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Abstract—This paper proposes an output feedback trajectory
tracking control based on the uncertainty and disturbance
estimator (UDE) technique. The studied nonlinear system
is single-input-single-output (SISO), bounded-input-bounded-
output (BIBO), and Lipschitz smooth. The main idea is that the
nonlinear system is firstly approximated by a proper first-order
linear system plus a lumped uncertainty term, which is esti-
mated and compensated through the UDE. The proposed control
technique is modeling-free, and only uses the information of
system output and the spectrum of the lumped uncertainty term.
It also relaxes the structural constraint in the conventional UDE-
based robust control. In order to improve the tracking perfor-
mance, the internal model principle is adopted in the design of
the filter in the UDE. The proposed control design is successfully
applied to the position control of a piezoelectric nanopositioning
system with hysteresis nonlinearity. The experimental results
show that the piezoelectric stage can achieve a fine tracking at
1100Hz, which is 37.93% of the lowest resonant frequency, a
significant improvement compared to the commercially available
range at 1%− 10%.

I. INTRODUCTION

In recent years, robust control design has received a lot
of attention in control community. Among different robust
control approaches, the UDE-based robust control, proposed
in [1], has a simple structure with strong robustness. This
approach has been successfully applied into different ap-
plications [2], [3], [4], [5], [6], [7], [8], [9]. The UDE-
based robust control uses a proper filter to estimate and
compensate the lumped uncertainty (total effect of the un-
certainties and disturbances in the system). As disclosed in
[10], this approach has two degrees of freedom, which are, the
design of the reference model (to achieve a desired tracking
performance), and the design of a low-pass filter (to attenuate
the effect of uncertainties and disturbances). A systematic
design principle for this approach is investigated in [11], and
asymptotic performance is achieved by applying the internal
model principle [12]. However, the conventional UDE-based
robust control is still facing two gaps between its theory and
applications.

This work was supported by the National Science Foundation under Grant
CMMI-1728255.

Jiguo Dai and Beibei Ren are with the Department of Mechanical
Engineering, Texas Tech University, Lubbock, 79409-1021, USA. (e-mail:
jiguo.dai@ttu.edu, beibei.ren@ttu.edu).

Qing-Chang Zhong is with the Department of Electrical and Computer
Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA. (e-
mail: zhongqc@ieee.org).

The first gap comes from the structural constraint of the
conventional UDE-based robust control [1]. The structural
constraint states that, the lumped uncertainty should be
“matched” with the control input, i.e., it should appear in
the channel as the input. Otherwise, if the lumped uncertainty
and control input are “mismatched”, the tracking performance
can not be guaranteed. In the state-space representation, the
structural constraint always exists while the system order is
two or higher. But for a first-order system, there is only
one channel. The lumped uncertainty and control input are
always “matched”. The problem of structural constraint thus
naturally disappears.

The second gap is that, the conventional UDE-based robust
control belongs to full state feedback control, i.e., it requires
all system states are available through measurements. But in
many applications, only limited system states are available.
Thus, there is a need to develop an output feedback version
of the UDE-based robust control. In [9], a controller-observer
structure is proposed by constructing a Luenberger-like state
observer. This observer uses the lumped uncertainty estima-
tion that comes from the UDE, and estimates the system
states. However, the accuracy of states estimation directly
depends on how accurate the lumped uncertainty estimation
is, and vice versa. Thus, in this structure, the states estimation
and lumped uncertainty estimation interact with each other.
The preferred performance can be obtained only while the
lumped uncertainty varies slowly. In a summary, the approach
in [9] overcomes the second gap to some extent. But it has
not addressed the first gap, i.e., the control input and lumped
uncertainty should still be “matched”.

To address the above two gaps simultaneously, the present
paper proposes a UDE-based output feedback trajectory
tracking control for a class of nonlinear SISO system, which
is BIBO and Lipschitz smooth. The measured output of
this system is also the controlled variable. The nonlinear
system is first approximated by a proper first-order linear
system, where the approximation error is viewed as a part
of the lumped uncertainty term. The UDE is then adopted
to estimate and compensate the lumped uncertainty term
quickly. The proposed approach only uses the system output
information, and does not rely on system modeling or identi-
fication. Compared to the aforementioned controller-observer
structure, this approach can handle the uncertainties with high
frequencies. And the structural constraint is also avoided.

In the following, the problem is formulated in Section II.
Section III presents the main results. Here, the UDE-based
output feedback trajectory tracking control is proposed, and,

2018 Annual American Control Conference (ACC)
June 27–29, 2018. Wisconsin Center, Milwaukee, USA

978-1-5386-5428-6/$31.00 ©2018 AACC 2139



the stability and robustness of the closed-loop system are
analyzed. An experimental validation on a piezoelectric stage
is presented in Section IV. Finally, Section V summarizes the
concluding remarks.

II. PROBLEM FORMULATION

The following SISO nonlinear system is considered,

Σ :
ẋ(t) = f(x(t), u(t)),
y(t) = h(x(t), u(t)),

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ R, y(t) ∈ R are
system input and output, respectively. f(·) is an unknown
vector function, and h(·) is an unknown scalar function.
The input-output relationship is denoted as y(t) = Σ(u(t)).
Two assumptions are made for this system: 1) this system
is assumed to be BIBO; 2) Σ(·) is assumed to be Lipschitz
smooth.

The objective is to regulate the output y(t) to the desired
value yr(t) ∈ R. yr(t) is not necessary a continuous signal.
Thus the following reference model is utilized to provide a
continuous reference state ym(t) ∈ R.

ẏm(t) = −amym(t) + bmyr(t), (2)

where am, bm > 0. One can design am, bm to guarantee that
ym(t) = yr(t) during the steady state, and ym(t) has a good
transient performance. The control objective is to design u(t)
such that y(t) tracks ym(t) fast and accurately. The following
error dynamics is desired,

ė(t) = −ke(t), (3)

where e(t) = ym(t) − y(t) denotes the tracking error, and
k > 0 which guarantees limt→∞ e(t) = 0.

III. UDE-BASED OUTPUT FEEDBACK TRAJECTORY
TRACKING CONTROL

A. Controller Derivation

As shown in Fig. 1, the input-output relationship is re-
arranged after introducing a proper first-order linear system
b

s+a , where a > 0, b 6= 0 and the sign of b should be the same
as the sign of the system gain. The input-output relationship
can be rewritten as

y(t) = L−1

{
b

s+ a

}
∗ u(t) + z(t), (4)

where “∗” is the convolution operator, L−1 {·} is the operator
of inverse Laplace transform, and

z(t) = Σ(u(t))− L−1

{
b

s+ a

}
∗ u(t).

Accordingly, there is

ẏ(t) = −ay(t) + bu(t) + ż(t) + az(t)

= −ay(t) + bu(t) + ud(t), (5)

𝑧(𝑡)
𝑏

𝑠 + 𝑎

−

ሶ𝑥 = 𝑓 𝑥, 𝑢
𝑦 = ℎ(𝑥, 𝑢)

𝑢(𝑡) 𝑏

𝑠 + 𝑎

+

+

+

𝑦(𝑡)

ሶ𝑥 = 𝑓 𝑥, 𝑢
𝑦 = ℎ(𝑥, 𝑢)

𝑢(𝑡) 𝑦(𝑡)

𝑏

𝑠 + 𝑎

𝑦(𝑡)𝑢(𝑡)

𝑢𝑑 𝑡 = ሶ𝑧(𝑡) + 𝑎𝑧(𝑡)

+
+

1

𝑏

Figure 1. Equivalent transformation by introducing b
s+a

.

where ud(t) = ż(t)+az(t) represents the lumped uncertainty
term. Subtracting (5) from (2), there is

ė(t) = −ke(t) + [ke(t)− amym(t) + bmyr(t)

+ay(t)− bu(t)− ud(t)] , (6)

In order to achieve (3), the controller can be chosen as

u(t) =
1

b
[−amym(t) + bmyr(t) + ke(t) + ay(t)− ud(t)] .

(7)

From (5), there is ud(t) = ẏ(t)+ay(t)−bu(t). Based on the
idea of UDE-based robust control [1], a strictly proper and
stable filter Gf (s) is introduced, then ud(t) can be estimated
as

ûd(t) = gf (t) ∗ ud(t) = gf (t) ∗ (ẏ(t) + ay(t)− bu(t)), (8)

where gf (t) = L−1 {Gf (s)} is the impulse response of
Gf (s). This filter has the unity gain and zero phase shift
over the spectrum of ud(t), and zero gain elsewhere. Next,
by replacing ud(t) in (7) with ûd(t) in (8), the UDE-based
robust controller can be obtained as

u(t) =
1

b

[
ay(t)− L−1

{
sGf (s)

1−Gf (s)

}
∗ y(t)+

L−1

{
1

1−Gf (s)

}
∗ (−amym(t) + bmyr(t) + ke(t))

]
.

(9)

The overall control scheme can be seen in Fig. 2.
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Figure 2. The block diagram of the proposed UDE-based robust output feedback control.

Remark 1. Under the ideal design of the filter Gf (s), the
UDE-based robust control guarantees that the tracking error
asymptotically converge to 0, i.e., limt→∞ e(t) = 0. One
practical choice of Gf (s) is the first-order low-pass filter
Gf (s) = 1

Tfs+1 , where Tf is the time constant, and is
designed to provide a suitable bandwidth and an acceptable
performance. In order to improve the performance, the inter-
nal model principle can be utilized in the design of Gf (s),
[11], [12]. As proposed in [11], the following filter can be
used to handle a harmonic uncertainty term,

Gf (s) = 1−
s
∏
n(s2 + (nω)2)

(s+ α)
∏
n(s2 + αns+ βn)

, (10)

where ω = 2πf , f is the frequency of reference state, n is the
frequency multiplier, and α, αn, βn are design parameters.
The proposed design could exactly guarantee that Gf (s) has
the unity gain and zero phase shift at the spectra s = inω.

B. BIBO Stability

Lemma 2. If Σ(u(t)) satisfies the two assumptions in Section
II, and the control input u(t) is continuous and bounded by
c, i.e., ∃c > 0 such that ‖u(t)‖ ≤ c, then, ud(t) in (5) is also
bounded, i.e., ∃M > 0 such that ‖ud(t)‖ ≤M .

Proof: Assume b > 0, the proof for b < 0 is similar.
Based on the BIBO assumption of system (1), there exist
non-negative constants γ1 and γ2, such that

‖y(t)‖ = ‖Σ(u(t))‖ ≤ γ1 ‖u(t)‖+ γ2, (11)

for all ‖u(t)‖ ≤ c < ∞. Define ζ(t) = L−1
{

b
s+a

}
∗ u(t),

and it has the following solution

ζ(t) = b

∫ t

0

e−a(t−ξ)u(ξ)dξ. (12)

Furthermore, there is

‖ζ(t)‖ ≤ b
(∫ t

0

∣∣∣e−a(t−ξ)
∣∣∣ dξ)( sup

0<ξ<t
|u(ξ)|

)
≤ bc

a
.

(13)

Accordingly, it obtains that,

‖z(t)‖ = ‖Σ(u(t))− ζ(t)‖ ≤ ‖Σ(u(t))‖+ ‖ζ(t)‖

≤ γ1 ‖u(t)‖+ γ2 +
bc

a
. (14)

Moreover, since ζ̇(t) = bu(t) − ab
∫ t

0
e−a(t−ζ)u(ζ)dζ, there

is∥∥∥ζ̇(t)
∥∥∥ ≤ b ‖u(t)‖+ ab

(∫ t

0

∣∣∣e−a(t−ξ)
∣∣∣ dξ)( sup

0<ξ<t
|u(ξ)|

)
≤ b ‖u(t)‖+ bc. (15)

Based on the assumption that Σ(·) is Lipschitz smooth, ∃γ3 ≥
0 such that

∥∥ d
dtΣ(u(t))

∥∥ ≤ γ3. Consequently,

‖ż(t)‖ =

∥∥∥∥ ddtΣ(u(t))

∥∥∥∥+
∥∥∥ζ̇(t)

∥∥∥ ≤ b ‖u(t)‖+ c+ γ3.

(16)

Combining (14), (15) and (16), it gives

‖ud(t)‖ = ‖ż(t) + az(t)‖ ≤ ‖ż(t)‖+ a ‖z(t)‖
≤ (b+ aγ1) ‖u(t)‖+ 2bc+ γ3 + aγ2. (17)

Let M = (b+ aγ1)
(
sup0<ξ<t |u(ξ)|

)
+ 2bc + γ3 + aγ2.

‖ud(t)‖ is then bounded by M . This completes the proof.

Theorem 3. The overall closed-loop system, which consists
of (1), (2) and (9), is BIBO stable.
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Proof: After rearranging the blocks in Fig. 2, the closed-
loop system can be expressed as the form in Fig. 3, where

G1(s) =
bm (s+ k)

s+ am
, (18)

G2(s) =
1

b(1−Gf (s))
, (19)

G3(s) = (k − a) + (s+ a)Gf (s). (20)

The stability of the system depends on the roots of the
characteristic equation,

1 +
b

s+ a
G2(s)G3(s) = 0. (21)

Applying (19) and (20) into (21) results in s + k = 0.
Obviously, its root locates at s = −k < 0, which is on the
open left-half of the complex plane. It can be seen that the
filter Gf (s) does not affect the location of the pole, and only
k affects the stability. The BIBO stability is then proved.
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𝐺2(𝑠)
𝑏

𝑠 + 𝑎

1

𝑏

𝐺3(𝑠)

𝑢𝑑(𝑡)

−

𝑢(𝑡)

+

+

+

Figure 3. Equivalent representation of the UDE-based robust control for
analysis.

Proposition 4. If yr(t) is a bounded signal, then all of sig-
nals in the closed-loop system shown in Fig. 3 are bounded.

Proof: According to Theorem 3, the output y(t) is
bounded while yr(t) is bounded. Since the controller (9) is
a continuous function of y(t) and yr(t), u(t) is bounded.
Consequently, ud(t) is also bounded based on Lemma 2.
Remark 5. The choice of parameters in the first-order linear
system b

s+a are elaborated as follows. The bandwidth a is
chosen to cover the frequency of yr(t), the parameter b is
then chosen to make the ratio b/a greater than the static gain
of the original nonlinear system y(t) = Σ(u(t)).

C. Robustness Performance
In the following, the capitalized variables are the Laplace

transform for the time varying variables, e.g., Y (s), Ud(s) are
the Laplace transforms of y(t) and ud(t), respectively. The
performance of trajectory tracking and disturbance rejection
can be obtained through the following transfer functions,

Hm(s) =
b

s+aG2(s)G1(s)

1 + b
s+aG2(s)G3(s)

=
bm

s+ am
, (22)

Hd(s) =
1
s+a

1 + b
s+aG2(s)G3(s)

=
1−Gf (s)

s+ k
, (23)

where Hm(s) is the transfer function form Yr(s) to Y (s),
Hd(s) is the transfer function from Ud(s) to Y (s). Thus in
the frequency domain, there is

Y (s) = Hm(s)Yr(s) +Hd(s)Ud(s). (24)

Here, Hm(s) is the transfer function of reference model (2),
i.e., Ym(s) = Hm(s)Yr(s). It is seen that Y (s) is dominated
by the reference state Ym(s), and perturbed by the uncertainty
term Ud(s). The trajectory tracking is directly determined by
the reference model, and the disturbance rejection is ruled
by designing Gf (s) and k simultaneously. The smaller the
magnitude of ‖Hd(s)‖dB is, the better disturbance rejection
performance can be obtained. If the spectrum of the uncer-
tainty ud(t) is [ω1, ω2], and the required tolerance of the
disturbance attenuation is δ > 0, then the design should
guarantee that

‖Hd(iω)‖dB ≤ 20 log δ, ∀ω ∈ [ω1, ω2] . (25)

Since Gf (s) is designed as a low-pass filter with a bandwidth
ωH , 1−Gf (s) is thus a high-pass filter with bandwidth ωH .

1
s+k is meanwhile a low-pass filter with bandwidth ωL = k.
ωL and ωH are properly selected to satisfy the condition (25).

D. Asymptotic Convergence of Tracking Error

Theorem 6. Consider the overall closed-loop system which
consists of (1), (2) and (9), and Gf (s) is designed as in (10).
The tracking error e(t) asymptotically converges to 0.

Proof: In the frequency domain, the system (5) becomes

sY (s) = −aY (s) + bU(s) + Ud(s), (26)

the reference model (2) becomes

sYm(s) = −amYm(s) + bmYr(s), (27)

and the controller (9) becomes

bU(s) = −amYm(s) + bmYr(s) + kE(s) + aY (s)

− Ud(s)Gf (s). (28)

Combining (26), (27) and (28), there is

sE(s) = −kE(s)− Ud(s) [1−Gf (s)] . (29)

Therefore, the tracking error is

E(s) = − 1

s+ k
[1−Gf (s)]Ud(s). (30)

One can decompose Ud(s) = P2(s)
P1(s)Ni(s)

, where Ni(s) is
the internal model of Ud(s), and P1(s), P2(s) are proper
and Hurwitz polynomials. As shown in (10), 1 − Gf (s) =
Ni(s)
P3(s) , which is strictly proper and stable, and P3(s) is a
Hurwitz polynomial. Therefore, lims→0 [1−Gf (s)]Ud(s) =

lims→0
P2(s)

P1(s)P3(s) is a constant value. By applying the final
value theorem to (30), there is

lim
t→∞

e(t) = lim
s→0

sE(s) = − lim
s→0

sUd(s)

s+ k
[1−Gf (s)] = 0,

which indicates the asymptotic convergence of tracking error.
This completes the proof.
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Figure 4. Experimental setup of Physik Instrumente P-753.31c nanoposi-
tioning system.

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup and Modeling of Piezoelectric Stage

The experimental setup is shown in Fig. 4, which consists

of a piezoelectric stage P-753.31c, a linear voltage amplifier

E-505.00, a sensor monitor E-509.C1A KG, a dSPACE-

DS1104 board, and a host computer. The sampling time is

0.01ms, and the hardware resolution is around 0.0012μm.

The hysteresis effect in this system is rate-dependent.

To verify this fact, several sinusoidal signals with different

frequencies are used as input signals to obtain a series of

major hysteresis loops. Specifically, the input signals are

selected as u(t) = 3(sin(2πft) + 1)V with the frequencies

f = 1Hz, 50Hz, 100Hz. The resulting hysteresis loops

are shown in Fig. 5. As seen, there is a marked increase

in hysteresis while using higher frequencies. y = ksu is the

approximate symmetry axis of hysteresis loops.

0 1 2 3 4 5 6
0

5

10

15

20

25

30

u (V)

y 
(μ

 m
)

 

 
1Hz
50Hz
100Hz

y=k
s
u

Figure 5. Major hysteresis loops of P-753.31c piezoelectric system resulted
from sinusoidal signals with different frequencies. u is the input voltage and
y is the output displacement.

To characterize the rate-dependent hysteresis, different

models have been proposed in [13], [14], [15], [16]. In this

paper, the piezoelectric stage is assumed to be described

by the rate-dependent Prandtl-Ishlinskii hysteresis model

in [13], since this model has been successfully used for

the modeling of rate-dependent hysteresis in a piezoelectric

system. To formulate the rate-dependent Prandtl-Ishlinskii

hysteresis model, the rate-dependent play operator, w(t) =
Fri(u̇)[u](t) = fri(u̇)(u(t), Fri(u̇)[u](tj−1)), with dynamic

threshold ri(u̇) > 0, is defined as

Fri(u̇)[u](0) = fri(u̇)(u(0), 0),

fri(u̇)(u, w(tj−1)) =⎧⎪⎨
⎪⎩
max(u(t)− ri(u̇), w(tj−1)), u(t) > u(tj−1)

min(u(t) + ri(u̇), w(tj−1)), u(t) < u(tj−1)

w(tj−1), u(t) = u(tj−1)

for tj−1 < t ≤ tj and 1 ≤ j ≤ M̄, (31)

where u(t) ∈ AC[0, tE ] is the input voltage, with AC[0, tE ]
denoting the space of absolutely continuous functions on time

interval [0, tE ]. 0 = t0 < t1 < · · · < tM̄ = tE is partition

of [0, tE ], and that the function u(t) is monotone on each

of the sub-intervals (tj , tj+1]. The argument of the opera-

tor is written in square brackets to indicate the functional

dependence, since it maps a function to a function. Then,

similar to the rate-independent Prandtl-Ishlinskii hysteresis

model that is constructed via the superposition of weighted

play operators with different thresholds, the rate-dependent

Prandtl-Ishlinskii model is formulated as following [13],

y(t) = H[u](t) = a0u(t) +
N∑
i=1

aiFri(u̇)[u](t), (32)

where y(t) is the system output displacement, ai, i =
0, 1, 2, · · · , N are positive weights, and N is the total

number of rate-dependent play operators. It should be noted

that the dynamic thresholds ri(u̇) should satisfy 0 ≤ r1(u̇) ≤
r2(u̇) ≤ · · · ≤ rN (u̇). Specifically, ri(u̇) = αi + g(u̇) =
ζi+ β|u̇| from [13] will be used in this paper.

Furthermore, the system (32) satisfies the two assumptions

mentioned in previous section. Due to the page limits, the

proof is omitted.

B. Control Design

The controller design does not use the information of

system (32). The reference trajectory is yr(t) = 1+sin(ωt−
π/2)μm, where ω = 2πf represents the operating frequency

of the piezoelectric stage. The reference model (2) is selected

as bm
s+am

= ωM

s+ωM
with am = bm = ωM . And its bandwidth

ωM = 50000π. The first-order system is chosen as b
s+a ,

where a = 60000π and b = 260000π. Since there is only

one major frequency, n = 1 in (10), and the filter Gf (s)
becomes the following form,

Gf (s) = 1− s(s2 + ω2)

(s+ α)(s2 + α1s+ β1)
. (33)

Specifically, the parameters are chosen as α = 1000, α1 =
1800π and β1 = 810000π2. Let the tolerance of disturbance

attenuation is δ = 0.000001, then the condition must be

‖Hd(iω)‖dB ≤ 20 log δ = −120dB. The error feedback gain

is chosen as k = 200000. The controller is designed as (9).

C. Experimental Results
As shown in Fig. 6, the tracking performances for f =

100Hz and f = 1100Hz are presented. The root-mean-

square (RMS) values are 0.0033μm while f = 100Hz, and
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Figure 6. Results of tracking sinusoidal signals. 1st column: Output; 2nd column: Compensated hysteresis loop; 3rd column: Tracking error; 4th column:
Bode plots of 1−Gf (s), 1

s+k
, and Hd(s).

0.0222µm while f = 1100Hz. The insight of 100Hz has a
smaller tracking error than 1100Hz can be revealed from the
Bode plots in the 4th column of Fig. 6. Since the magnitude
of Hd(s) is smaller at 100Hz, its tracking performance is
better. The internal model embedded design of Gf (s) in
(33) can be utilized to reduce the magnitude of Hd(s) at
1100Hz. At 1100Hz, the relative maximum absolute error
(RMA) is around 1.7%. Therefore, a fine tracking is achieved
at a high frequency, 1100Hz, which is 37.93% of the lowest
resonant frequency, a significant improvement compared to
the commercially available range at 1%− 10%.

V. CONCLUSION

The proposed approach has extended the conventional
UDE-based robust control to an output feedback version,
and relaxed the structural constraint. The robustness analysis
revealed that the tracking performance is determined by
‖Hd(s)‖dB . Accordingly, the internal model principle was
utilized in the filter design of UDE to enhance the track-
ing performance. An experimental study on a piezoelectric
nanopositioning system was conducted to show the practical
implementation, which demonstrated the effectiveness of the
proposed control.
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