve completeness of

scenario catalogues, i.e. demonstrate with high con�dence

that all relevant real-world situations have been captured?

(2) Given the remaining likelihood of experiencing failures in

perception and interpretation after deployment, how can we

establish a process learning from �eld incidents and acci-

dents leading to updates of the scenario catalogue avoiding

reoccurrence of this incident in the �eld?

(3) How can we assure, that the interpretation of scenarios and

thus interpretation of test results is unambiguous across all

test platforms?

The following three sections elaborate on each of the challenges

and describe possible lines of attack. Section 2 analyses the space

of all real-world tra�c situations and environmental factors, iden-

tifying reasons allowing to collapse in�nitely many situations into

a parametrized set of �nite equivalence classes, thus addressing

Challenge 1. Section 3 elaborates the approach proposed by the

SafeTRANS Working Group on Highly Automated Systems [5] for

learning from in-�eld incidents to address Challenge 2. Section 4

discusses, how an ongoing standardization approach for capturing

scenarios can be extended into a formal scenario speci�cation lan-

guage with a well-de�ned reference semantics allowing automatic

generation of monitors for classifying test results, thus addressing

challenge 3. Section 5 discusses related work. We conclude this

paper with an outlook on the future steps in taking the concepts

presented in this paper into reality.

2 ANALYSING THE SPACE OF TRAFFIC
SITUATIONS AND ENVIRONMENTAL
FACTORS

This section is structured as follows. Subsection 2.1 identi�es key

observations allowing to ultimately reduce the space of all tra�c

situations and environmental factors to a set of �nitely speci�able

parametrized equivalence classes. Subsection 2.2 proposes learn-

ing based approaches to identify these equivalence classes with

quanti�ed con�dence levels. Subsection 2.3 discusses how to learn

requirements on reducing criticality.

2.1 Identifying structure

If there would be no underlying structural principles in the ex-

treme complex space of driving situations and/or environmental

conditions, humans would not be able to drive. Yet we are able,

with limitations and varying skill levels, to learn to navigate in

tra�c, after a reasonable amount of training. Human drivers are

able to identify structures, which allow them to assess complex

situations and dynamics in seconds, even though miss-assessments

occur. Our approach is based on the key assumption, that today’s

machine learning algorithms are su�ciently powerful to identify

the structural principles allowing human drivers to master these

extremely complex tasks, because the wealth of data available from

in-�eld data, and the stimulation of such learning algorithms with

billions of tra�c situations and environmental conditions in virtual

environments, coupled with advanced techniques for re�ning iden-

ti�ed concepts from too coarse abstractions, provide enough ground

truth information to identify all aspects of tra�c situations and

environmental conditions relevant for determining safe trajectories

for autonomous driving.

Further evidence for the capability of automatically identifying

structure comes from recent results in formal veri�cation of com-

plex systems. Research in counter-example guided veri�cation of

hybrid systems [1, 23, 30] has shown how abstraction predicates

can be automatically learned to achieve a su�ciently precise �nite

characterization of those aspects of non-linear hybrid systems su�-

cient to establish their safety. Intuitively, this seemingly astonishing

result, that a �nite number of abstraction predicates is su�cient

to characterize safety in spite the complexity of the uncountable

state space underlying such systems, comes from arguments based

on continuity and robustness of systems. Indeed, both safety and

liveness properties of non-linear hybrid systems have been proven

to be decidable under industrially used robustness assumptions

[9, 12, 28]. In the intersection of research on learning and research

on formal veri�cation, it has been suggested in restricted contexts,

that machine learning techniques can be used to learn the initial

abstraction predicates in such veri�cation approaches [2, 31].

Our overall approach can be seen as a generalization of this line

of research to the much more complex class of mathematical sys-

tems required to formally capture the dynamics of evolving tra�c

situations in the space of environmental conditions, which essen-

tially requires the expressive power of dealing with unbounded

parallel compositions of (probabilistic and nondeterministic) hybrid

automata with highly non-linear dynamics [18], which are subject

to disturbances and failure events with unknown probability distri-

butions. The predicate abstractions we expect to learn have to be

able to characterize criticality of driving situations under di�erent

environmental conditions. Much as we as humans will orient our

decisions e.g. to change a lane on an assessment of the gap available

on the lane into which we want to change (c.f. [39–41], we expect

such predicate abstractions to automatically cluster relative dynam-

ics of the ego vehicle and vehicles on the adjacent lane into a �nite

set of classes. E.g., for a lane change maneuver, these will include

predicates "lane su�ciently clear" – the distance and relative speed

of vehicles behind us is such that it will not impact our planned

maneuver -, "gap large enough to perform lane change", "gap allows

lane change with good driving skills", "no lane change possible".

Clearly these predicates must be complemented by predicates on

prevailing weather and road conditions to determine whether a

lane change maneuver can be performed safely, such as taking into

account aquaplaning, icing, fog, etc.

In general, we need to learn all aspects relevant for judging the

criticality of driving situations, as elaborated below. Let us re�ne

our understanding of what this entails.

As a �rst approximation, criticality of driving situations is a

function of

• the complexity of tra�c situations, as e.g. expressed in the

number and detail of objects and environmental conditions

which must be correctly classi�ed,
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• the relative dynamics of involved vehicles and relevant ob-

jects

Figure 1 (a) gives a two-dimensional representation of a criticality

measure for driving situations as a function of criticality and rel-

ative dynamics, by showing qualitatively lines of equal criticality.

Note that the space of evolutions to be analyzed for taking safe

driving decisions grows exponentially in both dimensions. Figure 1

(b) shows corner cases based on �rst functions with probable mar-

ket introduction. If we assume that criticality is described as the

probability for an accident including its severity then we can show

that criticality is speci�c for vehicles because it depends on

• the observability (perception),

• the predictability (cognition) of the environmental condi-

tions including its future, and

• the controllability (motion) of the vehicle.

We thus have to re�ne our understanding about relevant aspects

in�uencing criticality by these three additional categories. Note

that these built on key intellectual properties of OEMs and Tier

1 suppliers, hence an additional challenge in setting up a generic

V&V environment is to propose characterizations of observability,

predictability, and controllability, which do not reveal IP but are

still su�ciently precise to be acceptable for type homologation. Our

approach to solving this challenge rests again on learning from

�eld data: we assume a su�ciently rich set of real-world observa-

tions labeled with ground truth, such that learning methods can be

used to 1) learn models about dynamics of all relevant classes of

tra�c participants (e.g. through parameter learning in probabilistic

hybrid automata of vehicle dynamics), 2) learn models of control-

lability of the dynamics of the ego vehicle, and to 3) learn models

about perception errors along the complete perception chain (from

multiple sensors, sensor fusion to object identi�cation algorithms).

Regarding item 1), this requires us to re�ect on the complete rele-

vant environmental behavior in tra�c. This entails that we cannot

and do not expect other vehicles to be compliant to tra�c rules.

Instead, our models will re�ect the typical levels of deviations seen

in di�erent countries, in di�erent road conditions, including rare

rowdy like behavior, with probabilities justi�ed empirically from

the data base of real-tra�c scenarios. Regarding item 2) it is neces-

sary to understand the limits of controllability (safe ego-behavior)

within the relevant dynamic of tra�c environment. Here we rely

on data observed in the �eld regarding manufacturer independent

measures of controllability of critical driving situations. Regard-

ing item 3) it is obvious that misclassi�cations leading to ghost

objects, or failure to identify relevant objects in tra�c situations,

drastically raise criticality, as do miss-predictions of the evolution

of the current tra�c situation, e.g. because of employing poor or

(due to misclassi�cation) even wrong models of dynamics of other

tra�c participants. For establishing an overall safety case, for items

1)-3), it is thus key to characterize the con�dence level of object

identi�cation along all elements of the perception chain, assuming

sensor systems are used within their speci�ed range, as well as

to characterize for each sensor type all environmental conditions

under which no high con�dence data can be generated from this

particular sensor system. The remainder of this Section addresses

the following research questions

• How can we ensure that the vehicle will control all typ-

ical and known tra�c situations with a tolerable safety-

behavior? (treated in Subsection 2.2)

• How can we ensure that the vehicle control typical accident

situations better or at least equal to non-automated vehicles?

(treated in Subsection 2.3)

2.2 Employing learning techniques for
structure identi�cation

We assume —as in the Pegasus Project2— a given suite of data-bases

DB of real-tra�c situations, where each element in the database

represents a timed sequence of heterogeneous data showing the

evolution of a given tra�c situation over time. We expect to use

data-bases which contain subsets of combination of the following

type of data (c.f. [27])

(1) Data bases coming from in-�eld recording with test vehicles,

including time synchronized data from all types of sensor

data (in particular including video images), vehicle dynamics

data, data relating to the perception of the environment, data

relating to control of vehicle dynamics by car and/or driver.

These data bases need to be labelled with an accuracy close

to ground truth with an at least known error.

(2) Data bases coming from infra-structures in test �elds, includ-

ing video data and data on status of infrastructure control

(3) Accident data bases

The OpenScenario Initiative [33–35] is currently harmonizing

a taxonomy of the categories of objects considered to be relevant

for testing highly autonomous vehicles, such as types of tra�c

participants, types of environmental conditions, types of relations

between these. This ongoing pre-standardization e�ort is thus al-

ready creating a key abstraction process, in that it stipulates, that

only those objects which are appearing in the ontology are relevant

for judging the criticality of driving situations. The strategies for

identifying factors in�uencing criticality, while building on the

current ontology, are expected to provide extensions with further

artefacts.

We factor the description of our learning process in separate di-

mensions, and use in each dimension an iterative learning approach.

In a real implementation, we expect these learning processes to be

interwoven.

Let’s assume �rst perfect observation. Under this hypothetical

assumption, all errors related to miss-perception are ruled out and

tests derived will assess a vehicles capability to maintain a tolerated

level of risks during all performed manoeuvres. In a �rst step, we

analyze all scenarios of DB with a metric to measure risks. We

initially focus our learning process on identifying all causes for

accidents or near-accident situations. More precisely, we aim, for

any given desired level of con�dence cl , to identify all those real-

world artefacts observable in the data-base such that the likelihood

of having missed an artefact in the data-base contributing to an

accident observed in the data base is less than cl . If we are able to

identify such a set H (of hazards), we say that H is DB complete for

explaining accidents with con�dence level cl. Note that technically

speaking elements of H are abstraction predicates: they cluster

2www.pegasusprojekt.de



SEFAIAS’2018, June 2018, Gothenburg, Sweden Werner Damm and Roland Galbas

Figure 1: Two-dimensional representation of criticality measure

those real-world phenomena such as "road is icy", "lateral distance

too close", etc., which have been observed inDB in scenarios leading

to accidents. Such predicates p are included in H if there is at

least one accident scenario in DB leading to an accident A such

that p is DB-necessary for A, i.e. all DB scenarios not containing

a subset of p do not lead to an accident of type A. We propose an

iterative learning process using counter-example guided abstraction

re�nement to derive such a set H . We initially start with already

identi�ed hazards H0 in OpenScenario, and �nd counterexamples

where these are not su�cient to explain some accident type A. We

then learn from counterexamples new or re�ned predicates s.t. the

extension of H0 with these is DB necessary for A. For example, if

H0 would contain only the predicate "wet road surface", then for

many dynamic situations this would not be su�cient for explaining

accidents where a car crashes in a curve into a tree; only by re�ning

this to identify that the level of water on the surface is causing

aquaplaning will this predicate in the given dynamic situation be

causally relevant to this accident. We iterate this process until we

have found for all accident types A observed in DB all necessary

hazards with con�dence level cl . A rigorous formal justi�cation of

this process is given in a companion paper.

An orthogonal dimension refers to learning models of dynamics

of tra�c participants. We are assuming perfect observation, and

can thus classify all tra�c participants e.g. using the OpenScenario

taxonomy.We also assume that scenarios inDB are labelled as being

instances of a �nite set of parametrized classes of elementary tra�c

situations, such that all scenarios in DB can be built by combining

such elementary tra�c situations (e.g. entering roundabout with X

lanes, left turn on intersection of type Y , entering highway of type

Z , . . . ). For each class of tra�c participant tpc (such as pedestrians,

bicycles, trucks, buses, police cars, normal cars, etc., as de�ned

by OpenScenario) and each class of tra�c situations ts we learn

probabilistic hybrid automata HA(tpc,ts ) explaining the behaviors

observed in DB by parameter �tting techniques (c.f. [13]). These

learned models are key for creating virtual scenarios matching the

characteristics of DB for simulation environments. Note that these

models are not expected to conform to tra�c rules nor to exclude

rowdy behavior – they simply re�ect distributions of behavior of

tra�c participants in real life.

Next, we learn scenarios for a test catalogue SC , testing whether

vehicles are able to control criticality in the presence of hazards.

Note that we are still assuming perfect perception; under this as-

sumption, all predicates in H are observed by the autonomous

vehicle, e.g. all types of tra�c participants, and all types of tra�c

situations are "known" to the vehicle, and wewant to test its capabil-

ity of adequately assessing the risk in a given tra�c situation with

known tra�c participants in the presence of a given set of hazards.

To this end we generate scenarios on required behavior of vehicles

under test requiring the vehicle to reduce risks in all combinations

of presence of hazards, tra�c situations, and tra�c participants to

an acceptable tolerated level, as discussed in Subsection 2.3, assum-

ing full control. Again, we use an iterative learning approach using

counter-example guided abstraction re�nement until the derived

set of scenarios is shown to be DB-complete with con�dence level cl ,

i.e. the remaining probability to not control risk to the given level

is less than cl for all combinations of hazards, tra�c participants,

and elementary tra�c situations. In this iterative process, we rely

on generating virtual scenarios using the dynamic models learned

as described above, and what we call guided simulations [14, 26]

driving environment models in simulations so as to increase risk

levels, as a basis for a statistical model-checking argument [11, 16]

regarding the con�dence level with which a vehicle compliant to

the test catalogue is able to reduce criticality with the given level

of con�dence.

The next learning processes need to relax the assumptions of

perfect observation and full control.

To relax the assumption of perfect information, we propose

the following method, initially excluding component (hardware)

failures.

(1) We learn for each sensor type S a set of hazardous environ-

mental conditions Hs s.t. Hs is DB complete for explaining

perception failures due to S with a given con�dence level cl ,

following the iterative learning paradigm used for hazards

to criticality under the assumption of perfect observation,

and learn probability distributions for their occurrence in

DB. For this analysis, we need to be able to assess data from

test vehicles, time synchronized with data from test-beds

for automated driving, to identify discrepancies between the

test-vehicle sensor’s perception of reality, and ground truth

provided from the test-beds infrastructure, and learn causal

dependencies between such discrepancies and environmen-

tal conditions observed through test-bed infrastructures.
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(2) We learn statistical models of the con�dence level of the com-

plete perception chain assuming absence ofHs for all sensors

S , yielding a residual probability of perception failures even

in the absence of component failures and environmental

conditions hazardous to the employed sensor systems, again

relying on the availability to detect discrepancies between

the test vehicle’s perception of reality and ground truth, but

now considering only such traces, where no hazards from

Hs occur.

(3) We then test the robustness of the vehicles risk control strate-

gies by injecting hazardous environmental situations from

Hs for all S in simulated environments using the learned

probability distribution, injecting miss-classi�cation failures

as discussed under item 2 above, and using the probability

distributions for component failures (assumed to be known).

To relax the assumption of perfect control, we need to assess two

aspects:

(1) Controllability is obviously impacted by component failures.

This is a standard topic in safety analysis, andwe assume that

probability distributions of component failures are available.

(2) In SAE levels involving hand-over to drivers or higher levels

of driver control, we need to learn statistical models about

the controllability of given risk levels in given elementary

tra�c situations.

We thus follow the principle of separation of concerns for reducing

the complexity of test-catalogues, in testing �rst the vehicles capa-

bility of riskmitigation under perfect perception and perfect control,

and then testing for robustness in perception and control failures.

A separate paper extending [11, 16] will provide a more rigorous

mathematical analysis of the justi�cation of this decomposition

approach.

Note that risks coming from security threats demand additional

analysis.

2.3 Building up a reference for automated
vehicles

We now turn to re�ning the scenarios generated with techniques

from Section 2.2, in making precise the required level of risk re-

duction. This section thus addresses the societally tolerated level

of risk for autonomous driving, as de�ned by the �nding of the

ethics commission of the German Minister of Transportation [25].

From its rule 2, we should strive to achieve at least the same level

of safety as human drivers. The risk measures employed in Section

2.2 must comply to its rule 7. The overall defensive style proposed

in rule 5 must be re�ected. Finally, rule 9 must be re�ected again

in risk measures. For convenience of the reader, the cited rules are

shown in Annex A. In this paper, we focus on rule 2. As a reference

about accidents statistics without highly autonomous driving we

consider all entries from the GIDAS data base maintained by BAST

with a minimum MAIS level greater than 1 (corresponding to light

injuries). Note that these data were already taken into account for

the steps in Subsection 2.2 in assessing the controllability of critical

situations – in particular we can derive from these to what extend

human drivers were able to control in particular classes of elemen-

tary tra�c situations (such as driving through an intersections)

risks factors (such as "child running out of a vehicle parked at in-

tersection", "icy surface on intersection"), and scenarios generated

in Subsection 2.2 would enforce automated vehicles to achieve the

same level of controllability as observed in GIDAS, thus the same

level of controllability as achieved by human drivers. We note that

our ability to cluster such requirements into a �nite set of require-

ment scenarios is inherently exploiting continuity arguments, in

the following sense:

(1) As mentioned before, we expect to learn probabilistic hy-

brid automata as models for all aspects of the environment.

Within one mode, dynamics follow probabilistic di�erential

inequalities, hence represent continuous functions.

(2) All mode changes in�uencing criticality are expected to be

identi�ed in the risk analysis discussed in Subsection 2.2.

(3) The analysis of relaxing the observation on perfect informa-

tion leads to requirements on con�dence levels, with which

such hazardous events are detected by the vehicle. We note

that Car2X communication is expected to signi�cantly in-

crease our con�dence levels in detecting such conditions.

(4) Since only �nitely many mode-changes occur in a �nite time

window, and the continuous dynamics within one mode can

be clustered into �nitely many abstraction predicates (c.f. [1,

9], we are able to characterize the risk-control requirements

in a �nite set of scenarios.

It must be pointed out, though, that this analysis hinges greatly on

our ability to learn such environmental models. Certainly, signi�-

cant further research is required to achieve e.g. su�ciently precise

pedestrian models (c.f. [10, 21, 22, 29, 36], to name but one critical

research area. With respect to type homologation, the environmen-

tal models used for testing should be subject to standardization,

and subject to a continuous improvement process such as discussed

in Section 3.

In order to derive requirements improving controllability of haz-

ardous situations beyond human capabilities, we consider the prob-

ability mass of accident classes in GIDAS of MAIS levels greater or

equal 3, and re�ne scenarios generated in the process of Subsection

2.2 by tightening the requirements on the rate of reduction of criti-

cality beyond human capabilities by selecting classes of accident

scenarios of GIDAS with comparatively high probability masses.

Note that this probability is determined by the (uncontrollable)

probability of occurrence of such hazards, the relevance of the oc-

currence of this hazard in the given elementary tra�c situation, and

the remaining conditional probability of the ego car to control risk

reduction in the presence of these hazards. The degree of tightening

requirements on the controllability of the ego car is subject to a

discourse with the relevant public authorities, and can be based on

the already observed signi�cant capabilities of accident reduction,

such as e.g. for rear-end collisions or emergency breaking in urban

environments demonstrated by the state of practice of recently

introduced ADAS systems.

Altogether, the contributions of Section 2 thus lead to the fol-

lowing result:

(1) We have proposed an approach based on learning to de-

rive scenario based requirement speci�cations for control-

ling criticality of autonomously driving vehicles, addressing

Challenge 1 of the introduction.
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(2) We have indicated how societal standards such as recently

proposed by the Ethics Commission of the German Ministry

of Transportation can be taking into account when building

a Scenario Catalogue used as basis for type homologation.

(3) We have explicated the dependencies of the generated sce-

nario catalogue on the quality and representativeness of

the data-bases used for learning processes. Clearly, the de-

rived Scenario Catalogue will not be su�cient when used

for type homologation in areas, where types and probability

distributions of hazards or models on environment di�er

signi�cantly from distributions observed in the reference

data-base.

(4) On the other hand, as long as the actual driving situations

experienced in �eld match these probability distribution,

the proposed process allows to demonstrate for any given

con�dence level that automated vehicles will be compliant

to the scenario catalogue.

The following two Sections now address Challenges 2 and 3 of the

Introduction.

3 LEARNING IN THE FIELD

There is no perfect system – especially not in the beginning. Look-

ing at the extremely complex environment of tra�c situations, it

is to be expected that after the homologation process of a highly

automated vehicle new unpredictable, but risky situations may oc-

cur because of a certain environmental change. Uncertainties and

risks in �eld have to improve the performance of all vehicles. This

implies: not one vehicle learns for itself, but it contributes its data

about such "miss situations" towards an aggregated data-base main-

tained by an independent public body. The data of many vehicles

will be analyzed (e.g. in case of near misses), based upon this - new

knowledge will be created and redistributed to adaptable vehicles –

thus creating a process which could be called "Community learning".

Related to "Community learning" is the establishment of a "Perma-

nent safety procedure" compared to today’s one-time homologation

process. The reason for this lies in the fact, that it has to be ensured,

that safety-relevant changes are proceeded by a safety–proven pro-

cess. Also related to "Community learning" is the establishment of

a "Permanent observation system" at the vehicle site which provides

e.g. the safety relevant vehicle-data for "Community learning" and

enables to cope with the safety requirement for an independent

instance and last but not least increase the safety performance of

the vehicle (e.g. by health monitoring). Taken also into account

that the increase of knowledge is growing exponentially it can be

derived that

• Future mobility systems including highly autonomous ve-

hicles will be adaptable for upgrades in the �eld in order

to incorporate new knowledge and changes as e.g. safety

updates resulting from the community learning process.

• The installation of an in-car observation system supporting

the community learning and of mechanisms ensuring safe

application of updates (permanent safety updates) is highly

probable.

Assuming that these key issues lead to the described system changes,

then each single OEM has to carry the complete liability risk for

content and process of each release/upgrade. Therefore, it is more

Figure 2: (cited from [5]) In �eld system observations con-

tribute to community learning process.

e�ective, that multiple OEMs and Tiers establish a common stan-

dardized safety process - see proposal [5] by the Safetrans organi-

zation – Germany), including standardized interfaces for a common

observation and validation platform and a procedure for permanent

�eld-observation.

4 FORMAL SPECIFICATIONS OF TRAFFIC
SCENARIOS AND ENVIRONMENTAL
CONDITIONS

A key challenge then rests in �nding a representation of test-

scenarios which are expressive enough to cope with the plethora

of environmental conditions, tra�c situations, and tra�c partici-

pants, while yielding concise and unambiguous interpretations.

In [6, 7, 16] we have been proposing the visual speci�cation lan-

guage of Tra�c Sequence Charts to answer this challenge, which –

much as its conceptual "father" Life Sequence Charts extends and

gives formal semantics to Message Sequence Charts – extends the

OpenScenario approach. Much as Message Sequence Charts ITU-T

2011 were lacking expressiveness and formal semantics, motivating

the extension to Live Sequence Charts [4], the ongoing industrial

pre-standardization e�ort for capturing scenarios, called OpenSCE-

NARIO [33–35], falls signi�cantly short in being able to support the

methodology described in Subsection 2.2 and 2.3 to address the chal-

lenges in the introduction. OpenSCENARIO allows describing what

we called existential charts, i.e. give examples of desired behaviors,

rather than being able to specify requirements on all behaviors, such

as in what we called universal LSCs. TSCs "inherit" from LSCs the

concepts related to distinguishing between possible and mandatory

behaviors, the concepts of pre-charts which is key for characteriz-

ing those situations from when on all behaviors must comply to

universal charts, and cold and hot conditions for distinguishing

case-distinctions from failures. Having a speci�cation language for

scenarios with a rigorously de�ned formal semantics is necessary

for the following reasons. Recall the challenges of the introduction,

slightly regrouped: (C1) Given the ill-structuredness of the space

of real-world tra�c situations, how can we achieve completeness

of scenario catalogs, i.e. demonstrate with high con�dence that all

relevant real-world situations have been captured? (C2) Given the

remaining likelihood of experiencing failures in perception and
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interpretation after deployment, how can we establish a process

learning from �eld incidents and accidents leading to updates of the

scenario catalog avoiding reoccurrence of this incident in the �eld?

(C3) Given the complexity space of real-world tra�c situations,

how can one at all achieve su�ciently concise speci�cations to

make construction of scenario catalogs viable? (C4) How can we

assure, that the interpretation of scenarios and thus interpretation

of test results is unambiguous across all test platforms?

All these challenges can only be addressed if using a language

for capturing scenarios, which is intuitively easy to understand,

and, most prominently, which is equipped with a formal (declar-

ative) semantics. As discussed in Section 2, Challenge C1 will be

addressed by generalizing from data bases of observed tra�c �ows.

A minimal requirement for checking for completeness is thus the

need to formally de�ne, whether a particular observed tra�c behav-

ior is already covered or not by the current scenario catalog, thus

requiring the de�nition of a formal satisfaction relation. Moreover,

as experienced in the play-out approach for Live Sequence Charts

(LSCs) [4, 17] a formal semantics provides a basis for playing out

the current scenario catalog, thus generating tra�c �ows which

in an expert can judge for unrealistic or missing real-life tra�c

�ows. As described in Section 3, Challenge C2 requires a formal

semantics to identify the gaps between the space of possible worlds

described in the scenario catalogue, and the concrete in-�eld inci-

dent or accident. Speci�cally, forthcoming regulations will require

autonomously driving cars to record all those perceived environ-

mental artefacts relevant to trajectory planning as well as the car’s

trajectory control for a su�ciently long time-period. A formal se-

mantics allows to check the failed scenario(s), o�ering a basis for

re�ning the scenario speci�cations to cope with the observed fail-

ure in perception or interpretation of the real world. Challenge C3

demands the use of a declarative speci�cation language, where one

single scenario speci�cation stands for a possibly extremely large

set of real world tra�c situations, de�ned unambiguously through

the satisfaction relation. Also, declarative speci�cation languages

allow for separation of concerns, such as focusing on particular

kinds of critical situations in isolation, knowing that the car can

only pass the test if all scenarios are passed. Finally, Challenge

C4 can be addressed by automatically synthesizing monitors for

compliance testing, using the standardized formal semantics.

5 RELATED WORK

See [32] for a general survey of the state of the art for V&V for

ADAS and Automated Driving. This paper provides a summary of

discussion and ongoing work in a number of activities involving

both institutions of the authors. It builds on the �ndings of the

Pegasus Project in using scenario catalogues for type homologation

[19, 24, 27, 37], the SafeTRANS Working Group on Highly Auto-

mated Systems [5], a series of bilateral workshops between Bosch

and OFFIS, with participants listed under Acknowledgement, and

discussions of the Workshop on a future project for Veri�cation and

Validation of autonomous vehicles at Renningen September 2016. A

scenario driven approach is also part of the strategy of the Enables3

Project funded by the Joint Undertaking ECSEL. Academic Research

has proposed a number of di�erent approaches for formal synthesis

of controllers for autonomously driving vehicles [3, 8, 15, 38] which

fail to address Challenge 1 of the Introduction. Statistical Model

Checking has been used as a key tool to address the scalability

challenge such as in [11, 16]. The OpenScenario Iniative [33–35]

has proposed a baseline for capturing Scenario Catalogs. The for-

mal scenario speci�cation approach of this paper extends these

results much as Live Sequence Charts [4] extend the then industry

standard language of Message Sequence Charts ITU-T 2011.

6 CONCLUSION

The presented blueprint is a result of discussions within a wide

network of automotive safety experts and may serve as a guide-

line for a systematic approach. This joint network has to follow

up in order to establish a common safety assessment involving all

relevant stakeholder as societal bodies. Only based on common

commitments elaborated within e.g. public funded projects it will

be possible to deploy highly automated driving in terms of miti-

gation of liability risks and societal acceptance. In a next step this

process has to be deployed on a European level. One of the biggest

challenges will be to accelerate the harmonization process in order

to enable early market deployment.
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A EXCERPTS OF THE REPORT OF THE
ETHICS COMMISSION OF THE GERMAN
MINISTERY OF TRANSPORTATION AND
INFRASTRUCTURE

Rule 2: Der Schutz von Menschen hat Vorrang vor allen anderen Nüt-

zlichkeitserwägungen. Ziel ist die Verringerung von Schäden bis hin zur

vollständigen Vermeidung. Die Zulassung von automatisierten Systemen

ist nur vertretbar, wenn sie im Vergleich zu menschlichen Fahrleistungen

zumindest eine Verminderung von Schäden im Sinne einer positiven Risiko-

bilanz verspricht.

Rule 5: Die automatisierte und vernetzte Technik sollte Unfälle so gut

wie praktisch möglich vermeiden. Die Technik muss nach ihrem jeweiligen

Stand so ausgelegt sein, dass kritische Situationen gar nicht erst entste-

hen, dazu gehören auch Dilemma-Situationen, also eineLage, in der ein

automatisiertes Fahrzeug vor der "Entscheidung" steht, eines von zwei

nicht abwägungsfähigen übeln notwendig verwirklichen zu müssen. Dabei

sollte das gesamte Spektrum technischer Möglichkeiten – etwa von der Ein-

schränkung des Anwendungsbereichs auf kontrollierbare Verkehrsumge-

bungen, Fahrzeugsensorik und Bremsleistungen, Signale für gefährdete

Personen bis hin zu einer Gefahrenprävention mittels einer "intelligenten"

Straßen-Infrastruktur – genutzt und kontinuierlich weiterentwickelt wer-

den. Die erhebliche Steigerung der Verkehrssicherheit ist Entwicklungs-

und Regulierungsziel, und zwar bereits in der Auslegung und Program-

mierung der Fahrzeuge zu defensivem und vorausschauendem, schwächere

Verkehrsteilnehmer ("Vulnerable Road Users") schonendem Fahren.

Rule 7: In Gefahrensituationen, die sich bei aller technischen Vorsorge

als unvermeidbar erweisen, besitzt der Schutz menschlichen Lebens in

einer Rechtsgüterabwägung höchste Priorität. Die Programmierung ist
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deshalb im Rahmen des technisch Machbaren so anzulegen, im Kon�ikt

Tier- oder Sachschäden in Kauf zu nehmen, wenn dadurch Personenschäden

vermeidbar sind.

Rule 9: Bei unausweichlichen Unfallsituationen ist jede Quali�zierung

nach persönlichen Merkmalen (Alter, Geschlecht, körperliche oder geistige

Konstitution) strikt untersagt. Eine Aufrechnung von Opfern ist untersagt.

Eine allgemeine Programmierung auf eine Minderung der Zahl von Person-

enschäden kann vertretbar sein. Die an der Erzeugung von Mobilitätsrisiken

Beteiligten dürfen Unbeteiligte nicht opfern.
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