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Abstract. We address the question of feasibility of tests to verify highly
automated driving functions by optimizing the trade-off between virtual
tests for verifying safety properties and physical tests for validating the
models used for such verification. We follow a quantitative approach
based on a probabilistic treatment of the different quantities in question.
That is, we quantify the accuracy of a model in terms of its probabilistic
prediction ability. Similarly, we quantify the compliance of a system with
its requirements in terms of the probability of satisfying these require-
ments. Depending on the costs of an individual virtual and physical test
we are then able to calculate an optimal trade-off between physical and
virtual tests, yet guaranteeing a probability of satisfying all requirements.
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1 Introduction

Advanced driver assistant systems (ADAS) and highly automated driving func-
tions (HAD) are increasingly complex and their dependency on the environmen-
tal situation is increasing. An important step in bringing such systems into the
market is to guarantee their safe operation. To this end, the reaction of these
systems to all potential inputs needs to be verified. Due to their complexity not
only individual inputs but sequences of inputs need to be checked. An analyti-
cal verification which exhaustively checks all input combinations and sequences
is infeasible3. Therefore, it is not only important to develop these functions in
a safe way but also use testing for their verification. During testing the sys-
tem is probed at specific points (input sequences) from which the safety of the

3 Besides the prohibitively large computational complexity, this also requires an ac-
curate, formal description of possible environments.



system, or more generally the compliance of the system with the elicited re-
quirements, can be inferred. Using statistical arguments, one can estimate the
necessary number of tests (number of test-kilometers to drive) in order to guar-
antee a level of safety which is most likely as high as the level to be achieved
without the ADAS under test [1]. For HAD this number will presumably be
even higher. As determined in [1] and [2] the scale of such physical tests is also
prohibitively large as the costs for such tests (which need to be performed with
every newly developed ADAS) amount to the order of hundreds of millions of
Euros. Thus, on the one hand, the complexity of the systems forces one to use
tests but, on the other hand, physical tests are not sufficiently cost-efficient. A
potential solution to this dilemma is to replace physical components with vir-
tual ones mimicking the behavior of their physical counterparts denoted Virtual

Integration. Depending on which part is replaced with a virtual substitute, these
test are called for instance model-in-the-loop (MIL), software-in-the-loop (SIL),
hardware-in-the-loop (HIL), or vehicle-in-the-loop (VIL), see [3] or [4]. Such a
virtual setup can not only be used for safety assessment, but also for early-phase
development, thereby achieving a much more cost-efficient development cycle.
However, when replacing parts of a real operational environment with virtual
components one has to guarantee a sufficiently realistic behavior of the virtual
components such that results obtained from a simulation can be transferred to
a non-virtual situation.

Although physical tests are again necessary to estimate the accuracy of the
models used, such validation of models would only need to be performed once
for each model. Hence, the overall costs for virtual and physical tests could still
be feasible. In this paper, we address the question of feasibility by optimizing the
trade-off between virtual tests for verifying safety properties of highly automated
driver assistant systems and the physical tests for validating the models used
for such verification. To this end, we follow a quantitative approach based on
a probabilistic treatment of the different quantities in question. That is, we
quantify the accuracy of a model in terms of its probabilistic prediction ability.
Similarly, we quantify the compliance of a system with its requirements in terms
of the probability of satisfying these requirements — obtained as an average
across all possible uncertainties. As these probabilities are often unknown but
have to be estimated based on the finite amount of test-samples, we additionally
account for the statistical estimation uncertainty. Depending on the costs of an
individual virtual and physical test we are then able to calculate an optimal
trade-off between physical and virtual tests, yet guaranteeing a probability of
satisfying all requirements.

Note that such a probabilistic treatment is mainly for practical reasons, simi-
lar to the arguments in [1]. We expect a human driver (one of several other traffic
participants, from the perspective of a system-under-test) to be subject to ran-
domness. That is, even if the initial situation is identical, the reaction of a traffic
participant can be different between repetitions. In order to still quantify the
level of compliance with the requirements we merely require the system to sat-
isfy the requirement up to a pre-specified confidence level. For the same reasons



we also can only measure the current level of safety with a similar uncertainty,
see [1].

The results presented in this paper are meant to be of a generic nature i.e.,
applicable from a test-process perspective in general. As such, we do not analyse
particular test instances, but investigate more the general conditions in which
such a framework is applicable. Furthermore we are using an abstract notion
of validity, thus we are not giving concrete checkpoints that would allow a test
engineer to decide whether a given model is a valid replacement of the real
world. Despite this, it allows us to make predictions about the test processes
that have a practical impact. In particular, we illustrate how many tests would
be needed (both physical and virtual) under the assumptions of an optimal split.
Additionally, we can directly calculate the potential savings in costs compared
to a pure physical test as illustrated by Winner et al. [1] while achieving the
same quantitative guarantee of safety (see Section 3.5).

2 Related Work

To use simulation for the verification of ADAS/HAD is a commonly proposed
solution for the problems stated above. There are serveral approaches that offer
ideas on how to integrate simulation and test in the verification process.

Virtual integration. In [5] an overview of virtual integration methods with
their current use in practice, as well their limitations is given. Already for ADAS
with environmental perception safety cannot be shown economically only by real
test drives due to the high complexity of the systems and tests. Finding the right
balance between real test drives and virtual integration tests can be considered as
an optimization problem with respect to the effort of building and parameterizing
simulation models and the efficiency gain won by simulation techniques. Beside
the repeatability and efficiency the additional value of simulation techniques
is in particular the possibility to perform tests of the whole system already in
early design phases. With regard to the V-model the four virtual integration
techniques relevant for the development of ADAS are MIL, HIL, SIL and VIL,
also compare [4]. The current limitations of virtual integration are stated as the
simulation models a) do not always meet the necessary realism or b) do not have
the real-time capability needed for virtual integration methods (or both).

Taxonomy for testing of advanced driver assistance systems. In the survey [3]
a taxonomy of approaches for testing advanced driver assistance systems is pre-
sented. This concerns different characterizations of test criteria and metrics to
quantify the quality of observations or models. Further, different methods to de-
termine the test reference (ground truth) are discussed i.e. either measurement-
based, by simulation or by a mixture of both. Finally, the definition of test
scenarios is regarded where actual tests are performed to be checked against the
reference. In the present paper, we follow the suggested approach by comparing
the virtual model with a reference, similar to [6], where the special case of vision
based systems is considered.



Combining design time testing and runtime monitoring. In [7] a scenario-
based approach is presented that combines testing at design time and monitoring
during runtime of an ADAS. This allows to identify the set of relevant scenar-
ios by simulation and thus reducing field testing to these instead of testing all
possible scenarios, which would be infeasible for complex ADAS systems. Fur-
thermore, missing scenarios identified at field tests may be fed back into the set
of scenarios for design time simulation to improve test coverage.

Assigning test cases to test methods. A method for assigning test cases for
automated driving functions to X-in-the-Loop test methods is proposed in [8].
The authors make use of their virtual modular test kit, which is a concept
to systematically test automated driving functions in virtual environments. Its
goal is to reduce the overall number of necessary tests by a systematic test case
generation while keeping the test coverage at the same level. Depending on the
test case different requirements arise concerning the set of applicable X-in-the-
loop methods. The assignment method has two steps. First, the X-in-the-loop
methods are characterized by a Kiviat diagram. On the z-axis of the diagram
different assessment scales are plotted like quality of results, operational costs,
etc. Second, the requirements of the test cases to the X-in-the-loop methods
are represented in a Kiviat diagram as well. By matching the diagrams the set
of applicable X-in-the-loop methods can be determined. By defining assessment
functions describing the quality of the models, operational costs, etc the best
rated method with respect to the defined assessment functions can be identified.

3 Stochastic Methods for Splitting Simulation and

Testing

Although simulation offers a thorough investigation and verification of a system
under test, testing real components against real environments will always be part
of the verification process to guarantee the possibility of a transfer of results
obtained in a simulation environment to the deployment phase. To optimize
the cost efficiency of the overall verification process reducing and shifting effort
towards virtual simulation is of major interest. In this chapter we will present the
quantitative basis for an optimal trade-off between real world tests and virtual
simulations to achieve a desired level of dependability.

3.1 Preliminaries

As mentioned in the introduction, our approach relies on a probabilistic argu-
ment which aims at quantifying the degree to which we can guarantee that the
system requirements are fulfilled by the system across all possible situations the
system under test might encounter throughout its lifetime. As shown by Winner
et al. [1], such guarantee can be obtained with purely physical tests. However,
these physical tests can also be used to validate a surrogate model of the reality,
which in turn can then also be used to verify a system against this model of



reality. Before going into details of the approach we first fix the notation of the
stochastic variables that we will use in the following.

By the real system under test (Sr) we understand the system under test
as it will be implemented. Analogously to the virtual model (Sv) it receives an
input (which could be either provided by a model or the real world) and generates
a corresponding response. The reality or ground truth world model (W)
is considered to be the desired environment for the system under test. The real-
ity can be observed via measurements from a reference system, which provides
sequences of measurements. These traces (sequences of measurements) can be
compared with the sequences of the simulation model (M) which can generate
traces of virtual inputs for a system under test. Based on the generated traces,
two models or a model and its real-world counterpart can be exchangeable. In
that case we say the model M is a valid model of the real world W, denoted
by M ⌘R W to check whether a system under test fulfills some requirements
(R). These are a set of logical formulae, which should be satisfied (`) for all
relevant situations of real world scenes in which the system under test operates.

Furthermore, we are looking at samples drawn from the reality (Xw).
These are discrete sequences of measurements taken from a system equipped
with a reference sensor system. This reference system is able to provide sequences
of accurate measurements comparable to samples generated from the co-
simulation of the models (Xs) which are sequences of virtual measurements
of the co-simulation of the virtual environment and the system model.

Definition 1. We write SW = (Sr,W) for the real system under test with input

from the real world.. Analogously we write SM = (Sv,M) for the virtual model

with input generated from a simulation model.

Thus read e.g., P (SW ` R) as: the probability that the real system under
tests satisfies a set of requirements. If a quantity cannot be directly assessed but
has to be inferred from other observations or measurements we annotate this
with a hat symbol. For example, if we have no access to a probability p, but
have a method to estimate this probability, we denote the estimate by p̂.

For the verification of a system under design, we are interested in the proba-
bility that the designed system will satisfy all requirements when facing environ-
ments generated from reality, i.e., the true world model. This probability can be
written in terms of conditional probabilities assuming a particular model used
for simulation and the probability that this model is an accurate description of
the real world. With the law of total probability we arrive at:

P (SW ` R) =P (SW ` R | SM ⌘R SW )P (SM ⌘R SW)

+ P (SW ` R | SM 6⌘R SW )P (SM 6⌘R SW)

�P (SW ` R | SM ⌘R SW )P (SM ⌘R SW)

⇡P (SM ` R | SM ⌘R SW )P (SM ⌘R SW) .

(1)

That is, we first split the probability that the real system under test in its desired
environment will satisfy the requirements into two cases depending on whether



composition of the model and the virtual environment can be regarded as a
valid replacement. If this is indeed the case, we can replace the pair SW with
its virtual counterpart. As a result we have split the overall verification effort
into a part which can be evaluated purely in a virtual environment (first term
in equation (1)) and a part which evaluates the validity of the virtual model.

3.2 Validity of a Virtual Model

Validating a virtual model against its real counterpart is a challenging task
(see [3]). In equation (1), we deduced from the validity of a model that we
can use the model as a replacement for the real system within the satisfaction
of the requirements. However, there are different notions of validity. We could
classify a model to be valid with respect to a particular environment, if such
replacement is allowed for a particular requirement. The latter interpretation,
for example, is the basis for determining a test-method (including the selection
of a virtual model) according to the method described in [8]. In the present paper
we would like to follow a more generic approach. That is, we would like to define
a notion of validity such that the replacement of the virtual model is valid for
all requirements.

For this to hold, we have to at least ensure that all sequences of measurements
from the real world Xw could be generated within the virtual environment, i.e.,
finding correspondingXs. Please note that we assume all traces to be discrete. To
avoid that the virtual model dominantly explores part of its sample space, which
are not possible to observe in the real world, a stronger notion of validity would
also require that for all traces in the virtual model, there exists a corresponding
trace (sequence of measurements) in the real world. Even if traces are possible
to generate for both systems, virtual model and real world, it could happen
that different kinds of traces are differently favoured. That is some traces might
be more likely to be generated in the real world compared to the likelihood
of generating them using the virtual model. To summarise, we have the three
(increasingly stronger) notions of validity:

1. All sequences of real world observations are also possible within the virtual
model

2. Additionally, for each possible sequence within the virtual model, there exists
an identical sequence of measurements within the real world

3. For each sequence of measurements there exists an identical sequence within
the respective other model. Additionally, the likelihood of generating such
sequence is also equal.

For simplicity, we only consider the first notion of validity within this paper.
It should also be noted that all notions can be further relaxed by not requiring
the existence of an identical sequence, but the existence of a sequence which is
close to the required one.



3.3 Splitting Simulation and Testing for Ubiquitous Requirements

Given these notations, we can formulate the following properties as conditional
probabilities. These are modeled as probabilities as the models used to describe
the environment and potentially for the system model as well are likely to contain
stochastic variables and hence the satisfaction of requirements is potentially also
subject to this encoded variability. For example, with the abbreviations intro-
duced above, we can write down the probability that the system model satisfies
the requirements, given that the simulation model is an accurate description of
the (needed aspects of the) true world model. Note that in this section we as-
sume that the requirements can be validated both via simulation as well as via
physical testing. That is, we assume that the environmental model used for sim-
ulation provides all necessary information to evaluate whether a single sample
generated from the model satisfies the requirements.

Definition 2 (Satisfaction of requirements for a given simulation model).
Let SM denote the virtual model of the system under test with input generated

from a virtual model M and R denote the requirements we would like the sys-

tem to satisfy. We write the conditional probability of the system satisfying the

requirements under the assumption that the simulation model M is an accurate

description of the real world W as:

PM
`

:= P (SM ` R | SM ⌘R SW ) . (2)

Due to the potential stochastic variability encoded into the simulation model,
this probability is a property of the simulation model. As simulation models are
typically too complex to be analyzed symbolically, this probability cannot be
calculated exactly but can be approximated or bounded by means of a statistical
analysis. To this end, samples from the simulation model can be generated and
estimates of the probability can be obtained. This is the main goal of simulation
based verification. In order to rigorously quantify the level of certainty associated
with such a verification process it is important to keep track of the sample
uncertainty incurred by the simulation based verification.

Assume we have generated m samples Xs
1 , . . . , X

s
m using the simulation

model. For each of these samples we can test whether the requirements are
satisfied for the particular trace, Xs

i ` R. Based on these results, we can, for
example, estimate the probability (2) by the relative frequency of the samples
satisfying the requirements (ideally, all traces satisfy the requirements, i.e., the
relative frequency will be 1). If we denote this estimate P̂M

`
, we can statistically

bound the probability that this estimate will deviate from the true probability
PM
`

by more than any given ✏s. The resulting bound on the probability depends
on three variables: the confidence �s, the accuracy ✏s and the number of samples
m used for this estimate. If two of these are given the others can usually be
calculated based on the other two (see below for some specific examples).

PXs

1
,...,Xs

m

⇣�

�

�
P̂M
`

� PM
`

�

�

�
� ✏s(�s,m)

⌘

 �s . (3)



In words, such a formula bounds the likelihood of the results being a fluke (judged
by the estimation being further than ✏S(�S ,m) from the true value apart) as a
result of unlucky observed data. Here, we have written ✏S(�S ,m) to stress the
fact that the accuracy ✏ can be calculated from the other two parameters �S ,m.

Now we have to combine this probability with the probability that the model
represents the relevant information sufficiently well. Here, we assume that we
represent all relevant information which is needed to answer whether the specified
requirements are satisfied on a single trace basis. In other words, we say that the
simulation model represents the ground truth model if a trace of observations
of the real world is considered possible in the simulation model and testing this
trace with respect to the requirements on both models leads to the same answer.

P⌘R
:= P (SM ⌘R SW) . (4)

As we do not have access to the mathematical description of the world model, we
need to estimate this probability based on observations of the real world, similar
as we have estimated (2) via sampling from the model. Again, we need to keep
track of the residual uncertainty associated with such an empirical estimation
procedure. Specifically, for n observationsXw

1 , . . . , Xw
n of the real world, we have:

PXw

1
,...,Xw

n

⇣�

�

�
P̂⌘R

� P⌘R

�

�

�
� ✏w(�w, n)

⌘

 �w . (5)

These different estimates can be used to bound the overall probability of interest
(see equation (1)). In fact, for the first term in equation (1), as we have no
access to the true probabilities, we can use their sample-based estimates from
equations (3) and (5) to obtain:

P (SW ` R) �
⇣

P̂M
`

� ✏s

⌘⇣

P̂⌘R
� ✏w

⌘

with P � (1� �s)(1� �w) . (6)

If all physical tests, i.e., observations of the behavior of the system, satisfy the
requirements and could also have been generated by the simulation model both
estimates P̂M

`
, P̂⌘R

are 1. In this case the equation simplifies to:

P (SW ` R) � (1� ✏s) (1� ✏w) � 1� ✏s � ✏w

with P � (1� �s)(1� �w) .
(7)

For simplicity, we have omitted the dependence of �s, �w,m, n on the accuracies
✏w, ✏s. The above equation suggests that the effort to spend on either simu-
lation or physical tests amount to the same contribution to the overall safety
guarantee (satisfaction of the requirements). However, due to the multiplication
of residual uncertainties, i.e., confidences �s, �w, we might want to allow for a
smaller confidence in the simulation model thereby requiring a larger confidence
in the simulation analysis while obtaining the same level of overall confidence
and safety estimate. In other words, we can achieve the same safety guarantee
with different splits between physical and simulation tests. This degree of free-
dom can therefore be exploited to obtain an optimal trade-off with respect to
the resulting costs.



Assuming a fixed cost cs for each simulation run and cw for each physical test
to validate the simulation model, we therefore can solve the following constrained
optimization problem for a given overall confidence level X and a safety level Y :

min
n,m

(csm+ cwn) s.t.

(1� �s)(1� �w) � X and (1� ✏s(�s,m))(1� ✏w(�w, n)) � Y .
(8)

Although we optimize the costs within the above optimization problem, we only
do so under the constraint that a certain level of safety has to be guaranteed.
Such optimization problem can be solved (at least numerically) if the estimation
accuracy functions ✏w, ✏s are given. For the particular situation in which we
are aiming at estimating a probability - which is specified in terms of a binary
indicator variable (satisfaction of the requirements) - we can use a Bernoulli
bound to obtain a specific form of the accuracy functions, for example a Clopper-
Pearson bound (see [9] and Section 3.5).

If the simulation model is only used for generating the environment of the
system under test and is therefore independent of the system under test the
physical tests to validate that model need be performed only once for a model.
The model in turn can be used to verify more than one system without requiring
additional physical tests for model validation provided that the samples that were
generated from the model were generated for each system under test. However,
if the model is allowed to change or adapt to the physical test data that has
been acquired, validation of the model corresponds to bounding the prediction
performance of a learning system, as the model learns from the physical test data.
Although this is possible, the calculations are more involved and we therefore
postpone this discussion.

3.4 Splitting Simulation and Testing Based on Type of
Requirements

In the previous section, we assumed that all requirements can be tested either
using simulation or physical tests. Additionally, we also measured the quality
of a simulation model based on its ability to generate traces and leading to the
same answer regarding the satisfaction of the requirements. In practice, there are
certain requirements which are outside the scope of the simulation model. For
instance, the model might not include certain variables within its representation
that are relevant for some requirements. That is, we might have a model of the
vehicle dynamics at hand, but would like to test a requirement which specifies
how a route-planning component should work. In these situation Schuldt et al.
[8] proposed a method to judge which type of test-method (for example HIL
or MIL should be applied. In particular, they also suggested that the quality
of the provided simulation model should be taken into account when selecting
a suitable test-method. Using the results from the previous sections, we can
provide a quantitative measure which supports their method.

Also, we can use similar calculations as above to provide an overall measure in
satisfying the desired requirement. Specifically, assume we have given two types



of requirements R1,R2 each of which specifies the desired behaviour for different
parts of the system under test. Assume further that we have two simulation
models M1 and M2, each modelling the respective part of the system under
test and their respective inputs. Then we can write the overall probability of
satisfying the requirements as

P (SW ` R1 ^ SW ` R2) = P (SW ` R1|SW ` R2)P (SW ` R2)
ind.

= P (SW ` R1)P (SW ` R2) .
(9)

Here we have assumed that the satisfaction of the second requirement does not
affect the satisfaction of the first one. If both requirements restrict different parts
of the system under test, this might be reasonable, however, it should be noted
that all components within the system under test are likely to be connected via
a certain computation path. Therefore, the independence assumption might be
too strong. Similar to equation (1), we can now resolve each of the remaining
terms in equation (9) using the respective models.

If for one of the requirements there is no model available, we can simply
perform physical tests to estimate the corresponding probability. In this case,
assuming all tests have been passed, we can rewrite equation (7) to obtain

P (SW ` R1 ^ SW ` R2) �
�

1� ✏
1

s

� �

1� ✏
1

w

� �

1� ✏
2

w

�

with P � (1� �
1

s)(1� �
1

w)(1� �
2

w) .
(10)

For the first requirement, we have
�

1� ✏
1
s

� �

1� ✏
1
w

�

representing the accuracy of
checking the satisfaction of the requirement times the probability of the model
being valid. For the second requirement, we can omit the model validation prob-
ability, as we assume to perform real-world tests. Using such formulation, we
can again optimise the costs under safety constraints. In the above formulation,
we perform real-world tests for checking the validity of the model and checking
the satisfaction of R2. However, we can re-use the same real-world test for both
objectives. Therefore, the number n of real-world tests within (8), can be used
for both ✏

1
w and ✏

2
w.

3.5 Practical Considerations

In this section we investigate the potential of the approach as outlined in the
previous sections from a more practical perspective. Applying the procedure
outline in the previous section, one has to first set up a model for simulation
then collecting independent observations of the real world, which allows to check
whether these observations can also be generated by the simulation model, and
finally performing the simulation-based tests. We therefore use the real-world
observations only for validating the model here, although a double use, i.e.,
validating the model and checking requirements would be possible as well and
would further strengthen the guarantees.



Validating a simulation model using a reference sensor system. In the previous
sections we assumed that the validity of the simulation model can be checked
on a single observation basis. In the simplest case, this can be achieved by
verifying that a (sequence of) measurements can be reproduced within the virtual
environment used as a simulation model. For example, the simulation model
could consist of several modules integrated into a co-simulation platform. To
be able to generate a simulation run, further parameters such as road topology,
behavior of traffic participants, etc., have to be specified within the co-simulation
platform. By choosing a suitable set of these parameters, one can try to mimic
the sequence of measurements. If the observed sequence can be reproduced,
the necessary check can be considered passed. If all measurement data can be
reproduced, the corresponding estimate of the probability that the virtual model
is an accurate description of the real world P̂⌘R

in equation (5) and (7) is 1.
More precisely, one has shown that the virtual model is capable of reproduc-

ing the sensor measurements of the (potentially inaccurate) sensor setup used
for recording. Therefore, if one aims at validating a system which should serve
as a generator of ground truth data, one should use a sensor setup which can
act as a reference, i.e., has the desired accuracy. With the help of an applied
co-simulation platform, one could measure the (relative) positions of all objects
and then reproduce the trajectories of all detected objects within the simulation.
If the measurements also contain a visual component, one needs to show that
the rendering procedure is capable of generating the recorded video sequence.

It should be noted, that the same procedure can also be used to validate
components, such as sensor models, against their hardware counterparts. To
this end, one would discretely measure pairs of signals, input and output signal,
where input signals could be obtained via a reference sensor system and the
output would be measured from the sensor one would like to model. To validate
the virtual model of the sensor it would be checked whether it can reproduce
all observed sequence of input-output pairs. In fact, having validated a sensor
model would also mean that all inaccuracies of the sensor are captured within the
model. By combining different validated models for components, one can then
also conclude that the combined model is validated. However, the confidence in
the combined model is reduced as the overall confidence is given by the product
of the confidences for the individual components.

Exemplary optimization for a cost-efficient trade-off. To evaluate the practical
impact and associated costs (savings) we calculate the optimal trade-off between
simulation and tests as outlined in equation (8). To this end, we assume that both
physical tests as well as simulation based tests have not revealed any violation
of the requirements and model validation, respectively. Otherwise we assume
that the underlying problem has been addressed and the corresponding tests
have been successfully repeated. For the costs of a physical test we assume here
10 D

km
. Relative to these costs we assume a virtual kilometer within a simulation

environment to cost a fraction of 0.01, that is here 0.1 D

km
. Note that these values

are only illustrative figures, but are easily replaceable by more accurate values.
For the desired overall confidence we are using 0.99 and our desired accuracy is





tests (right diagram) for an optimal trade-off from the color depicted in the
diagrams. In the lower two diagrams we each fix one dimension of the diagrams
above to observe how the needed number of simulations/physical tests changes
compared to the cost per simulation/physical test. The intersection with the
straight lines drawn into the diagram thus mark the optimal trade-off from the
example given above.

It can be seen from the lower panel in Figure 1 that if a physical test is
more costly the optimisation procedure will increase the number of simulations,
as expected. However, the overall number of tests (both physical and virtual)
is still quite high, which is due to the high safety targets and no additional
assumptions.

Comparison with purely physical testing. We also investigated the potential sav-
ings in costs using this approach compared to a setting using only purely physical
tests. In Figure 2 we plotted the relative savings in Euros when comparing a set-
ting in which only real-world tests are performed to check the requirements to
an optimal split. Thus this diagram does not say anything about the amount
of tests necessary but only about the relative savings of performing an optimal
split compared to pure physical tests. Although we only use real-world observa-
tions for model validation and not for testing requirements, the potential savings
amount to over 90 percent of the costs associated with the several hundred mil-
lion kilometers that were estimated to be sufficient using only real-world testing
[1]. The savings are particularly dramatic in settings where the costs of a physi-
cal test are much higher than for an individual virtual test (upper left corner in
Figure 2).

4 Conclusion

In this paper, we focused on the foundations for a quantitative analysis of split-
ting test-cases into virtual and physical tests, thereby taking into account the
difference in costs for these two types. Although we did not use any further as-
sumptions on the regularity of tests (e.g., nearby scenarios are more likely to
produce similar satisfaction results with respect to requirements), the results
show that the total savings in costs can be quite substantial ( ⇡ 90% in the
given example) when compared to the setting of testing all requirements purely
in real situations. Additionally, such savings are likely to be multiplied, as the
models used for simulations can be re-used, once they have been validated using
the physical tests. Even when we have made slight changes in the simulation
model we could include a prior belief about the quality of the simulation into
our approach. With the help of a prior quality belief we could reduce the needed
real-world observations even further.

As mentioned in the introduction, the results presented in this paper are
meant to be of generic nature. In fact, from a very abstract perspective, the
overall test-process is unchanged, but incorporates the quality metric as proposed
by Winner et al. [1] and can be integrated into methods for selecting appropriate





aspects might lead to not only a more efficient test process but also to a safer
overall system.

Acknowledgments. This study was partially supported and financed by Opel
Automobile within the context of PEGASUS (Project for the Establishment
of Generally Accepted quality criteria, tools and methods as well as Scenarios
and Situations for the release of highly-automated driving functions), a project
funded by the German Federal Ministry for Economic Affairs and Energy.

References

1. Winner, H.: Quo vadis, FAS? In: Handbuch Fahrerassistenzsysteme. Springer
(2015) 1167–1186

2. Kalra, N., Paddock, S.M.: Driving to Safety: How Many Miles of Driving Would It
Take to Demonstrate Autonomous Vehicle Reliability? RAND Corporation (2016)

3. Stellet, J.E., Zofka, M.R., Schumacher, J., Schamm, T., Niewels, F., Zollner, J.M.:
Testing of advanced driver assistance towards automated driving: A survey and
taxonomy on existing approaches and open questions. In: Intelligent Transporta-
tion Systems (ITSC), 2015 IEEE 18th International Conference on, IEEE (2015)
1455–1462
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