Imputing Structured Missing Values in Spatial Data
with Clustered Adversarial Matrix Factorization

Qi Wang!, Pang-Ning Tan', Jiayu Zhou'
!Computer Science and Engineering, Michigan State University, East Lansing, MI 48824.

Abstract—Missing data problem often poses a significant chal-
lenge as it may introduce uncertainties into the data analysis.
Recent advances in matrix completion have shown competitive
imputation performance when applied to many real-world do-
mains. However, there are two major limitations when applying
matrix completion methods to spatial data. First, they make a
strong assumption that the entries are missing-at-random, which
may not hold for spatial data. Second, they may not effectively
utilize the underlying spatial structure of the data. To address
these limitations, this paper presents a novel clustered adversarial
matrix factorization method to explore and exploit the underlying
cluster structure of the spatial data in order to facilitate effective
imputation. The proposed method utilizes an adversarial network
to learn the joint probability distribution of the variables and
improve the imputation performance for the missing entries that
are not randomly sampled.

Index Terms—Missing value imputation, deep adversarial net-
work, spatial data

I. INTRODUCTION

Many real-world applications are prone to the missing data
problem. For spatial data, the missing values may arise due
to various reasons. For example, missing values are common
in forest inventory and monitoring databases due to the pro-
hibitive cost needed to collect data for large land areas [3].
The past decade has witnessed extensive research on data
imputation, from simple statistical approaches to complicated
model-based ones. The model-based approaches such as low-
rank matrix completion have brought huge success to many
challenging applications such as recommender systems [9],
image reconstruction [19], etc. These methods leverage the
low-rank property of data matrices to bridge the missing
values and observed ones in a matrix. Matrix factorization is
one of the most commonly used low-rank matrix completion
methods. It factorizes the input matrix into a product of
two lower ranked matrices (latent factors) based on their
observed entries. By minimizing the reconstruction error of
the observed part, the two latent factors are learned, which
are then combined to estimate the missing entries [18]. Other
examples of low-rank matrix completion approaches include
the singular value thresholding [1], which iteratively applies
truncated SVD to fill the missing values.

These matrix completion approaches, though elegantly de-
signed, have one key assumption that the entries are missing at
random [2]. However, this assumption may not hold in spatial
data, which often contain structured missing patterns. For
example, a Canadian study of adolescents finds that those with
missing household income information are less likely to reside
in high-income neighborhoods [15]. When the missing values

are not randomly sampled, minimizing the reconstruction error
of the observed part no longer guarantees the reconstruction
of the missing part.

Another limitation of classical matrix completion meth-
ods is that they do not incorporate prior knowledge of the
structures of the datasets. In many spatial studies, such prior
knowledge is especially critical to model missing values [12].
For example, freshwater lakes exhibit strong natural spatial
clustering structures, as lakes in a similar neighborhood are
likely to have similar nutrient regeneration cycles, and thus
their feature values may be similar to each other [17]. When
such existing neighborhood knowledge can be correctly iden-
tified by a matrix factorization approach, it is expected to
significantly improve the quality of the imputed values because
the clustering structure imposes a high-quality subspace on
which information is transferred among the lakes.

To address the limitations of existing imputation methods,
in this paper, we propose a clustered adversarial matrix factor-
ization framework. The proposed framework identifies a low-
dimensional subspace that is consistent with the clustering
structure of the spatial data, and thus, facilitates knowledge
transfer among data points within the same cluster. In addition,
to alleviate the challenges from structured missing data, the
framework encourages the imputed samples to have a similar
probability distribution as that of the complete (non-missing)
data. The benefit of this distribution alignment is that it
relates the observed features to the missing features of each
incomplete sample through the joint probability distribution
of their combined features. If the imputed values deviate
significantly from their true values, the joint probability distri-
bution of such imputed sample is likely to be small. However,
since the true distribution of the data is often unknown, the
proposed framework adopts an adversarial learning strategy by
introducing a distribution detector to discriminate between the
complete samples from imputed samples. We conduct exten-
sive experiments on both synthetic and real-world datasets to
demonstrate the effectiveness of the proposed method.

II. RELATED WORK

Multiple low-rank matrix completion algorithms have been
proposed in the past years and showed great success in various
applications. Truncated SVD algorithm is one of the most
widely used method [10]. It iteratively applies truncated SVD
on the data matrix and reconstructs the whole matrix by
keeping a small number of singular values. Matrix factor-
ization [11], [20] is another popular method. This method



factorizes the matrix into two smaller matrices (latent factors)
to guarantee the low-rank structure of the matrix and the
reconstruction error of the observed part is minimized. The
missing entries are filled based on the entries in the product
of the two latent matrices. There are also simpler matrix
completion methods that do not require a low-rank assumption.
For example, mean imputation uses mean values to fill the
missing entries. KNN imputation [13] imputes missing values
by k nearest neighbors. While all the mentioned methods work
well on some dataset, their underlying assumption is that the
missing entries occur randomly in the data [2].

Generative adversarial network (GAN) has been widely
used for image generation [5], [16]. In [8], [14], the authors
proposed to use the idea from GAN to infer arbitrary missing
regions of an image based on the image semantics. While
this method is quite effective to address the semantic image
inpainting problems. it considers each sample independently
when inpainting them. In contrast, spatial data exhibits strong
spatial dependencies, which must be taken into account to
improve imputation performance.

III. METHODOLOGY
A. Low-rank matrix completion

Given a matrix with missing values, matrix completion aims
to estimate the missing entries of the matrix by exploiting the
latent structures in its observed entries. One commonly used
latent structure is the low-rank structure of the matrix, as it
suggests a low-dimensional subspace to account for the redun-
dancy in the matrix. Given a matrix with missing values, the
low-rank matrix completion approaches learn a decomposition
of the matrix to constrain a desired upper bound of its rank.
There are convex and non-convex approaches to formulating
the low-rank matrix completion problem. Convex approaches
based on trace norm can guarantee a global optimal with nice
theoretical properties, whereas non-convex approaches such
as matrix factorization conduct a local search procedure and
provide much more flexibility and efficiency. Given a matrix
X € R¥"™ with n represents sample size and d represents
feature dimension, matrix factorization approximates X by
UV with U € R™" and V € R"™ ", where < min(n,d). U
and V can be solved by minimizing the reconstruction error
of the observed entries as follows:

1
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where || - | denotes the Frobenius norm. S; and S, are
constraints on U and V' to specify the feasible regions of the
two factors. ® denotes Hadamard product. M is an indicator
matrix that has the same size as X. The ¢-th row and j-th
column of M is defined as: M;; = 1 if X;; is observed,
and O otherwise. A locally optimal solution of Eq. (1) can
be obtained by a block coordinate descent procedure. Denote
the local solution as U* and V*. Then, U* and V* can be
used to reconstruct X and estimate the missing values as
X, =XOM+ (U*'V*)® (1 — M), where X, denotes the
reconstructed matrix (imputed samples). Matrix factorization
is widely used in recommender systems to estimate the rat-
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Fig. 1. Overview of clustered adversarial matrix factorization. Our proposed

method utilizes the spatial clustering information and the probability distri-
bution of complete data to improve the imputation performance. In X, Xp,
and V/, each color represents one spatial cluster.

ings of users on new items based on their ratings on other
items [11].

When applying this method to spatial datasets, matrix
factorization does not incorporate prior knowledge on the
spatial clustering structure in the datasets. However, such prior
knowledge usually helps in shaping the solution space and thus
leads to improved convergence to high-quality solutions. Also,
for the structured missing value problem, classical matrix
completion may deliver poor imputation performance, since
the missing values are not random..

B. Clustered adversarial matrix factorization

To address the two limitations of matrix factorization men-
tioned in the last subsection, we propose a novel clustered
adversarial matrix factorization framework. In our framework,
we jointly model the clustering pattern of the entire dataset and
align the probability distribution of the imputed samples to be
close to the distribution of the complete samples, which is
an approximation of the true data distribution.. Let X be our
data matrix where each column is a data point. Some of the
data points have complete feature values, while others have
structured missing values. We denote the complete part as X,
and the submatrix of data points with missing values as X,,,
respectively. We assume that all the samples of X are i.i.d.
and each data point is sampled from a probability distribution
Ddata (). The proposed formulation contains two components:
reconstruction and distribution alignment.

Reconstruction Component. In order to utilize the low-rank
property and the spatial clustering structure of the data, we
propose to use a o clustering term in matrix factorization:

1
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where v; denote the i-th column of V, and ~i,72,7s
are regularization parameters. In this formula, the second
and third terms are used to control model complexity and
make the model robust against overfitting. The last term
V3 D iey dijllvi — vj |2 is used to transfer knowledge between
spatial clusters. d;; is a customizable similarity value between
the ¢-th and the j-th sample, which can be used to inject prior
knowledge. When d;; is large, there is a high chance that v;
is close to v; and are in the same cluster. For example, if we
know two samples are likely to be in the same cluster, we can



set the corresponding d;; to be large, otherwise it can be set to
a smaller value. 73 is used to control the cluster strength on V.
When 73 is large, more samples become similar as the columns
in V become closer to each other. Imputation of one sample
will borrow information from more related samples compared
with that with small v3. When 3 is 0, (v; — v;) will not be
constrained for all ¢’s and j’s. This reduces the formulation to
standard matrix factorization. From a projection perspective,
in (2), U serves as a mapping factor to bridge X and V. V
is the sample latent factor to capture the sample difference.
We project X to V' and add cluster constraint on V' since this
factor is the latent sample factor that is not affected by the
feature factor.

We would like to point out the difference between the
cluster constraint used in this paper and the constraint in
convex clustering [7] and network lasso [6]. For convex
clustering and network lasso, the cluster constraint is sum of
I, norms. If used in our case, the cluster constraint is given by
> i< dijllvi—vj||2. This constraint leads to the sample latent
factor for points in the same cluster to be identical. Since
the imputed values are given by X = UV, this means the
missing features for all points in the same cluster are the same.
However, in spatial data, the points in the same cluster are
similar but not identical. Therefore, we use >, di;[[vi—v; |3
instead to encourage the points in same cluster to be similar
but not necessarily identical.

Distribution Alignment Component: We propose to use an
adversarial strategy to encourage the imputed samples to have
a similar probability distribution as that of the complete data.
To achieve this goal, we use a discriminator to distinguish
the distribution differences between the imputed and complete
samples.:
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3)
where p,.(x,) represents the probability distribution of the
imputed samples, which will be estimated from the recon-
structed matrix X,.. x, represents a data point sampled from
pr(z,). D denotes a discriminator, which in this paper, is
implemented using a fully connected deep neural network
with a SOFTMAX output layer. The discriminator will output a
probability whether the input sample comes from the complete
data or the imputed data distribution. Eq. (3) is a negative
cross-entropy loss function. By maximizing [; with respect to
D, the discriminator will be trained to distinguish the complete
samples from the imputed ones.

Proposed Formulation. By combining the two aforemen-

tioned components, we arrive at the following min-max prob-
lem:
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framework. When minimizing Eq. (4) with respect to U and V,
the proposed formulation not only seeks a small reconstruction
error on the observed portion of X, but also encourages the
alignment between the probability distribution of imputed sam-
ples and that of complete samples, through the discriminator.
This min-max process is similar to playing an adversarial
game. On one hand, the discriminator tries to distinguish the
differences in the probability distributions, whereas imputation
process tries to mimic the distribution of complete samples
to trick the discriminator. When the algorithm converges, the
distribution of X, i.e., p,.(x, ), will be close to the distribution
of complete data, i.e., pgqta (2), given that the imputed samples
are able to fool a very strong discriminator. Note that the
maximization part and minimization part are connected by the
imputed samples. In the minimization part, we minimize the
reconstruction error of completed samples by solving U and V,
which are then used to impute the missing values. Meanwhile,
the minimization part encourages the imputed samples to trick
the discriminator. In the maximization part, the discriminator
updates itself by distinguishing the complete samples and
the imputed samples obtained from the minimization part.
We show the overview of our proposed clustered adversarial
matrix factorization in Fig. 1. In this overview, we have 3
clusters marked by different colors.

Optimization. For the last two terms in Eq. (4), we do not
know the exact forms since both the probability distributions
of complete data and that of the imputed data are unknown
in practice. In this case, we use the sample expectations to
replace the exact expectation. At each optimization turn, we
randomly sample k£ samples from X, and X, and calcu-
late Eyp,.,.(2)log D(z)] and E, .} (2, [log(1 — D())]
approximately as:

Eimpaa(z)log D(x)] ~ log D(X}), (5)

Tk
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where r; and 7 index the first sample and last sample of
the k£ samples sampled from X,,. ¢; and g index the first
sample and last sample of the k samples sampled from X,.
X!, X! denote the i-th sample of X,, and X,., respectively.
The min-max problem in Eq. (4) can thus be solved by itera-
tively optimizing a minimization problem and a maximization
problem as follows:

E$7'NPT(I7~) [log(1 — D(z.)

max-- Zz " log D(X?) kZ (1 —log D(X?))
(P:MAX)
minlM © (X —UV)[Z + 0013 +lVIE @M
+732i dijllui — 3 + kz (1 —log D(X7)).

The complete procedure is summarized in Algonthm 1.
How to train the network. Similar to existing adversarial

+ MEznpyara(z) 108 D(@)] + Eg wp, (2, [log(1 — D(z))]), frameworks, the training may face convergence challenges. To

where \ is a parameter to balance the tradeoff between the
reconstruction and distribution alignment components of the

make it converge, we adopted some training strategies. We first
pre-train the reconstruction part by solving Eq. (2). Then, we



use the pre-trained reconstruction model to initialize U and
V', and optimize the whole network. The reconstruction error
is quite low after the pre-training procedure. The procedure in
Algorithm 1 mainly focuses on adjusting the probability distri-
bution of X, which makes it easier to train the entire network.
Also, to make the discriminator strong enough, we pre-train
the discriminator as well. After pre-train the discriminator, the
network starts with a relative good discriminator compared
with a randomly initialized discriminator. When facing such
a strong discriminator, the reconstruction component is forced
to learn from it and trick it. During the training, we also
found that the setting to > t; benefits the convergence of the
adversarial training. The balance between discriminator and
the reconstruction part can be observed from the score calcu-
lated as the average probability of samples being classified as
completed samples in discriminator. If the two components are
balanced, the scores for completed samples and the imputed
samples should converge to 0.5. After the training step has
been completed, if the score of completed sample is larger
than 0.5, that means the reconstruction part is too weak. We
can increase A or ¢, until the two components are balanced.

Algorithm 1: The algorithm for solving the proposed
clustered adversarial matrix factorization
for number of training iterations do
for ¢, steps do
Sample k samples { X!, X2 ...X":} from X,
Sample k samples {X %, X%, ... X%} from X,
Update discriminator by Eq. (P:MAX)
end for
for t, steps do
Sample k samples { X% X% . X%} from X,
Update reconstruction component by Eq. (P:MIN)
end for
end for

IV. EXPERIMENT

In this section, we evaluate the proposed method on several
synthetic datasets, LAGOS dataset [17], and other benchmark
spatial datasets. The methods we compared in the experiments
are mean imputation (Mean), KNN [4], truncated SVD (SVD)
[1], Low-rank matrix factorization (MF) [18], adversarial
matrix factorization (AMF), which uses matrix factorization
with the distribution alignment component, clustered matrix
factorization (CMF), which uses matrix factorization with the
cluster constraint, and clustered adversarial matrix factoriza-
tion (CAMF), which uses matrix factorization with cluster
constraint and distribution alignment component.

A. Synthetic data experiments

1) Setting 1: In the first experiment, we compare the
performance of multiple methods under different missing rates.
Data synthesis and missing value generation. We create
3 clusters by sampling V' from 3 Gaussian distributions.
Each cluster has 500 samples. All entries of U are randomly

sampled from 0.1 X NV (0, 1). The rank for X is 25. The feature
dimension is 50. To create structured missing values, we first
partition the data into two equal parts. Then, we pick one part
and let the entries whose values are within certain range to be
missing (this range is determined by the missing rate). Detail
data synthesis process can be found in the Supplementary
Materials !

Parameters setting. 1, 2 and 73 are tuned over {le—4, le—
3,le — 2,1e — 1,1}. A is tuned over {le-2, le-1, 1, 5, 10,
15, 20}. For the discriminator, the nonlinear layers number
are tuned over {2, 3, 4, 5}. The neuron number for all the
nonlinear layers are set to be the same and tuned over {128,
256, 512}. The activation function we use is ReLU. Detail
parameter settings including the similarity matrix setting can
be found in the Supplementary Materials .

Imputation Performance. We repeat the whole process in-
cluding the data synthesis part and missing value creation
part for five times and perform experiments on those datasets
to obtain the imputation RMSE. The results are shown in
TABLE 1. From the table, we see MF performs the best
among all the classical matrix completion methods. For all
the different missing rates, CMF outperforms MF, especially
when missing rates are high. When adding the adversarial
process to whether MF or CMF, the performance is better
than those without the adversarial process, which shows that
aligning the probability distribution could help the estimation
of structured missing values. Also, we see CAMF works better
than AMF. Therefore, when the data have cluster information,
adding cluster information helps imputation.

Distribution Study. To show how well each method can
learn the distribution of the data, we visualize the imputed
samples obtained by each method, and compare them with
the ground truth. We set the missing rate to be 0.7. We
apply PCA on the imputed samples and visualize them on 2-d
figures using the first two principal components. The results
are shown in Fig. 2. In those figures, different colors represent
different spatial clusters. From these figures, we see for MF,
two clusters are mixed and can not be separated. After adding
distribution alignment, it is much better. Three clusters can
be well separated. Compared (d) with (b), we see that the
cluster information helps a lot if the data has strong clustering
structure. For CMF, we see the yellow cluster has smaller
variance compared with the other two. But the ground truth
is that three clusters should have the same variance. The
probability distribution for the results of CAMF is almost
identical to the ground truth.

2) Setting 2: For the second experiment, we compare the
performance of different methods under different sample size.
Data synthesis and missing value generation. In this setting,
we synthesize the data with more than one latent factors and
add some nonlinearity into the data to test if we can estimate
the missing values only by linear clustered adversarial matrix
factorization. The data are synthesized by three factors U; €
RIX"™ Uy € R"1*72 V € R™2%X" as X = f(Uf(Usf(V))),

Thttps://github.com/illidanlab/CAME-Missing ValueImputation
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Missing

rate 0.9 0.8 0.7 0.6
Mean 0.415 4+ 0.012 0.432 + 0.022 0.444 +0.025 0.452 + 0.028
SVD 0.457 +0.156 0.338 +0.159 0.215 4+ 0.092 0.150 4 0.039
KNN 0.716 + 0.039 0.607 + 0.065 0.540 + 0.049 0.469 + 0.044
MF 0.443 +0.162 0.325 +0.155 0.184 +0.108 0.099 £+ 0.051
AMF 0.152 +0.023 0.117 +0.016 0.090 +0.013 0.075 +0.017
CMF 0.082 4+ 0.007 0.072 4 0.005 0.063 & 0.004 0.050 & 0.005
CAMF 0.071 +£0.006 | 0.065+ 0.004 | 0.059 +0.005 | 0.046 &+ 0.005
TABLE I
IMPUTATION RMSE UNDER DIFFERENT MISSING RATE.

Sample

# per 500 1000 1500 2000
cluster

Mean 0.291 £+ 0.025 0.287 £+ 0.028 0.318 £ 0.015 0.313 £ 0.038
SVD 0.117 £ 0.013 0.117 £ 0.018 0.133 £ 0.012 0.132 £ 0.023
KNN 0.044 £+ 0.010 0.044 £ 0.011 0.059 £ 0.003 0.052 £+ 0.018
MF 0.045 £+ 0.010 0.048 £ 0.012 0.061 £ 0.006 0.055 £+ 0.016
AMF 0.044 £ 0.009 0.044 £ 0.009 0.054 £ 0.004 0.050 £+ 0.011
CMF 0.035 £ 0.007 0.034 £ 0.006 0.040 £ 0.0020 0.036 £+ 0.007
CAMF 0.034 £+ 0.007 0.032 £ 0.005 0.035 £ 0.002 0.031 £+ 0.006
DMF 0.060 £ 0.003 0.047 £ 0.009 0.055 £ 0.003 0.057 £ 0.016
DCMF 0.030 + 0.006 0.032 £ 0.006 0.037 £ 0.002 0.033 £ 0.008
DCAMF | 0.030 +0.006 | 0.029 +0.005 | 0.034 +0.002 | 0.031 + 0.006

TABLE II

IMPUTATION RMSE UNDER DIFFERENT SAMPLE SIZES.

where we choose f(z) = tanh(z) as an example and r; =
20,79 = 40,d = 80. The column of V" are sampled as the same
way as the Setting 1. All entries of U; and U, are randomly
sampled from 0.1 x A(0,1). The missing values are created
the same way with the Setting 1.

Imputation Performance. Except for the methods we com-
pared in the Setting 1, we add another three baselines: deep
matrix factorization (DMF), deep clustered matrix factoriza-
tion (DCMF) and deep clustered adversarial matrix factoriza-
tion (DCAMF). The first one is to estimate the missing values
by minimizing 1 ||M & (X — f(Ur f(Usf(V)))||3 with the same
constraints as matrix factorization. DCMF is the method to
use deep matrix factorization with cluster constraint on V.
DCAMF is to add distribution alignment to deep clustered
matrix factorization to align the probability distribution of the
data. The results are shown in TABLE II. From the table, we
see a similar pattern as the results of the first experiment, i.e.,
cluster helps imputation and adding the distribution alignment
improves the performance. We also see that when the sample
size is 500 per cluster, adding adversarial network does
not help a lot. That is because when the data’s probability
distribution is not simple, we need enough data samples to
learn it. We also see when the sample size is 1000, CAMF’s
performance is much lower than DCAMF, which means with
this sample size, provide exact latent factors information of
X helps. However, when we increase the sample size to 1500

Method KNN SVD MF
RMSE 0.2296 £+ 0.02000 | 0.1042 4+ 0.0129 | 0.0623 £ 0.0085
Method ADF CMF CAMF
RMSE 0.0631 +£0.0093 | 0.0378 +0.0047 | 0.0375 4 0.0045

TABLE III
IMPUTATION RMSE OF DIFFERENT METHODS WHEN THE MISSING
ENTRIES ARE RANDOMLY SAMPLED.

and 2000, we see CAMF works almost as well as DCMAF.
From this, we conclude, if the sample size is large enough, it
is sufficient to estimate the missing values by linear CAMF
even if the data have complicated structure.

3) Setting 3: In the third setting, we show the results when
the data is random missing. The data are synthesized the
same way with that of the Setting 1 except that the missing
entries are randomly sampled. The missing rate we use is
0.6. The results are shown in TABLE III. From the table,
we see that when the missing values are randomly sampled,
cluster constraint still helps because the data have clustering
structure. However, distribution alignment does not improve
the performance, since when the missing values are randomly
sampled, minimizing the reconstruction error of the observed
part is equivalent to minimizing the reconstruction error of the
missing part. Therefore, we do not need to add the distribution
alignment to learn the probability distribution.

B. Case study: LAGOS dataset

In this sub-section, we present the results on the LAGOS
dataset [17]. This dataset describes the features of lakes in
north-east of United States. It has in total 2419 samples
and 53 features including lakes local features like chemical
measurements, longitude, latitude, and lakes regional features,
i.e., climate, land use land cover. Since this dataset contains
longitude and latitude of each lake, we use them to calculate
the d;; in the same way with the synthetic data experiments.
The missing rate is set to be 0.7, and the missing values are
created the same way as the first synthetic data experiment.

The results are shown in TABLE IV. We see that CAMF
has the best performance. Cluster information and distribu-
tion information help a lot on the imputation performance.
To compare CMF and CAMF, we also provide the cluster
structure each method captures. To illustrate the difference,
we applied hierarchical clustering with complete linkage on
the V' learned. We shows the results of 20 clusters Fig. 3.
In the figures, each color represents a cluster. We see in the
figures, most clusters are the same. However, for CMF, we see
that the clusters in Ohio and Indiana are mixed. For CAME,



Method KNN SVD MF
RMSE 0.2296 £+ 0.02000 | 0.1042 £ 0.0129 | 0.0623 £ 0.0085
Method ADF CMF CAMF
RMSE 0.6169 +0.0114 | 0.5799 + 0.0145 | 0.5552 4+ 0.0147

TABLE IV
IMPUTATION RMSE OF DIFFERENT METHODS ON THE LAGOS DATASET.

(b) CAMF

(a) CMF

Fig. 3. The cluster structures of V' learned by CMF and CAMF. The number
of clusters is set to be 20. Different colors represent different clusters.

Dataset Income School G-Econ YDNFT
Mean 1.083 £ 0.010 1.104 £ 0.004 1.121 £ 0.020 1.003 £ 0.002
SVD 0.988 + 0.036 0.934 + 0.008 0.812 +0.034 0.617 + 0.0265
KNN 1.656 £+ 0.108 1.356 £ 0.027 1.839 £ 0.140 1.098 £ 0.062
MF 0.762 + 0.031 0.758 + 0.007 0.689 + 0.029 0.556 + 0.016
AMF 0.697 + 0.039 0.686 + 0.009 0.619 + 0.028 0.474 + 0.028
CMF 0.738 + 0.030 0.736 + 0.008 0.553 + 0.030 0.411 +0.011
CAMF | 0.649+0.029 | 0.662 +0.012 | 0.509 +0.027 | 0.376 + 0.018
TABLE V

PERFORMANCE ON BENCHMARK DATASETS. CLUSTERED ADVERSARIAL
MATRIX FACTORIZATION OUTPERFORMS ALL THE OTHER METHODS.

we see it groups Indian and Ohio into one cluster. Hence,
regarding spatial continuity, CAMEF is better than CMF.

C. Experiments on other real datasets

In this subsection, we compare the performance of different
methods on 4 benchmark datasets: Income dataset?, School
dataset®, G-Econ dataset* and YDNFT® dataset.

These spatial datasets all contain the location of each sample
which are used to calculate d;; in the same way as the synthetic
data experiments. The missing values are created in the same
way with synthetic data experiments, and the missing rates are
set to be 0.7 for all the four datasets. The results are shown in
TABLE V. Compared MF with CMF, and AMF with CAMF,
we see clustering information can improve the performance
on all the datasets. By adding the distribution alignment to
MF or CMF, the imputation RMSE is also much lower than
those without distribution alignment. The best performance
is achieved by CAMF for all methods, which shows the
effectiveness of the proposed method.

V. CONCLUSION

In this paper, we proposed clustered adversarial matrix
factorization to deal with the structure missing problems
in spatial datasets. We utilized the cluster structure of the
spatial data and the probability distribution of the data to
improve the imputation performance on the missing data. In
our model, we only considered a very simple way of adding
prior cluster knowledge. In some cases, it is possible that this
prior knowledge is inaccurate and may bring negative affect on

Zhttps://geodacenter.github.io/data-and-lab//co_income_diversity_variables/
3https://www.kaggle.com/lazyjustin/ncschools
“https://gecon.yale.edu/data-and-documentation-g-econ-project
Shttps://geodacenter.github.io/data-and-lab/lasrosas/

the imputation. More research is needed in the future regarding
to this point.
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