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Data-Intensive Ecological Research
Is Catalyzed by Open Science and

Team Science

KENDRA SPENCE CHERUVELIL AND PATRICIA A. SORANNO

Many problems facing society and the environment need ecologists to use increasingly larger volumes and heterogeneous types of data and
approaches designed to harness such data—that is, data-intensive science. In the present article, we argue that data-intensive science will be
most successful when used in combination with open science and team science. However, there are cultural barriers to adopting each of these
types of science in ecology. We describe the benefits and cultural barriers that exist for each type of science and the powerful synergies realized
by practicing team science and open science in conjunction with data-intensive science. Finally, we suggest that each type of science is made up
of myriad practices that can be aligned along gradients from low to high level of adoption and advocate for incremental adoption of each type

of science to meet the needs of the project and researchers.
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Ecologists are increasingly being asked to answer
twenty-first century research questions—questions
connected to the major environmental problems facing
society that are fundamentally ecological in nature, that
cover broad spatial and temporal scales and that cross dis-
ciplines (Lubchenco et al. 1991). Such problems include
sustaining nature’s services amid an increasing human
population (Palmer et al. 2005), forecasting the effects of
global change on ecological systems at both fine and broad
scales (Peters et al. 2014), and quantifying the contribution
of ecological systems in key global cycles (Cole et al. 2007).
Addressing these kinds of problems requires ecologists to
do two things—synthesize diverse knowledge from a range
of disciplines and perspectives (Carpenter et al. 2009) and
expand the breadth of ecological knowledge and theory to a
wide range of spatial and temporal scales (Palmer et al. 2005,
Heffernan et al. 2014).

In fact, ecology has been moving in both of these direc-
tions for the last several decades. For example, a rich body
of synthetic research has been conducted to address some of
these types of problems at synthesis centers, such as the US
National Center for Ecological Analysis and Synthesis, the
Chinese Ecosystem Research Network, the French Centre
for the Synthesis and Analysis of Biodiversity, and the
US Socio-Environmental Synthesis Center (e.g., Carpenter
et al. 2009, Baron et al. 2017). Second, the scale and

scope of ecological research questions has been expanding
through the increased development of both grassroots and
top-down research networks (e.g., AmeriFlux, FluxNet,
Global Lake Ecological Observatory Network, National
Phenology Network, Nutrient Network, National Ecological
Observatory Network). Finally, broadscale understanding of
regions and continents and the integration of understanding
and theory across these scales have progressed through the
subdisciplines of biogeography, landscape ecology, macro-
ecology, and macrosystems ecology (Brown 1995, Heffernan
et al. 2014, Turner and Gardner 2015, Rose et al. 2017).
Much of this broadscale, networked, or synthetic research
includes some form of prediction using one of three strate-
gies: extrapolating findings from one location to another,
scaling up knowledge and processes from local to regional
and global extents, or forecasting knowledge from past to
current and future states (figure 1). These strategies are chal-
lenging to implement and are associated with high levels of
uncertainty, in part, because they often require large amounts
and types of data across space and time, as well as data-inten-
sive analytical approaches. Fortunately, ecology is currently
experiencing a rapid rise in the availability of larger amounts
and new types of data that expand the spatial and temporal
scales of observation (Porter et al. 2012, Schimel et al. 2013,
Heffernan et al. 2014). Such data include those generated
from genomic sequencing, low-cost high-frequency sensors
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Figure 1. Three strategies ecologists use to address a wide range of broadscale ecological questions often requiring data-
intensive methods. Ovals represent individual ecosystems, ecosystems with similar states are the same color, and open
ovals represent ecosystems with no in situ observations. These strategies are often used in synthetic analyses in which the
researchers attempt to extrapolate knowledge gained from a small number of studies or ecosystems to a broader range of
ecosystems (a), scale up observed estimates of important ecological processes from a number of different site-based studies
to regional and global scales (b), and forecast future states of ecosystems using knowledge from current and past time

periods, often in multiple sites and regions (c).

deployed across many systems, data compilation of many
small studies into large integrated databases, and multispec-
tral satellite imagery of increasingly large geographic extents,
to name a few. Therefore, to answer twenty-first century eco-
logical questions, ecology is and will become increasingly a
data-intensive discipline (Peters et al. 2014, Elliott et al. 2016,
Hampton et al. 2017, Farley et al. 2018).

We propose that for ecological data-intensive research
to be most successful, it will be used in combination with
open science and team science, both of which have already
been influencing ecological practices. Although many ecolo-
gists have explicitly made compelling arguments for data-
intensive, open, and team science individually or implicitly
argued for some combination of these types of science (see
the citations throughout this article), we believe that deliber-
ately combining these three types of science causes synergy.
For example, open science practices provide publicly acces-
sible data, code, and methods for combining data across
broad scales of time and space and across disciplines, greatly
facilitating data-intensive research. Similarly, publishing
open-access research articles ensures that all disciplinary
scientists can access and read the content. Team-based prac-
tices provide a diverse set of people who have the knowledge
and perspectives needed to combine these data across scales
or disciplines using expertise from such disciplines as bioin-
formatics, geospatial science, statistics, or computer science
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(Peters et al. 2014, Soranno et al. 2015a). Finally, proponents
of team science and open science have perspectives and
methods that are complementary to each other and catalyze
each other’s practices.

Due to these (and other) examples of synergies among
these three types of science, we argue that data-intensive
research in ecology will be catalyzed by open science and
team science. An important element of the synergies among
these three types of science is that each type of science com-
prises a wide range of behaviors and practices that can be
arranged along a gradient of adoption. We propose that as
scientists move further along each gradient from low to very
high levels of adoption, they maximize the synergies from
open science and team science to fully accrue the benefits
of data-intensive science. In this article, we (a) describe the
synergies among data-intensive, open, and team science; (b)
discuss cultural barriers that exist for each type of science
in ecology; and (c) propose three gradients of adoption as
a way to address these barriers and promote data-intensive
science to answer twenty-first century ecology questions.
In the subsequent sections, we summarize the evidence for
these ideas from the literature drawing on past and contem-
porary examples of ecology’s use of these types of science
and provide our own experiences as examples of incremental
progression along each type of science’s gradient to conduct
ecology research.
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Definitions and benefits of data-intensive, open, and
team science for ecology
Below, we define data-intensive, open, and team science and
summarize the benefits of conducting each type of science
individually. The exact definitions of these types of science
differ within and among disciplines, and the definitions con-
tinue to evolve. However, we define data-intensive science as
empirical research in which the capture, curation, and the
analysis of large volumes of data is central to the scientific
question (Hey et al. 2009, Critchlow and Dam 2013, Farley
et al. 2018). What counts as large volumes of data is highly
variable across disciplines and will change through time;
however, data-intensive research in this context is strongly
empirical and often relies on data from multiple sources,
including those not collected by the scientist conducting the
data-intensive research. Data-intensive science is distinct
from data science, which develops novel methods for the
analysis of data (e.g., computer science, machine learning
and data mining, and statistics). Much has been written
about the potential of data-intensive science for a wide range
of disciplines, including ecology (e.g., Hey et al. 2009, Kelling
et al. 2009, Peters et al. 2014, Hampton et al. 2017, LaDeau
et al. 2017). In situ measurements of ecosystems are being
compiled into databases of unprecedented broad spatial
and temporal scales to ask basic ecological questions about
whether results and knowledge obtained from relatively
small numbers of well-studied systems can be extrapolated
through time and to ecosystems across regions, continents,
and the globe (Kelling et al. 2009, Hampton et al. 2013,
Sharma et al. 2015, Soranno et al. 2017). In fact, empirical
data-intensive approaches are helping ecologists test exist-
ing theory and understand empirical patterns that cannot
be studied with finer-scale studies, ask new questions about
the role of broadscale factors for driving patterns through
time, and provide new insight about the scales and processes
underlying patterns never before studied (O’Reilly et al.
2015, Thessen 2016, Lottig et al. 2017, Collins et al. 2018).
Open science uses a set of transparent, inclusive, and
reproducible practices that result in publicly available
research, data, and dissemination products (e.g., Fecher
et al. 2015, Hampton et al. 2015, Lowndes et al. 2017); it
also expects that all data, code and other research prod-
ucts are findable, accessible, interoperable, and reusable
(Wilkinson et al. 2016). Open science has the potential to
benefit ecology in many ways (Hampton et al. 2015) and has
been gaining popularity (Parr and Cummings 2005, Duke
and Porter 2013, Lowndes et al. 2017). It stands to advance
discovery, foster reproducibility, leverage investments in
research, democratize science, foster a more inclusive sci-
ence, and improve communication between scientists, the
public, and decision-makers (Hampton et al. 2015, Soranno
et al. 2015b). Such benefits are especially needed to answer
integrative research questions about the patterns that exist
and the processes that operate at more than one scale across
space and time, which can be done by integrating smaller
data sets into larger, heterogeneous ones (Peters et al. 2014,
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O'Reilly et al. 2015, Lottig et al. 2017, Lowndes et al. 2017,
Novick et al. 2017) or through formal organizations that
make data available for research on ecological change at
national (US National Ecological Observatory Network)
and global scales (Global Biodiversity Information Facility).
Increasingly, networks and organizations are also making
more than their data accessible; they are sharing lab note-
books and code with services such as GitHub, which facili-
tates reproducible and transparent methods.

Finally, we define team science as collaborative science
that leverages the expertise of a diverse range of profes-
sionals and that incorporates practices to maximize team
functioning (e.g., Stokols et al. 2008, Cheruvelil et al. 2014).
Scientists have long been capitalizing on the benefits of
collaborative research. For example, multiauthored publica-
tions have higher citation rates than single-authored studies
(Wuchty et al. 2007), research teams that are interdisciplin-
ary have increased creativity and productivity (Boix Mansilla
et al. 2016), and those that are more diverse produce more
creative and impactful outcomes (Woolley et al. 2010). In
ecology, there are numerous examples of successful research
collaborations, particularly in the last 20 years, including
synthesis center working groups (Carpenter et al. 2009,
Hampton and Parker 2011, Campbell et al. 2013, Baron et al.
2017), grassroots networks (e.g., Borer et al. 2014, Hanson
et al. 2016, Novick et al. 2017), and big-science observato-
ries (e.g., Kuhlman et al. 2016). Such efforts are producing
large amounts of data, research outputs, and early career
researchers with the penchant for working as part of pro-
ductive teams (e.g., Read et al. 2016b, Lowndes et al. 2017).
However, collaborative research is not always the same as
team science, which has its roots in well-established fields
such as organizational psychology and is highly informed
by the recently formed, interdisciplinary science of team sci-
ence, which studies the processes by which scientific teams
conduct research and the circumstances that facilitate or
hinder the effectiveness of collaborative research (National
Research Council 2015). Therefore, team science is collab-
orative science that uses knowledge and practices from these
two important disciplines to create and maintain productive
teams. Research on science teams has shown that high-
performing research teams rely on practices that maximize
team function, such as clearly defining roles, responsibilities,
and expectations and establishing team policies for many
components of the research enterprise (e.g., authorship, data
sharing; Stokols et al. 2008, Cheruvelil et al. 2014, Read et al.
2016b). As team sizes grow and team diversity increases,
these practices become even more important. Therefore,
data-intensive ecological research conducted by diverse
teams will benefit greatly from engaging with team science
behaviors and practices.

Synergies among data-intensive, open, and team
science

There are many synergies among the underlying principles,
strategies, and approaches of data-intensive, open, and team
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Team science

Collaborative science that leverages the
expertise of a diverse range of professionals

_ Perspectives

Open science

Open science uses a set of transparent,
inclusive, and reproducible practices that

and that incorporates practices that maximize
team functioning.*

Methods

-

result in publicly-available research, data,
and dissemination products; it is also

> expected that all data, code and other
research products are findable, accessible, |
interoperable, and reusable.* y,

Data-intensive science

Empirical research in which the capture, curation, and
analysis of (usually) large volumes of data are central
to the scientific question; it has also been defined as
research that uses data sets so large or complex that
they are hard to process and analyze using traditional

approaches and methods.*

* See text for citations for
Y, each definition

Figure 2. The synergies resulting from the combined use of data-intensive, open, and team science to answer twenty-first
century ecological questions. Data-intensive science is facilitated by synergies between team science and open science
(depicted by the double-headed red arrows), such as the perspectives, methods, and expertise contributed by those who
practice open and team science and contribute to collaborative data-intensive research. Furthermore, team science
practices facilitate data-intensive science by providing practices that ensure effective and productive collaboration,

often across disciplines, and by identifying key individuals, such as disciplinary brokers who are essential for spanning
disciplines to meet research objectives. Likewise, open science greatly facilitates data-intensive science by providing the
tools and approaches for effectively sharing data and code and fostering the effective transfer of knowledge, data, and tools

among team members and eventually all researchers.

science for those who engage with them in combination
(figure 2). For example, open science and team science
facilitate each other. The strategy of creating written team
policies (a team science strategy) related to data sharing can
increase willingness to embrace open science principles,
because teams are forced to confront and reconcile differ-
ing views within the team (Cheruvelil et al. 2014). Similarly,
having team members who are strong proponents of open
science can help teams implement practices that facilitate
team functioning. For example, using code-sharing plat-
forms such as GitHub can promote code sharing for similar
functions, which increases overall productivity and research
reproducibility while also facilitating collaborations across
individuals with different levels of coding expertise. Written
data-sharing policies and the use of code-sharing platforms
also facilitate the eventual public sharing of research prod-
ucts (e.g., Lowndes et al. 2017, Soranno et al. 2017).

Such synergies are highly beneficial for data-intensive
ecology research, because many ecologists do not have an
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extensive background in creating, managing, and analyzing
large and complex data sets (figure 2). For example, an open
science perspective that assumes sharing of data, code, and
methods, facilitates data-intensive research by developing
the strategies to share early in the research project, as well
as to document both the data and methods. Such practices
increase overall team-level productivity by providing all
team members access to the same well-documented data,
code, and methods (Lowndes et al. 2017). One could imag-
ine the inefficiencies if a single person created the database
and had intimate knowledge of the data to use it but did not
document that knowledge—they would have to work with
each individual scientist on the team who wanted to use the
data. Read and colleagues (2016a) provide an example of
such promotion of data-intensive research by open science
through the development of openly shared tools for data
quality controls, data visualizations, and models.

Team science can also promote data-intensive ecology
research by providing the strategies to ensure effective
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implementation of practices and tools from other disciplines
during data-intensive research. For example, Hanson and
colleagues (2016) show how interdisciplinary collaborations
can support data-intensive ecology research by providing
essential informatics and computational expertise to create
cyberinfrastructure support of network data, operations, and
software tools. However, interdisciplinary research can be dif-
ficult to implement because people from different disciplines
have a wide range of perspectives and values (O’Rourke et al.
2013). To overcome such challenges, team science includes
such practices as inclusion of one or more members of a team
who are disciplinary brokers—people who speak the languages
of multiple disciplines (Wenger 2000, Pennington 2011). A
broker greatly enhances interactions among team members
of different disciplines by improving overall communication
of ideas and approaches and by helping to identify important
and compelling research questions for the team to address.
Furthermore, team science includes training and providing
opportunities to develop collaboration skills such as facilitat-
ing team discussions and conflict negotiation (Cheruvelil
etal. 2014, Read et al. 2016b), which have obvious benefits for
team idea generation and research productivity. Because data-
intensive research teams often include more than one disci-
pline (or perspectives within a discipline, such as an empirical
and theoretical scientist), such attention to strategies that best
harness these differing perspectives are especially important
to ensure successful project outcomes.

Cultural barriers to data-intensive, open, and team
science in ecology

Although there are many ecologists using practices from
data-intensive, open, and team science, adoption of these
three types of science are still the exception rather than
the rule in ecology. Since technical barriers to adoption are
quickly being removed (Hampton et al. 2015), it is unlikely
that they are the sole cause of slow adoption; another factor
slowing their adoption is a lack of cultural support. Below,
we describe some of the cultural barriers to adoption of
these three types of science that exist and some of the solu-
tions that are necessary for data-intensive, open, and team
science practices to flourish in ecology.

Data intensive science

Despite the potential for data-intensive science, some empir-
ical ecologists are hesitant to add it to their research pro-
gram. Much of this hesitancy stems from the argument that
data-intensive approaches will result in at best, weak, and at
worst, erroneous, inferences. There are three main reasons
for this argument. First, critics argue that data-intensive
methods are atheoretical and not hypothesis-driven, inef-
ficient fishing expeditions or that they result in mostly spu-
rious correlations (Elliott et al. 2016). Second, critics argue
that large data sets themselves are the problem in that they
are prone to characteristics that limit their usefulness includ-
ing data that are noisy (because of measurement error, outli-
ers, and missing values) and lead to weak signals, contain
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many correlated variables, and have complex data structures
(Fan et al. 2014). Third, ecologists are used to collecting
data themselves for a specific purpose; therefore, they have
confidence in their data and are critical of using either other
people’s data or contributing their data for purposes outside
of the original study design.

These major criticisms of data-intensive research argue
that data-intensive approaches cannot result in strong infer-
ence when compared with well-established approaches from
site-specific intensive study of single of a few ecosystems
or processes. However, these criticisms arise from taking a
frequentist perspective when, in fact, improper statistics can
be conducted with any amount of data—large data sets are
not alone in this regard (Hand 1998). Ecologists have been
trained that when a sufficiently large number of statistical
tests are performed with a data set, some proportion will be
significant by chance alone and that the outcomes of hypoth-
esis testing is biased if the data are not independent nor
drawn from an unbiased sample. However, these concerns
can be addressed using other analytical perspectives that do
not rely on statistical significance, many of which have been
around for several decades, including data mining, machine
learning, computational approaches, Bayesian statistics, and
weight of evidence modeling approaches (e.g., Burnham
and Anderson 2003, Hochachka et al. 2007). In addition,
dependent, unbalanced, and noisy data can be accounted
for by modeling quantitative estimates of uncertainty that
arise from such sources (e.g., Harwood and Stokes 2003,
Petchey et al. 2015). Therefore, as more ecologists include
nonfrequentist approaches as part of their research pro-
gram, what constitutes “good” methods in ecology will
broaden. By valuing, teaching, and rewarding the use of a
variety of quantitative approaches (and their interpretation)
in ecology, we can promote the inclusion of data-intensive
approaches and perspectives (e.g., Peters et al. 2014, Elliott
et al. 2016, LaDeau et al. 2017). Concurrently, we should
incentivize researchers to build large databases and the asso-
ciated tools needed to use them such as software, metadata,
code, and other research products by crediting these valu-
able research products for career advancement (Goring et al.
2014, LaDeau et al. 2017).

Open science

Open science practices are not yet the norm in ecology. For
example, the sharing of ecological data is still far from com-
mon (Wolkovich et al. 2012, Hampton et al. 2013, Roche
et al. 2015), and studies have shown a large proportion of
peer-reviewed ecology articles suffer from underreport-
ing of key methods or results to make them reproducible
(Parker et al. 2016). In a recent analysis of a well-established
scientist-led research network, AmeriFlux, data availability
from participating sites was shown to be lower than the
network wanted (approximately 65%), and the proportion
of sites sharing data appeared to be decreasing (Novick
et al. 2017). Arguably, past (and current) scientific cultures
could be characterized as highly competitive for limited
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resources, including funding and data. Therefore, scientists
with sole access to data, code, methods, and other tools
had a competitive advantage over others. This legacy may
be one contributing factor to an existing resistance to and
low adoption of open science tools and practices in ecol-
ogy. For example, arguments against data sharing include
a reluctance to release control of the data, fear of being
“scooped,” fear that others will misinterpret data, fear that
sharing will restrict the types of data that scientists can use,
and a lack of resources or the ability to fully document the
data (Wolkovich et al. 2012, Lindenmayer and Likens 2013,
Fenichel and Skelly 2015, Mills et al. 2015). In fact, on the
basis of such arguments, some researchers may think there
are few incentives to change behavior from the past, closed,
culture to a more open one.

However, when one reframes the issue to include the
full range of science outcomes—answering twenty-first
century ecological questions, participating in potentially
high-impact research, broadening participation in science,
and getting credit for research outputs in addition to publi-
cations—incentives for open-science practices become more
apparent (Uriarte et al. 2007, Soranno et al. 2015b, Elliott
et al. 2016, McKiernan et al. 2016). Also, scientists sharing
their methods, data, and research outputs, can be identified
as potential collaborators who know the data and methods
well (McKiernan et al. 2016, Lowndes et al. 2017). These col-
laborations can increase science productivity of individual
scientists, expose them to new research ideas and tools, and
broaden the range of research questions an individual sci-
entist can answer. Therefore, the apparent conflict between
open and closed science resides in perception—open science
practices can benefit society and science, while also benefit-
ting individual scientists.

Team science

There remain two main cultural barriers to adoption of
team science in ecology. First, the popular perception of
ecology—and much of science—remains dominated by
the ideals of individual achievements (Uriarte et al. 2007,
Geman and Geman 2016). Many scholars were trained in
the single-discipline, single-investigator approach that has
dominated science disciplines to date. And, the myth of the
lone genius is perpetuated by some prominent scientists
falsely suggesting that great ideas rarely come from teams
and calling for a return to the good old days of maverick
scientists (Geman and Geman 2016). Second, most ecolo-
gists have not been trained in effective teamwork and in
fact, do not include such training as a valuable component
of the scientific enterprise. Because scientists rarely receive
formal training in team science, they may not recognize the
common power imbalances inherent in research teams (i.e.,
early career scientists who have low power and voice within
the team) or how those power differentials may affect team
practices—although early career researchers are often all too
aware of such imbalances. Despite well-intentioned team
members and leaders, teams without explicit procedures
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to ensure that low-power team members have a voice and
receive deserved credit have the potential for the opposite
result (e.g., Elliott et al. 2017). Luckily, the interpersonal
skills required for effective and inclusive teamwork can
be learned and practiced through workshops or training
in practices such as facilitating discussions, critical listen-
ing, and conflict negotiation (Cheruvelil et al. 2014). The
Global Lakes Ecological Observatory Network (GLEON)
is a recent example of a research network that trains early
career researchers in such skills, has adopted many team sci-
ence approaches network-wide, and has demonstrated the
benefits network science (Hipsey et al. 2015, Hanson et al.
2016, Rose et al. 2017).

To fully incorporate teams and their research into the
scientific enterprise, we must stop idealizing the lone-genius
mythology of science, value and incentivize team science
skills such as interpersonal skills, and recognize the wide
variety of ways that scientists work together to conduct
research. Growing empirical evidence points to the benefits
of team science and indicates that the scientists who make
tomorrow’s crowning achievements will be increasingly
part of diverse teams with skills and perspectives that span
dimensions of race, ethnicity, gender, sexuality, country of
origin, career-level, and discipline, to name a few. Therefore,
we need to learn for ourselves and teach the next generation
of scientists effective team-based research skills. We must
also value and reward team-based cultures and practices.

Gradients of adoption for data-intensive, open, and
team science

One way to advance the adoption of data-intensive, open,
and team science practices in ecology is to recognize that
each type of science is made up of myriad practices that can
be aligned along gradients from low to high level of adop-
tion. Other researchers have argued for a similar incremen-
tal approach to incorporating open science methods into a
highly collaborative research effort (Lowndes et al. 2017).
However, we recommend that practices from all three of
these types of science be incorporated incrementally along
each gradient as required to meet the research needs of the
project. An incremental approach to adoption that is directly
linked to the needs of the project is beneficial because a new
practice is more likely to be successfully adopted if there is a
good justification for doing so, it is relatively easy to adopt,
and there are clearly articulated benefits of doing so for both
the individuals and the entire team.

For argument sake, we organized some major practices
of data-intensive, open, and team science into three discrete
categories of adoption, which we refer to as levels; however,
we acknowledge that there are also practices between the
levels. Level I is the lowest level of adoption that requires
the least amount of training or new methods to implement
(figure 3) and, therefore, should be the easiest to adopt. In
contrast, level Il requires the most training or new methods
to implement. We do not argue that every ecologist or ecol-
ogy research team should be at level III for all three types of
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Level of adoption

. «Team creation is organic or assigned by
Team science

and discussed as needed

*Team functioning is implicit and discussed
as needed

inclusion are implicit and minimally
acknowledged

+Data and metadata are published in article

Open science tables or supplements

«Code and documentation are on lab or
individual website

*Publications are in closed access journals
that allow self-archiving

*Reproducibility and transparency is
based on methods in published articles

DEY =B 131.=] *High volume of data that comes from a
science single entity or site

+Type or class of high-volume data is
mostly one

+Data management or quantitative tools
are mostly existing or disciplinary

*Computational constraints are few

*Team functioning is explicitly discussed

+Issues of power dynamics, diversity, and +Issues of power dynamics, diversity, and
inclusion are acknowledged and discussed
as needed

«Data and metadata are published in
repository at article publication or project end

«Code and documentation are published in
repository at article publication or project end

«Publications are in closed access journals,
but articles are made open access (paid)

*Reproducibility and transparency is
enhanced by metadata and documentation
in repositories

+High volume of data that comes from
multiple entities OR sites

«Computational constraints are moderate

»Team creation is deliberate, leaders aware of +Team creation is deliberate, leaders explicitly
others the importance of diversity within the team

«Team policies and procedures are implicit  *Team policies and procedures are
explicitly discussed

create diverse team across many dimensions

«Team policies and procedures are
discussed, documented (written), revised,
and assessed

*Team functioning is discussed, trained,
practiced, and assessed

«Issues of power dynamics, diversity, and
inclusion are explicitly discussed and
assessed

Data and metadata are version-controlled and
shared before article publication or project end

*Code and documentation are version-
controlled and shared before publication or
project end

+Publications are in open access journals

*Reproducibility and transparency is further
enhanced by accessible ‘open lab notebook’

«High volume of data that comes from
multiple entities AND sites

+Type or class of high-volume data is many  +Type or class of high-volume data is many

with complex data structures

+Data management or quantitative tools are +Data management or quantitative tools
advanced or from other disciplines requiring
new expertise

require novel ideas from other disciplines
requiring new expertise

«Computational constraints are large and
may limit analysis

Figure 3. Example behaviors and practices for data-intensive, open, and team science organized into three discrete
categories of adoption (i.e., levels). The levels are arranged from left to right with the lowest level of adoption (level I)
requiring the least amount of training or new methods to implement to the highest level of adoption (level 11I) requiring the
most training or new methods to implement, and level II between these two extremes. In reality, there are three spectrums

of behaviors and practices rather than three discrete categories.

science; rather, it will depend on the team, the goals of the
research project, and the institutional requirements (e.g.,
universities, funding agencies, or publishing standards). In
fact, we advocate careful consideration of the needs and
goals of each project (and team) to decide where along each
of the three gradients will result in the best outcomes. Many
publishers require data sharing on publication, whereas just
a few funding agencies are requiring the data sharing on
project completion. A team that is new to open science may
plan from project inception to share all data associated with
project publications (level II) and develop associated poli-
cies, procedures, and templates early in the project for use
by everyone in the team. Similarly, some funding agencies
require a project management plan for collaborative teams
as part of the proposal review process. A team that is new to
team science may be prompted by this requirement to learn
and practice the principles of team science to run the team
effectively (moving from level I to level III).

Within this gradient of adoption framework (figure 3), we
expect higher levels of adoption to result in the most positive
synergistic effects of open and team science on data inten-
sive ecology research (figure 2). However, a comparison

https://academic.oup.com/bioscience

of the outcomes of data-intensive research across levels
of adoption for open science and team science warrants
further research. In our own experiences described below,
we took an opportunistic approach and implemented open
science and team science practices as needed to conduct
our data-intensive research. This incremental approach had
the advantage that we could easily justify the practices to
our research team rather than implementing them on the
basis of principles alone. Although there may be cases in
which implementing a practice on the basis of principle
alone makes sense, we expect that differences in underlying
values among team members could result in conflicts and
resistance to such implementation (Elliott 2017), especially
without explicit discussions of these underlying values
(O’Rourke et al. 2013). The gradients of adoption can help
provide teams with concrete practices to better implement
open, team, and data-intensive science.

Our experience adopting data-intensive, open, and
team science incrementally

As an example, we describe the progression of adoption that
we have taken in our own research program. Although each
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team will progress in its own way, we share the benefits we
experienced by taking a gradual approach to incrementally
incorporate more practices and behaviors along all three
science gradients. We were each trained using the single-
investigator mode of conducting research (albeit still collab-
orative) and not inculcated in open science or data-intensive
research. However, during the past 20 years of working
together on a range of collaborative research projects, we
have increased the proportion of our research program
that is data-intensive and uses team and open science. This
shift happened in an unplanned way: We realized that our
broadscale spatial and temporal ecology questions were
impossible to answer using our past cultures and practices.
We were interested in answering questions related to the
extrapolation and forecasting of lake water quality at sub-
continental scales in thousands of lakes in diverse regions,
which were questions we could not answer alone, nor could
we answer using data that only we collected. We had con-
ducted this type of research before but at smaller scales,
with fewer collaborators, with smaller data sets, and using
closed science that never included publishing our data sets
in public repositories.

We led an NSF-funded project of approximately 15
individuals across 6 years to build the Lake Multiscaled
Geospatial and Temporal Database (LAGOS-NE) for over
50,000 lakes in the United States (Soranno et al. 2017). The
project was data-intensive in that we integrated hundreds of
heterogeneous data sets and types of data from thousands
of systems. We estimate that our project fit within the level
IT of data-intensive science (figure 3) because the ecological
data sets were considered large by the standards of ecology,
the data complexity was high and the integration procedures
could not be done manually so had to be automated. We
quickly realized that conducting this kind of data-intensive
research required us to include experts in database develop-
ment and design and data-intensive analytical approaches
(i.e., data scientists). However, we had not realized the extent
to which we also needed to more fully adopt and embrace
the cultures and practices of open and team science to suc-
cessfully conduct this type of data-intensive research.

For example, a key practice from open science—data shar-
ing—was an important foundation of this project because we
asked approximately 70 university and government agency
personnel to share their data and metadata with us and
agree to make it publicly accessible at the end of our proj-
ect. However, we would not be able to acknowledge all 70
of the data providers in acknowledgment sections of future
manuscripts. Therefore, we decided to use the open sci-
ence practice of writing a data paper that included all data
providers as coauthors so that they would receive credit
for their important contributions (Soranno et al. 2017).
Concurrently, we made the data publicly available in a data
repository (Soranno and Cheruvelil 2017), which required
us to learn additional database and open science tools
related to data set version control and standards and tools
for metadata and database documentation (Soranno et al.
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2015a). This experience also made us reflect on the broader
issue of data sharing in ecology, which helped us articulate
our ethical obligations for sharing our data about fresh-
waters, a valued natural resource (Soranno et al. 2015b).
We continue to progress in our adoption of open science
practices. For example, for the LAGOS-NE project, we made
the data available at the end of the project or at publication
time (level II, figure 3). However, our current project that
is building a database for the entire US (LAGOS-US), will
make each quality-controlled version of the database pub-
licly accessible as soon as it is complete (level III, figure 3).

Team science was equally important to the success of
our project that included collaborative and interdisciplin-
ary manuscript writing. Because of the complexity of the
research, we needed a team of approximately 15 individuals
from a range of disciplines to conduct the work. We had to
learn and implement many important principles of team
science to ensure that the team of individuals with differ-
ent backgrounds, needs, experiences, and power worked
together to meet the project goals across the 6 years of this
project. In particular, we had to learn other disciplinary
cultures and create inclusive policies and practices to ensure
all team members received credit and met their personal
goals on the project. Because we struggled finding resources
to help us in this aspect of our research project, we wrote
articles describing some of these practices to help other
research teams (Cheruvelil et al. 2014, Goring et al. 2014,
Elliott et al. 2017, Oliver et al. 2018), and we share our team
policies on our project website. Because we had more prior
experience with team science before starting this project,
we were able to reach a level III adoption (figure 3) within
the first year or two of the project by implementing the fol-
lowing practices: We worked with the team to develop team
policies and procedures that were written collectively and
shared, we included team functioning exercises in our all-
project workshops, we conducted assessment in a variety
of different forms, and we discussed and considered issues
related to diversity, inclusion, and power dynamics of our
team members.

Many examples of research efforts are somewhere along
these three gradients of adoption. Most projects (such as
ours) will operate somewhere along the three gradients
rather than fully adopting all practices of data-intensive,
open, and team science. However, for all levels of adoption,
there are practices that represent important progress to
enable ecological teams to tackle challenging research ques-
tions facing the environment and society.

Conclusions

We have made the case that data-intensive ecology research
can be catalyzed by using it in conjunction with open sci-
ence and team science. However, because ecology is a cul-
tural construct (as all science is), cultural barriers exist to
adopting all three of these types of science. As an example
of how culture influences the way ecology is conducted
and evaluated, consider the debate regarding the value of
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big science in ecology (Hampton et al. 2013, Soranno and
Schimel 2014, Schimel and Keller 2015). Some ecologists
argue that ecology is not conducive to a big science approach
and use the perceived failure of the 1970s International
Biosphere Program (IBP) as evidence (as was described in
Aronova et al. 2010). However, when viewed through the
lens of the contemporary practices of data-intensive, open,
and team science, it seems plausible that many of the IBP’s
objectives were not met because of cultural factors related
to science practice (Aronova et al. 2010). In fact, it is dif-
ficult to imagine such a broadscale, integrated, and complex
undertaking succeeding without implementing team and
open science practices, which were extremely rare and not
valued at the time. Therefore, a 2020 IBP would look and
function completely differently and would likely have vastly
different outcomes. Data-intensive, open, and team-based
approaches will be an essential part of the ecological toolbox
for improving predictions that use extrapolation, scaling up,
and forecasting, and for addressing the important research
problems of the twenty-first century. Therefore, ecologists
must capitalize on the cultural changes since the IBP, and
continue to push the culture by making incremental steps
along the gradients of adoption for each of these three types
of science. As ecologists increasingly use a broader range of
quantitative approaches, learn and practice interpersonal
and team-functioning skills within diverse teams, and use
larger accessible data sets and data sources, they will also
advance the culture in ecology to value, teach, and reward
these practices and perspectives.
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