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Data-Intensive Ecological Research 

Is Catalyzed by Open Science and 

Team Science

KENDRA SPENCE CHERUVELIL AND PATRICIA A. SORANNO

Many problems facing society and the environment need ecologists to use increasingly larger volumes and heterogeneous types of data and 
approaches designed to harness such data—that is, data-intensive science. In the present article, we argue that data-intensive science will be 
most successful when used in combination with open science and team science. However, there are cultural barriers to adopting each of these 
types of science in ecology. We describe the benefits and cultural barriers that exist for each type of science and the powerful synergies realized 
by practicing team science and open science in conjunction with data-intensive science. Finally, we suggest that each type of science is made up 
of myriad practices that can be aligned along gradients from low to high level of adoption and advocate for incremental adoption of each type 
of science to meet the needs of the project and researchers.

Keywords: data-intensive science, open science, team science, ecology, science culture, gradient of adoption

Ecologists are increasingly being asked to answer   
 twenty-first century research questions—questions 

connected to the major environmental problems facing 
society that are fundamentally ecological in nature, that 
cover broad spatial and temporal scales and that cross dis-
ciplines (Lubchenco et  al. 1991). Such problems include 
sustaining nature’s services amid an increasing human 
population (Palmer et  al. 2005), forecasting the effects of 
global change on ecological systems at both fine and broad 
scales (Peters et al. 2014), and quantifying the contribution 
of ecological systems in key global cycles (Cole et al. 2007). 
Addressing these kinds of problems requires ecologists to 
do two things—synthesize diverse knowledge from a range 
of disciplines and perspectives (Carpenter et  al. 2009) and 
expand the breadth of ecological knowledge and theory to a 
wide range of spatial and temporal scales (Palmer et al. 2005, 
Heffernan et al. 2014).

In fact, ecology has been moving in both of these direc-
tions for the last several decades. For example, a rich body 
of synthetic research has been conducted to address some of 
these types of problems at synthesis centers, such as the US 
National Center for Ecological Analysis and Synthesis, the 
Chinese Ecosystem Research Network, the French Centre 
for the Synthesis and Analysis of Biodiversity, and the 
US Socio-Environmental Synthesis Center (e.g., Carpenter 
et  al. 2009, Baron et  al. 2017). Second, the scale and 

scope of ecological research questions has been expanding 
through the increased development of both grassroots and 
top-down research networks (e.g., AmeriFlux, FluxNet, 
Global Lake Ecological Observatory Network, National 
Phenology Network, Nutrient Network, National Ecological 
Observatory Network). Finally, broadscale understanding of 
regions and continents and the integration of understanding 
and theory across these scales have progressed through the 
subdisciplines of biogeography, landscape ecology, macro-
ecology, and macrosystems ecology (Brown 1995, Heffernan 
et al. 2014, Turner and Gardner 2015, Rose et al. 2017).

Much of this broadscale, networked, or synthetic research 
includes some form of prediction using one of three strate-
gies: extrapolating findings from one location to another, 
scaling up knowledge and processes from local to regional 
and global extents, or forecasting knowledge from past to 
current and future states (figure 1). These strategies are chal-
lenging to implement and are associated with high levels of 
uncertainty, in part, because they often require large amounts 
and types of data across space and time, as well as data-inten-
sive analytical approaches. Fortunately, ecology is currently 
experiencing a rapid rise in the availability of larger amounts 
and new types of data that expand the spatial and temporal 
scales of observation (Porter et al. 2012, Schimel et al. 2013, 
Heffernan et  al. 2014). Such data include those generated 
from genomic sequencing, low-cost high-frequency sensors 
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deployed across many systems, data compilation of many 
small studies into large integrated databases, and multispec-
tral satellite imagery of increasingly large geographic extents, 
to name a few. Therefore, to answer twenty-first century eco-
logical questions, ecology is and will become increasingly a 
data-intensive discipline (Peters et al. 2014, Elliott et al. 2016, 
Hampton et al. 2017, Farley et al. 2018).

We propose that for ecological data-intensive research 
to be most successful, it will be used in combination with 
open science and team science, both of which have already 
been influencing ecological practices. Although many ecolo-
gists have explicitly made compelling arguments for data-
intensive, open, and team science individually or implicitly 
argued for some combination of these types of science (see 
the citations throughout this article), we believe that deliber-
ately combining these three types of science causes synergy. 
For example, open science practices provide publicly acces-
sible data, code, and methods for combining data across 
broad scales of time and space and across disciplines, greatly 
facilitating data-intensive research. Similarly, publishing 
open-access research articles ensures that all disciplinary 
scientists can access and read the content. Team-based prac-
tices provide a diverse set of people who have the knowledge 
and perspectives needed to combine these data across scales 
or disciplines using expertise from such disciplines as bioin-
formatics, geospatial science, statistics, or computer science 

(Peters et al. 2014, Soranno et al. 2015a). Finally, proponents 
of team science and open science have perspectives and 
methods that are complementary to each other and catalyze 
each other’s practices.

Due to these (and other) examples of synergies among 
these three types of science, we argue that data-intensive 
research in ecology will be catalyzed by open science and 
team science. An important element of the synergies among 
these three types of science is that each type of science com-
prises a wide range of behaviors and practices that can be 
arranged along a gradient of adoption. We propose that as 
scientists move further along each gradient from low to very 
high levels of adoption, they maximize the synergies from 
open science and team science to fully accrue the benefits 
of data-intensive science. In this article, we (a) describe the 
synergies among data-intensive, open, and team science; (b) 
discuss cultural barriers that exist for each type of science 
in ecology; and (c) propose three gradients of adoption as 
a way to address these barriers and promote data-intensive 
science to answer twenty-first century ecology questions. 
In the subsequent sections, we summarize the evidence for 
these ideas from the literature drawing on past and contem-
porary examples of ecology’s use of these types of science 
and provide our own experiences as examples of incremental 
progression along each type of science’s gradient to conduct 
ecology research.

Figure 1. Three strategies ecologists use to address a wide range of broadscale ecological questions often requiring data-

intensive methods. Ovals represent individual ecosystems, ecosystems with similar states are the same color, and open 

ovals represent ecosystems with no in situ observations. These strategies are often used in synthetic analyses in which the 

researchers attempt to extrapolate knowledge gained from a small number of studies or ecosystems to a broader range of 

ecosystems (a), scale up observed estimates of important ecological processes from a number of different site-based studies 

to regional and global scales (b), and forecast future states of ecosystems using knowledge from current and past time 

periods, often in multiple sites and regions (c).
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Definitions and benefits of data-intensive, open, and 

team science for ecology

Below, we define data-intensive, open, and team science and 
summarize the benefits of conducting each type of science 
individually. The exact definitions of these types of science 
differ within and among disciplines, and the definitions con-
tinue to evolve. However, we define data-intensive science as 
empirical research in which the capture, curation, and the 
analysis of large volumes of data is central to the scientific 
question (Hey et al. 2009, Critchlow and Dam 2013, Farley 
et al. 2018). What counts as large volumes of data is highly 
variable across disciplines and will change through time; 
however, data-intensive research in this context is strongly 
empirical and often relies on data from multiple sources, 
including those not collected by the scientist conducting the 
data-intensive research. Data-intensive science is distinct 
from data science, which develops novel methods for the 
analysis of data (e.g., computer science, machine learning 
and data mining, and statistics). Much has been written 
about the potential of data-intensive science for a wide range 
of disciplines, including ecology (e.g., Hey et al. 2009, Kelling 
et al. 2009, Peters et al. 2014, Hampton et al. 2017, LaDeau 
et  al. 2017). In situ measurements of ecosystems are being 
compiled into databases of unprecedented broad spatial 
and temporal scales to ask basic ecological questions about 
whether results and knowledge obtained from relatively 
small numbers of well-studied systems can be extrapolated 
through time and to ecosystems across regions, continents, 
and the globe (Kelling et  al. 2009, Hampton et  al. 2013, 
Sharma et al. 2015, Soranno et al. 2017). In fact, empirical 
data-intensive approaches are helping ecologists test exist-
ing theory and understand empirical patterns that cannot 
be studied with finer-scale studies, ask new questions about 
the role of broadscale factors for driving patterns through 
time, and provide new insight about the scales and processes 
underlying patterns never before studied (O’Reilly et  al. 
2015, Thessen 2016, Lottig et al. 2017, Collins et al. 2018).

Open science uses a set of transparent, inclusive, and 
reproducible practices that result in publicly available 
research, data, and dissemination products (e.g., Fecher 
et  al. 2015, Hampton et  al. 2015, Lowndes et  al. 2017); it 
also expects that all data, code and other research prod-
ucts are findable, accessible, interoperable, and reusable 
(Wilkinson et  al. 2016). Open science has the potential to 
benefit ecology in many ways (Hampton et al. 2015) and has 
been gaining popularity (Parr and Cummings 2005, Duke 
and Porter 2013, Lowndes et al. 2017). It stands to advance 
discovery, foster reproducibility, leverage investments in 
research, democratize science, foster a more inclusive sci-
ence, and improve communication between scientists, the 
public, and decision-makers (Hampton et al. 2015, Soranno 
et al. 2015b). Such benefits are especially needed to answer 
integrative research questions about the patterns that exist 
and the processes that operate at more than one scale across 
space and time, which can be done by integrating smaller 
data sets into larger, heterogeneous ones (Peters et al. 2014, 

O’Reilly et al. 2015, Lottig et al. 2017, Lowndes et al. 2017, 
Novick et  al. 2017) or through formal organizations that 
make data available for research on ecological change at 
national (US National Ecological Observatory Network) 
and global scales (Global Biodiversity Information Facility). 
Increasingly, networks and organizations are also making 
more than their data accessible; they are sharing lab note-
books and code with services such as GitHub, which facili-
tates reproducible and transparent methods.

Finally, we define team science as collaborative science 
that leverages the expertise of a diverse range of profes-
sionals and that incorporates practices to maximize team 
functioning (e.g., Stokols et al. 2008, Cheruvelil et al. 2014). 
Scientists have long been capitalizing on the benefits of 
collaborative research. For example, multiauthored publica-
tions have higher citation rates than single-authored studies 
(Wuchty et al. 2007), research teams that are interdisciplin-
ary have increased creativity and productivity (Boix Mansilla 
et al. 2016), and those that are more diverse produce more 
creative and impactful outcomes (Woolley et  al. 2010). In 
ecology, there are numerous examples of successful research 
collaborations, particularly in the last 20 years, including 
synthesis center working groups (Carpenter et  al. 2009, 
Hampton and Parker 2011, Campbell et al. 2013, Baron et al. 
2017), grassroots networks (e.g., Borer et al. 2014, Hanson 
et al. 2016, Novick et al. 2017), and big-science observato-
ries (e.g., Kuhlman et al. 2016). Such efforts are producing 
large amounts of data, research outputs, and early career 
researchers with the penchant for working as part of pro-
ductive teams (e.g., Read et al. 2016b, Lowndes et al. 2017). 
However, collaborative research is not always the same as 
team science, which has its roots in well-established fields 
such as organizational psychology and is highly informed 
by the recently formed, interdisciplinary science of team sci-
ence, which studies the processes by which scientific teams 
conduct research and the circumstances that facilitate or 
hinder the effectiveness of collaborative research (National 
Research Council 2015). Therefore, team science is collab-
orative science that uses knowledge and practices from these 
two important disciplines to create and maintain productive 
teams. Research on science teams has shown that high-
performing research teams rely on practices that maximize 
team function, such as clearly defining roles, responsibilities, 
and expectations and establishing team policies for many 
components of the research enterprise (e.g., authorship, data 
sharing; Stokols et al. 2008, Cheruvelil et al. 2014, Read et al. 
2016b). As team sizes grow and team diversity increases, 
these practices become even more important. Therefore, 
data-intensive ecological research conducted by diverse 
teams will benefit greatly from engaging with team science 
behaviors and practices.

Synergies among data-intensive, open, and team 

science

There are many synergies among the underlying principles, 
strategies, and approaches of data-intensive, open, and team 
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science for those who engage with them in combination 
(figure 2). For example, open science and team science 
facilitate each other. The strategy of creating written team 
policies (a team science strategy) related to data sharing can 
increase willingness to embrace open science principles, 
because teams are forced to confront and reconcile differ-
ing views within the team (Cheruvelil et al. 2014). Similarly, 
having team members who are strong proponents of open 
science can help teams implement practices that facilitate 
team functioning. For example, using code-sharing plat-
forms such as GitHub can promote code sharing for similar 
functions, which increases overall productivity and research 
reproducibility while also facilitating collaborations across 
individuals with different levels of coding expertise. Written 
data-sharing policies and the use of code-sharing platforms 
also facilitate the eventual public sharing of research prod-
ucts (e.g., Lowndes et al. 2017, Soranno et al. 2017).

Such synergies are highly beneficial for data-intensive 
ecology research, because many ecologists do not have an 

extensive background in creating, managing, and analyzing 
large and complex data sets (figure 2). For example, an open 
science perspective that assumes sharing of data, code, and 
methods, facilitates data-intensive research by developing 
the strategies to share early in the research project, as well 
as to document both the data and methods. Such practices 
increase overall team-level productivity by providing all 
team members access to the same well-documented data, 
code, and methods (Lowndes et al. 2017). One could imag-
ine the inefficiencies if a single person created the database 
and had intimate knowledge of the data to use it but did not 
document that knowledge—they would have to work with 
each individual scientist on the team who wanted to use the 
data. Read and colleagues (2016a) provide an example of 
such promotion of data-intensive research by open science 
through the development of openly shared tools for data 
quality controls, data visualizations, and models.

Team science can also promote data-intensive ecology 
research by providing the strategies to ensure effective 

Figure 2. The synergies resulting from the combined use of data-intensive, open, and team science to answer twenty-first 

century ecological questions. Data-intensive science is facilitated by synergies between team science and open science 

(depicted by the double-headed red arrows), such as the perspectives, methods, and expertise contributed by those who 

practice open and team science and contribute to collaborative data-intensive research. Furthermore, team science 

practices facilitate data-intensive science by providing practices that ensure effective and productive collaboration, 

often across disciplines, and by identifying key individuals, such as disciplinary brokers who are essential for spanning 

disciplines to meet research objectives. Likewise, open science greatly facilitates data-intensive science by providing the 

tools and approaches for effectively sharing data and code and fostering the effective transfer of knowledge, data, and tools 

among team members and eventually all researchers.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

s
c
ie

n
c
e
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/b

io
s
c
i/b

iy
0
9
7
/5

0
8
8
5
3
1
 b

y
 M

ic
h
ig

a
n
 S

ta
te

 U
n
iv

e
rs

ity
 L

ib
ra

rie
s
 u

s
e
r o

n
 1

3
 S

e
p
te

m
b
e
r 2

0
1
8



Biologist’s Toolbox

https://academic.oup.com/bioscience  XXXX XXXX / Vol. XX No. X • BioScience   5   

implementation of practices and tools from other disciplines 
during data-intensive research. For example, Hanson and 
colleagues (2016) show how interdisciplinary collaborations 
can support data-intensive ecology research by providing 
essential informatics and computational expertise to create 
cyberinfrastructure support of network data, operations, and 
software tools. However, interdisciplinary research can be dif-
ficult to implement because people from different disciplines 
have a wide range of perspectives and values (O’Rourke et al. 
2013). To overcome such challenges, team science includes 
such practices as inclusion of one or more members of a team 
who are disciplinary brokers—people who speak the languages 
of multiple disciplines  (Wenger 2000, Pennington 2011). A 
broker greatly enhances interactions among team members 
of different disciplines by improving overall communication 
of ideas and approaches and by helping to identify important 
and compelling research questions for the team to address. 
Furthermore, team science includes training and providing 
opportunities to develop collaboration skills such as facilitat-
ing team discussions and conflict negotiation (Cheruvelil 
et al. 2014, Read et al. 2016b), which have obvious benefits for 
team idea generation and research productivity. Because data-
intensive research teams often include more than one disci-
pline (or perspectives within a discipline, such as an empirical 
and theoretical scientist), such attention to strategies that best 
harness these differing perspectives are especially important 
to ensure successful project outcomes.

Cultural barriers to data-intensive, open, and team 

science in ecology

Although there are many ecologists using practices from 
data-intensive, open, and team science, adoption of these 
three types of science are still the exception rather than 
the rule in ecology. Since technical barriers to adoption are 
quickly being removed (Hampton et al. 2015), it is unlikely 
that they are the sole cause of slow adoption; another factor 
slowing their adoption is a lack of cultural support. Below, 
we describe some of the cultural barriers to adoption of 
these three types of science that exist and some of the solu-
tions that are necessary for data-intensive, open, and team 
science practices to flourish in ecology.

Data intensive science

Despite the potential for data-intensive science, some empir-
ical ecologists are hesitant to add it to their research pro-
gram. Much of this hesitancy stems from the argument that 
data-intensive approaches will result in at best, weak, and at 
worst, erroneous, inferences. There are three main reasons 
for this argument. First, critics argue that data-intensive 
methods are atheoretical and not hypothesis-driven, inef-
ficient fishing expeditions or that they result in mostly spu-
rious correlations (Elliott et al. 2016). Second, critics argue 
that large data sets themselves are the problem in that they 
are prone to characteristics that limit their usefulness includ-
ing data that are noisy (because of measurement error, outli-
ers, and missing values) and lead to weak signals, contain 

many correlated variables, and have complex data structures 
(Fan et  al. 2014). Third, ecologists are used to collecting 
data themselves for a specific purpose; therefore, they have 
confidence in their data and are critical of using either other 
people’s data or contributing their data for purposes outside 
of the original study design.

These major criticisms of data-intensive research argue 
that data-intensive approaches cannot result in strong infer-
ence when compared with well-established approaches from 
site-specific intensive study of single of a few ecosystems 
or processes. However, these criticisms arise from taking a 
frequentist perspective when, in fact, improper statistics can 
be conducted with any amount of data—large data sets are 
not alone in this regard (Hand 1998). Ecologists have been 
trained that when a sufficiently large number of statistical 
tests are performed with a data set, some proportion will be 
significant by chance alone and that the outcomes of hypoth-
esis testing is biased if the data are not independent nor 
drawn from an unbiased sample. However, these concerns 
can be addressed using other analytical perspectives that do 
not rely on statistical significance, many of which have been 
around for several decades, including data mining, machine 
learning, computational approaches, Bayesian statistics, and 
weight of evidence modeling approaches (e.g., Burnham 
and Anderson 2003, Hochachka et  al. 2007). In addition, 
dependent, unbalanced, and noisy data can be accounted 
for by modeling quantitative estimates of uncertainty that 
arise from such sources (e.g., Harwood and Stokes 2003, 
Petchey et  al. 2015). Therefore, as more ecologists include 
nonfrequentist approaches as part of their research pro-
gram, what constitutes “good” methods in ecology will 
broaden. By valuing, teaching, and rewarding the use of a 
variety of quantitative approaches (and their interpretation) 
in ecology, we can promote the inclusion of data-intensive 
approaches and perspectives (e.g., Peters et al. 2014, Elliott 
et  al. 2016, LaDeau et  al. 2017). Concurrently, we should 
incentivize researchers to build large databases and the asso-
ciated tools needed to use them such as software, metadata, 
code, and other research products by crediting these valu-
able research products for career advancement (Goring et al. 
2014, LaDeau et al. 2017).

Open science

Open science practices are not yet the norm in ecology. For 
example, the sharing of ecological data is still far from com-
mon (Wolkovich et  al. 2012, Hampton et  al. 2013, Roche 
et  al. 2015), and studies have shown a large proportion of 
peer-reviewed ecology articles suffer from underreport-
ing of key methods or results to make them reproducible 
(Parker et al. 2016). In a recent analysis of a well-established 
scientist-led research network, AmeriFlux, data availability 
from participating sites was shown to be lower than the 
network wanted (approximately 65%), and the proportion 
of sites sharing data appeared to be decreasing (Novick 
et al. 2017). Arguably, past (and current) scientific cultures 
could be characterized as highly competitive for limited 
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resources, including funding and data. Therefore, scientists 
with sole access to data, code, methods, and other tools 
had a competitive advantage over others. This legacy may 
be one contributing factor to an existing resistance to and 
low adoption of open science tools and practices in ecol-
ogy. For example, arguments against data sharing include 
a reluctance to release control of the data, fear of being 
“scooped,” fear that others will misinterpret data, fear that 
sharing will restrict the types of data that scientists can use, 
and a lack of resources or the ability to fully document the 
data (Wolkovich et al. 2012, Lindenmayer and Likens 2013, 
Fenichel and Skelly 2015, Mills et al. 2015). In fact, on the 
basis of such arguments, some researchers may think there 
are few incentives to change behavior from the past, closed, 
culture to a more open one.

However, when one reframes the issue to include the 
full range of science outcomes—answering twenty-first 
century ecological questions, participating in potentially 
high-impact research, broadening participation in science, 
and getting credit for research outputs in addition to publi-
cations—incentives for open-science practices become more 
apparent (Uriarte et  al. 2007, Soranno et  al. 2015b, Elliott 
et al. 2016, McKiernan et al. 2016). Also, scientists sharing 
their methods, data, and research outputs, can be identified 
as potential collaborators who know the data and methods 
well (McKiernan et al. 2016, Lowndes et al. 2017). These col-
laborations can increase science productivity of individual 
scientists, expose them to new research ideas and tools, and 
broaden the range of research questions an individual sci-
entist can answer. Therefore, the apparent conflict between 
open and closed science resides in perception—open science 
practices can benefit society and science, while also benefit-
ting individual scientists.

Team science

There remain two main cultural barriers to adoption of 
team science in ecology. First, the popular perception of 
ecology—and much of science—remains dominated by 
the ideals of individual achievements (Uriarte et  al. 2007, 
Geman and Geman 2016). Many scholars were trained in 
the single-discipline, single-investigator approach that has 
dominated science disciplines to date. And, the myth of the 
lone genius is perpetuated by some prominent scientists 
falsely suggesting that great ideas rarely come from teams 
and calling for a return to the good old days of maverick 
scientists (Geman and Geman 2016). Second, most ecolo-
gists have not been trained in effective teamwork and in 
fact, do not include such training as a valuable component 
of the scientific enterprise. Because scientists rarely receive 
formal training in team science, they may not recognize the 
common power imbalances inherent in research teams (i.e., 
early career scientists who have low power and voice within 
the team) or how those power differentials may affect team 
practices—although early career researchers are often all too 
aware of such imbalances. Despite well-intentioned team 
members and leaders, teams without explicit procedures 

to ensure that low-power team members have a voice and 
receive deserved credit have the potential for the opposite 
result (e.g., Elliott et  al. 2017). Luckily, the interpersonal 
skills required for effective and inclusive teamwork can 
be learned and practiced through workshops or training 
in practices such as facilitating discussions, critical listen-
ing, and conflict negotiation (Cheruvelil et  al. 2014). The 
Global Lakes Ecological Observatory Network (GLEON) 
is a recent example of a research network that trains early 
career researchers in such skills, has adopted many team sci-
ence approaches network-wide, and has demonstrated the 
benefits network science (Hipsey et al. 2015, Hanson et al. 
2016, Rose et al. 2017).

To fully incorporate teams and their research into the 
scientific enterprise, we must stop idealizing the lone-genius 
mythology of science, value and incentivize team science 
skills such as interpersonal skills, and recognize the wide 
variety of ways that scientists work together to conduct 
research. Growing empirical evidence points to the benefits 
of team science and indicates that the scientists who make 
tomorrow’s crowning achievements will be increasingly 
part of diverse teams with skills and perspectives that span 
dimensions of race, ethnicity, gender, sexuality, country of 
origin, career-level, and discipline, to name a few. Therefore, 
we need to learn for ourselves and teach the next generation 
of scientists effective team-based research skills. We must 
also value and reward team-based cultures and practices.

Gradients of adoption for data-intensive, open, and 

team science

One way to advance the adoption of data-intensive, open, 
and team science practices in ecology is to recognize that 
each type of science is made up of myriad practices that can 
be aligned along gradients from low to high level of adop-
tion. Other researchers have argued for a similar incremen-
tal approach to incorporating open science methods into a 
highly collaborative research effort (Lowndes et  al. 2017). 
However, we recommend that practices from all three of 
these types of science be incorporated incrementally along 
each gradient as required to meet the research needs of the 
project. An incremental approach to adoption that is directly 
linked to the needs of the project is beneficial because a new 
practice is more likely to be successfully adopted if there is a 
good justification for doing so, it is relatively easy to adopt, 
and there are clearly articulated benefits of doing so for both 
the individuals and the entire team.

For argument sake, we organized some major practices 
of data-intensive, open, and team science into three discrete 
categories of adoption, which we refer to as levels; however, 
we acknowledge that there are also practices between the 
levels. Level I is the lowest level of adoption that requires 
the least amount of training or new methods to implement 
(figure 3) and, therefore, should be the easiest to adopt. In 
contrast, level III requires the most training or new methods 
to implement. We do not argue that every ecologist or ecol-
ogy research team should be at level III for all three types of 
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science; rather, it will depend on the team, the goals of the 
research project, and the institutional requirements (e.g., 
universities, funding agencies, or publishing standards). In 
fact, we advocate careful consideration of the needs and 
goals of each project (and team) to decide where along each 
of the three gradients will result in the best outcomes. Many 
publishers require data sharing on publication, whereas just 
a few funding agencies are requiring the data sharing on 
project completion. A team that is new to open science may 
plan from project inception to share all data associated with 
project publications (level II) and develop associated poli-
cies, procedures, and templates early in the project for use 
by everyone in the team. Similarly, some funding agencies 
require a project management plan for collaborative teams 
as part of the proposal review process. A team that is new to 
team science may be prompted by this requirement to learn 
and practice the principles of team science to run the team 
effectively (moving from level I to level III).

Within this gradient of adoption framework (figure 3), we 
expect higher levels of adoption to result in the most positive 
synergistic effects of open and team science on data inten-
sive ecology research (figure 2). However, a comparison 

of the outcomes of data-intensive research across levels 
of adoption for open science and team science warrants 
further research. In our own experiences described below, 
we took an opportunistic approach and implemented open 
science and team science practices as needed to conduct 
our data-intensive research. This incremental approach had 
the advantage that we could easily justify the practices to 
our research team rather than implementing them on the 
basis of principles alone. Although there may be cases in 
which implementing a practice on the basis of principle 
alone makes sense, we expect that differences in underlying 
values among team members could result in conflicts and 
resistance to such implementation (Elliott 2017), especially 
without explicit discussions of these underlying values 
(O’Rourke et al. 2013). The gradients of adoption can help 
provide teams with concrete practices to better implement 
open, team, and data-intensive science.

Our experience adopting data-intensive, open, and 

team science incrementally

As an example, we describe the progression of adoption that 
we have taken in our own research program. Although each 

Figure 3. Example behaviors and practices for data-intensive, open, and team science organized into three discrete 

categories of adoption (i.e., levels). The levels are arranged from left to right with the lowest level of adoption (level I) 

requiring the least amount of training or new methods to implement to the highest level of adoption (level III) requiring the 

most training or new methods to implement, and level II between these two extremes. In reality, there are three spectrums 

of behaviors and practices rather than three discrete categories.
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team will progress in its own way, we share the benefits we 
experienced by taking a gradual approach to incrementally 
incorporate more practices and behaviors along all three 
science gradients. We were each trained using the single-
investigator mode of conducting research (albeit still collab-
orative) and not inculcated in open science or data-intensive 
research. However, during the past 20 years of working 
together on a range of collaborative research projects, we 
have increased the proportion of our research program 
that is data-intensive and uses team and open science. This 
shift happened in an unplanned way: We realized that our 
broadscale spatial and temporal ecology questions were 
impossible to answer using our past cultures and practices. 
We were interested in answering questions related to the 
extrapolation and forecasting of lake water quality at sub-
continental scales in thousands of lakes in diverse regions, 
which were questions we could not answer alone, nor could 
we answer using data that only we collected. We had con-
ducted this type of research before but at smaller scales, 
with fewer collaborators, with smaller data sets, and using 
closed science that never included publishing our data sets 
in public repositories.

We led an NSF-funded project of approximately 15 
individuals across 6 years to build the Lake Multiscaled 
Geospatial and Temporal Database (LAGOS-NE) for over 
50,000 lakes in the United States (Soranno et al. 2017). The 
project was data-intensive in that we integrated hundreds of 
heterogeneous data sets and types of data from thousands 
of systems. We estimate that our project fit within the level 
II of data-intensive science (figure 3) because the ecological 
data sets were considered large by the standards of ecology, 
the data complexity was high and the integration procedures 
could not be done manually so had to be automated. We 
quickly realized that conducting this kind of data-intensive 
research required us to include experts in database develop-
ment and design and data-intensive analytical approaches 
(i.e., data scientists). However, we had not realized the extent 
to which we also needed to more fully adopt and embrace 
the cultures and practices of open and team science to suc-
cessfully conduct this type of data-intensive research.

For example, a key practice from open science—data shar-
ing—was an important foundation of this project because we 
asked approximately 70 university and government agency 
personnel to share their data and metadata with us and 
agree to make it publicly accessible at the end of our proj-
ect. However, we would not be able to acknowledge all 70 
of the data providers in acknowledgment sections of future 
manuscripts. Therefore, we decided to use the open sci-
ence practice of writing a data paper that included all data 
providers as coauthors so that they would receive credit 
for their important contributions (Soranno et  al. 2017). 
Concurrently, we made the data publicly available in a data 
repository (Soranno and Cheruvelil 2017), which required 
us to learn additional database and open science tools 
related to data set version control and standards and tools 
for metadata and database documentation (Soranno et  al. 

2015a). This experience also made us reflect on the broader 
issue of data sharing in ecology, which helped us articulate 
our ethical obligations for sharing our data about fresh-
waters, a valued natural resource (Soranno et  al. 2015b). 
We continue to progress in our adoption of open science 
practices. For example, for the LAGOS-NE project, we made 
the data available at the end of the project or at publication 
time (level II, figure 3). However, our current project that 
is building a database for the entire US (LAGOS-US), will 
make each quality-controlled version of the database pub-
licly accessible as soon as it is complete (level III, figure 3).

Team science was equally important to the success of 
our project that included collaborative and interdisciplin-
ary manuscript writing. Because of the complexity of the 
research, we needed a team of approximately 15 individuals 
from a range of disciplines to conduct the work. We had to 
learn and implement many important principles of team 
science to ensure that the team of individuals with differ-
ent backgrounds, needs, experiences, and power worked 
together to meet the project goals across the 6 years of this 
project. In particular, we had to learn other disciplinary 
cultures and create inclusive policies and practices to ensure 
all team members received credit and met their personal 
goals on the project. Because we struggled finding resources 
to help us in this aspect of our research project, we wrote 
articles describing some of these practices to help other 
research teams (Cheruvelil et  al. 2014, Goring et  al. 2014, 
Elliott et al. 2017, Oliver et al. 2018), and we share our team 
policies on our project website. Because we had more prior 
experience with team science before starting this project, 
we were able to reach a level III adoption (figure 3) within 
the first year or two of the project by implementing the fol-
lowing practices: We worked with the team to develop team 
policies and procedures that were written collectively and 
shared, we included team functioning exercises in our all-
project workshops, we conducted assessment in a variety 
of different forms, and we discussed and considered issues 
related to diversity, inclusion, and power dynamics of our 
team members.

Many examples of research efforts are somewhere along 
these three gradients of adoption. Most projects (such as 
ours) will operate somewhere along the three gradients 
rather than fully adopting all practices of data-intensive, 
open, and team science. However, for all levels of adoption, 
there are practices that represent important progress to 
enable ecological teams to tackle challenging research ques-
tions facing the environment and society.

Conclusions

We have made the case that data-intensive ecology research 
can be catalyzed by using it in conjunction with open sci-
ence and team science. However, because ecology is a cul-
tural construct (as all science is), cultural barriers exist to 
adopting all three of these types of science. As an example 
of how culture influences the way ecology is conducted 
and evaluated, consider the debate regarding the value of 
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big science in ecology (Hampton et  al. 2013, Soranno and 
Schimel 2014, Schimel and Keller 2015). Some ecologists 
argue that ecology is not conducive to a big science approach 
and use the perceived failure of the 1970s International 
Biosphere Program (IBP) as evidence (as was described in 
Aronova et  al. 2010). However, when viewed through the 
lens of the contemporary practices of data-intensive, open, 
and team science, it seems plausible that many of the IBP’s 
objectives were not met because of cultural factors related 
to science practice (Aronova et  al. 2010). In fact, it is dif-
ficult to imagine such a broadscale, integrated, and complex 
undertaking succeeding without implementing team and 
open science practices, which were extremely rare and not 
valued at the time. Therefore, a 2020 IBP would look and 
function completely differently and would likely have vastly 
different outcomes. Data-intensive, open, and team-based 
approaches will be an essential part of the ecological toolbox 
for improving predictions that use extrapolation, scaling up, 
and forecasting, and for addressing the important research 
problems of the twenty-first century. Therefore, ecologists 
must capitalize on the cultural changes since the IBP, and 
continue to push the culture by making incremental steps 
along the gradients of adoption for each of these three types 
of science. As ecologists increasingly use a broader range of 
quantitative approaches, learn and practice interpersonal 
and team-functioning skills within diverse teams, and use 
larger accessible data sets and data sources, they will also 
advance the culture in ecology to value, teach, and reward 
these practices and perspectives.
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