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Abstract

Empirical nutrient models that describe lake nutrient, productivity, and water clarity relationships among
lakes play a prominent role in limnology. Landscape-based regressions are also used to understand macro-
scale variability of lake nutrients, clarity, and productivity (hereafter referred to as nutrient-productivity). Pre-
dictions from both models are used to inform eutrophication management globally. To date, these two
classes of models are generally conducted separately, which ignores the known dependencies among
nutrient-productivity variables. We present a statistical model that integrates nutrient-productivity and
landscape-based regressions—where lake nutrients, productivity, and clarity variables are modeled jointly.
We fitted a joint nutrient-productivity model to over 7000 lakes with three nutrients (total phosphorus, total
nitrogen, nitrate concentrations), chlorophyll a concentrations, and Secchi disk depth as response variables
and landscape features as predictor variables. Because lakes in different regions respond to landscape features
differently, we focused our analysis on two subregions with different dominant land uses, the agricultural
Midwest and the forested Northeast U.S. Predictive performance was enhanced by modeling nutrient-
productivity variables jointly. We also found strong evidence that nutrient-productivity variables were cou-
pled, and that only nitrate may be decoupled from other nutrient-productivity variables in the forested
region. We speculate that these regional differences may be related to differences in the strength of biogeo-
chemical cycles and stoichiometric controls between these regions. Jointly modeling nutrient-productivity
variables in lakes effectively integrates the two dominant approaches for studying lakes nutrient-productivity
relationships and provides novel insight into macroscale patterns of the coupling of nutrients, chlorophyll,
and water clarity in lakes.

The development of empirical models to predict nutrient water quality in lakes (Pace 2001). Nutrient-productivity

concentrations, measures of primary producer biomass (e.g.,
chlorophyll a concentrations; CHL) and water clarity (e.g.,
Secchi disk depth), has a rich history in limnology (Dillon
and Rigler 1974; Canfield and Bachmann 1981; Peters 1986).
The classic example—a log-linear relationship between CHL
and total phosphorus (TP)—is commonly used to inform the
development of lake water quality criteria (Havens and
Walker 2002; U.S. EPA 2010; Huo et al. 2014). These models
used to describe lake nutrient, productivity, and clarity rela-
tionships (hereafter referred to as empirical nutrient-
productivity models) are integral in informing lake manage-
ment decisions, testing basic limnological principles, and for
advancing our understanding of the controls and drivers of
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models have been widely applied to individual lakes and,
more recently, to populations of lakes in efforts to improve
our understanding of the spatial heterogeneity in the
response of lakes to environmental stressors (Malve and
Qian 2006; Phillips et al. 2008; Wagner et al. 2011).
Although the development and application of empirical
nutrient-productivity models are common, models that
include information about lake morphometry and the natu-
ral and anthropogenic watershed features of lakes are
increasingly being used to identify and understand the
importance of landscape drivers of lake nutrients and mea-
sures of productivity (Wagner et al. 2011; Nielsen et al.
2012; Read et al. 2015). For instance, landscape-based regres-
sions are used to identify the relative importance of different
land use types as non-point sources of nutrients to lakes and
for explaining macroscale variation in nutrients, primary
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producer biomass, and other indicators of water quality
(Arbuckle and Downing 2001; Jones et al. 2004; Wagner
et al. 2011). These landscape-based regressions are also used
to highlight potential management activities that could help
meet water quality goals and have been shown to be useful
for prediction (Meeuwig and Peters 1996). Because
landscape-based regression models use predictors that are
largely derived from widely available geospatial datasets,
these models are well suited for predicting nutrients and pro-
ductivity across large spatial extents—at regional to conti-
nental scales (Cheruvelil et al. 2013; Collins et al. 2017).

The increase in use of landscape-based regression models
is driven by the importance of lake morphometric properties
and landscape characteristics to the source, delivery, and
processing of nutrients in lakes (Soranno et al. 1996; Carpen-
ter et al. 1998; Collins et al. 2017). Likewise, empirical
nutrient-productivity models are widely used because many
nutrient-productivity variables are correlated with one
another (Ostrofsky and Rigler 1987; Phillips et al. 2008). The
correlation among nutrient-productivity variables is partly
due to coupled biogeochemical cycles (Schlesinger et al.
2011; Gibson and O’Reilly 2012). For example, nutrients and
other elements do not cycle independently, as illustrated by
co-limitation of growth of primary producers (Sterner 2008;
Harpole et al. 2011). For other variables, such as Secchi disk
depth, the correlation with nutrients is because water clarity
is measuring, in part, an outcome (i.e., algal biomass) driven
by the coupling of biogeochemical cycles. This correlation
among nutrient-productivity variables has important impli-
cations for limnological modeling and prediction and for
furthering our understanding of the ecological processes that
influence lake water quality.

From a limnological modeling perspective, combining
nutrient-productivity and landscape-based regressions is
desirable because both approaches are useful for furthering
our understanding of nutrient dynamics and water quality
in lakes and making informed predictions for unobserved
lakes. In fact, there are important relationships between and
among nutrients and landscape variables that may be
ignored or not realized by not integrating these two
approaches. Efforts to integrate nutrient-productivity and
landscape-based regressions have been limited due to chal-
lenges with missing data and multicolinearity. Instead,
researchers study the different nutrient-productivity variables
individually by developing univariate nutrient regressions,
where, for example, independent TP, total nitrogen (TN),
and CHL regressions are developed and modeled as a func-
tion of one or more landscape predictors and then compared
(Jones et al. 2004; Carle et al. 2005; Chen et al. 2015; Sor-
anno et al. 2015). Including additional nutrient-productivity
variables as predictors into these models can be problematic
because there is often missing nutrient-productivity data
(Soranno et al. 2017), and these nutrient-productivity varia-
bles will likely be confounded with each other and with
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other landscape predictors. The missing nutrient-
productivity data can be problematic because—although
accommodating missing data during analysis is a statistical
issue—commonly used statistical software programs for fit-
ting regression models require values of all predictor varia-
bles for each lake, either observed or imputed. Missing data
is less problematic for landscape-based predictors which are
often derived from satellite or remotely sensed data sources.
The presence of missing predictor variables is most com-
monly addressed by using a complete-case analysis; whereby,
those lakes with missing data are removed from the analysis
(Little 1992; Fergus et al. 2016). Discarding lakes with miss-
ing data results in a loss of information.

The second major challenge with integrating these two
types of empirical models is the high correlation that often
exists among predictors (particularly among nutrient-
productivity variables and between nutrient-productivity var-
iables and landscape predictors) which leads to uninterpret-
able regression coefficients associated with multicollinearity
(Doubek et al. 2015). This is important because there is inter-
est in interpreting regression coefficients within the context
of understanding drivers of lake nutrients and productivity.
In addition, by independently modeling nutrient-
productivity variables, we are ignoring the inherent depen-
dence among them, which may be due to coupling, similar
environmental drivers, or some combination of both. This
dependency affects predictive performance and limits our
ecological understanding of how these indicators covary
over space and time. Ideally, we could utilize both
approaches—nutrient-productivity = and  landscape-based
regressions—that is, jointly model nutrient-productivity vari-
ables as a function of landscape-based predictors.

Jointly modeling multiple response variables allows for
the integration of nutrient-productivity and landscape-based
regressions and overcomes some of the above challenges
(Clark et al. 2014; Warton et al. 2015; Schliep et al. 2017).
To date, however, jointly modeling multiple nutrient-
productivity variables is rarely done (but see Cha et al. 2016
for an example of jointly modeling N and P). These models,
which we will refer to as joint nutrient-productivity models,
quantify the effects of landscape drivers on nutrient-
productivity variables, while at the same time account for
nutrient-productivity dependence through the residuals. The
joint models enable observed nutrient-productivity variables
to inform on the prediction of unobserved variables after
accounting for the effects of landscape predictors. For exam-
ple, by understanding how relationships between nutrient-
productivity variables, such as TP and Secchi disk depth—
which is widely measured (Lottig et al. 2014)—vary across a
population of lakes, we can leverage this information to
make more informed predictions of TP at unobserved lakes.
Joint nutrient-productivity models can also provide new
insight into fundamental limnological relationships by
decomposing the correlations among nutrient-productivity
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Fig. 1. Map showing study lakes across the LAGOS-NE study extent and the Midwest and Northeast subregions.

variables that are due to shared landscape drivers vs. those
that may be due to ecological processes that result in strong
ecological coupling.

Our study area contains over 7000 lakes and five nutrient-
productivity variables. We compared the predictive perfor-
mance of the joint nutrient-productivity model to the tradi-
tional wunivariate models where residual dependence is
ignored. Previous research has shown that lakes in regions
with different dominant land uses and eco-climatic zones
respond differently to different landscape drivers. Our study
area contains two regions with different dominant land
uses—an agriculturally and forested-dominated region. We
fitted a nutrient-productivity model for each region to test
our expectation that lake nutrient and productivity measures
in different regions are likely to be coupled in different ways
and are likely to respond to different dominant landscape
drivers.

Methods

Nutrient-productivity data

We used lake nutrient-productivity data for 7184 lakes
located in the Midwest and Northeastern United States.
Nutrient-productivity variables included nutrients—TP (ug
LY, TN (ug LY, and nitrate concentrations (ug L™'; NO3-
N)—and indicators of algal biomass (CHL concentration; ug
LY, and water clarity (Secchi disk depth [m]). All data came
from the Lake Multi-Scaled Geospatial and Temporal

Database (LAGOS) of the Northeast U.S. (LAGOS-NE; o V.
1.087.1; Soranno and Cheruvelil 2017a,b; Soranno et al.
2017) using the LAGOS R package (Stachelek and Oliver
2017). LAGOS-NE is a subcontinental scale database that
includes approximately 1,800,000 km? over a 17-state region
in the Midwestern and Northeastern United States. We used
a subset of lakes with a surface area > 4 ha that had at least
one of the five nutrient-productivity variables quantified.
Lake nutrient data were restricted to epilimnetic samples
taken during the summer months (15 June-15 September)
spanning the years 1990-2011. We retained the most recent
sampling occasion for every lake. For lakes sample more
than once over time (n= 5081 lakes), we used a two-staged
approach to ensure that we obtained lakes that were sampled
for TN, because TN was not measured as often compared to
the other nutrient-productivity variables. First, we selected
all lakes that had observed values of TN and used the most
recent observation for those lakes. For all other lakes sam-
pled multiple times, we used the most recent observation.
This process resulted in a single observation of at least one
of the five nutrient-productivity variables per lake (Fig. 1).

Study subregions

We selected two subregions within the LAGOS-NE study
area, previously delineated by Collins et al. (2017) in a study
that examined drivers of lake nutrient stoichiometry across
the LAGOS-NE extent. The regions were created to capture
the gradient in forested and agricultural land use present in
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the LAGOS study extent and to represent regions dominated
by extremes in these two land use/cover types. The focus
was on contrasting agricultural and forested landscapes
because of the strong relationship between agricultural land
use and nutrient inputs into inland lakes (Collins et al.
2017). The two regions (Fig. 1) were created by aggregating
regional major river watersheds (HUC 4) based on the
proportion of agricultural land use cover in a given HUC 4
where adjacent HUC 4 watersheds with similar land use
characteristics were combined. This approach resulted in two
contrasting regions—the Northeast region (n=1655 lakes),
composed of ten HUC 4 watersheds, that had very low pro-
portions of agricultural land use (< 10%), and the Midwest
region (n =434 lakes), which was composed of seven HUC 4
watersheds with relatively high proportions of agricultural
land use (> 50%).

Landscape predictor variables

We chose landscape predictor variables that represented
important sources of nutrients (e.g., land use) or the trans-
portation of materials to lakes (e.g., stream density), and
that are associated with internal processing of nutrients in
lakes (e.g., lake depth; Collins et al. 2017). All geospatial lake
predictor variable data came from LAGOSggo v. 1.05
(Soranno and Cheruvelil 2017b). Except for lake maximum
depth and lake area, which are lake-scale properties, all geo-
spatial summaries were derived at the lake watershed scale.

Statistical model

We modeled nutrient-productivity variables jointly to
account for correlations among variables. Let Y(s)=(Y;(s),
..., Yk(s))r denote a vector of length K of lake nutrient-
productivity variables for lake s. The joint nutrient-
productivity model can be written as:

Y(s)=BX(s)+e(s) (1)

where B is a matrix of coefficients such that By, is the coeffi-
cient of the pth predictor variable for the kth variable. Addi-
tionally, (s) is an error vector of length K. We model

e(s) ©MVN(0, %)

where X is a K X K covariance matrix capturing the depen-
dence between nutrient-productivity variables that is not
accounted for by the regression. These errors are assumed
independent and identically distributed across lakes.
Nutrient-productivity variables were modeled on the log,-
transformed scale. Because of highly skewed distributions, all
proportional predictor variables (e.g., land use) were logit
transformed and standardized, while non-proportion predic-
tors were log.-transformed and standardized prior to analysis.
The model was fitted to three datasets. The first model used
the entire LAGOS-NE study extent. The second and third
were fitted to the Midwest and Northeast subregions. All
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models were fitted using the program WinBUGS (Lunn et al.
2000) called from within the program R (R Core Team 2017)
using the R2ZWinBUGS package (Sturtz et al. 2005). Indepen-
dent, diffuse normal priors were used for all coefficient
parameters in B, and the variance-covariance matrix, X, was
modeled using the scaled inverse-Wishart distribution
(Gelman and Hill 2007). We ran three parallel Markov
chains beginning each chain with random starting values.
Each chain was run for 15,000 iterations, from which the
first 5000 samples were discarded. This resulted in 30,000
samples used to summarize posterior distributions. Conver-
gence was assessed both visually through the use of trace
plots and quantitatively using the Brooks-Gelman-Rubin sta-
tistic. Residual plots were examined to assess the assumption
of normality. We determined predictor variable significance
by evaluating whether or not the 95% credible interval of
the coefficient overlapped with zero.

Model performance measures and decomposing
correlations

We calculated root mean squared prediction error
(RMSPE) using 10-fold cross validation, where the model was
fitted 10 times to 90% of the data with 10% retained for out-
of-sample prediction. To evaluate the potential predictive
power gained by modeling nutrient-productivity variables
jointly, we compare marginal predictions (RMSPE,,) to con-
ditional predictions (RMSPEc) of the nutrient-productivity
variables obtained at out-of-sample locations. Under the
multivariate normal distribution assumed in Eq. 1, the mar-
ginal predictive distributions are equivalent to the predictive
distributions that would result from modeling each nutrient-
productivity variable independently. Therefore, marginal
predictions are obtained for each nutrient-productivity vari-
able without reference to the values of the other variables.
The conditional predictions are obtained for each nutrient-
productivity variable by conditioning on the values of all
other variables, e.g., we predict TN conditionally at location
s* given its observations of TP, NO3-N, CHL, and Secchi disk
depth. Assuming that there is information shared across vari-
ables, we would expect to see more accurate and more pre-
cise predictions from the conditional predictive distributions
than the marginal predictive distributions. If there is very lit-
tle dependence between the nutrient-productivity variables
after accounting for the predictors in the model, the condi-
tional and marginal predictions will be approximately equiv-
alent. As an additional measure of model performance, we
calculated both the marginal and conditional predictive R?,
R2,, and RZ, respectively.

To quantify the potential spatial variability in both land-
scape drivers (i.e., the estimated regression coefficients) and
the residual covariance structure among the response varia-
bles on predictive performance, we calculated RMSPE,,,
RMSPEc, R?;, and RZ for the Midwest and Northeast regions
using parameter estimates from the model fitted to all lakes
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Table 1. Medians, followed by the first and third quartiles, of the landscape and lake-scale predictors and nutrient-productivity
response variables for the LAGOS-NE study extent and Midwest and Northeast subregions.

LAGOS-NE Midwest Northeast
Maximum depth (m) 8.6 (4.9, 14.2) 5.8 (3.0, 10.3) 7.6 (4.2, 13.4)
Lake area (ha) 54.5 (21.0, 145.5) 82.1 (30.0, 234) 35.1(13.9, 108)
Watershed : lake area 8.4 (3.9, 21.6) 8.5 (3.6, 28.7) 10.2 (5.5, 22.9)

0.06 (0.03, 0.12)
0.05 (0.0, 0.35)
0.07 (0.02, 0.16)
25.8 (16.3, 40.4)

Proportion urban land use
Proportion agricultural land use
Proportion wetland land cover
Road density (m ha ")

Stream density (m ha™") 3.7 (0.02, 8.0)
TP (ug L) 16.0 (10.0, 34.0)
TN (ug L) 600 (366, 1000)
Chlorophyll a (ug L™") 5.1 (2.7, 14.0)
Secchi disk depth (m) 2.4 (1.3,3.9
Nitrate (ug L™") 20 (5.0, 50.0)

0.08 (0.06, 0.16)
0.66 (0.40, 0.80)
0.03 (0.0, 0.07)
28.2 (20.1, 44.2)
4.0 (0.7, 8.0)
68.2 (33.5, 138)
1450 (994, 2300)
25.9 (9.1, 62.3)
0.9 (0.5, 2.0)
60 (18.0, 200)

0.05 (0.01, 0.09)
0.01 (0.0, 0.05)
0.04 (0.02, 0.08)
21.7 (12.0, 35.2)
6.5(2.1,10.3)
10.0 (7.0, 16.0)
284 (195, 420)
3.9 (2.5, 6.6)
3.9 (2.4, 5.6)
50.0 (20.0, 50.0)

in the LAOGS-NE study extent. If there were differences in
the marginal predictions between the region-specific and
LAGOS-NE models, then this would suggest the need for spa-
tially varying coefficients. If there were differences in condi-
tional predictions (and marginal predictions were the same),
then this may suggest the need for spatially varying covari-
ance structure. If both marginal and conditional predictions
were different, this would suggest the need for both spatially
varying coefficients and covariances.

Nutrient-productivity variable correlations were decom-
posed into residual correlations and correlations due to
shared environmental drivers. Residual correlations were
obtained from the off-diagonal elements of X. The correla-
tions due to shared environmental responses were calculated
following the methods of Pollock et al. (2014), where Py
denotes the correlation between nutrient-productivity varia-
bles k and k/, and is a function of the regression vectors f,
and fy,, and the covariances of the environmental variables.
Strong residual correlation may suggest strong coupling of
nutrient-productivity variables or the need for the inclusion
of more predictors in the model. A strong correlation due to
the environment may suggest similar landscape and lake-
scale drivers.

Results

Study lakes

Lakes across the study region varied substantially in their
geophysical, chemical, and biological properties, and anthro-
pogenic settings (Table 1). Median values of TP, TN, and
NO3-N across all 7184 study lakes were 16.0 ug L™, 600 ug
L™, and 20 ug L™, respectively. Median CHL was 5.1 ug L™*
and median Secchi disk depth was 2.4 m. Not all lakes had
all five nutrient-productivity response variables observed.
The proportion of lakes with missing observations was 0.29

(n=2093), 0.44 (n=3135), 0.55 (n=3983), 0.32 (n=2309),
and 0.18 (n=1265) for TP, TN, NO3-N, CHL, and Secchi
disk depth, respectively.

Lakes within the study extent also varied widely in the
amount of urban and agricultural land use present in their
watersheds, with lake watersheds ranging from 0% to 95%
urban and from 0% to 100% agricultural land use. The
median percentage of agricultural land use in a lake’s water-
shed in the Midwest subregion was 66% and only 1% for
lakes within the Northeast subregion. As expected, the two
subregions also differed substantially in lake chemistry and
landscape settings (Table 1). For example, median TP for
lakes in the Midwest subregion was 68.2 ug L~ '; whereas,
median TP in the Northeast subregion was 10.0 ug L.

Landscape predictors and predictive performance

For all three models (LAGOS-NE extent, Midwest, and
Northeast) and across all five nutrient-productivity variables,
the predictive R* due to landscape predictors alone ranged
from 6% (NO3-N in the Northeast subregion)—61%
(Secchi disk depth in the Northeast subregion; R%, values;
Table 2). On average, predictive R*> was greatest for Secchi
disk depth (average R% =47%), followed by TP (average
R2, = 41%), TN (average RZ, = 38%), CHL (average R2, = 22%),
and NO3-N (average R, = 11%). Some important similarities
and differences in predictors of nutrient-productivity varia-
bles were detected across indicator and region (Fig. 2). For
instance, lake depth was consistently negatively correlated
with TP, TN, and CHL and positively correlated with Secchi
disk depth. In addition, the proportion of agricultural land
use was positively correlated to TP, TN, CHL, and NO3-N
and negatively correlated with Secchi disk depth across the
LAGOS-NE extent; however, the effect of agricultural land
use on nutrient-productivity variables varied by region. The
largest differences among the three models were observed in
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Table 2. Margnal (M) and conditional (C) root mean squared
predictive error (RMSPE) and predictive R? from joint nutrient-
productivity models for the Midwest and Northeast subregions.
RMSPE and R? values with a LAGOS subscript are values for the
Midwest and Northeast subregions calculated using the model
fitted to the entire LAGOS-NE study extent.

TP TN CHL Secchi NO3-N
Midwest
RMSPE,, 0.762 0.552 1.125 0.743 1.689
RMSPE¢ 0.637 0.428  0.775 0.527 1.404
RMSPEp4cos 0.927 0.658 1.148 0.770 1.804
RMSPEc 4605 0.662 0.437  0.765 0.531 1.498
RZ, 0.48 0.26 0.13 0.34 0.12
RZ 0.64 0.55 0.59 0.67 0.39
R?Miacos 0.23 —-0.06 0.10 0.29 0.00
R?ciacos 0.61 0.53 0.60 0.66 0.32
Northeast
RMSPE,, 0.640 0.431 0.805 0.391 0.962
RMSPE¢ 0.588 0.349  0.714 0.332 0.878
RMSPEp4acos 0.722 0.549  0.847 0.504 1.120
RMSPEc4c0s 0.614 0.400  0.773 0.397 1.103
RZ, 0.34 0.44 0.21 0.61 0.06
RZ 0.44 0.63 0.38 0.72 0.21
R?Miacos 0.16 0.09 0.12 0.34 -0.28
R%¢1ac0s 0.39 0.52 0.27 0.59 -0.24

the agriculturally dominated Midwest subregion. Fewer land-
scape predictors were important in predicting all five
nutrient-productivity variables in the Midwest subregion
compared to all the lakes in the study area and the North-
east subregion. The larger uncertainty in parameter estimates
in the Midwest subregion primarily reflects the smaller sam-
ple size in this region compared to the other two models.
Jointly modeling nutrient-productivity variables and
leveraging information about the dependence among
nutrient-productivity variables led to substantial gains in
predictive performance and, in particular, the precision of
estimates. The increased precision of the conditional predic-
tions can be seen when comparing the marginal and condi-
tional posterior predictive distributions in Fig. 3 for two
lakes from the Midwest subregion. These lakes were ran-
domly chosen for illustrative purposes. For a given lake, the
conditional distributions are obtained by conditioning on
whichever other nutrient-productivity variable is/are
observed. For lake #1, all five nutrient-productivity variables
were observed. Therefore, the conditional distribution for
each variable was obtained given the other four variables.
For this lake, the highest density of each conditional poste-
rior predictive distribution is closer to the observed value
(improved accuracy), and the distributions are narrower
(i.e., increased precision) when compared to the marginal
posterior predictive distributions (Fig. 3). Similar patterns
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are observed for lake #2; however, for this lake, TP and TN
were not observed. The conditional posterior predictive dis-
tributions for these unobserved quantities have less uncer-
tainty and predict greater concentrations compared to the
marginal predictions (Fig. 3). In addition, note that the
observed value of Secchi disk depth for this lake is slightly
lower than the mean of the predictive distribution given
the predictors. Therefore, since there is negative depen-
dence between Secchi disk depth and TP, TN, CHL, and
NO3-N, the conditional distributions of TP, TN, CHL, and
NO3-N for this lake are shifted right. The shift is least pro-
nounced for NO3-N, which had the lowest residual correla-
tion with Secchi disk depth. Comparisons of the marginal
and conditional RMSPE and marginal and conditional pre-
dictive R? values in Table 2 summarize the gain in predic-
tive performance—where smaller RMSPE and larger
predictive R* values indicate better predictive performance.
For example, in the Midwest study region, RMSPE for TP
decreased from 0.762 to 0.637 when predictions were con-
ditional on the observed values of each of the other
nutrient-productivity variables. In addition to the decrease
in RMSPE, the predictive R* increased from 0.48 (R}, to
0.64 (R%; Table 2). Similar gains in predictive performance
were observed for all nutrient-productivity variables and
across all three regions. Importantly, however, there were
differences between the subregions in predictive perfor-
mance for some nutrient-productivity variables. For
instance, the predictive R® increased substantially for NO3-
N in the Midwest subregion (R, =0.12 vs. R%Z =0.39); how-
ever, a similar gain in predictive R* was not observed for
NO3-N in the Northeast subregion (R2, =0.06 vs. RZ =0.21;
Table 2).

Residual and shared environmental correlations

Pairwise shared environmental correlations were plotted
against residual correlations for all nutrient-productivity
variable pairs and models (Fig. 4). The partitioning of the
effects of shared environmental drivers from residual inter-
actions revealed which nutrient-productivity variables
responded similarly to environmental conditions and which
ones may be correlated due to ecological processes not
accounted for by the predictor variables. For instance, for
lakes in the Midwest subregion, TP, TN, and CHL tended to
respond similarly to landscape drivers (P;/: TP,TN=0.47,
TP,CHL=0.67, and TN,CHL =0.32) and were also indica-
tive of variables potentially driven by similar ecological pro-
cesses (residual correlations: TP, TN =0.35, TP,CHL = 0.54,
TN,CHL = 0.41). Whereas, Secchi disk depth tended to be
negatively correlated with shared environmental drivers
when compared with TP, TN, and CHL (P}/: Secchi disk
depth, TP = —0.68, Secchi disk depth,CHL = —0.91, and Sec-
chi disk depth, TN = —0.35), and to respond in the opposite
direction to shared environmental processes (residual corre-
lations: Secchi disk depth, TP =-0.53, Secchi disk
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Fig. 2. Estimated effects of landscape and lake-scale predictors on nutrient-productivity variables for the entire LAGOS-NE study extent (row 1), the
Midwest subregion (row 2), and the Northeast subregion (row 3). Circles are posterior means and horizontal bars are 95% credible intervals. Effects
with 95% credible intervals that overlap with zero are shown in blue. TP, total phosphorus; TN, total nitrogen; CHL, chlorophyll a; Secchi, Secchi disk

depth; NO3-N, nitrate.

depth,CHL = —0.72, and Secchi disk depth, TN = —-0.35).
Similar patterns were observed in the other regions for
these nutrient-productivity variables, although the magni-
tude of the correlations varied. One noticeable difference in
the correlation partitioning across the two subregions was
between NO3-N and the other nutrient-productivity varia-
bles. In the Midwest subregion, the correlations due to
shared environmental drivers between NO3-N and TP and
TN were much larger compared to the Northeast subregion
(Midwest: NO3-N,TP=0.37, NO3-N,TN =0.76; Northeast:
NO3-N, TP =0.01, NO3-N,TN =0.06). Residual correlations
between NO3-N and TP and TN were also larger in the
Midwest subregion compared to those observed in the
Northeast subregion, especially for NO3-N and TN (Mid-
west: NO3-N, TN = 0.49, Northeast: NO3-N,TN =0.29). In
addition, NO3-N shared environmental and residual correla-
tions tended to cluster more closely around zero compared
to the Midwest subregion (Fig. 4).

Discussion
Our results demonstrate that jointly modeling nutrient-
productivity  variables effectively integrates nutrient-

productivity and landscape-based regression approaches to
understand macroscale drivers of water quality, while simul-
taneously accounting for dependence among indicators. This
approach also easily accommodates missing nutrient-
productivity data which allows for the inclusion of lakes
into an analysis that otherwise may have been excluded. To
date, jointly modeling nutrient-productivity variables is
rarely performed. One exception is Cha et al. (2016) who
jointly modeled TN and TP to examine N and P limitation
in aquatic systems. Their work focused on the spatial and
temporal dynamics of N and P limitation, but did not
include landscape predictors nor decompose correlation
structure. They emphasized the utility of jointly modeling
nutrients to further understanding of potential (de)coupling
of nutrients across space and time. Our results also highlight
the gain in predictive performance that is achieved by
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Fig. 3. Marginal (solid black lines) and conditional (dotted lines) posterior predictive distributions from a joint nutrient-productivity model for two
lakes in the Midwest subregion. TP, total phosphorus; TN, total nitrogen; CHL, chlorophyll a; Secchi, Secchi disk depth; NO3-N, nitrate. Vertical line is
observed value. Lake #1 (upper row) had all five nutrient-productivity variables observed; whereas, TP and TN were not observed for lake #2 (bottom

row).

jointly modeling nutrient-productivity variables, which is
important given the wide-spread use of predictions from lim-
nological models to help inform management decisions
(Jones and Bachmann 1976). Specifically, there is a substan-
tial improvement in the precision and accuracy of predic-
tions that is achieved by conditioning on other observed
nutrient-productivity variables.

The effects of landscape predictors on nutrient-
productivity variables were as expected, and similar to those
reported by other studies that examined landscape drivers of
lake nutrients across large spatial extents (Wagner et al.
2011; Read et al. 2015; Collins et al. 2017). In addition, we
found the effects of landscape predictors to vary spatially
(i.e., between subregions), which suggests regional differ-
ences in the dominant drivers of, and their effects on, lake
nutrients and productivity. Spatially varying effects of land-
scape predictors on lake nutrients and productivity have
been previously identified (Soranno et al. 2014). For exam-
ple, using spatially varying coefficient models, Fergus et al.
(2016) explicitly accounted for spatial heterogeneity in the
effects of TP and water color when predicting CHL. Account-
ing for spatial differences in the effects of predictors on CHL
improved model fit and predictive performance compared to
models that did not allow predictor effects to vary over space
(Fergus et al. 2016). Our results support this notion of the
importance of incorporating spatially varying or regionally
specific coefficients. For example, predictive performance
decreased when using the model fitted to LAGOS-NE to

predict lakes in the Midwest or Northeast subregions com-
pared to wusing the region-specific models to make
predictions.

We observed relatively large, positive residual correlations
among TP, TN, and CHL across all analyses. In the case of
TP and TN, these positive residual correlations may be the
result of coupled biogeochemical cycles and the response of
algal communities to increased nutrient loading (Schindler
1978; Cha et al. 2016). Cha et al. (2016) also observed large
correlations between N and P in Finnish lakes, which they
concluded were indicative of similar rates of N and P biogeo-
chemical cycles. In addition, a relatively large negative resid-
ual correlation was observed between Secchi disk depth, TP,
TN, and CHL. This was expected, as Secchi disk depth is gen-
erally negatively correlated with nutrients and CHL (Canfield
and Bachmann 1981). Interestingly, however, there was spa-
tial variability in the residual correlation among NO3-N and
other nutrient-productivity variables. For example, the resid-
ual correlations of NO3-N with other variables were near
zero in the Northeast subregion and positive in the Midwest
subregion. These regional differences in NO3-N residual cor-
relations could be the result of differences in the strength of
the coupling between the N and carbon biogeochemical
cycles—and this coupling may play a larger role in north-
eastern lakes through stoichiometric controls and microbial
processes (Taylor and Townsend 2010). Differences in atmo-
spheric chemistry, nutrient processing dynamics of domi-
nant land cover types, and lake internal processing may also
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Fig. 4. Estimated residual and environmental correlations between pairs
of nutrient-productivity variables for the LAGOS-NE study extent (a) and

the Midwest (b) and Northeast (c) subregions. Circles are posterior
means and error bars are 95% credible intervals.

contribute to the apparent decoupling of NO3-N with other
nutrients in Northeast, and in particular with TN, compared
to Midwest lakes (Bernhardt et al. 2002; Goodale et al.
2003). Understanding this potential (de)coupling of
nutrients across environmental gradients is important within
the context of global change. For example, extreme tempera-
ture events may result in the decoupling of some biogeo-
chemical cycles through altering microbial processes
(Mooshammer et al. 2017). These results suggest that further
investigations into spatially varying covariances among
nutrient-productivity variables may be warranted in an effort
to understand the implications of spatially varying covarian-
ces on model predictive performance and for understanding
how (de)coupling may vary spatially and in response to
global change.

Joint nutrient-productivity model

In addition to relatively large positive residual correlations
among TP, TN, and CHL, we also observed strong positive
shared environmental correlations among these variables,
and strong negative shared environmental correlations
among these variables and Secchi disk depth. The positive
environmental correlations reflect the positive relationship
between nutrient loading and primary production (Schindler
1978). These patterns were consistent across all analyses and
highlight the similarity in dominant landscape (e.g., agricul-
tural land use) and lake-level (e.g., lake depth) drivers
between our subregions that influence the observed spatial
variability of key nutrients and, thus, algal biomass and
water clarity. Similar to the spatial variability observed for
residual correlations between NO3-N and other nutrient-
productivity variables, we also observed spatial variability in
the correlations due to shared environmental drivers
between NO3-N and other indicators. The regional differ-
ences in NO3-N shared environmental correlations may be
related to the dominant source of NO3-N to lakes in these
two regions. In the Midwest subregion, the dominant source
of NO3-N is from agricultural land use practices (Van Metre
et al. 2016), which is also a significant source of P. This may
result in similar shared environmental correlations among
nutrients and biological responses (e.g., CHL concentra-
tions). In contrast, the dominant source of NO3-N in the for-
ested Northeast subregion is from atmospheric deposition
(Aber et al. 2003), which may reduce the shared environ-
mental correlations of NO3-N with landscape-derived
nutrients (e.g., P). For NO3-N, shared environmental correla-
tions were closer to zero in the Northeast subregion and pos-
itive in the Midwest subregion. These patterns also partly
reflect the fewer number of landscape-based predictors that
were important for predicting nutrients in the Midwest com-
pared to the Northeast subregion—with lake depth, stream
density, and agricultural land use playing important roles as
a drivers of nutrients and lake productivity in the Midwest.
Conversely, a more diverse set of predictors were important
in the Northeast subregion, suggesting more than just agri-
cultural inputs and internal lake processing are potentially
driving nutrients and productivity in those lakes.

Summary

Understanding the dominant drivers of lake nutrients and
productivity, the coupling of biogeochemical cycles, and the
use of empirical models to predict water quality is necessary
to help guide management and conservation of lake ecosys-
tems. This is particularly the case when examining lakes
across macroscales, since some of the primary stressors of
freshwater ecosystems operate across large spatial extents.
For example, understanding how land use and climate
change and the increased human demands on freshwater
systems will affect water quality at regional, continental, and
global scales is of increasing importance (Woodward et al.
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2010). In fact, changes in environmental factors—such as
increasing temperatures—may interact with increased nutri-
ent loading to exacerbate the symptoms of eutrophication
(Moss et al. 2011). Jointly modeling nutrient-productivity
variables provides a useful analytical framework for increas-
ing knowledge of environmental drivers, the coupling of
nutrients across space and time, and improving limnological
predictions at macroscales.

References

Aber, J. D., C. L. Goodale, S. V. Ollinger, M.-L. Smith, A. H.
Magill, M. E. Martin, R. A. Hallett, and J. L. Stoddard.
2003. Is nitrogen deposition altering the nitrogen status
of northeastern forests? AIBS Bull. 53: 375-389. doi:
10.1641/0006-3568(2003)053[0375:INDATN]2.0.CO;2

Arbuckle, K. E., and J. A. Downing. 2001. The influence of
watershed land use on lake N: P in a predominantly agri-
cultural landscape. Limnol. Oceanogr. 46: 970-975. doi:
10.4319/10.2001.46.4.0970

Bernhardt, E. S., R. O. Hall, Jr.,, and G. E. Likens. 2002.
Whole-system estimates of nitrification and nitrate uptake
in streams of the Hubbard Brook Experimental Forest.
Ecosystems 5: 419-430. do0i:10.1007/s10021-002-0179-4

Canfield, D. E., and R. W. Bachmann. 1981. Prediction of
total phosphorus concentrations, chlorophyll a, and Sec-
chi depths in natural and artificial lakes. Can. J. Fish.
Aquat. Sci. 38: 414-423. doi:10.1139/£81-058

Carle, M. V., P. N. Halpin, and C. A. Stow. 2005. Patterns of
watershed urbanization and impacts on water quality. J.
Am. Water Resour. Assoc. 41: 693-708. doi:10.1111/
j.1752-1688.2005.tb03764.x

Carpenter, S. R., N. F. Caraco, D. L. Correll, R. W. Howarth, A. N.
Sharpley, and V. H. Smith. 1998. Nonpoint pollution of surface
waters with phosphorus and nitrogen. Ecol. Appl. 8: 559-568.
doi:10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2

Cha, Y., I. Alameddine, S. S. Qian, and C. A. Stow. 2016. A
cross-scale view of N and P limitation using a Bayesian
hierarchical model. Limnol. Oceanogr. 61: 2276-2285.
doi:10.1002/In0.10375

Chen, M., G. Zeng, J. Zhang, P. Xu, A. Chen, and L. Lu.
2015. Global landscape of total organic carbon, nitrogen
and phosphorus in lake water. Sci. Rep. §: 15043. doi:
10.1038/srep15043

Cheruvelil, K., P. Soranno, K. Webster, and M. Bremigan.
2013. Multi-scaled drivers of ecosystem state: Quantifying
the importance of the regional spatial scale. Ecol. Appl.
23: 1603-1618. do0i:10.1890/12-1872.1

Clark, J. S., A. E. Gelfand, C. W. Woodall, and K. Zhu. 2014.
More than the sum of the parts: Forest climate response
from joint species distribution models. Ecol. Appl. 24:
990-999. doi:10.1890/13-1015.1

Collins, S. M., S. K. Oliver, J.-F. Lapierre, E. H. Stanley, J. R.
Jones, T. Wagner, and P. A. Soranno. 2017. Lake nutrient

10

Joint nutrient-productivity model

stoichiometry is less predictable than nutrient concentra-
tions at regional and sub-continental scales. Ecol. Appl.
27: 1529-1540. doi:10.1002/eap.1545

Dillon, P., and F. Rigler. 1974. The phosphorus-chlorophyll
relationship in lakes. Limnol. Oceanogr. 19: 767-773. doi:
10.4319/10.1974.19.5.0767

Doubek, J. P., C. C. Carey, and B. J. Cardinale. 2015. Anthropo-
genic land use is associated with N-fixing cyanobacterial
dominance in lakes across the continental United States.
Aquat. Sci. 77: 681-694. doi:10.1007/s00027-015-0411-x

Fergus, C. E., A. O. Finley, P. A. Soranno, and T. Wagner.
2016. Spatial variation in nutrient and water color effects
on lake chlorophyll at macroscales. PLoS One 11:
€0164592. doi:10.1371/journal.pone.0164592

Gelman, A., and J. Hill. 2007. Data analysis using regression
and multilevel/hierarchical models. Analytical methods
for social research. Cambridge Univ. Press.

Gibson, C. A., and C. M. O'Reilly. 2012. Organic matter stoi-
chiometry influences nitrogen and phosphorus uptake in
a headwater stream. Freshw. Sci. 31: 395-407. doi:
10.1899/11-033.1

Goodale, C. L., J. D. Aber, and P. M. Vitousek. 2003. An
unexpected nitrate decline in New Hampshire streams.
Ecosystems 6: 0075-0086. doi:10.1007/s10021-002-0219-0

Harpole, W. S., and others. 2011. Nutrient co-limitation of
primary producer communities. Ecol. Lett. 14: 852-862.
doi:10.1111/j.1461-0248.2011.01651.x

Havens, K. E., and W. W. Walker. 2002. Development of a
total phosphorus concentration goal in the TMDL process
for Lake Okeechobee, Florida (USA). Lake Reserv. Manag.
18: 227-238. doi:10.1080/07438140209354151

Huo, S., C. Ma, B. Xi, Z. Tong, Z. He, J. Su, and F. Wu. 2014.
Determining ecoregional numeric nutrient criteria by
stressor-response models in Yungui ecoregion lakes,
China. Environ. Sci. Pollut. Res. 21: 8831-8846. doi:
10.1007/s11356-014-2819-6

Jones, J. R., and R. W. Bachmann. 1976. Prediction of phospho-
rus and chlorophyll levels in lakes. J. Water Pollut. Control
Fed. 48:2176-2182. http://www.jstor.org/stable/25040000

Jones, J. R., M. F. Knowlton, D. V. Obrecht, and E. A. Cook.
2004. Importance of landscape variables and morphology
on nutrients in Missouri reservoirs. Can. J. Fish. Aquat.
Sci. 61: 1503-1512. doi:10.1139/f04-088

Little, R. J. 1992. Regression with missing X’s: A review. J.
Am. Stat. Assoc. 87: 1227-1237. d0i:10.2307/2290664

Lottig, N. R., T. Wagner, E. N. Henry, K. S. Cheruvelil, K. E.
Webster, J. A. Downing, and C. A. Stow. 2014. Long-term
citizen-collected data reveal geographical patterns and
temporal trends in lake water clarity. PLoS One 9: €95769.
doi:10.1371/journal.pone.0095769

Lunn, D., A. Thomas, N. Best, and D. Spiegelhalter. 2000.
WinBUGS - a Bayesian modelling framework: Concepts,
structure, and extensibility. Stat. Comput. 10: 325-337.
doi:10.1023/A:1008929526011



Wagner and Schliep

Malve, O., and S. S. Qian. 2006. Estimating nutrients and
chlorophyll a relationships in Finnish lakes. Environ. Sci.
Technol. 40: 7848-7853. do0i:10.1021/es061359b

Meeuwig, J., and R. Peters. 1996. Circumventing phosphorus
in lake management: A comparison of chlorophyll a pre-
dictions from land-use and phosphorus-loading models.
Can. J. Fish. Aquat. Sci. §3: 1795-1806. doi:10.1139/£96-
107

Mooshammer, M., and others. 2017. Decoupling of micro-
bial carbon, nitrogen, and phosphorus cycling in response
to extreme temperature events. Sci. Adv. 3: el602781.
doi:10.1126/sciadv.1602781

Moss, B., and others. 2011. Allied attack: Climate change
and eutrophication. Inland Waters 1: 101-105. doi:
10.5268/IW-1.2.359

Nielsen, A., D. Trolle, M. Seondergaard, T. L. Lauridsen, R.
Bjerring, J. E. Olesen, and E. Jeppesen. 2012. Watershed
land use effects on lake water quality in Denmark. Ecol.
Appl. 22: 1187-1200. doi:10.1890/11-1831.1

Ostrofsky, M., and F. Rigler. 1987. Chlorophyll-phosphorus
relationships for subarctic lakes in western Canada. Can.
J. Fish. Aquat. Sci. 44: 775-781. doi:10.1139/£87-094

Pace, M. L. 2001. Prediction and the aquatic sciences. Can. J.
Fish. Aquat. Sci. 58: 63-72. doi:10.1139/f00-151

Peters, R. H. 1986. The role of prediction in limnology. Limnol.
Oceanogr. 31: 1143-1159. doi:10.4319/10.1986.31.5.1143

Phillips, G., O.-P. Pietilainen, L. Carvalho, A. Solimini, A. L.
Solheim, and A. Cardoso. 2008. Chlorophyll-nutrient
relationships of different lake types using a large Euro-
pean dataset. Aquat. Ecol. 42: 213-226. doi:10.1007/
$10452-008-9180-0

Pollock, L. J., R. Tingley, W. K. Morris, N. Golding, R. B.
O’Hara, K. M. Parris, P. A. Vesk, and M. A. McCarthy.
2014. Understanding co-occurrence by modelling species
simultaneously with a Joint Species Distribution Model
(JSDM). Methods Ecol. Evol. 5: 397-406. doi:10.1111/
2041-210X.12180

R Core Team. 2017. R: A language and environment for sta-
tistical computing. R Foundation for Statistical Comput-
ing; [accessed 2018 May 10]. Available from https://www.
R-project.org/

Read, E. K., and others. 2015. The importance of lake-
specific characteristics for water quality across the conti-
nental United States. Ecol. Appl. 25: 943-955. doi:
10.1890/14-0935.1

Schindler, D. 1978. Factors regulating phytoplankton pro-
duction and standing crop in the world’s freshwaters.
Limnol.  Oceanogr. 23:  478-486.  doi:10.4319/
10.1978.23.3.0478

Schlesinger, W. H., J. J. Cole, A. C. Finzi, and E. A. Holland.
2011. Introduction to coupled biogeochemical cycles.
Front. Ecol. Environ. 9: 5-8. doi:10.1890/090235

Schliep, E. M., A. E. Gelfand, R. M. Mitchell, M. E. Aiello-
Lammens, and J. A. Silander. 2017. Assessing the joint

11

Joint nutrient-productivity model

behaviour of species traits as filtered by environment.
Methods Ecol. Evol. 9: 716-727. doi:10.1111/2041-
210X.12901

Soranno, P. A., S. L. Hubler, S. R. Carpenter, and R. C.
Lathrop. 1996. Phosphorus loads to surface waters: A sim-
ple model to account for spatial pattern of land use. Ecol.
Appl. 6: 865-878. doi:10.2307/2269490

Soranno, P. A., and others. 2014. Cross-scale interactions:
Quantifying multi-scaled cause-effect relationships in
macrosystems. Front. Ecol. Environ. 12: 65-73. doi:
10.1890/120366

Soranno, P. A., K. S. Cheruvelil, T. Wagner, K. E. Webster,
and M. T. Bremigan. 2015. Effects of land use on lake
nutrients: The importance of scale, hydrologic connectiv-
ity, and region. PLoS One 10: e0135454. doi:10.1371/
journal.pone.0135454

Soranno, P. A., and K. S. Cheruvelil. 2017a. LAGOS-NE-
LIMNO v1.087.1: A module for LAGOS-NE, a multi-scaled
geospatial and temporal database of lake ecological con-
text and water quality for thousands of U.S. Lakes: 1925-
2013. Environmental Data Initiative. Available from
http://dx.doi.org/10.6073/pasta/b1b93ccf3354a7471b93ecc
ca484d506

Soranno, P. A., and K. S. Cheruvelil. 2017b. LAGOS-NE-GEO
v1.05: A module for LAGOS-NE, a multi-scaled geospatial
and temporal database of lake ecological context and
water quality for thousands of U.S. Lakes: 1925-2013.
Environmental Data Initiative; [accessed 2017 September
26]. Available from https://doi.org/10.6073/pasta/b88943
d10c6c5c480d5230c8890b74a8

Soranno, P. A., and others. 2017. LAGOS-NE: A multi-scaled
geospatial and temporal database of lake ecological con-
text and water quality for thousands of US lakes. Giga-
Science 6: 1. doi:10.1093/gigascience/gix101

Stachelek, J., and S. K. Oliver. 2017. LAGOS: R interface to
the LAke multi-scaled GeOSpatial & temporal database.
Available from https://github.com/cont-limno/LAGOS

Sterner, R. W. 2008. On the phosphorus limitation paradigm
for lakes. Int. Rev. Hydrobiol. 93: 433-445. doi:10.1002/
iroh.200811068

Sturtz, S., U. Ligges, and A. Gelman. 2005. R2ZWinBUGS: A
package for running WinBUGS from R. ]. Stat. Softw. 12:
1-16. doi:10.18637/jss.v012.i03

Taylor, P. G., and A. R. Townsend. 2010. Stoichiometric con-
trol of organic carbon-nitrate relationships from soils to
the sea. Nature 464: 1178-1181. doi:10.1038/nature08985

U.S. EPA. 2010. Using stressor-response relationships to
derive numeric nutrient criteria. Technical report, U.S.
EPA.

Van Metre, P. C,, J. W. Frey, M. Musgrove, N. Nakagaki, S.
Qi, B. J. Mahler, M. E. Wieczorek, and D. T. Button. 2016.
High nitrate concentrations in some Midwest United
States streams in 2013 after the 2012 drought. J. Environ.
Qual. 45: 1696-1704. do0i:10.2134/jeq2015.12.0591



Wagner and Schliep

Wagner, T., P. A. Soranno, K. E. Webster, and K. S.
Cheruvelil. 2011. Landscape drivers of regional variation
in the relationship between total phosphorus and chloro-
phyll in lakes. Freshw. Biol. 56: 1811-1824. doi:10.1111/
j-1365-2427.2011.02621.x

Warton, D. 1., F. G. Blanchet, R. B. O’Hara, O.
Ovaskainen, S. Taskinen, S. C. Walker, and F. K. Hui.
2015. So many variables: Joint modeling in community
ecology. Trends Ecol. Evol. 30: 766-779. doi:10.1016/
j.tree.2015.09.007

Woodward, G., D. M. Perkins, and L. E. Brown. 2010. Cli-
mate change and freshwater ecosystems: Impacts across
multiple levels of organization. Philos. Trans. R. Soc.
Lond. B Biol. Sci. 365: 2093-2106. do0i:10.1098/
rstb.2010.0055

12

Joint nutrient-productivity model

Acknowledgments

We thank the Continental Limnology team for discussions that helped
improve this work. We also thank Pat Soranno, Emily Stanley, and Craig
Stow for comments on an earlier draft that improved this manuscript.
This research was funded by the National Science Foundation (EF-
1638679; EF-1638554; EF-1638539; and EF-1638550). Use of trade
names is for identification purposes only and does not imply endorse-
ment by the US government.

Conflict of Interest
None declared.

Submitted 12 December 2017
Revised 27 February 2018; 23 April 2018
Accepted 2 May 2018

Associate editor: Yong Liu



	l

