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This paper proposes an uncertainty and disturbance estimator (UDE)-based controller
for nonlinear systems with mismatched uncertainties and disturbances, integrating the
UDE-based control and the conventional backstepping scheme. The adoption of the back-
stepping scheme helps to relax the structural constraint of the UDE-based control. More-
over, the reference model design in the UDE-based control offers a solution to address
the “complexity explosion” problem of the backstepping approach. Furthermore, the
strict-feedback form condition in the conventional backstepping approach is also relaxed
by using the UDE-based control to estimate and compensate “disturbance-like” terms
including nonstrict-feedback terms and intermediate system errors. The uniformly ulti-
mate boundedness of the closed-loop system is analyzed. Both numerical and experimen-
tal studies are provided. [DOI: 10.1115/1.4040590]
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1 Introduction

The control problem for uncertain systems has been widely
studied by a variety of strategies. Among them, the time delay
control (TDC) is proposed in Ref. [1], which is based on the
assumption that a continuous signal remains unchanged during a
small enough period. By using the past observation of uncertain-
ties and disturbances, the control action is modified directly,
instead of adjusting controller gains (e.g., gain scheduling), or
identifying system parameters (e.g., adaptive control). Although
the TDC has been successfully applied to different applications
[2–6], it suffers from some problems, which are caused by the
need for the derivatives of system states and the difficulty in sta-
bility analysis due to the use of time-delayed signals.

To address the above problems in the TDC, an alternative strat-
egy, which is named by uncertainty and disturbance estimator
(UDE)-based control, is proposed in Ref.[7]. Inheriting from the
TDC control, the UDE-based control has the similar structure but
uses the assumption in the frequency domain that a continuous
signal can be approximated by appropriately filtering. Since then,
both theoretical and practical studies on the UDE-based control
begin to appear in the literature. In the aspect of theoretical stud-
ies, the two-degrees-of-freedom nature of the UDE-based control
is revealed in Ref. [8], which indicates that the UDE-based control
strategy can be decoupled into two designs, i.e., one is a reference
model with an error feedback matrix and the other one is a filter.
The reference model with the error feedback gain matrix deter-
mines the system output performance, and the filter design deter-
mines the performance of uncertainties and disturbances rejection.
Due to the importance of the filter design, Shendge and Patre,
Chandar and Talole, Kuperman, and Ren et al. [9–12] have dis-
cussed how to improve the filter design in the UDE-based control
to achieve a better disturbance rejection performance. In

Ref. [13], a robust input–output linearization controller is reported
by using the UDE-based control technique. Furthermore, an UDE-
based controller–observer structure is proposed by constructing a
Luenberger type state observer in Ref. [14]. A new design of slid-
ing mode control based on the UDE is given in Ref. [15], and the
UDE-based control successfully avoids the control discontinuity
and the need for the bounds of the uncertainties, which are main
difficulties in the conventional sliding mode control. The robust
design for an UDE-based controller with a reduced order observer
is studied in Ref. [16]. In addition, to overcome the large initial
control signal in the UDE-based control, a novel change of coordi-
nates is also presented in Refs. [15] and [17]. Moreover, by
regarding varieties of nonlinearities as the uncertainties and dis-
turbances, the UDE-based control has been extended to systems
with state delays [18,19], nonaffine input [20], coupling states
[21], hysteresis effect [22], etc.

Benefiting from the excellent performance in handling the
uncertainties and disturbances is yet a simple control scheme, the
UDE-based control has been applied to many types of practical
systems in recent years, such as robot manipulators [23], aeroen-
gine [24], wind turbine systems [25], wing rock motion [26], DC-
DC converters [27], quadrotors [21], grid-connected inverters
[28], VTOL aircraft [29], power plant [30]. However, it should be
noted that the structural constraint [7], that is equivalent to the
matching condition of uncertainties and disturbances, has not
been relaxed yet in the UDE-based control, which restricts the fur-
ther application of the UDE-based control to some systems with
mismatched uncertainties and disturbances. To fill in the gap and
broaden the applicability, this paper aims to relax the structural
constraint of the UDE-based control by using the backstepping
scheme.

In the view of the backstepping approach, the controller is
derived in a recursive process, that is, the lower order subsystem
state is stabilized by a virtual control which will be designed in
the higher order subsystem. Henceforth, the backstepping
approach is promising to handle the mismatched uncertainties
[31]. In order to handle the parametric uncertainties, techniques
like adaptive backstepping, tuning function are proposed as
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solutions [31–33]. However, there are two main problems that
remain in these conventional backstepping schemes: (1) the sys-
tems for which the backstepping is applicable must be in the
strict-feedback form and (2) the need for the derivatives of the vir-
tual controls. The strict-feedback form requires that the systems
have a specific lower triangular structure which will restrict the
applicability. And taking the derivatives of the virtual controls
always results in the problem of “complexity explosion.” Never-
theless, this problem can be solved by the dynamic surface control
(DSC) in which low-pass filters are introduced, [34,35]. It can be
seen that in the rest of this paper, after integrating the UDE-based
control with the backstepping scheme, some benefits will be
brought out for the backstepping to relax the strict-feedback form
and solve the “complexity explosion” problem.

The main contributions of this paper are as follows:

(1) The structural constraint in the UDE-based control which
appears in the literature is shown to be equivalent to the
matching condition of uncertainties and disturbances.
Therefore, the backstepping scheme is utilized to relax this
limitation and the UDE-based control will be pushed to be
applicable for a more general type of nonlinear systems;

(2) The intermediate system errors, which appear in the back-
stepping scheme, are regarded as a part of the “disturbance-
like” term, which can be estimated and compensated like
other disturbances by using the UDE-based control. This
proposed method simplifies the way to handle the interme-
diate errors compared to other methods, e.g., adaptive back-
stepping control;

(3) The utilization of reference models which inherit from the
UDE-based control design also relaxes the computation of
derivatives of the virtual controls and avoids the
“complexity explosion” problem in the same spirit of DSC;

(4) Compared to the conventional backstepping approach
which requires the system in the strict-feedback form, the
proposed method is applicable for a more general type of
nonlinear systems by lumping the nonstrict-feedback form
terms into the “disturbance-like” terms.

The remainder of the paper is organized as follows: In Sec. 2,
the idea of the UDE-based control is introduced and the restriction
named the structural constraint is analyzed. In order to relax the
structural constraint, Sec. 3 reformulates the nonlinear control
problem, and the UDE-based backstepping controller is proposed
in Sec. 4. The stability of the closed-loop system is analyzed in
Sec. 5. Furthermore, in order to evaluate the effectiveness of the
proposed method, three examples, including a numerical example,
a simulation study on a rotary inverted pendulum and an experi-
mental study on a coupled water tank system are presented in
Sec. 6. Section 7 presents the concluding remarks.

2 Structural Constraint or Matching Condition in the

Uncertainty and Disturbance Estimator-Based Control

Similar to the formulation in Ref. [7], a single-input-single-
output (SISO) linear system is considered as

_X tð Þ ¼ Aþ DAð ÞX tð Þ þ Bþ DBð Þu tð Þ þ D tð Þ (1)

and the reference model is chosen as

_Xr tð Þ ¼ AmXr tð Þ þ Bm tð Þx1r tð Þ (2)

where X tð Þ ¼ x1;…; xn½ �T 2 Rn is the measured system state vec-
tor, x1 is the system output which is to be regulated, u tð Þ 2 R is
the control input, D tð Þ 2 Rn is the external unmeasurable disturb-
ance vector. A and B are known system matrices with suitable
dimensions, and B has a full column rank. DA and DB are
unknown system matrices. Xr tð Þ ¼ x1r;…;xnr½ �T 2 Rn is the ref-
erence state vector, Am and Bm are reference model system

matrices with suitable dimensions and x1r tð Þ 2 R is the command
signal. The reference model will make x1r(t) follow x1r(t), i.e.,
x1r tð Þ ! x1r tð Þ. Define the tracking error e(t)¼Xr(t) – X(t). The
control objective is to achieve the desired performance which
relates to the error dynamics

_e tð Þ ¼ Am þ Kð Þe tð Þ (3)

where K is the error feedback gain matrix. Combining Eqs.
(1)–(3) results in

AmX tð Þ þ Bmc tð Þ � AX tð Þ � Bu tð Þ
�DAX tð Þ � DBu tð Þ � D tð Þ ¼ Ke tð Þ (4)

If the control law u(t) satisfies Eq. (4), the desired error dynamics
(3) can be achieved. Hence, solving Eq. (4) results in

u tð Þ ¼ Bþ AmX tð Þ þ Bmx1r tð Þ � AX tð Þ � Ke tð Þ½
�DAX tð Þ � DBu tð Þ � D tð Þ� (5)

¼ Bþ AmX tð Þ þ Bmx1r tð Þ � AX tð Þ � Ke tð Þ � ud tð Þ½ � (6)

where Bþ ¼ BTBð Þ�1
BT is the pseudoinverse of B. Since B has a

full column rank, Bþ always exists. And ud tð Þ ¼ DAX tð Þ þ
DBu tð Þ þ D tð Þ denotes the lumped “disturbance-like” term, which
consists of both system uncertainties and external disturbances.
Note that only under the following condition:

I � BBþð Þ AmX tð Þ þ Bmx1r tð Þ � AX tð Þ � Ke tð Þ � ud tð Þð Þ ¼ 0 (7)

Equation (5) is the accurate solution of Eq. (4). Otherwise, it is
just a least square approximated solution. Equation (7) is called
the structural constraint of the UDE-based control. From Eq. (1),
it can be obtained that

ud tð Þ ¼ _X tð Þ � AX tð Þ � Bu tð Þ (8)

In other words, the unknown “disturbance-like” term can be
observed by the system states and the control signal. However,
this observation cannot be used in the control law directly. Differ-
ent from the TDC that adopts an estimation of this signal by using
a small delay in the time domain, the UDE-based control uses a
different estimation strategy by looking at this problem in the fre-
quency domain.

Assume that Gf(s) is a strictly proper low-pass filter with unity
steady-state gain and zero phase shift over a broad enough band-
width, then ud(t) can be accurately approximated as ûd tð Þ, i.e.,

ûd tð Þ ¼ _X tð Þ � AX tð Þ � Bu tð Þ
� �

�L�1 Gf sð Þ
� �

(9)

where L�1 is the inverse Laplace operator and * is the convolu-
tion operator. Hence, the UDE-based controller is in the following
form

u tð Þ ¼ Bþ �Ax tð Þ þL�1 1

1� Gf sð Þ

� �
� Amx tð Þð

�

þBmx1r tð Þ � Ke tð ÞÞ �L�1 sGf sð Þ
1� Gf sð Þ

� �
� x tð Þ

	
(10)

The UDE-based controller could guarantee the desired perform-
ance (3) under the condition of Eq. (7); otherwise, the behavior is
not tamed. To verify under what condition that Eq. (7) will hold, a
discussion is presented below.

Usually, if B is an invertible matrix, i.e., Bþ¼B�1, obviously,
Eq. (7) always holds; otherwise, the selection of the reference
model, the error feedback gain, the uncertainties and disturbances
have some restrictions. In some applications, the system (1) is
realized in the controllable companion form, i.e.,
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A ¼ 0 In�1

An

� 	
; B ¼ 0

bn

� 	
(11)

where An is a row vector and bn is a scalar. Obviously,

I � BBþ ¼ In�1 0

0 0

� 	
, in this case, in order to meet the structural

constraint, the uncertainty DA, DB, and disturbance D(t) should
satisfy the matching condition, i.e.,

DA ¼ 0

DAn

� 	
; DB ¼ 0

Dbn

� 	
; D tð Þ ¼ 0

dn tð Þ

� 	
(12)

where DAn is a row vector and Dbn and dn(t) are scalars. Further-
more, the selection of the reference models Am, Bm, K is limited as

Am ¼
0 In�1

Amn

� 	
; Bm ¼

0

bmn

� 	
; K ¼ 0

Kn

� 	
(13)

where Amn and Kn are constant row vectors, bmn is a constant. This
indicates that the reference model is also in the controllable com-
panion form, and the error feedback gain matrix K should satisfy
the matching condition, too. Under the above selections, there is

Amx tð Þ þ Bmx1r tð Þ � Ax tð Þ � ud tð Þ � Ke tð Þ ¼ 0

-

� 	
(14)

where - can be zero or a nonzero value. Consequently, the struc-
tural constraint (7) is met. It can be seen that the structural con-
straint of the UDE-based control is actually equivalent to the
matching condition, for which the uncertainties and disturbances
should appear in the same channel with the control input.

It is reasonable that the selection of the reference models Am

and Bm is in the same controllable companion form with the sys-
tem dynamics. The utilization of the reference model has two
major benefits. First, a more smooth signal x1r(t) is generated to
replace the command x1r(t). Second, the reference model could
also provide the derivative information of x1r(t). However, the ref-
erence model can be omitted, as long as the command signal has
smooth derivatives as high as the system order [25].

3 Problem Formulation

The UDE-based robust control can be also naturally extended
to more general nonlinear systems, similar to the one described in
Ref. [17]

_X tð Þ ¼ f X tð Þð Þ þ Df X tð Þð Þ þ Bu tð Þ þ Bu u tð Þð Þ þ D tð Þ (15)

where f �ð Þ ¼ f1 �ð Þ;…; fn �ð Þ
� �T : Rn ! Rn is a nonlinear function

vector. Bu(u(t)) is an uncertain function vector of u. The UDE-
based controller is designed in the same framework while the non-
linear uncertainties and external disturbances need to satisfy the
matching condition, that is, Df X tð Þð Þ ¼ Bfd X tð Þð Þ;Bu u tð Þð Þ ¼
Bbu tð Þ and D tð Þ ¼ Bd tð Þ, where fd(t), bu(t) and d(t) are uncertain
scalars. In order to push the UDE-based method to be applicable
for a more general type of systems, how to relax the structural
constraint and deal with the mismatched uncertainties and distur-
bances needs to be further studied.

As mentioned in Sec. 2, the structural constraint is always met
while the control gain matrix B is invertible. For the first-order
case, B is a scalar, and there are no more restrictions for other
components. Therefore, it results in a solution to relax the struc-
tural constraint of the UDE-based control. This paper considers
the control for the general nonlinear systems (15), but the uncer-
tainties and disturbances do not necessarily satisfy the matching
condition. Then, the system (15) is rewritten as the following
form:

_x1 ¼ f1 x1;…; xnð Þ þ Df1 x1;…; xnð Þ þ Db1 uð Þ þ d1

_x2 ¼ f2 x1;…; xnð Þ þ Df2 x1;…; xnð Þ þ Db2 uð Þ þ d2

�

_xn ¼ fn x1;…; xnð Þ þ Dfn x1; ::; xnð Þ þ Dbn uð Þ þ bnuþ dn

(16)

where Df1 �ð Þ;…;Dfn �ð Þ;Db1 �ð Þ;…;Dbn �ð Þ are unknown system
dynamics and d1,…,dn are unmeasurable external disturbances.
Additionally, the following reasonable assumptions are made
about (16).

ASSUMPTION 1. All the external disturbances di, i¼ 1,…,n are
time-varying but bounded signals, i.e., jdij � Cdi, where the
bounds, Cdi> 0, are not necessary to be known.

ASSUMPTION 2. The reference signal x1r and its derivatives
_x1r; €x1r are smooth and bounded.

ASSUMPTION 3. The known system dynamics fi �ð Þ; i ¼
1;…; n� 1 can be rewritten as fi x1;…; xnð Þ ¼ �f i x1;…; xið Þ
þbixiþ1 þ ~f i x1;…; xnð Þ.

Remark 1. The assumption 3 indicates that the known system
dynamics fi x1;…; xnð Þ; i ¼ 1;…; n� 1 can be split into a part in

strict-feedback form �f i x1;…; xið Þ þ bixiþ1 and a term in nonstrict-

feedback form ~f i x1;…; xnð Þ. The constants b1, b2,…,bn are non-

zero control coefficients. For the consistency, let �f n x1;…; xnð Þ
¼ fn x1;…; xnð Þ.

ASSUMPTION 4. The system dynamics f1 �ð Þ;…; fn �ð Þ and
Df1 �ð Þ;…;Dfn �ð Þ are all continuous functions and equal to zero at
the origin, i.e., fi 0;…; 0ð Þ ¼ 0 and Dfi 0;…; 0ð Þ ¼ 0.

ASSUMPTION 5. The uncertain terms Dbi(u) are assumed to be
Lipschitz with respect to u, and @Dbn uð Þ=@u 6¼ �bn.

Consequently, the system (16) can be expressed as

_x1 ¼ �f 1 x1ð Þ þ b1x2 þ ~f 1 �ð Þ þ Df1 �ð Þ þ Db1 uð Þ þ d1

_x2 ¼ �f 2 x1; x2ð Þ þ b2x3 þ ~f 2 �ð Þ þ Df2 �ð Þ þ Db2 uð Þ þ d2

�

_xn ¼ �f n x1;…; xnð Þ þ bnuþ Dfn �ð Þ þ Dbn uð Þ þ dn

(17)

For the convenience, all the functions are abbreviated as fi,
�f i; ~f i; Dfi; i ¼ 1;…; n in the rest of this paper. The control objec-
tive is to force the system output x1 to track a smooth reference
signal profile x1r, i.e., x1 ! x1r as t!1.

It should be noted that the functions �f 1;…; �f n are in the strict-
feedback form for which the backstepping approach is applicable.
The terms ~f i þ Dfi þ Dbi uð Þ þ di; i ¼ 1;…; n� 1 are regarded as
the mismatched uncertainties and disturbances in the strict-
feedback system, while Dfn þ Dbn uð Þ þ dn is the matched one.
The proposed method is not only applicable for the systems in the
strict-feedback form but also the systems with non-strict-feedback
form terms. This is much more general than the system often stud-
ied in the conventional backstepping approach.

4 Uncertainty and Disturbance Estimator-Based

Backstepping Control

In order to facilitate the control design, let the variables z1,…,zn

denote the system tracking errors, x2r,…,xnr as the virtual controls,
x2r;…;xnr as the reference signals, and y2,…,yn as the
differences between virtual controls and reference signals. The
UDE-based backstepping control design is based on the following
coordinates transformation [31], i¼ 2,…, n,

z1 ¼ x1 � x1r

zi ¼ xi � xir ¼ xi � yi � xir

(18)

where yi ¼ xir � xir ; i ¼ 2;…; n. Furthermore, a set of reference
models are constructed as

_xir ¼ �aixir þ bixir; xir 0ð Þ ¼ xir 0ð Þ; i ¼ 2;…; n; (19)
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where ai and bi are reference model parameters to be designed. It
should be mentioned that the calculation for the derivatives of the
virtual controls usually results in the “complexity explosion” in
the conventional backstepping approach. Fortunately, with the
help of the reference models in the UDE-based control design,
this problem can be avoided in the same spirit of the DSC [34].
The recursive design procedure contains n steps. The design pro-
cedure begins at the first equation, which is progressively stabi-
lized by virtual control that appears in the outer equations. The
procedure terminates when the external control input is reached.

Step 1: Consider the first equation in Eq. (18). Since

z1 ¼ x1 � x1r

) _z1 ¼ �f1 þ b1x2 þ ~f1 þ Df1 þ Db1 uð Þ þ d1 � _x1r

(20)

applying z2¼ x2� y2� x2r results in

_z1 ¼ �f1 þ b1z2 þ b1y2 þ b1x2r þ ~f1 þ Df1 þ Db1 uð Þ þ d1 � _x1r

(21)

where the virtual control x2r will be derived to stabilize the scalar
system (21). The virtual control x2r is designed through two parts,
the feedback linearization part x2rl and uncertainty compensation
part x2rd, i.e.,

x2r ¼ x2rl þ x2rd (22)

Since z2 and y2 are temporal unknown for system (21), let
ud1 ¼ b1z2 þ b1y2 þ ~f 1 þ Df1 þ Db1 uð Þ þ d1 as the lumped
“disturbance-like” term in Eq. (21). This is different from the con-
ventional backstepping method where z2 remains in this step and
will be eliminated by the next control step. Selecting

x2rl ¼ �k1z1 � �f 1 þ _x1r


 �
b�1

1 (23)

where k1> 0 and

x2rd ¼ � b1z2 þ b1y2 þ ~f 1 þ Df1 þ Db1 uð Þ þ d1

� 

b�1

1 ¼ �ud1b�1
1

(24)

the closed-loop system becomes

_z1 ¼ �k1z1 (25)

Since k1> 0, the system state z1 is exponentially stable, z1 ¼
e�k1tz1 0ð Þ; i.e., z1 ! 0 as t!1. However, ud1 is unknown and
cannot be used directly in Eq. (24). The disturbance compensation
should be redesigned. Substituting Eqs. (22) and (23) into the sys-
tem (21) yields

_z1 ¼ �k1z1 þ b1x2rd þ ud1 (26)

Solving ud1 leads to

ud1 ¼ _z1 þ k1z1 � b1x2rd (27)

which indicates that ud1 can be observed by the signals z1, x2rd.
Using a proper low-pass filter Gf1(s), which has unity steady-state
gain and zero phase shift in the spectrum of ud1, the disturbance
can be estimated by

ûd1 ¼L�1 Gf 1 sð Þ
� �

� _z1 þ k1z1 � b1x2rdð Þ (28)

Then, the uncertainty compensation is rewritten as

x2rd ¼ �ûd1b�1
1

¼ �L�1 Gf 1 sð Þ
� �

� _z1 þ k1z1 � b1x2rdð Þb�1
1 (29)

Solving x2rd yields

x2rd ¼ �L�1 Gf 1

1� Gf 1

� �
� _z1 þ k1z1ð Þb�1

1 (30)

It can be seen that the estimation of ud1 can be calculated by

ûd1 ¼L�1 Gf 1

1� Gf 1

� �
� _z1 þ k1z1ð Þ (31)

Hence, the virtual control (22) for (21) can be designed as

x2r ¼ �k1z1 � �f 1 þ _x1r

� �
b�1

1

�L�1 Gf 1

1� Gf 1

� �
� _z1 þ k1z1ð Þb�1

1 (32)

Consequently, substituting Eqs. (22), (23), and (29) into Eq. (21)
results in the closed-loop system

_z1 ¼ �k1z1 þ ud1 � ûd1ð Þ (33)

Step i: (i¼ 2,…, n� 1) Consider the ith equation in Eq. (18)

zi ¼ xi � xir

) _zi ¼ �f i þ bixiþ1 þ ~f i þ Dfi þ Dbi uð Þ þ di � _xir

(34)

Applying zi¼ xi� yi� xir results in

_zi ¼ �f i þ biziþ1 þ biyiþ1 þ bix iþ1ð Þr þ ~f i

þDfi þ Dbi uð Þ þ di � _xir (35)

Similarly, since ziþ1 and yiþ1 are unknown for system (35), let
udi ¼ biziþ1 þ biyiþ1 þ ~f i þ Dfi þ Dbi uð Þ þ di be the lumped
“disturbance-like” term and follow the same procedure with step
1. The virtual control x iþ1ð Þr is obtained as

x iþ1ð Þr ¼ x iþ1ð Þrl þ x iþ1ð Þrd (36)

the feedback linearization part is designed as

x iþ1ð Þrl ¼ �kizi � �f i þ _xir


 �
b�1

i (37)

where ki> 0 and the uncertainty compensation part is designed as

x iþ1ð Þrd ¼ �L�1 Gfi

1� Gfi

� �
� _zi þ kizið Þb�1

i (38)

Combining the reference models (19), the virtual control is

x iþ1ð Þr ¼ �kizi � �f i þ _xir

� �
b�1

i

�L�1 Gfi

1� Gfi

� �
� _zi þ kizið Þb�1

i

¼ �kizi � �f i � aixir þ bixir

� �
b�1

i

(39)

�L�1 Gfi

1� Gfi

� �
� _zi þ kizið Þb�1

i (40)

Consequently, the resulting closed-loop system is

_zi ¼ �kizi þ udi � ûdið Þ (41)

Step n: Consider the last equation in Eq. (18),

zn ¼ xn � xnr

) _zn ¼ �f n þ bnuþ Dfn þ Dbn uð Þ þ dn � _xnr (42)
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Let the lumped “disturbance-like” term be udn ¼ Dfn þ Dbn uð Þ þ
dn and follow the same procedures, the control input is obtained as

u ¼ �knzn � �f n þ _xnr

� �
b�1

n

�L�1 Gfn

1� Gfn

� �
� _zn þ knznð Þb�1

n (43)

¼ �knzn � �f n � anxnr þ bnxnr

� �
b�1

n

�L�1 Gfn

1� Gfn

� �
� _zn þ knznð Þb�1

n

(44)

where kn> 0. At last, the resulting closed-loop system is
obtained as

_zn ¼ �knzn þ udn � ûdnð Þ (45)

The UDE-based backstepping algorithm is then summarized in
the Algorithm 1 and its structure is also illustrated in Fig. 1. It can
be obtained that the closed-loop system is as follows:

_z1 ¼ �k1z1 þ ~ud1

_z2 ¼ �k2z2 þ ~ud2

�

_zn ¼ �knzn þ ~udn

(46)

where ki, kn> 0, ~udi ¼ udi � ûdi, udi ¼ biziþ1 þ biyiþ1 þ ~f i
þDfi þ Dbi uð Þ þ di, i ¼ 1; 2;…; n� 1 and ~udn ¼ udn � ûdn;
udn ¼ Dfn þ Dbn uð Þ þ dn. It can be seen that the performance of
the closed-loop system is determined by the uncertainties and dis-
turbances estimation errors, ~udi.

Algorithm 1 UDE-based backstepping control for the nonlin-
ear system (16)

1: z1 ¼ x1 � x1r

2: x2r ¼ �k1z1 � �f 1 þ _x1r

� �
b�1

1 �L�1 Gf 1

1� Gf 1

� �
� _z1 þ k1z1ð Þb�1

1

3: _x2r ¼ �a2x2r þ b2x2r ; x2r 0ð Þ ¼ x2r 0ð Þ
4: z2 ¼ x2 � x2r

5: for i¼ 2 to n – 1 do

6: x iþ1ð Þr¼ �kizi��f i�aixirþbixir

� �
b�1

i �L�1 Gfi

1�Gfi

� �
� _ziþkizið Þb�1

i

7: _x iþ1ð Þr ¼ �aiþ1x iþ1ð Þr þ biþ1x iþ1ð Þr; x iþ1ð Þr 0ð Þ ¼ x iþ1ð Þr 0ð Þ
8: ziþ1 ¼ xiþ1 � x iþ1ð Þr
9: end for

10: u¼ �knzn� �f n�anxnrþbnxnr

� �
b�1

n �L�1 Gfn

1�Gfn

� �
� _znþknznð Þb�1

n

5 Stability Analysis of the Closed-Loop System

The following theorem shows the stability and control perform-
ance of the closed-loop system.

THEOREM 1. (Uniformly ultimate bounded stability) Consider
the nth-order nonlinear system (16) which satisfies assumptions
1–5. The initial values are chosen to make V(0), which is defined
in Eq. (55), sufficiently close to the origin. After applying the

Algorithm 1, it results in a series of virtual controls x2r, x3r, ,xnr

and the control input u.
Then

(i) all signals in the closed-loop system, x1,…, s,xn, x2r,…, xnr,
z1,…, zn, y2,…, yn are bounded.

(ii) the system tracking error jx1 � x1rj can be adjusted within
an arbitrarily small compact set by changing the control
parameters.

Proof. First, define the vectors X ¼ x1;…; xn½ �T, Y ¼ y2;½
…; yn�T; Z ¼ z1;…; zn½ �T, and the compact sets Xx ¼ X :f
jjXjj22 � p1g, Xy¼ Y : jjYjj22�2p2

n o
and Xz¼ Z : jjZjj22�2p3

n o
,

where p1;p2;p3 are arbitrary positive constants, Xx;Xy;Xz are local
neighborhoods of the origin in the X, Y, Z space, respectively.

By using the Algorithm 1, the resulting closed-loop system is
(46). According to the Young’s inequality, there is

zi _zi ¼ �kiz
2
i þ zi ~udi � �kiz

2
i þ

z2
i

2e
þ e~u2

di

2

¼ ��kiz
2
i þ

e~u2
di

2

(47)

where e> 0, and �ki ¼ ki � 1= 2eð Þ > 0. Consider the following
Lyapunov function candidate

Vz ¼
1

2

Xn

i¼1

z2
i (48)

Taking the derivative of both sides of the above equation leads to

_Vz ¼
Xn

i¼1

zi _zi � �
Xn

i¼1

�kiz
2
i þ

Xn

i¼1

e~u2
di

2
� �CzVz þ

Xn

i¼1

e~u2
di

2
(49)

where Cz ¼ min �ki=2

 �

; i ¼ 1;…; n
� �

, and the functions ~udi ¼
udi � ûdi are continuous functions of x1;…; xn; z1;…; zn;
y2;…; yn and d1;…; dn; x1r; _x1r; €x1r . According to Eq. (19),
there is

_yi ¼ �aiyi þ bi � aið Þxir � _xir (50)

thus

j _yi þ aiyij � ni (51)

where ni is a continuous function of x1;…; xi; z1;…; zi, y2;…; yi

and d1;…; di; x1r; _x1r; €x1r . Furthermore

_yiyi � �aiy
2
i þ jyijni

� �aiy
2
i þ

y2
i

2e
þ en2

i

2

¼ ��aiy
2
i þ

en2
i

2
(52)

where �ai ¼ ai � 1= 2eð Þ > 0. Next, considering the Lyapunov
function candidate

Fig. 1 Structure of the UDE-based backstepping control
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Vy ¼
1

2

Xn

i¼2

y2
i (53)

there is

_Vy ¼
Xn

i¼2

yi _yi ¼ �
Xn

i¼2

�aiy
2
i þ

Xn

i¼2

en2
i

2
� �CyVy þ

Xn

i¼2

en2
i

2
(54)

where Cy ¼ min �ai=2ð Þ; i ¼ 2;…; n
� �

. Defining the composite
Lyapunov function candidate

V ¼ Vz þ Vy (55)

thus

_V ¼ _Vz þ _V y � �CzVz � CyVy þ
Xn

i¼1

e~u2
di

2
þ
Xn

i¼2

en2
i

2
(56)

Under assumptions 1 and 2, there is d1; d2; d3ð Þ 2Nd � R3,
x1r; _x1r; €x1rð Þ 2Nr � R3. Considering the compact set

X ¼ Xx � Xz � Xy �Nd �Nr , with assumption 5, while jDbij
are small enough, the functions ~udi are continuous inside the com-
pact set X. Henceforth, there exists a maximum value for
1=2ð Þ

Pn
i¼1 ~u2

di, say M1 > 0. Next, consider the functions ni are
also continuous inside the compact set X, so that there exists a
maximum value for 1=2ð Þ

Pn
i¼2 n2

i , say M2> 0. Therefore,
Eq. (56) can be rewritten as

_V � �lV þ ef (57)

where l ¼ min Cz;Cyf g > 0 and f ¼ M1 þM2 > 0. Solving the
inequality Eq. (57) gives

0 � V tð Þ � V 0ð Þe�lt þ ef
l

1� e�ltð Þ t 	 0 (58)

Let p ¼ p1 þ p2 þ p3, if the control parameters,
k1;…; kn; a2; b2;…; an;bn, are chosen to satisfy p > ef=lð Þ and
from Eq. (57) there is _V < 0 on V 	 p. Furthermore, if the initial
condition satisfies that V 0ð Þ � p� ef=lð Þ, there is V tð Þ � p for
all t 	 0. As shown in Fig. 2, the compact set X is an invariant
set. e> 0 is a tuning coefficient, which determines the size of
invariant set X. The smaller e is, the smaller invariant set X is. No

matter how small e is, one can choose the parameters to satisfy
that ki > 1= 2eð Þ; i ¼ 1; ::; n; aj > 1= 2eð Þ; j ¼ 2;…; n so that _V �
�lV þ ef can be guaranteed. Then all signals in the closed-loop
system can converge to a small region.

Hence, the error signals z1;…zn; y2;…; yn are all bounded. Due
to the boundedness of d1;…; dn; x1r and udi ¼ ziþ1 þ yiþ1 þ di, it
can be concluded that the lumped uncertainties ud1,…,udn are also
bounded. After applying the stable filters Gfi sð Þ, it leads to the
boundedness of the virtual controls x2r,…, xn and system states
x1,…, xn. Consequently: (i) the signals x1,…, xn, x2r,…, xnr, z1,.,
zn, y2,…, yn are bounded.

From (58), as t!1; V tð Þ < ef=l, then jz1j ¼ jx1 � x1rj
<

ffiffiffiffiffiffiffiffiffi
ef=l

p
. Since l ¼ min ki=2ð Þ � 1=4eð Þ; aj=2


 �
� 1=4eð Þ

� �
, i ¼

1;…; n; j ¼ 2;…; n;
ffiffiffiffiffiffiffiffiffi
ef=l

p
¼ 2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f= min 2eki � 1; 2eaj � 1f gð Þ

p
.

Increasing the parameters k1;…; kn; a2;…; an will result in a
greater denominator, a smaller error bound. On the other hand,
f¼M1þM2, M1 depends on the estimation error of the lumped
uncertainties, ~udi, which can be adjusted by the filters Gfi(s) in the
UDE [12]. The second term M2 is determined by the continuous
function ni on X. Increasing k1;…; kn; a2;…; an will make M2

greater. Therefore, there exists a tradeoff when tuning the parame-
ters k1;…; kn; a2;…; an. To a summary, in order to decrease the
bound of jz1j, one can properly adjust the control parameters
k1;…; kn; a2;…; an, and design Gfi sð Þ. Therefore, (ii) the
bound for jz1j can be decreased to arbitrarily small. This ends the
proof.

6 Validations

To validate the proposed control strategy, a second-order
numerical example, a simulation study based on a rotary inverted
pendulum, and an experimental study based on a coupled water
tank system are carried out in this section.

6.1 Simulation Study: A Second-Order System. Consider
the following second-order nonlinear system:

_x1 ¼ x2
1 þ x2 þ 0:2ex1 þ 0:25x2 sin uþ d1 (59)

_x2 ¼ �x1x2
2 þ cos uþ uþ d2 (60)

where x1 is the regulated variable and u is the control input. The
external disturbances are d1 ¼ 0:5 sin 4pt; d2 ¼ 0:15 sin 20pt, and
the desired reference signal is x1r ¼ sin 2p=3ð Þt. In this system,
the lumped “disturbance-like” terms are ud1 ¼ z2 þ y2 þ x2

1 þ
0:2ex1 þ 0:25x2 sin uþ d1 and ud2 ¼ �x1x2

2 þ cos uþ d2. Accord-
ing to the Algorithm 1, the control design is provided as follows:

Step 1. Let z1 ¼ x1 � x1r , the virtual control is obtained as

x2r ¼ �k1z1 þ _x1r �L�1 Gf 1 sð Þ
1� Gf 1 sð Þ

� �
� _z1 þ k1z1ð Þ

The filter used in the controller is Gf 1 sð Þ ¼ 1= s1sþ 1ð Þ, which is
a first-order low-pass filter with a bandwidth 1/s1. Then, the
reference model is used to generate the reference signal for the
next step, _x2r ¼ �a2x2r þ b2x2r;x2r 0ð Þ ¼ x2r 0ð Þ ¼ 0, where
a2¼b2¼Br. Here, Br represents the bandwidth of the reference
model.

Step 2. Let z2 ¼ x2 � x2r , the control input is

u ¼ �k2z2 � a2x2r þ b2x2r �L�1 Gf 2 sð Þ
1� Gf 2 sð Þ

� �
� _z2 þ k2z2ð Þ

where Gf 2 sð Þ ¼ 1= s2sþ 1ð Þ is a first-order low-pass filter with a
bandwidth 1/s2.

Figure 3 shows the control results while k1¼ 15, k2¼ 80,
a2¼b2¼ 100, and s1¼ s2¼ 0.01. The successful tracking for x1r

and x2r are shown in Figs. 3(a) and 3(b). Figures 3(c) and 3(d)Fig. 2 Compact invariant set
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show that both ud1 and ud2 can be well estimated. In Fig. 3(e), the
root-mean-square (RMS) of the tracking error during 3–6 s is cal-
culated as 0.0046, which illustrates a good tracking performance.
The control input u is shown in Fig. 3(f).

Figure 4 shows the effect of different parameters, where the
RMS during the steady-state 3–6 s is used as a criterion. The

reference model bandwidth is a2¼ b2¼Br, and the time constants
for the UDE filters are s1¼ s2¼ s. The parameters are chosen as
follows:

(1) Figure 4(a), k1¼ 15, k2¼ 80, Br¼ 100, s 2 0:0001; 1½ �.
(2) Figure 4(b), k1¼ 15, k2¼ 80, s ¼ 0:01; Br 2 10; 10000½ �.

Fig. 3 Numerical control results of the systems (59) and (60)

Fig. 4 Effect of different parameters

Table 1 Selection of parameters

Parameters Spectrum of udi Reference models ai, bi UDE filter Gfi ¼
1

sisþ 1

Error feedback gain ki

i¼ 1 [0, 2 Hz] N/A s1 <
1

2p� 2
k1 > 2p� 2

i¼ 2 [0, 10 Hz] a2 ¼ b2 ¼ Br 

2p
3

s2 <
1

2p� 10
k2 > 2p� 10 and k2 	 k1
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(3) Figure 4(c), k2¼ 80, Br¼ 100, s ¼ 0:01; k1 2 1; 10000½ �.
(4) Figure 4(d), k1¼ 15, Br¼ 100, s ¼ 0:01; k2 2 1; 10000½ �.
The tuning guideline for the parameters can be concluded from

the above results. For the time constants of the UDE filters, si

determines the estimation accuracy of udi. A smaller si guarantees
a better estimation of udi. In practice, si, i¼ 1,2 can be chosen the
same with s. And s should be as small as possible, which is only
limited by the sampling time in hardware. The reference model
bandwidth Br should be chosen wide enough to provide a good
approximation between x2r and x2r. An insufficient large Br can
lead to a large intermediate system error y2 in ud1; thus, the track-
ing performance may degrade. The error feedback gain k1 deter-
mines the tracking error z1 directly. As shown in Fig. 4(c), there is
a tradeoff while selecting k1. k1 cannot be too large, since it may
cause instability. A proper large k1 is needed to obtain a good
tracking performance. Figure 4(d) shows that k2 does not affect z1

explicitly. The effect of k2 only appears in z2, which is lumped in
ud1 and compensated through the UDE-based control. Moreover,
it is reasonable to choose k2 	 k1 to make the inner loop faster
than the outer loop in Fig. 1.

In this example, the reference signal x1r is at 1=3ð ÞHz, d1 at
2 Hz, and d2 at 10 Hz. The virtual control x2r is also at 1=3ð ÞHz.
Furthermore, the spectra of ud1 and ud2 can be estimated as [0,
2 Hz] and [0, 10 Hz], respectively. Table 1 summarizes the parame-
ter tuning guideline of this example. The reference model band-
width Br¼ 100 is much greater than 2p=3ð Þ so that x2r can well
approximate x2r, and the intermediate system error y2 does not con-
tribute to ud1 too much. The time constants of the two UDE filters
are selected as s1 ¼ s2 ¼ 0:01 < 1= 20pð Þ; henceforth, both ud1

and ud2 can be well estimated. According to (46), z1 ¼
L�1f1= sþ k1ð Þg � ~ud1 and z2 ¼L�1f1= sþ k2ð Þg � ~ud2. One can
choose k1¼ 15> 4p and k2¼ 80> 20p so that z1 and z2 can be
reduced to a small region. It is worth noticing that the above tuning
procedure only requires the spectrum information of ud1 and ud2.

6.2 Simulation Study: Robust Stabilization of a Rotary
Inverted Pendulum. It can be seen that in Fig. 5, a rotary
inverted pendulum system is composed of a pendulum attached to
the end of a rotary arm controlled by a motor.

As a popular mechanical system, its model can be referred to
Ref. [36] and the system parameters are listed in Table 2. The sys-
tem dynamics is expressed as

a11€a � a12 cos að Þ€h ¼ b11 sin aþ b12 _a þ Fd (61)

�a21 cos að Þ€a þ a22
€h ¼ b21 _a2 sin aþ b22

_h þ buVm (62)

where a and h are the pendulum angle and rotary arm angle,
respectively; Fd is the external torque disturbance applied on the
pendulum, and Vm is the input motor voltage. The control objec-
tive is to maintain the pendulum at the upright position, while the
rotary arm angle is stabilized.

In order to stabilize the pendulum, the following coordinate
transformation is applied to obtain a system in cascaded form with
mismatched uncertainties and disturbances:

x1 ¼ aþ k a11 _a � a12 cos að Þ _h
� 


(63)

x2 ¼ _a (64)

where k> 0 is a constant. After taking the derivatives and com-
bining with Eqs. (61) and (62), it results in the following cascaded
systems (65) and (66), which is in a non-strict-feedback form as
(17).

The term ka12
_h sin a


 �
x2 þ k b11 sin aþ Fdð Þ in Eq. (65) is the

mismatched uncertainty and disturbance for the system. Since
Fa a; _h; x2


 �
is assumed to be unknown, it plays the role of

matched uncertainty and disturbance. In this system, the
lumped “disturbance-like” terms are ud1 ¼ 1þ kb12ð Þ z2 þ y2ð Þ þ
ka12

_h sin a

 �

x2 þ k b11 sin aþ Fdð Þ and ud2 ¼ Fa a; _h; x2


 �
. Fur-

thermore, the external disturbance torque is Fd ¼ �0:25 N �m
during 4–4.2 s and Fd ¼ 0:3 N �m during 8–8.2 s. The initial states
of a and h are 5 deg and 0 deg, respectively. The control objective
is to stabilize x1 ! 0. This implies that a! 0 and _h ! 0.

_x1 ¼ 1þ kb12ð Þx2 þ ka12
_h sin a


 �
x2 þ k b11 sin aþ Fdð Þ (65)

_x2 ¼ Fa a; _h; x2


 �
þ baVm (66)

Fa a; _h; x2


 �
¼ a22

det D að Þð Þ b11 sin aþ b12x2 þ Fdð Þ

þ a12 cos a
det D að Þð Þ b21x2

2 sin aþ b22
_h

� 

;

ba ¼
a12bu cos a
det D að Þð Þ ; det D að Þð Þ ¼ a11a22 � a12a21 cos 2a

The stabilization is a special case of the reference tracking prob-
lem, that is, x1r ¼ _x1r ¼ 0. The UDE-based backstepping
controller is designed by two successive steps according to the
Algorithm 1.

Step 1. Let z1¼ x1, the virtual control is

x2r ¼ 1þ kb12ð Þ�1 �k1z1 �L�1 Gf 1 sð Þ
1� Gf 1 sð Þ

� �
� _z1 þ k1z1ð Þ

� 	

where k¼ 4, k1¼ 4. The filter used in the controller is
Gf 1 sð Þ ¼ 1= 0:01sþ 1ð Þ, which is a first-order low-pass filter
with a cut-off frequency at around 100 rad/s. Then, the
reference model is used to generate the reference signal for the
next step, _x2r ¼ �a2x2r þ b2x2r;x2r 0ð Þ ¼ x2r 0ð Þ ¼ 0, where
a2¼b2¼ 100.

Fig. 5 A rotary inverted pendulum

Table 2 Parameters of the rotary inverted pendulum [36]

Parameters a11 a12 a21 a22 bu

Values 0:0330 kg �m2 0:0135 kg �m2 0:0135 kg �m2 0:0079 kg �m2 0:0256 N �m=V
Parameters b11 b12 b21 b22

Values 0:7450 kg �m2=s2 �0:0024 N �m � s=rad �0:0135 kg �m2 �0:0052 N �m � s=rad
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Step 2. Let z2 ¼ x2 � x2r , the control input is

Vm¼b�1
a �k2z2�a2x2rþb2x2r�L�1 Gf 2 sð Þ

1�Gf 2 sð Þ

� �
� _z2þk2z2ð Þ

� 	

where k2¼ 8 and Gf 2 sð Þ ¼ 1= 0:02sþ 1ð Þ.
The simulation results are presented in Fig. 6. It can be seen

that the pendulum angle is successfully stabilized to 0 deg, which
is the upright position in Fig. 6(a). The rotary arm angle is conver-
gent to around �12 deg when it arrives at the steady-state during
2–4 s, 58 deg during 6–8 s and �27 deg during 10–12 s, as shown
in Fig. 6(e). This illustrates that the rotary arm angle is stabilized
and converges to some arbitrary constants to make _h ¼ 0. Hence,
the transformed coordinates x1, x2 converge to 0, as shown in
Figs. 6(b) and 6(f). Since the external disturbance torque is
applied during 4–4.2 s and 8–8.2 s, as shown in Fig. 6(c), the pen-
dulum exhibits some deviations. However, the controller is robust
enough to keep the states within the bounded neighborhood of the
equilibrium point and bring them back to the desired values after
the absence of the disturbance. Figures 6(d) and 6(h) show the
estimations for the lumped “disturbance-like” terms. The good
estimation guarantees the convergence of system tracking errors.
Figure 6(g) depicts the input motor voltage.

6.3 Experimental Study: Level Control of a Coupled
Water Tank System. A coupled water tank system as shown in
Fig. 7 is composed of two coupled water tanks and two DC water
pumps. The water levels in the two tanks are measured by the
pressure sensors at the bottom and the two water pumps are pow-
ered by two single channel linear voltage amplifiers. The control-
ler used in the experiment is the DSPACE DS1104 device with a 12-
bit A/D converter. The system has a hardware resolution at
0.03 cm. The two pumps P1 and P2 are used to pump the two
tanks 1 and 2, respectively. The pump 2 is considered as the con-
trol input and the water level of tank 1 is considered as the output.
To add the mismatched disturbance into the system, the pump 1 is
used to pump water into tank 1, consequently, the disturbance is
not in the same channel with the control input.

The system dynamic model is expressed as

_L1 ¼
a2

A1

ffiffiffiffiffiffiffiffiffiffi
2gL2

p
� a1

A1

ffiffiffiffiffiffiffiffiffiffi
2gL1

p
þ Kp

A1

D Vp1ð Þ; (67)

_L2 ¼ �
a2

A2

ffiffiffiffiffiffiffiffiffiffi
2gL2

p
þ KP

A2

D Vp2ð Þ; (68)

Fig. 6 Stabilization of a rotary inverted pendulum

Fig. 7 A coupled water tank system

Table 3 Parameters of the coupled water tank system

Parameters a1 a2 g A1 A2 Kp

Values 0.1781 cm2 0.1781 cm2 981 cm/s2 15.5179 cm2 15.5179 cm2 3.3 cm3/s/V

Fig. 8 Dead zone of the pump voltage
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where L1 and L2 are the water levels of tanks 1 and 2. Vp1 and Vp2

are the input voltages of two pumps. And D �ð Þ is a dead zone
operator with unknown bounds. Other variables are summarized
in the Table 3. Furthermore, the sensitivity of the water level sen-
sor is 6.1 cm/V and the sampling time used in the experiment is
set as 0.01 s. The maximal height of two tanks is at 25 cm, and the
pump 2 can be operated in the range of [0 V, 10 V] and the pump
1 in the range of [�10 V, 10 V] .

The control objective is to maintain the water level of tank 1 at
6 cm, i.e., L1¼ 6 cm. One problem should be further mentioned is
the dead-zone problem from which a water pump always suffers.
As shown in Fig. 8, while the pump voltage Vpi is located inside
the interval bl; br½ �; D Vpið Þ will be zero, i¼ 1, 2. For this experi-
mental setup, bl and br can be estimated to be around at �1 V and
1 V by experimental testing, respectively. In fact, the exact bound
of the dead zone is usually unmeasurable. Therefore, let
D Vp2ð Þ ¼ Vp2 þ dp2, where dp2 is regarded as a kind of system
uncertainty

dp2 ¼
0; Vp2 < bl

�Vp2; bl � Vp2 � br

0; Vp2 > br

8>><
>>: (69)

To formulate the control problem, let x1 ¼ L1; x2 ¼ L2; u ¼ Vp2

and the reference signal x1r is generated by x1r ¼
L�11= 10sþ 1ð Þ � 6 cm. In addition, by using the Taylor’s series,ffiffiffiffiffiffiffiffiffi

2gx2

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
2gx1r

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g=2x1r

p
x2 � x1rð Þ þ O x2

2


 �
, the systems (67)

and (68) can be written in the following state space model in the
form (17):

_x1 ¼ �f 1 þ b1x2 þ Df1 þ d1 (70)

_x2 ¼ �f 2 þ buuþ Df2 (71)

where Df1 is the unknown higher-order term O x2
2


 �
and

�f 1 ¼ �
a1

A1

ffiffiffiffiffiffiffiffiffi
2gx1

p
þ a2

A1

ffiffiffiffiffiffiffiffiffiffiffi
2gx1r

p
�

ffiffiffiffiffiffiffiffi
gx1r

2

r !
;

b1 ¼
a2

A1

ffiffiffiffiffiffiffiffi
g

2x1r

r
; d1 ¼

Kp

A1

D Vp1ð Þ;

�f 2 ¼ �
a2

A2

ffiffiffiffiffiffiffiffiffi
2gx2

p
; bu ¼

Kp

A2

; Df2 ¼
Kp

A2

dp2

The process starts when both tanks are empty, i.e.,
x1 ¼ x2 ¼ 0 cm, Df1 þ d1 is regarded as the mismatched uncer-
tainty and disturbance and Df2 is the matched one. The lumped
“disturbance-like” terms in the design process are ud1 ¼
b1 z2 þ y2ð Þ þ Df1 þ d1 and ud2 ¼ Df2. According to the
Algorithm 1, the UDE-based backstepping controller is designed
by the following two steps:

Step 1. Let z1 ¼ x1 � x1r , the virtual control is

x2r ¼
A1

a2

ffiffiffiffiffiffiffiffi
2x1r

g

s
�k1z1 � �f 1 �L�1 Gf 1 sð Þ

1� Gf 1 sð Þ

� �
� _z1 þ k1z1ð Þ

� �

where k1 ¼ 0:033; Gf 1 sð Þ ¼ 1= 2sþ 1ð Þ. Moreover, the reference
model utilized here is _x2r ¼ �a2x2r þ b2x2r;x2r 0ð Þ
¼ x2r 0ð Þ ¼ 0, where a2 ¼ b2 ¼ 1.

Step 2. Let z2¼ x2�x2r, the controller is

u ¼ A2

Kp
�k2z2 � �f 2 � a2x2r þ b2x2r

�
�L�1 Gf 2 sð Þ

1� Gf 2 sð Þ

� �
� _z2 þ k2z2ð Þ

	

where k2 ¼ 0:08;Gf 2 ¼ 1= 5sþ 1ð Þ.
The error feedback gains should satisfy k2> k1, which will

guarantee the inner loop is faster than the outer loop in Fig. 1. As
shown in Ref. [12], there exists a tradeoff about the choice of the
bandwidths of Gfi(s) between the good estimation of uncertainties
and disturbances, and the mitigation of the measurement noise.
The cut-off frequencies of Gfi(s) are selected as low as 0.5 rad/s,
0.2 rad/s, due to the low frequency measurement noise in the sys-
tem. The experimental results are shown in Fig. 9. As shown in
Fig. 9(c), the external disturbance is generated by pump 1. During
100–200 s, V p1¼ 1.8 V and during 300–400 s, V p1¼�1.3 V. The
water levels for both tanks are shown in Figs. 9(a) and 9(b). Due
to the robustness of the controller, the water level for tank 1, i.e.,
x1, is seen to be stabilized at 6 cm in the presence of both mis-
matched and matched disturbances. As shown in Table 4, the
maximum errors remain within 5% while the mismatched disturb-
ance is applied; the RMS of the tracking errors for the different
time intervals is close to 0.03 cm, which is the hardware resolu-
tion. The associated input voltage for pump 2, i.e., u, is shown in
Fig. 9(d). The good estimations of the lumped “disturbance-like”
terms are shown in Figs. 9(e) and 9(f). It is worth noticing that the

Fig. 9 Level control for a coupled water tank
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larger error during 300–400 s than during 100–200 s maybe caused
by the nonsymmetric (br 6¼ bl) dead zone nonlinearity of the
pump. Intuitively, br and bl are unknown but there maybe
jbrj > jblj, then j1:8� brj < j�1:3� blj is possible. That means,
the effect of the disturbance Vp1 ¼ �1:3 V during 300–400 s
might be more significant than that of V p1¼þ1.8 V during
100–200 s. The proposed control approach does not require the
bound information of the disturbance. The external disturbance
can be any type. As shown in the tuning guideline in Sec. 6.1,
only the spectrum information of the disturbance is needed. The
bound of the disturbance can be arbitrarily large as long as within
the hardware limit, i.e., there is no saturation on the actuators. In
practice, the bound of allowable disturbance is only restricted by
the physical saturation of actuators.

7 Conclusion

To relax the structural constraint of the UDE-based control, the
backstepping approach was adopted. The proposed strategy was
applicable for a general type of nonlinear systems with mismatched
uncertainties and disturbances. In the view of the UDE-based con-
trol, not only the uncertainties and disturbances but also the non-
strict-feedback terms, intermediate system errors were all lumped
into the “disturbance-like” terms. Then, the lumped “disturbance-
like” terms can be estimated and compensated. Besides the exten-
sion of the UDE-based control, two benefits for the backstepping
approach were also presented. First, this method is applicable for a
more general type of nonlinear systems which is not just in the
strict-feedback form. Second, the utilization of reference models
which inherits from the UDE-based method relaxes the
“complexity explosion” problem. The tuning guideline was clari-
fied based on a numerical example. At last, a simulation study
based on a rotary inverted pendulum and an experimental study
based on a coupled water tank system were carried out to show
how to apply the proposed method to engineering applications.
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