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ABSTRACT

Multilevel modeling and multi-task learning are two widely used
approaches for modeling nested (multi-level) data, which contain
observations that can be clustered into groups, characterized by
their group-level features. Despite the similarity of the problems
they address, the explicit relationship between multilevel modeling
and multi-task learning has not been carefully examined. In this
paper, we present a comparative analysis between the two methods
to illustrate their strengths and limitations when applied to two-
level nested data. We provide a detailed analysis demonstrating the
equivalence of their formulations under a mild condition from an
optimization perspective. We also demonstrate their limitations in
terms of their predictive performance and especially, their difficulty
in identifying potential cross-scale interactions between the local
and group-level features when applied to datasets with either a
small number of groups or limited training examples per group.
To overcome these limitations, we propose a novel method for
disaggregating the coarse-scale values of the group-level features
in the nested data. Experimental results on both synthetic and real-
world data show that the disaggregated group-level features can
help enhance the prediction accuracy of the models significantly
and identify the cross-scale interactions more effectively.
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1 INTRODUCTION

Nested data are prevalent across many application domains, from
ecology and environmental sciences to education and bioinformat-
ics [4, 23, 26, 7]. Such data contain observations sampled from
individuals that are clustered into groups, with coarse-level fea-
tures available to characterize properties of individuals belonging
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Table 1: A toy example of a two-level lake ecology data

Lake | HUC | Maximum | Average HUC Total
ID D Lake Depth | Temperature | Phosphorous
1 1 8.2 73 3
2 1 15.2 73 2.4
3 1 14.6 73 43
4 2 10.6 67 6
5 2 14.8 67
[ 6 [ 3 | 112 74 3.6

to the same group. Table 1 shows a toy example of a two-level
ecological dataset, where each observation corresponds to a set
of measurements pertaining to a lake. The lakes are grouped into
coarser scale regions known as hydrological units, identified by
their unique code called HUC ID. Each lake is also characterized by
a fine-level (“local") feature, maximum lake depth, and a group-level
(“regional") feature, average HUC temperature. These local and re-
gional features can be used to predict a lake nutrient concentration
variable such as total phosphorous.

Traditional regression methods are not well-suited for model-
ing such nested data as the observations are not independent of
each other. Alternative statistical methods, such as those based
on multilevel models (MLM), also known as mixed models or hi-
erarchical linear models [11], have thus been proposed to handle
the nested data. MLM provides a principled way to integrate the
local features with group-level features and can be used to infer the
presence of cross-scale interactions in the data [8, 23]. A cross-scale
interaction (CSI) refers to the joint effect between the local and
group-level features on the response variable of interest [23]. For
example, consider the following linear model for predicting the
total phosphorous in lake i located in region j:

TP;j = frDepth;; + frTemp; +[3C51(Depthl-j XTempj) +fo. (1)

The fcs; coefficient in the preceding equation provides an estimate
of the magnitude of cross-scale interaction between the local feature,
i.e., maximum lake depth, and the regional feature, i.e., average
HUC temperature, on the response variable, total phosphorous (TP).
Detection of CSIs is an important research problem as it can help
reveal the nonlinear relationships that exist in a complex system.
For example, previous studies have shown the existence of CSI
pattern between broad-scale hurricane-induced disturbance and
fine-scale historical land use, which influences the biodiversity of
land snails [28]. Previous studies have also found a strong evidence
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Table 2: A two-level lake ecology data with disaggregated lo-
cal temperature. The shaded cells illustrate the collinearity
problem, as the values in the fifth column is simply a scalar

multiplication of the values in the third column.

Lake | HUC | Max | Avg HUC Depth x Avg Total
ID ID | Depth | Temp HUC Temp | Phosphorous
1 8.2 73 8.2 X173 3
2 1 15.2 73 152 X 73 4.3
3 1 14.6 73 14.6 X 73 2.4

(a) Difficulty of using regional features for finding CSI using MTL.

Lake | HUC | Max | Recovered Depth x Total
ID ID | Depth | Local Temp | Local Temp | Phosphorous
1 1 8.2 72.5 8.2 X725 3
2 1 15.2 73.5 15.2 X 73.5 43
3 1 14.6 73.0 14.6 X 73.0 2.4

(b) Using “localized” regional feature for finding CSI using MTL.

of CSI between local wetland cover and regional agriculture land
use on nutrient concentration in freshwater lakes [8, 23].

From a machine learning perspective, the modeling of nested
data can be naturally formulated as a multi-task learning (MTL)
problem [5, 32, 6], where each task corresponds to learning the
relationship between predictor and response variables for the ob-
servations in a group. Instead of training the model for each group
independently, MTL learns the models jointly by leveraging the
common structure among the tasks. This strategy is particularly
useful when there is limited training data available among some of
the groups [34].

Despite the similarity of the problem addressed by MLM and
MTL, the explicit relationship between the two methods has not
been carefully investigated. In this paper, we present a comparative
analysis between MLM and MTL when applied to a two-level nested
dataset. Our goal is to shed light on their potential strengths and
pitfalls, especially in terms of model accuracy and their ability
to detect CSI patterns in the data. Specifically, we show that the
inherent assumption in the model specification of MLM may lead to
its suboptimal predictive performance and misinterpretation of CSI
patterns when applied to datasets with limited number of groups
or training instances. While MTL is generally helpful to improve
prediction accuracy on datasets with imbalanced distribution of
training data, it cannot capture the CSI patterns in nested data
due to the rank deficiency problem. Table 2(a) provides a simple
illustration of MTL’s limitations. Since MTL fits a local model to
each region, the local model cannot effectively utilize the regional
feature (average HUC temperature) as its value is identical for all
the lakes in the same region. Furthermore, adding a nonlinear CSI
feature (Depth X Temperature) explicitly into the design matrix
introduces collinearity [9] in the data (see the shaded columns of
the table), making it impossible to separate the f; coefficient of the
local feature in Equation (1) from the fcg; coefficient using existing
MTL methods. Nevertheless, we show that it is possible to learn a
unique solution for fcgy through a subsequent post-processing step
after learning the local model for each region using MTL. Similarly,
a subsequent post-processing step can also be performed to improve
the prediction accuracy of MLM. More importantly, our analysis
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suggests the equivalence between the two-stage MTL (i.e., applying
MTL followed by a post-processing step) and the two-stage MLM
(i.e., applying MLM followed by a post-processing step) as they both
optimize the same objective function in different order of variables.

Finally, although the two-stage MLM and MTL methods can
improve prediction accuracy and identify the CSI patterns within
a nested dataset, these methods tend to perform poorly when the
number of groups (regions) or the number of samples per group
are small [27, 17]. To overcome this problem, we propose a novel
framework to disaggregate the group-level feature values to their
finer scales. For example, instead of using the average tempera-
ture for the whole region, it would be better to estimate the local
temperature of each lake (see Table 2(b)) and use this finer grain
information to fit the MTL model. Unfortunately, it would be impos-
sible to recover the local values of the group-level features without
any prior assumptions as there are infinitely many ways to disag-
gregate the values. To overcome this problem, we present a novel
feature disaggregation framework that is suitable for nested data
with spatial contiguity properties. We show that the disaggregated
feature values can enhance accuracy of the prediction models and
identify the CSI patterns more effectively.

2 RELATED WORK

The modeling of nested data has been widely studied by statisti-
cians and computer scientists. Multilevel modeling (MLM) [11],
also known as linear mixed model, hierarchical linear model, and
random effect model, is a mature statistical method designed to
learn a model that not only explains the differences between indi-
vidual samples in a group, but also the differences between groups.
Examples of MLM methods include the random intercept and ran-
dom slope models [11]. These are special cases of the more general,
cross level interaction (CLI) model [11], which considers the random
effect on both the slope and intercept of the model.

Cross-scale interactions play an important role for understanding
the complex interactions between processes operating at different
scales in macrosystem ecology and other disciplines [23]. Such
interactions may lead to surprising outcomes and can have signifi-
cant impact on the ecosystem and society [21]. Since the influence
of CSIs may not be as pronounced compared to the effects of the
local and regional features, there have been several studies focusing
on estimating the statistical power of CSIs [1, 17, 18, 27]. Various
methods have also been developed to measure CSIs in nested data.
For example, Soranno et al. [23] employed a Bayesian hierarchi-
cal model to estimate the CSI between local wetland and regional
agriculture. However, such methods suffer from the insufficient
sample size problem, which may lead to contradicting cross-scale
interactions [10].

Multi-task learning (MTL) is another commonly used approach
to deal with grouped data, whereby the modeling of observations
in each group is considered a separate learning task. A survey on
MTL approaches can be found in [33]. There have been several re-
cent studies focusing on the application of MTL to spatio-temporal
data. For example, Xu et al. [29] proposed a multi-task framework
that assumes a low rank clustering structure among the different
regions. Lin et.al. [14] developed a MTL approach with feature in-
teraction whereas Lozano et al. [16] presented a multi-level lasso
approach. However, these approaches considered only the group
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membership of the observations and did not utilize the group-level
feature information. In contrast, Yuan et al. [31] recently proposed
a multi-task multi-level modeling approach that utilizes both the
local and group-level features of the nested data. The approach as-
sumes that the local and group-level features share some common
latent factors, but the CSI patterns found using the approach vary
by regions, which makes it harder to be interpreted.

3 BACKGROUND

This section formalizes the learning problem and reviews the appli-
cation of MLM and MTL to nested data. We consider linear models
in this study as they have been widely used in the modeling of
nested data in ecology, climate science, and other application do-
mains [23, 29]. Not only do linear models have a lower bias, which
makes them more robust to overfitting for small sample size prob-
lems, they can also identify salient features in the data.

3.1 Problem Statement

Consider a two-level nested dataset D = {Xj, zj, yj}M

= where X;
€ R%*4 ig a matrix containing the fine-level (local) features of
observations in group (region) j, z; € RIX1 s the corresponding
vector of group-level (regional) features, and y; € R%*! is a vector
containing the values of response variables for the observations
in group j. Note that the terms group and region will be used in-
terchangeably throughout this paper. The subscript j refers to the
index of a group, M denotes the number of groups, dy, is the number
of local features, dg is the number of group-level features, and n;
is the number of observations that belong to the jth group.

One approach is to fit a linear model globally to the entire nested
data. The same global model will then be applied to make pre-
dictions in all the regions. Since the approach assumes that the
regression coeflicients are invariant across different regions, its pre-
dictive performance is likely to be poor as it ignores the inherent
spatial heterogeneity of the data [10]. Alternatively, a local model
can be trained for each region using only the training instances
available for the region. This independent modeling approach is also
likely to perform poorly for two reasons. First, as shown in Table 1,
the approach cannot effectively utilize the group-level features as
their values are identical for all observations from the same region.
Second, the local models are susceptible to overfitting especially
for regions with limited labeled data. Due to these limitations, al-
ternative methods have been developed for modeling nested data,
including the MLM and MTL approaches to be described next.

3.2 MILM for Nested Data

A two-level linear model for the i-th observation in region j is given
by the following equations [11]:

yij = x| ;B + Poj + €ijs @)
Bi = Gzj+y +uj, 3)
Poj = ijwR + Yo + Uoj, (4)
uj ~ N(0,32), ug, ~ N(0.0%). €ij ~ N(0,02), (5

where B € RIXT s a vector of coefficients representing the slope
of the local linear model with respect to each local feature and fy;
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corresponds to the model intercept. These local regression coeffi-
cients are related to the group-level features z; according to Egs.
(3) and (4), respectively, where wf € R¥®&X! 5 a vector of coeffi-

cients for the group-level features and G € RIXR s o matrix of
coefficients for the cross-scale interaction between the local and
group-level features.

The preceding model can be further simplified by substituting
Egs. (3) and (4) into Eq. (2), which leads to the following formulation,
also known as the cross-level interaction (CLI) model [11]:

Yij = xl?:j(y +uj) + ijWR + ijGZj + Y0 + (uoj + €i,5) (6)

TR T
Z; W' +X; (7)

upj ~ N(o, 0’50), uj ~ N(0, Zzu), €i,j ~ N(o, 0’3).

. . T s
=X+ szj + Y0 + X juj + 1nij

The parameters of the model, i.e, yo, y, wR , and G, along with the
variance components 050, %y, and 62, are often estimated using the
restricted maximum likelihood approach [12]. CLI is a popular two-
level MLM approach for inferential data analysis [13] as it allows us
to quantify the different types of relationships present in the data,
such as cross-scale interactions (G), along with their standard errors.
However, it has an inherent limitation when applied to predictive
modeling problems since it provides only the global estimate for y,
Y0, X2, and 050 instead of explicitly calculating the region-specific
values u; and ug;. During the prediction step, we may compute the
expected value of the response variable for any given test instance
(x*,z;) as follows:

R *T
+x " Gzj + yo.

®)

Note the difference between the expected value given in Eq. (2),
ie. E[ylx*,z;] = x*T B; + Poj, from the one given in Eq. (8). The
latter applies the same prediction function to all regions since the
coefficients y, wR, G, and Yo are independent of j. More importantly,
Eq. (8) excludes the random effects u; and up; from the model
prediction, which explains its poor predictive performance when
there are significant spatial heterogeneity in the data [10].

Elylx",z;] = Ty + ijw

3.3 MTL for Nested Data

In MTL, the prediction problem for each region is treated as a
separate learning task. However, unlike the independent modeling
approach, the local models are simultaneously trained to optimize
a joint objective function for all the regions:

M
argmin ) [ly; = X; ;= foj11l3 + (B, By),
{B;}: Boj j=1

where1 = [1,1,--- ,1]7,Bo = [Bo1, Boz.- - » Bom]. B = [B1. Bz, -,
PBuml, and Q(B,By) is a regularization term that relates the model
parameters from different regions.

MTL is an effective approach for predictive modeling of nested
data since it promotes information sharing between different re-
gions, which is particularly useful for regions with limited training
data [29, 31]. Unlike the MLM formulation shown in Eq. (7), MTL
attempts to directly solve the slope and intercept terms of the re-
gression function for each region, similar to the Eq. (2) for MLM. To
incorporate the regional features and cross-scale interaction terms
into the MTL formulation, a naive approach would be to modify

©)
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the objective function given in Eq. (9) as follows:

M

: L T R T 2

arg min g llyj - Xjw; —Z; w™ - X;Gz; — yojll;
{wh},wR G j=1

+Q[{wj}, wR,G], (10)
where we have replaced B; = Gz;j + (y + uj) = Gzj + w}jf using

Eq. (3) and fo; = ijwR + Yoj using Eq. (4). Furthermore, Z;
[zj,zj,- -+ ,z;]. As will be shown in the next section, this approach
may not be able to learn the regression coefficients and cross-scale

interactions correctly due to the ill-posed nature of its formulation.

4 RELATIONSHIP BETWEEN MLM AND MTL

In this section, we perform a comparative analysis between MLM
and MTL, and show that the performance of both approaches can
be improved by applying a subsequent postprocessing step to refine
the models. We termed these approaches as two-stage MLM and
two-stage MTL, respectively. We then illustrate the equivalence
between these two approaches for two-level data in Section 4.3.

4.1 Two-Stage MLM

As noted in Section 3.2, most MLM implementations would provide
only an estimate of E[wj;] = y and variance components such as
¥, instead of the region specific values for wkor B j. While this
may be sufficient for inferential data analysis [13] to determine
the existence of certain relationships in data, it is not optimal for
prediction purposes. It is possible to refine the MLM predictions by
re-fitting the model to the residuals computed from the regional
features and the cross-scale interaction terms given in Eq. (8). Specif-
ically,let§; =y, — ZJ.TWR - X;Gz; be the residual errors for all the
instances in region j. By fitting a regression model between X; and
the residual error ¥, it is possible to recover Wf-‘ for each region
using Eq. (7). The two-stage MLM approach can be summarized as
follows:

Stage 1: Apply cross-level interaction model to the nested data:

Wk, G, Y.Yo) = argmir} Z ly; — Xy - ZjT\Si - XjGZJT — 012
W, %, 70,G j
Stage 2: Learn le.’ by regressing the residual error on X;:
Vi yi=yj— ZJTWR - X;Gzj, WJL = argminwj ||§'j —Xj\i'j”g.
An unlabeled instance (x*, z;) can then be predicted as follows:
(11)

Unlike Eq. (8), the prediction function here accounts for differences
in W]L between the different regions.

T . L T R

Ely|x",zj] = x" Wiz w4 X*TGZj + %0.

4.2 Two-Stage MTL

For MTL, one way to estimate the regression coefficients w’ and wR
as well as the cross-scale interaction term G is by solving Eq. (10).
However, since the value of the group-level feature is the same for
all observations in the same region, this may lead to severe multi-
collinearity problem, as shown in Table 2. Worse still, comparing
Eq. (9) to Eq. (10), solving le.‘ and G from B; essentially requires
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optimizing the following objective functions:

M
argminz II1Bj — Gzj — ij‘||§ &= argmin|B-GZ - WL||%.
(wh},G j=1 wWL,G

Unfortunately, this is an ill-posed problem since there are infinitely
many ways to decompose B into the sum of WX and GZ given Z.
Thus, the naive approach of optimizing Eq. (10) will not be able to
recover the coefficients W]If and G accurately. The same argument
also applies to the decomposition of ffy; into wg and yo.

To overcome this limitation, a two-stage approach can be used
to recover the regression coefficients and cross-scale interaction
terms. First, we apply standard MTL methods to learn the §;’s and
Boj’s for all the regions (see Eq. (9)). During the second stage, the
Bj’s and By;’s will be fitted against their corresponding group-level
features z; to learn the G, wR, and y. The regression coefficients
for the local features WJL can then be obtained using Eq. (3). The
two-stage MTL approach can be summarized as follows:

Stage 1: Apply MTL to learn f; and fo; by solving Eq. (9).
Stage 2: (y,G) = arg min,, ¢ Zinl 18 — Gz — pl|Z

(W, y0) = argming, ; M, (Boj — 2] W~ yo)?

wk = Bj — Gz;.
Note that the key difference between the two-stage MTL approach
and the ill-posed matrix decomposition problem stated earlier is
that the former imposes an additional constraint on W]L , namely
that it can be decomposed into y and a Gaussian noise term with
mean zero, thereby reducing the number of possible solutions.

4.3 On the Equivalence between MLM and MTL

It is not difficult to see the connection between the MTL and MLM
formulations. First, consider the cross-level interaction model given
in Eq. (6). The formulation is obtained by substituting the regression
coefficients shown in Eq. (3) and Eq. (4) into Eq. (2). The objective
function for MTL, which is given by Eq. (9), is equivalent to learning
the B;’s and fy;’s in Eq. (2) directly without considering the con-
straints imposed by Egs. (3) and (4). Without such constraints, MTL
will not be able to obtain unique solutions for wk, w R, and G due to
the ill-posed nature of the problem, as given in Eq. (10). Estimating
these coefficients are useful for many applications as the coefficients
convey important information about the important relationships
that exist in the data. By employing a two-stage MTL approach, we
can restrict the solution space to satisfy a feasible set defined by
the constraints given in Eqgs. (3) and (4) by regressing the ;s and
Poj’s against the group-level features z;’s. The slopes of these linear
functions would determine G and wR, while their intercepts can
be used to identify W]].“ and yo;. The two-stage MTL approach can
thus be stated as the following constrained optimization problem:

M
argminZ ||Xjﬁj + ﬂojl — yJ'Hg,
{Bj.Boj} j=1
s.t. Bi = Wj-‘ + Gzj, foj = ZJ-TWR + Y0

(12)

L
Wj =y+llj, )/()j = y()+u0j.
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The first stage involves solving the unconstrained optimization
problem using MTL!, whereas the second stage projects the initial
solution to the feasible set.

The equivalent formulation for two-stage MLM can be found
by substituting the equality constraints in Eq. (12) directly into
the objective function to remove B; and fy; from the formulation.
This leads to the following constrained optimization problem for
two-stage MLM:

M
arg min Z IXjy + ZijR +X;Gz;j + yo1 — yj||§
WR,Y:Y0,G j=1

L:

s.t. wi =y +uj, Yoj = Yo + Uoj- (13)

The unconstrained optimization problem solves the cross-level
interaction model in the first stage, and the second stage learns the
varying slopes W]I.‘ and intercepts yo; of the local models.

Note that the following two conditions are needed to ensure
good performance by the two-stage MTL and two-stage MLM ap-
proaches:

(1) There must be sufficient number of samples available in
each region to correctly estimate the f’s in order to improve
prediction accuracy.

(2) There must be sufficient number of regions available in the
nested data in order to correctly estimate the cross-scale
interaction matrix G.

5 DISAGGREGATION OF GROUP-LEVEL
FEATURE VALUES

For many applications in climate and ecology domains, the coarse-
level features of the nested data are often computed by aggregating
the corresponding feature values at finer spatial scales. While the
coarse-scale value helps to summarize the feature information from
adjacent locations into a single value, it also introduces collinearity
into the data, a problem illustrated by the example shown in Table 2.
To alleviate this problem, this section presents a novel framework
for learning the disaggregated value of the group-level features.
The disaggregated values are then incorporated into a multi-task
multi-level learning framework called MTML_imputation.

5.1 Feature Disaggregation

To understand the rationale for disaggregating the group-level
features, consider the nested data shown in Table 2(a). Since the av-
erage HUC temperature is identical for all lakes in the same region,
the cross-scale interaction feature becomes correlated with the max-
imum depth feature (shaded cells in the table), which leads to a
rank deficiency problem in the design matrix. As a result, existing
MTL approaches will not be able to utilize the group-level features
effectively in their formulation. By disaggregating the group-level
features in a manner that is consistent with characteristics of the
domain, it is possible to obtain a full-rank design matrix that can be
better utilized by the MTL algorithm. For example, consider a nested
data that contains 10 local and 1 group-level features. Analogous
to Table 2(b), we created a synthetic dataset that contains the local,
group-level, and cross-scale interaction features. We then applied

IFor brevity, we have ignored the regularization term in the objective function as such
regularization can also be applied during the second stage of the two-stage MLM.

1788

KDD 2018, August 19-23, 2018, London, United Kingdom

8 8
6 6
4 4
2 2
0 0
0 5 10 15 20 0 5 10 15 20

(a) Group-level feature (b) Disaggregated group-level feature

Figure 1: Comparison between the singular value distribu-
tion of design matrices using group-level features (left) and
disaggregated group-level features (right) for a given region.
Both matrices contain 10 local, 1 group-level (or disaggre-
gated group-level), and 10 cross-scale interaction features.

low resolution
regional variable

0 o0 o0 of
gfe 020 a0 edo
%8 992 %58 %2

reasonable imputation Violate A2 Violate A1

Figure 2: Comparison of different disaggregation results.
Each hexagon is a sample, whose color represents its region
and number represents its disaggregated value. The leftmost
figure simply uses the group-level feature value. The second
figure preserves both A1 and A2 assumptions. The last two
figures violate assumptions A2 and A1, respectively.

singular value decomposition to the design matrix. Although there
were 21 features in the design matrix, the rank of the matrix is only
11 as shown by the distribution of their singular values in Figure
1(a). Using our feature disaggregation approach, it is possible to
increase the rank of the matrix by replacing the group-level feature
values with their disaggregated values (see Figure 1(b)).

Although there may be other ways to increase the rank of the
design matrix for MTL, e.g., by adding Gaussian noise to perturb
the group-level features, their disaggregated values do not add any
new information, and thus, may not help to improve the predictive
performance of MTL. In principle, since there are many possible
solutions to the feature disaggregation problem, realistic assump-
tions are needed to constrain the solution space in a way that is
consistent with the domain expectation. For example, the spatial
autocorrelation present in the data may provide useful guidance to
aid the recovery of the disaggregated feature values.

For nested spatial data, we present a feature disaggregation ap-
proach based on the following two realistic assumptions:

o Assumption 1 (A1): The disaggregated values should preserve
the spatial continuity properties.

o Assumption 2 (A2): The disaggregated values should be close
to its original group-level feature value.
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Assumption A1 is a reflection of Tobler’s first law of geography
[24], which states that near things are related, and thus, should
be more similar to each other. Assumption A2 constrains the dis-
aggregated values to be close to the original group-level feature
value. Figure 2 illustrates the intuition behind our assumptions.
Each hexagon represents a sampled observation, which is assigned
to a group (region) based on its color. The leftmost diagram shows
the original group-level feature value for each observation, which
is the approach used in MLM and MTL. The second figure shows a
reasonable recovery of the disaggregated values, which preserve
both A1 and A2 assumptions. The disaggregation results shown in
the third figure violates the A2 assumption, since the disaggregated
values are quite different from their group-level feature value. Fi-
nally, the rightmost disaggregation violates assumption A1, since
some neighboring hexagons have very different values.

The disaggregated values will be used in place of the original
group-level feature values when fitting the local linear regression
models to the nested data. Since the disaggregated values are no
longer identical for all individuals in the same group, it is possible
to fit the models to learn wt, WR, G, and yo; from the data. Fur-
thermore, the feature disaggregation and model building can be
performed simultaneously, as will be discussed in the next section.

5.2 Proposed Formulation

Our proposed framework, called MTML_Imputation, for joint fea-

ture disaggregation and multi-task multi-level learning from nested

spatial data can be stated as the following optimization problem:
M

arg min Z lly; - ij} - ijf - diag(XjGZjT)Hg
{ij,wj@},wf,G j=1
+ MQ(WE W) + 2211611
N
+ 3 ). Dpgllzp - 7gll}
p<q
N
+ A Nz -2l (14)
p=1

where N = Zin | 1j is the total number of observations, z,, is the dis-
aggregated value of the group-level feature for the p-th observation,
and z,, is its corresponding group-level feature value. Furthermore,
V4 ; denote a matrix consisting of all the disaggregated values of
the group-level features in region j. The first term in the objective
function measures the residual errors of the prediction models,
whereas the second and third terms are regularization penalties to
ensure model sparsity. The regularization term Q applies to both
Wj-“ and Wf, and can be an L1, Ly1, or Ly norm. The fourth term of
the objective function is based on Assumption A1, where D, 4 is
the spatial proximity between the p? h and q° h observations. The
last term is used to enforce Assumption A2. Note that our proposed
formulation allows wf to vary by region since they can be applied

to the different Z ; matrices unlike previous methods.

5.3 Optimization

We employ the block coordinate descent algorithm [25] to solve the
optimization problem given in Eq. (14). To simplify the discussion,
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we adopt the following notations in the remainder of this section. If
{pj}jvil is a set that contains M vectors, then pyec = [p1;- - ;pm]
is a column vector obtained by concatenating the M column vectors
of pj. Thus, yvec, Wk, and
M vectors of {y;}, {wj.‘ } and {W}2 }, respectively. Furthermore, let

WE, are obtained by concatenating the

Gyep be the Kronecker product between an M X M matrix of 1’s
and matrix G, i.e.:

G G

Grep =114, ®G = |: :
G G
Also, let X4jag be a matrix obtained by concatenating the set of

. M
matrices, {X; }j:I’
by stacking the matrices on top of one another, i.e.,

0

along the block diagonal while X, is obtained

X 1 X 1
s Xstack =

Xm

Xdiag =

0

We also define the following vector and matrix:

Xm

L 7 R : 5T
0 = yvec = XdiagWvec ~ ZdiagWvec ~ dlag(xdiagGrepZdiag)’

VD12 VD13 0 0 0
-VD12 0 VD23 VDag 0
R = 0 - D.13 - -.[.)23 0 0.
0 0 0 0 vDN-1,N
0 0 0 0 0 —+vDN-1,N

where Dy is the spatial proximity between pth and ¢* h samples.
The block coordinate descent algorithm would iteratively update
the regression coefficients, the disaggregated values Z ;’s and the
cross-scale interaction matrix G. During initialization, Z is set to
Z while the rest of the parameters are initialized randomly. The
update formula for these parameters are summarized below.

a) Update formula for WL and WR. Let wyec be the vector ob-
tained by concatenating the vectors in {wjﬁ }and {wfz }. By keeping
only terms that depend on wyec, the objective function reduces to:

: LR : 5T 2
min ||Ydiag - Xdiangec - dlag(xdiagGrepZdiag)Hz + 11 Q(Wyec),

where Xéﬁg = [X, Z]diag is the concatenation of the local and
disaggregated feature values. Since the objective function above
is a convex function, it can be solved using a proximal gradient
descent algorithm such as FISTA [3, 2, 15, 19]. The update formula
for wyec is given as follows:

(s)

Wyec

S

 prox, (Wgzsezl) — AVg(Wyec

where
Vg(Wyec) = Z(Xéﬁg)T Yvec — X]&iR;ngec —diag (XdiagGrepZzl—iag) )

Note that g(wyec) denote the smooth part of the objective function
for wyec. The choice of proximal operator depends on the form of
the regularization function Q.
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b) Update formula for G. The terms in the objective function
that depend on G are as follows:

min [[yvee = X g Wee ~ diag(Xstack GZgpygi) I3 + 221Gl

stack

Since ||G||; is not a differentiable function, we can also apply the
accelerated proximal gradient algorithm to minimize the equation.
The update formula for G can be written as:

G  prox; (G4 - Avg(G)),
Vg(G) = zxz;ackfzstack’

(15)

where g(G) is the smooth part of the objective function for G.
¢) Update formula for Z. The objective function for Z is:

min [|£]| + A3]|Z];

2 7 2
stackR”F + M| Zstack — Z||F~

stack
Since it is a smooth function, we can apply Nesterov accelerated
gradient method [19] to update Zg, . Taking its partial derivative
with respect to Z,g, we obtain the following update formula:
5(s) 5(s—1) .
Zstack - Zstack B AVZ’
V5 =Ve— 213Hdiag - 2/14Vdiags

(16)

where Hpo = R(ZT

stack
whose i-th row is given by V¢ ; = Zfi((wf,zec)T +Xdiag, i Grep), where

R)T, Vyuek = Ztack —Z, and V ¢ is a matrix

Xdiag, i is the ith row of Xiag-

5.4 Learning Framework

One of the challenges in applying the framework is the need to know
the disaggregated feature value for observations that belong to the
test data. Towards this end, we developed a semi-supervised version
of our framework. The main difference between the supervised
and semi-supervised approach is that the regularization term for
the disaggregated values involve examples from both training and
test sets, whereas the least square loss function involves only the
training set. The spatial proximity matrix D is computed based
on pairwise distance for all examples in the training and test sets.
Thus, the gradient term in the update formula for the disaggregated
values in the test set Z* becomes:

Vz* = 2/13H*

"
diag — 24V,

diag’

17)

~.T } ~
* _ R¥(7* T * _ g% _ %
where H, | | =R*(Z*;,R*)" and V3, =277 . —-Z%

6 EXPERIMENTAL EVALUATION

We have performed extensive experiments to evaluate the per-
formance of our proposed framework, MTML_imputation. The
code and datasets used in our experiments are available at https:
//github.com/illidanlab/region-Disaggregation

6.1 Datasets

We applied MTML_imputation on both synthetic and real-world
datasets. The synthetic data can be used to demonstrate the efficacy
of the approach when the true disaggregated values of the group-
level features and cross-scale interaction matrix G are known.
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Table 3: Summary statistics for LAGOS-NE lake ecology data

Response variable ‘ TP ‘ TN ‘ Chla ‘ Secchi ‘
# regions 47 24 55 55

# instances 4009 1500 5314 5492

# instances/region | 20-369 | 20-236 | 23-575 | 21-583

6.1.1 Synthetic Data. The nested data generated has M = 10
groups, with 30 samples per group. We first randomly generate a
10 X 2 matrix from a uniform distribution. For each row v of the
matrix, we randomly sample 30 2-dimensional coordinate vectors
from a Gaussian distribution, with a mean vector equals to v and
a covariance given by a 2 X 2 identity matrix. A spatial proximity
matrix D is then computed based on the 2-d coordinates of the
300 samples. To ensure that the group-level features are spatially
autocorrelated, we applied a smooth function on the spatial coordi-
nates to generate the disaggregated values Z ;j for each group. We
then compute the mean of the disaggregated values for each group
as its group-level feature value, z;. In addition, the local feature
values for all 300 samples, {X;}, are randomly generated from a
Gaussian distribution with mean 0 and variance 1. The true values
of wl, wR, and G are also generated randomly from a Gaussian
distribution. These matrices are used to determine the true values
of the response variable for samples in each group based on the
following equation: y; = X jwjjf + Zijf +diag(X;GZ;) + €, where
€ is a Gaussian noise term.

6.1.2 Lake Ecology Data. We also employ the LAGOS-NE lake
ecology dataset [22] for our experiments. The dataset contains var-
ious lake hydrogeomorphic and land use/land cover variables for a
study region spanning 17 states in the United States. Our goal is to
predict lake water quality variables such as total phosphorus (tp),
total nitrogen (tn), chlorophyll-a (chla), and Secchi depth (secchi),
Altogether, we selected 13 local and 8 regional (group-level) fea-
tures as our predictor variables. Each feature was standardized to
have zero mean and unit standard deviation. Due to skewness of
their values, the response variables were log-transformed before
standardization. A brief summary of the data is given in Table 3.

6.2 Experimental Setup

For each dataset, we perform a nested 10-fold cross-validation for
hyperparameter tuning and model evaluation.

Baseline Algorithms. We compare the performance of our frame-
work against the following baseline algorithms:

e global_XZ: A global lasso regression model trained on both
local and group-level features.

e global_X: A global lasso regression model trained on the
local features only.

e Cross-level interaction: A two-level MLM approach with
L regularization.

e Independent_lasso: Alocal lasso regression model is trained
for each region using only the local features.

e Least_L21: An MTL approach based on joint feature selec-
tion with group lasso [30, 20] using only the local features.

e Least_Lasso: An MTL approach based on L regularization,
using only the local features.

e MTML: An MTL approach based on Least_Lasso using the
local, regional, and cross-scale interaction features.


https://github.com/illidanlab/region-Disaggregation
https://github.com/illidanlab/region-Disaggregation
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Table 4: Experiment result for synthetic data. The first two
columns measure the prediction accuracy while the last
two columns evaluate the cross-scale interactions (CSIs). NA
means the method does not provide an estimate of the CSIs.

‘ method/different metric ‘ rmse ‘ R-square ‘ F1_sparse(G) ‘ Acc_G_sign ‘
global_XZ 7.20 + 2.36 0.05 + 0.01 NA NA
global_X 7.06 + 2.27 0.01 +0.01 NA NA
Cross level interaction 427 £1.02 | 052+029 | 0.7+0.16 0.04 +0.13
Independent Lasso 414+126 | 059 +0.16 | 0.65+0.05 0.20 +0.21
Least_L21 517 £ 1.85 0.40 £ 0.21 0.75 £ 0.11 0.53 £ 0.32
Least_Lasso 4.56 + 1.30 0.47 + 0.30 0.69 + 0.08 0.32 £ 0.27
MTML 4.64 +0.88 0.46 + 0.29 0.60 + 0.10 0.01 £ 0.32
MTML_noise 4.65 + 1.16 0.45 +0.27 0.40 £ 0.20 0.38 £ 0.32
MTML_noimpute 3.74 £ 0.97 0.66 + 0.14 0.72 £ 0.12 0.49 £ 0.30
MTML_imputation 3.31+£0.96 | 0.74+0.09 | 0.95+0.07 0.93+£0.10

We also consider two variations of our framework: (1) MTML_
noimpute, in which the group-level feature values are used instead
of disaggregated values for model building, and (2) MTML_noise,
in which the disaggregated values are equal to the group-level value
perturbed by some random Gaussian noise. Only cross-level inter-
action, MTML, MTML_imputation, and its variations are designed
to produce the cross-scale interaction matrix G. For independent
lasso, least_L21, and least_lasso, we can apply a subsequent post-
processing step to estimate the cross-scale interaction matrix G.

Evaluation Metrics. To assess the overall predictive performance
of the various algorithms, we employ the following two metrics:

N

> %(yi

i=1

d
IN (g — g2
Z,{\il(yl’ - g)z

where 7 is the mean value of response variable. In addition, the fol-
lowing two metrics were used to determine whether the competing
algorithms can correctly identify the sign and sparse structure of
the cross-scale interaction matrix G when applied to the synthetic
data: 1) F1_sparse: This metric is computed based on the precision
and recall values of algorithms to correctly identify the non-zero
elements of the cross-scale interaction matrix G. 2) Acc_G_sign:
This metric is used to evaluate how well the algorithms correctly
identify the sign of the elements within the matrix G.

pred)z,

RMSE = - RP=1-

6.3 Results on Synthetic Data

Table 4 shows a comparison between the performance of our pro-
posed framework against other baseline methods on the synthetic
data. First, observe that the global models have the worst predictive
performance as they fail to account for spatial heterogeneity in
the data. The independent lasso approach performs much better
but is still worse than the cross-level interaction, MTL, and MTML
approaches since the local models are trained independently with-
out using the group-level features. The results further suggest that
MTML_imputation not only outperforms all other baselines in
terms of model accuracy, it also gives the best estimate of the cross-
scale interaction matrix G. Although the traditional cross-level
interaction model can detect some of the CSIs, it also generates
quite significant false positives and false negatives, which leads to
its lower accuracy in terms of F1_sparse and Acc_G_sign. The re-
sults also suggest that applying postprocessing to the independent
lasso, least_L21, and least_lasso methods can identify the cross-scale
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Figure 3: Comparison between the disaggregated and group-
level feature values. Both Y-axis corresponds to the high res-
olution values of the group-level features. The X-axis for
the top diagram corresponds to the coarse-scale feature val-
ues, whereas the X-axis for the bottom diagram corresponds
to the disaggregated values obtained by MTML_imputation.
The diagonal line has slope equaling to 1, which represents
perfect disaggregation.

interaction matrix G with comparable accuracy as the cross-level
interaction model, but is still far worse than MTML_imputation.

Furthermore, upon comparing the performance of different MTML
approaches, we observe that MTML performs poorly since it cannot
effectively utilize the group-level and the cross-level interaction
features due to the rank deficiency problem illustrated in Table 2.
For MTML_noimpute, which has the same objective function as our
method but without the feature disaggregation step, its performance
is worse than MTML_imputation, which shows the benefit of dis-
aggregating the coarse-level feature values. The poor performance
of MTML_noise also suggests that a simple disaggregation step of
perturbing the group-level feature values with Gaussian noise nei-
ther improves the prediction accuracy nor our ability to detect CSIs.
Finally, to evaluate the quality of the disaggregated values, Figure 3
shows the difference between using the group-level feature value
to represent the true disaggregated values (top diagram) and using
the disaggregated values obtained by MTML_imputation (bottom
diagram). The results suggest that the disaggregated feature values
of MTML_imputation are quite close to their true values.
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Table 5: RMSE comparison for lake ecology data
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0.1
l method / response variable ‘ tp ‘ tn ‘ chla ‘ secchi
global_XZ 0.73 £ 0.03 0.65 + 0.08 0.79 = 0.06 0.77 £ 0.12
global_X 0.74 + 0.03 0.68 + 0.06 0.80 = 0.04 0.78 + 0.12
Cross level interaction 0.73 £0.03 | 0.61+0.08 0.79 +£0.14 | 0.73 £ 0.09
Independent_Lasso 7.65+3.96 | 9.39+1.99 | 581+250 | 4.04+ 251
Least_L21 0.65 + 0.03 0.60 + 0.07 0.70 = 0.04 0.66 = 0.04
Least_Lasso 0.66 = 0.03 0.60 + 0.07 0.71 = 0.04 0.66 = 0.04
MTML 0.79 = 0.03 0.72 £ 0.08 0.86 = 0.13 0.79 = 0.07
MTML_noise 0.70 = 0.06 0.64 +0.11 0.73 = 0.03 0.77 £ 0.31
MTML_noimpute 0.68 + 0.07 0.61 +0.09 0.71 = 0.02 0.66 = 0.03
. . & o> X\ N & S e @ o
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6.4 Results on Lake Ecology Data

Table 5 compares the performance of MTML_imputation against
other baseline algorithms. The results show that our proposed
framework outperforms the baseline algorithms for the prediction
tasks of all 4 response variables (tp, tn, chla, and secchi). Unlike the
synthetic data, the independent lasso model performs the worst
on this dataset since the number of samples available in some
regions is very small. The predictive performance of the cross level
interaction model is also comparable to other global models in the
data. MTML_imputation still has the lowest RMSE and highest
R-square values, though the performance gains are not as high as
those observed in the synthetic data. MTL approaches using only
the local variables (least_L21 and least_lasso) perform better than
the cross-level interaction model, though their accuracies are still
lower than MTML_imputation.

Since the true CSIs are unknown, we provide a qualitative anal-
ysis of the patterns found by the MTML_imputation algorithm.
CSIs are important as they provide useful information about the

|0 05

Figure 5: CSI matrix (G) for TP, TN, Chla and Secchi. The
x-axis corresponds to the regional features while the y-axis
corresponds to the local features.

&L S &

O ‘) N

SIS U W \%0
& ¢

(d) CSI for Secchi

coupling between the local and group-level features and their joint
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effect on the response variable. In particular, a non-zero CSI coeffi-
cient indicates the presence of a threshold effect on the nonlinear
relationship between the local feature and the response variable
[21, 23]. To illustrate this, Fig. 4 shows the relationship between
a regional (group-level) feature and the slope of the local model
relating the local feature and the response variable. A negative CSI
means for some regions, there is a positive relationship between
the local feature and the response variable, but for others, there
is a negative relationship, depending on the regional feature. The
threshold when the slope changes sign is important especially in
ecology as it represents a tipping point of the system.

Figure 5 shows the CSI patterns found in this study. Some of pat-
terns have positive signs while others are negative. An interesting
negative CSI pattern found is that between local wetland (wooded)
and regional agriculture (see Figure 5(a)). Such pattern has been
reported in other previous studies [23, 8]. The pattern suggests a
positive relationship between local wetland and TP when there is
little agriculture, but changes sign when there is significant agricul-
tural land use. The explanation here is that when there is too much
agriculture, the wetlands may retain the phosphorous from get-
ting into the lakes [31]. Other potentially interesting CSI patterns
include the relationship between deciduous forest area, TN, and
total nitrogen deposition of the region as well as the relationship
between local cropland areas, Chla, and runoft.

7 CONCLUSION

This paper examines the problem of modeling nested spatial data
using existing MLM and MTL approaches. We investigated their
strengths and limitations, and showed the equivalence of their for-
mulations under a mild condition. We also propose a novel frame-
work called MTML_imputation to disaggregate the coarse-level
group features and showed that the disaggregated values can be
used to improve prediction accuracy and identification of cross-
scale interactions in the data. The future works of this paper will be
mainly focused on two aspects: a). to extend the proposed frame-
work from two-level to multi-level; and b) to extend the proposed
framework from assuming mean aggregation of the regional feature
values to other types of aggregation functions (e.g., max or min).

8 ACKNOWLEDGEMENT

This research was supported in part by the NSF under grant EF-
1638679, 11S-1615612 and IIS-1615597. Any use of trade, firm or
product names is for descriptive purposes only and does not imply
endorsement by the U.S. Government.

REFERENCES

[1] Herman Aguinis, Ryan K Gottfredson, and Steven Andrew Culpepper. 2013.
Best-practice recommendations for estimating cross-level interaction effects
using multilevel modeling. Journal of Management, 39, 6, 1490-1528.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. 2007. Multi-
task feature learning. In Advances in NIPS, 41-48.

Amir Beck and Marc Teboulle. 2009. A fast iterative shrinkage-thresholding

algorithm for linear inverse problems. SIAM J. on Imag. Sc., 2, 1, 183-202.

[4]  RDarrell Bock. 2014. Multilevel analysis of educational data. Elsevier.
[5]  Rich Caruana. 1998. Multitask learning. In Learning to learn. Springer, 95-133.
[6] Jianhui Chen, Jiayu Zhou, and Jieping Ye. 2011. Integrating low-rank and

group-sparse structures for robust multi-task learning. In Proc of KDD. ACM,
42-50.

Avital Cnaan, Nan M Laird, and Peter Slasor. 1997. Using the general linear
mixed model to analyse unbalanced repeated measures and longitudinal data.
Statistics in medicine, 16, 20, 2349-2380.

1793

(8]

[9]

(10]

[16]

[17]

(18]

[20]

[21]

[22]

(30]

[31]

(32]

(33]

(34]

KDD 2018, August 19-23, 2018, London, United Kingdom

C Emi Fergus, Patricia A Soranno, Kendra Spence Cheruvelil, and Mary T Bremi-
gan. 2011. Multiscale landscape and wetland drivers of lake total phosphorus
and water color. Limnology and Oceanography, 56, 6, 2127-2146.

Donald E Farrar and Robert R Glauber. 1967. Multicollinearity in regression
analysis: the problem revisited. The Review of Economic and Statistics, 92—107.
Kelly-Ann Dixon Hamil, Basil V. Iannone III, Whitney K. Huang, Songlin Fei,
and Hao Zhang. 2016. Cross-scale contradictions in ecological relationships.
Landscape Ecology, 31, 1, 7-18.

Joop J Hox, Mirjam Moerbeek, and Rens van de Schoot. 2010. Multilevel analysis:
Techniques and applications. Routledge.

Michael G Kenward and James H Roger. 1997. Small sample inference for fixed
effects from restricted maximum likelihood. Biometrics, 983-997.

Jeffery T. Leek and Roger D. Peng. 2015. What is the question? Science, 347,
6228, 1314-1315.

Kaixiang Lin, Jianpeng Xu, Inci M Baytas, Shuiwang Ji, and Jiayu Zhou. 2016.
Multi-task feature interaction learning. In Proc. of KDD, 1735-1744.

Jun Liu, Shuiwang Ji, and Jieping Ye. 2009. Multi-task feature learning via
efficient 1 2, 1-norm minimization. In Proc. of UAL 339-348.

Aurelie C Lozano and Grzegorz Swirszcz. 2012. Multi-level lasso for sparse
multi-task regression. In Proc of ICML, 595-602.

Cora JM Maas and Joop J Hox. 2005. Sufficient sample sizes for multilevel
modeling. Methodology: European Journal of Research Methods for the Behavioral
and Social Sciences, 1, 3, 86.

John E Mathieu, Herman Aguinis, Steven A Culpepper, and Gilad Chen. 2012.
Understanding and estimating the power to detect cross-level interaction effects
in multilevel modeling. Journal of Applied Psychology, 97, 5, 951.

Yurii Nesterov. 2007. Gradient methods for minimizing composite objective
function. CORE Discussion Papers 2007076. Universite catholique de Louvain,
Center for Operations Research and Econometrics (CORE).

Feiping Nie, Heng Huang, Xiao Cai, and Chris H Ding. 2010. Efficient and
robust feature selection via joint 12, 1-norms minimization. In Advances in
Neural Information Processing Systems, 1813-1821.

D.P.C. Peters, R.A. Pielke, B.T. Bestelmeyer, C.D. Allen, S. Munson-McGee, and
K.M. Havstad. 2004. Cross-scale interactions, nonlinearities, and forecasting
catastrophic events. PNAS, 101, 42, 15130-15135.

Patricia A Soranno et al. 2015. Building a multi-scaled geospatial temporal
ecology database from disparate data sources: fostering open science and data
reuse. GigaScience, 4, 1, 28.

Patricia A Soranno et al. 2014. Cross-scale interactions: quantifying multi-
scaled cause—effect relationships in macrosystems. Frontiers in Ecology and the
Environment, 12, 1, 65-73.

W. R. Tobler. 1970. A computer movie simulating urban growth in the detroit
region. Economic Geography, 46, 234-240.

Paul Tseng. 2001. Convergence of a block coordinate descent method for non-
differentiable minimization. J. of Optim. Theory and Appl., 109, 3, 475-494.

Brandon K Vaughn. 2008. Data analysis using regression and multilevel/hierarchical

models. Journal of Educational Measurement, 45, 1, 94-97.

Tyler Wagner, C Emi Fergus, Craig A Stow, Kendra S Cheruvelil, and Patricia
A Soranno. 2016. The statistical power to detect cross-scale interactions at
macroscales. Ecosphere, 7, 7.

Michael R. Willig, Christopher P. Bloch, Nicholas Brokaw, Christopher Higgins,
Jill Thompson, and Craig R. Zimmermann. 2007. Cross-scale responses of
biodiversity to hurricane and anthropogenic disturbance in a tropical forest.
Ecosystems, 10, 824-838.

Jianpeng Xu, Pang-Ning Tan, Lifeng Luo, and Jiayu Zhou. 2016. Gspartan: a
geospatio-temporal multi-task learning framework for multi-location predic-
tion. In Proc of SDM, 657-665.

Ming Yuan and Yi Lin. 2006. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68, 1, 49-67.

Shuai Yuan, Jiayu Zhou, Pang-Ning Tan, Emi Fergus, Tyler Wagner, and Pa-
tricia Soranno. 2017. Multi-level multi-task learning for modeling cross-scale
interactions in nested geospatial data. In Proc. of ICDM, 1153-1158.

Jiayu Zhou, Jianhui Chen, and Jieping Ye. 2011. Clustered multi-task learn-
ing via alternating structure optimization. In Advances in Neural Information
Processing Systems, 702-710.

Jiayu Zhou, Jianhui Chen, and Jieping Ye. 2011. Malsar: multi-task learning via
structural regularization. Arizona State University, 21.

Jiayu Zhou, Lei Yuan, Jun Liu, and Jieping Ye. 2011. A multi-task learning
formulation for predicting disease progression. In Proc of KDD. ACM, 814-822.



	Abstract
	1 Introduction
	2 Related work
	3 Background
	3.1 Problem Statement
	3.2 MLM for Nested Data
	3.3 MTL for Nested Data

	4 Relationship between MLM and MTL
	4.1 Two-Stage MLM
	4.2 Two-Stage MTL
	4.3 On the Equivalence between MLM and MTL

	5 Disaggregation of Group-Level Feature Values
	5.1 Feature Disaggregation
	5.2 Proposed Formulation
	5.3 Optimization
	5.4 Learning Framework

	6 Experimental Evaluation
	6.1 Datasets
	6.2 Experimental Setup
	6.3 Results on Synthetic Data
	6.4 Results on Lake Ecology Data

	7 Conclusion
	8 Acknowledgement



