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Abstract—Missing data problem often poses a significant chal-
lenge as it may introduce uncertainties into the data analysis.
Recent advances in matrix completion have shown competitive
imputation performance when applied to many real-world do-
mains. However, there are two major limitations when applying
matrix completion methods to spatial data. First, they make a
strong assumption that the entries are missing-at-random, which
may not hold for spatial data. Second, they may not effectively
utilize the underlying spatial structure of the data. To address
these limitations, this paper presents a novel clustered adversarial
matrix factorization method to explore and exploit the underlying
cluster structure of the spatial data in order to facilitate effective
imputation. The proposed method utilizes an adversarial network
to learn the joint probability distribution of the variables and
improve the imputation performance for the missing entries that
are not randomly sampled.

Index Terms—Missing value imputation, deep adversarial net-
work, spatial data

I. INTRODUCTION

Many real-world applications are prone to the missing data

problem. For spatial data, the missing values may arise due

to various reasons. For example, missing values are common

in forest inventory and monitoring databases due to the pro-

hibitive cost needed to collect data for large land areas [3].

The past decade has witnessed extensive research on data

imputation, from simple statistical approaches to complicated

model-based ones. The model-based approaches such as low-

rank matrix completion have brought huge success to many

challenging applications such as recommender systems [9],

image reconstruction [19], etc. These methods leverage the

low-rank property of data matrices to bridge the missing

values and observed ones in a matrix. Matrix factorization is

one of the most commonly used low-rank matrix completion

methods. It factorizes the input matrix into a product of

two lower ranked matrices (latent factors) based on their

observed entries. By minimizing the reconstruction error of

the observed part, the two latent factors are learned, which

are then combined to estimate the missing entries [18]. Other

examples of low-rank matrix completion approaches include

the singular value thresholding [1], which iteratively applies

truncated SVD to fill the missing values.

These matrix completion approaches, though elegantly de-

signed, have one key assumption that the entries are missing at

random [2]. However, this assumption may not hold in spatial

data, which often contain structured missing patterns. For

example, a Canadian study of adolescents finds that those with

missing household income information are less likely to reside

in high-income neighborhoods [15]. When the missing values

are not randomly sampled, minimizing the reconstruction error

of the observed part no longer guarantees the reconstruction

of the missing part.

Another limitation of classical matrix completion meth-

ods is that they do not incorporate prior knowledge of the

structures of the datasets. In many spatial studies, such prior

knowledge is especially critical to model missing values [12].

For example, freshwater lakes exhibit strong natural spatial

clustering structures, as lakes in a similar neighborhood are

likely to have similar nutrient regeneration cycles, and thus

their feature values may be similar to each other [17]. When

such existing neighborhood knowledge can be correctly iden-

tified by a matrix factorization approach, it is expected to

significantly improve the quality of the imputed values because

the clustering structure imposes a high-quality subspace on

which information is transferred among the lakes.

To address the limitations of existing imputation methods,

in this paper, we propose a clustered adversarial matrix factor-

ization framework. The proposed framework identifies a low-

dimensional subspace that is consistent with the clustering

structure of the spatial data, and thus, facilitates knowledge

transfer among data points within the same cluster. In addition,

to alleviate the challenges from structured missing data, the

framework encourages the imputed samples to have a similar

probability distribution as that of the complete (non-missing)

data. The benefit of this distribution alignment is that it

relates the observed features to the missing features of each

incomplete sample through the joint probability distribution

of their combined features. If the imputed values deviate

significantly from their true values, the joint probability distri-

bution of such imputed sample is likely to be small. However,

since the true distribution of the data is often unknown, the

proposed framework adopts an adversarial learning strategy by

introducing a distribution detector to discriminate between the

complete samples from imputed samples. We conduct exten-

sive experiments on both synthetic and real-world datasets to

demonstrate the effectiveness of the proposed method.

II. RELATED WORK

Multiple low-rank matrix completion algorithms have been

proposed in the past years and showed great success in various

applications. Truncated SVD algorithm is one of the most

widely used method [10]. It iteratively applies truncated SVD

on the data matrix and reconstructs the whole matrix by

keeping a small number of singular values. Matrix factor-

ization [11], [20] is another popular method. This method





set the corresponding dij to be large, otherwise it can be set to

a smaller value. γ3 is used to control the cluster strength on V .

When γ3 is large, more samples become similar as the columns

in V become closer to each other. Imputation of one sample

will borrow information from more related samples compared

with that with small γ3. When γ3 is 0, (vi − vj) will not be

constrained for all i’s and j’s. This reduces the formulation to

standard matrix factorization. From a projection perspective,

in (2), U serves as a mapping factor to bridge X and V . V

is the sample latent factor to capture the sample difference.

We project X to V and add cluster constraint on V since this

factor is the latent sample factor that is not affected by the

feature factor.

We would like to point out the difference between the

cluster constraint used in this paper and the constraint in

convex clustering [7] and network lasso [6]. For convex

clustering and network lasso, the cluster constraint is sum of

lp norms. If used in our case, the cluster constraint is given by∑
i<j dij∥vi−vj∥2. This constraint leads to the sample latent

factor for points in the same cluster to be identical. Since

the imputed values are given by X = UV , this means the

missing features for all points in the same cluster are the same.

However, in spatial data, the points in the same cluster are

similar but not identical. Therefore, we use
∑

i<j dij∥vi−vj∥
2
2

instead to encourage the points in same cluster to be similar

but not necessarily identical.

Distribution Alignment Component: We propose to use an

adversarial strategy to encourage the imputed samples to have

a similar probability distribution as that of the complete data.

To achieve this goal, we use a discriminator to distinguish

the distribution differences between the imputed and complete

samples.:

ld = Ex∼pdata(x)[logD(x)] + Exr∼pr(xr)[log(1−D(xr))]
(3)

where pr(xr) represents the probability distribution of the

imputed samples, which will be estimated from the recon-

structed matrix Xr. xr represents a data point sampled from

pr(xr). D denotes a discriminator, which in this paper, is

implemented using a fully connected deep neural network

with a SOFTMAX output layer. The discriminator will output a

probability whether the input sample comes from the complete

data or the imputed data distribution. Eq. (3) is a negative

cross-entropy loss function. By maximizing ld with respect to

D, the discriminator will be trained to distinguish the complete

samples from the imputed ones.

Proposed Formulation. By combining the two aforemen-

tioned components, we arrive at the following min-max prob-

lem:

min
U,V

max
D

1

2
∥M ⊙ (X − UV )∥2F (4)

+ γ1∥U∥2F + γ2∥V ∥2F + γ3
∑

i<j
dij∥vi − vj∥

2
2

+ λ(Ex∼pdata(x)[logD(x)] + Exr∼pr(xr)[log(1−D(xr))]),

where λ is a parameter to balance the tradeoff between the

reconstruction and distribution alignment components of the

framework. When minimizing Eq. (4) with respect to U and V ,

the proposed formulation not only seeks a small reconstruction

error on the observed portion of X , but also encourages the

alignment between the probability distribution of imputed sam-

ples and that of complete samples, through the discriminator.

This min-max process is similar to playing an adversarial

game. On one hand, the discriminator tries to distinguish the

differences in the probability distributions, whereas imputation

process tries to mimic the distribution of complete samples

to trick the discriminator. When the algorithm converges, the

distribution of Xr, i.e., pr(xr), will be close to the distribution

of complete data, i.e., pdata(x), given that the imputed samples

are able to fool a very strong discriminator. Note that the

maximization part and minimization part are connected by the

imputed samples. In the minimization part, we minimize the

reconstruction error of completed samples by solving U and V ,

which are then used to impute the missing values. Meanwhile,

the minimization part encourages the imputed samples to trick

the discriminator. In the maximization part, the discriminator

updates itself by distinguishing the complete samples and

the imputed samples obtained from the minimization part.

We show the overview of our proposed clustered adversarial

matrix factorization in Fig. 1. In this overview, we have 3
clusters marked by different colors.

Optimization. For the last two terms in Eq. (4), we do not

know the exact forms since both the probability distributions

of complete data and that of the imputed data are unknown

in practice. In this case, we use the sample expectations to

replace the exact expectation. At each optimization turn, we

randomly sample k samples from Xn and Xr and calcu-

late Ex∼pdata(x)[logD(x)] and Exr∼pr(xr)[log(1 − D(xr))]
approximately as:

Ex∼pdata(x)[logD(x)] ≈
1

k

∑rk

i=r1
logD(Xi

n), (5)

Exr∼pr(xr)[log(1−D(xr)] ≈
1

k

∑qk

i=q1
(1− logD(Xi

r)),

(6)

where r1 and rk index the first sample and last sample of

the k samples sampled from Xn. q1 and qk index the first

sample and last sample of the k samples sampled from Xr.

Xi
n, Xi

r denote the i-th sample of Xn and Xr, respectively.

The min-max problem in Eq. (4) can thus be solved by itera-

tively optimizing a minimization problem and a maximization

problem as follows:

max
D

1

k

∑rk

i=r1
logD(Xi

n) +
1

k

∑qk

i=q1
(1− logD(Xi

r))

(P:MAX)

min
U,V

∥M ⊙ (X − UV )∥2F + γ1∥U∥2F + γ2∥V ∥2F (P:MIN)

+ γ3
∑

i<j
dij∥ui − uj∥

2
2 +

λ

k

∑qk

i=q1
(1− logD(Xi

r)).

The complete procedure is summarized in Algorithm 1.

How to train the network. Similar to existing adversarial

frameworks, the training may face convergence challenges. To

make it converge, we adopted some training strategies. We first

pre-train the reconstruction part by solving Eq. (2). Then, we



use the pre-trained reconstruction model to initialize U and

V , and optimize the whole network. The reconstruction error

is quite low after the pre-training procedure. The procedure in

Algorithm 1 mainly focuses on adjusting the probability distri-

bution of Xr which makes it easier to train the entire network.

Also, to make the discriminator strong enough, we pre-train

the discriminator as well. After pre-train the discriminator, the

network starts with a relative good discriminator compared

with a randomly initialized discriminator. When facing such

a strong discriminator, the reconstruction component is forced

to learn from it and trick it. During the training, we also

found that the setting t2 > t1 benefits the convergence of the

adversarial training. The balance between discriminator and

the reconstruction part can be observed from the score calcu-

lated as the average probability of samples being classified as

completed samples in discriminator. If the two components are

balanced, the scores for completed samples and the imputed

samples should converge to 0.5. After the training step has

been completed, if the score of completed sample is larger

than 0.5, that means the reconstruction part is too weak. We

can increase λ or t2 until the two components are balanced.

Algorithm 1: The algorithm for solving the proposed

clustered adversarial matrix factorization

for number of training iterations do

for t1 steps do

Sample k samples {Xr1
n , Xr2

n , ...Xrk
n } from Xn

Sample k samples {Xq1
r , Xq2

r , ...Xqk
r } from Xr

Update discriminator by Eq. (P:MAX)

end for

for t2 steps do

Sample k samples {Xq1
r , Xq2

r , ...Xqk
r } from Xr

Update reconstruction component by Eq. (P:MIN)

end for

end for

IV. EXPERIMENT

In this section, we evaluate the proposed method on several

synthetic datasets, LAGOS dataset [17], and other benchmark

spatial datasets. The methods we compared in the experiments

are mean imputation (Mean), KNN [4], truncated SVD (SVD)

[1], Low-rank matrix factorization (MF) [18], adversarial

matrix factorization (AMF), which uses matrix factorization

with the distribution alignment component, clustered matrix

factorization (CMF), which uses matrix factorization with the

cluster constraint, and clustered adversarial matrix factoriza-

tion (CAMF), which uses matrix factorization with cluster

constraint and distribution alignment component.

A. Synthetic data experiments

1) Setting 1: In the first experiment, we compare the

performance of multiple methods under different missing rates.

Data synthesis and missing value generation. We create

3 clusters by sampling V from 3 Gaussian distributions.

Each cluster has 500 samples. All entries of U are randomly

sampled from 0.1×N (0, 1). The rank for X is 25. The feature

dimension is 50. To create structured missing values, we first

partition the data into two equal parts. Then, we pick one part

and let the entries whose values are within certain range to be

missing (this range is determined by the missing rate). Detail

data synthesis process can be found in the Supplementary

Materials 1.

Parameters setting. γ1, γ2 and γ3 are tuned over {1e−4, 1e−
3, 1e − 2, 1e − 1, 1}. λ is tuned over {1e-2, 1e-1, 1, 5, 10,

15, 20}. For the discriminator, the nonlinear layers number

are tuned over {2, 3, 4, 5}. The neuron number for all the

nonlinear layers are set to be the same and tuned over {128,

256, 512}. The activation function we use is ReLU. Detail

parameter settings including the similarity matrix setting can

be found in the Supplementary Materials 1.

Imputation Performance. We repeat the whole process in-

cluding the data synthesis part and missing value creation

part for five times and perform experiments on those datasets

to obtain the imputation RMSE. The results are shown in

TABLE I. From the table, we see MF performs the best

among all the classical matrix completion methods. For all

the different missing rates, CMF outperforms MF, especially

when missing rates are high. When adding the adversarial

process to whether MF or CMF, the performance is better

than those without the adversarial process, which shows that

aligning the probability distribution could help the estimation

of structured missing values. Also, we see CAMF works better

than AMF. Therefore, when the data have cluster information,

adding cluster information helps imputation.

Distribution Study. To show how well each method can

learn the distribution of the data, we visualize the imputed

samples obtained by each method, and compare them with

the ground truth. We set the missing rate to be 0.7. We

apply PCA on the imputed samples and visualize them on 2-d

figures using the first two principal components. The results

are shown in Fig. 2. In those figures, different colors represent

different spatial clusters. From these figures, we see for MF,

two clusters are mixed and can not be separated. After adding

distribution alignment, it is much better. Three clusters can

be well separated. Compared (d) with (b), we see that the

cluster information helps a lot if the data has strong clustering

structure. For CMF, we see the yellow cluster has smaller

variance compared with the other two. But the ground truth

is that three clusters should have the same variance. The

probability distribution for the results of CAMF is almost

identical to the ground truth.

2) Setting 2: For the second experiment, we compare the

performance of different methods under different sample size.

Data synthesis and missing value generation. In this setting,

we synthesize the data with more than one latent factors and

add some nonlinearity into the data to test if we can estimate

the missing values only by linear clustered adversarial matrix

factorization. The data are synthesized by three factors U1 ∈
R

d×r1 , U2 ∈ R
r1×r2 , V ∈ R

r2×n as X = f(U1f(U2f(V ))),

1https://github.com/illidanlab/CAMF-MissingValueImputation
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(a) Ground truth (b)MF AMF (d) CMF (e) CAMF

Fig. 2. Distribution of imputed samples. The proposed clustered adversarial matrix factorization outperforms baselines. Clustered matrix factorization is also
decent, but the variance of the yellow cluster is smaller than expected.

Missing
rate

0.9 0.8 0.7 0.6

Mean 0.415± 0.012 0.432± 0.022 0.444± 0.025 0.452± 0.028

SVD 0.457± 0.156 0.338± 0.159 0.215± 0.092 0.150± 0.039

KNN 0.716± 0.039 0.607± 0.065 0.540± 0.049 0.469± 0.044

MF 0.443± 0.162 0.325± 0.155 0.184± 0.108 0.099± 0.051

AMF 0.152± 0.023 0.117± 0.016 0.090± 0.013 0.075± 0.017

CMF 0.082± 0.007 0.072± 0.005 0.063± 0.004 0.050± 0.005

CAMF 0.071± 0.006 0.065± 0.004 0.059± 0.005 0.046± 0.005

TABLE I
IMPUTATION RMSE UNDER DIFFERENT MISSING RATE.

Sample
# per

cluster
500 1000 1500 2000

Mean 0.291± 0.025 0.287± 0.028 0.318± 0.015 0.313± 0.038

SVD 0.117± 0.013 0.117± 0.018 0.133± 0.012 0.132± 0.023

KNN 0.044± 0.010 0.044± 0.011 0.059± 0.003 0.052± 0.018

MF 0.045± 0.010 0.048± 0.012 0.061± 0.006 0.055± 0.016

AMF 0.044± 0.009 0.044± 0.009 0.054± 0.004 0.050± 0.011

CMF 0.035± 0.007 0.034± 0.006 0.040± 0.0020 0.036± 0.007

CAMF 0.034± 0.007 0.032± 0.005 0.035± 0.002 0.031± 0.006

DMF 0.060± 0.003 0.047± 0.009 0.055± 0.003 0.057± 0.016

DCMF 0.030± 0.006 0.032± 0.006 0.037± 0.002 0.033± 0.008

DCAMF 0.030± 0.006 0.029± 0.005 0.034± 0.002 0.031± 0.006

TABLE II
IMPUTATION RMSE UNDER DIFFERENT SAMPLE SIZES.

where we choose f(x) = tanh(x) as an example and r1 =
20, r2 = 40, d = 80. The column of V are sampled as the same

way as the Setting 1. All entries of U1 and U2 are randomly

sampled from 0.1 × N (0, 1). The missing values are created

the same way with the Setting 1.

Imputation Performance. Except for the methods we com-

pared in the Setting 1, we add another three baselines: deep

matrix factorization (DMF), deep clustered matrix factoriza-

tion (DCMF) and deep clustered adversarial matrix factoriza-

tion (DCAMF). The first one is to estimate the missing values

by minimizing 1
2∥M⊙(X−f(U1f(U2f(V )))∥22 with the same

constraints as matrix factorization. DCMF is the method to

use deep matrix factorization with cluster constraint on V .

DCAMF is to add distribution alignment to deep clustered

matrix factorization to align the probability distribution of the

data. The results are shown in TABLE II. From the table, we

see a similar pattern as the results of the first experiment, i.e.,

cluster helps imputation and adding the distribution alignment

improves the performance. We also see that when the sample

size is 500 per cluster, adding adversarial network does

not help a lot. That is because when the data’s probability

distribution is not simple, we need enough data samples to

learn it. We also see when the sample size is 1000, CAMF’s

performance is much lower than DCAMF, which means with

this sample size, provide exact latent factors information of

X helps. However, when we increase the sample size to 1500

Method KNN SVD MF

RMSE 0.2296± 0.02000 0.1042± 0.0129 0.0623± 0.0085

Method ADF CMF CAMF

RMSE 0.0631± 0.0093 0.0378± 0.0047 0.0375± 0.0045

TABLE III
IMPUTATION RMSE OF DIFFERENT METHODS WHEN THE MISSING

ENTRIES ARE RANDOMLY SAMPLED.

and 2000, we see CAMF works almost as well as DCMAF.

From this, we conclude, if the sample size is large enough, it

is sufficient to estimate the missing values by linear CAMF

even if the data have complicated structure.

3) Setting 3: In the third setting, we show the results when

the data is random missing. The data are synthesized the

same way with that of the Setting 1 except that the missing

entries are randomly sampled. The missing rate we use is

0.6. The results are shown in TABLE III. From the table,

we see that when the missing values are randomly sampled,

cluster constraint still helps because the data have clustering

structure. However, distribution alignment does not improve

the performance, since when the missing values are randomly

sampled, minimizing the reconstruction error of the observed

part is equivalent to minimizing the reconstruction error of the

missing part. Therefore, we do not need to add the distribution

alignment to learn the probability distribution.

B. Case study: LAGOS dataset

In this sub-section, we present the results on the LAGOS

dataset [17]. This dataset describes the features of lakes in

north-east of United States. It has in total 2419 samples

and 53 features including lakes local features like chemical

measurements, longitude, latitude, and lakes regional features,

i.e., climate, land use land cover. Since this dataset contains

longitude and latitude of each lake, we use them to calculate

the dij in the same way with the synthetic data experiments.

The missing rate is set to be 0.7, and the missing values are

created the same way as the first synthetic data experiment.

The results are shown in TABLE IV. We see that CAMF

has the best performance. Cluster information and distribu-

tion information help a lot on the imputation performance.

To compare CMF and CAMF, we also provide the cluster

structure each method captures. To illustrate the difference,

we applied hierarchical clustering with complete linkage on

the V learned. We shows the results of 20 clusters Fig. 3.

In the figures, each color represents a cluster. We see in the

figures, most clusters are the same. However, for CMF, we see

that the clusters in Ohio and Indiana are mixed. For CAMF,




