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Abstract— The intermittent nature of renewable energy gen-
eration implies that renewable producers rely on non-renewable
producers to ensure the aggregate power delivered meets
the promised quality of service. Therefore, the intermittent
nature of renewable energy generation affects the committed
power and market price of energy. We consider an electricity
market where renewable and non-renewable generators bid
by proposing their asking price per unit of energy to an
independent system operator (ISO). The ISO solves a dispatch
optimization problem to minimize the cost of purchased energy
on behalf of the consumers. We incorporate the notion of
net-load variance using the Conditional Value-at-Risk (CVAR)
measure in the dispatch optimization problem to ensure that
the generators are able to meet the load within a desired
confidence level. We analytically derive the market clearing
price of energy and dispatched powers as a function of CVAR
and show that a higher penetration of renewable energies may
increase the market clearing price of energy. Finally, we present
descriptive simulations to illustrate the impact of renewable
energy penetration on the market price of energy.

I. INTRODUCTION

Growing concern over the impact of climate change has
led to a noticeable shift from non-renewable resources in
many parts of the world. As a result, renewable energy
resources are anticipated to play a crucial role in power
systems of the near-future. However, integration of renewable
resources into the electricity market, specifically high levels
of penetration, requires several modifications in the elec-
tricity market [1]. The primary reason for this modification
is that production from renewable energy sources is highly
uncertain and variable. Thus, the electricity market should be
modified to take this uncertainty and variability into account
and to mitigate the impact on other entities involved in the
market.

In this paper, we consider an electric grid that delivers de-
manded electricity to consumers. The grid consists of a non-
renewable generator unit, a renewable generator unit with
stochastic production, a transmission line, and a consumer
(load).

We assume that the grid takes all resultant renewable
energy and the non-renewable generator is dispatched to meet
the net-load, which is the consumer load minus the renewable
generator output (Figure 1).

The renewable and non-renewable generators propose
their asking price per unit of energy and their generation
constraints to an independent system operator (ISO) [2]–
[4]. The ISO, after receiving the price of non-renewable
and renewable energies, minimizes the total cost of energy
and determines an output power for each non-renewable
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Fig. 1. Electric grid model; r1 is the resistance from bus 1 to the bus
3; r2 is the resistance from bus 2 to the bus 3; ptnr is the non-renewable
power; ptr is the renewable power; ptd is the load power.

generator that will ensure a given level of reliability to meet
the load. The ISO then determines the corresponding market-
clearing prices through the next 24 hours.

The focus of this work is to quantify the required power
and market price of energy in the market as a function
of renewables and loads statistics while considering grid
reliability. The main result is that the market clearing price of
energy may increase with greater penetration of renewable
energy into the grid because of uncertainty in renewables
realizations. The market clearing price is shown to be a non-
decreasing function of uncertainty of the net load, the reli-
ability demanded by the consumer, and the loss in the grid.
We provide numerical results obtained through simulations
which consider these scenarios.

We use the notion of Conditional Value-at-Risk (CVAR)
to quantify the effect of uncertainty of the net-load on
the market price of energy. CVAR has been used in the
electricity market and literature [5]- [6] to measure the risks
of dispatch strategies. Several works that are representative
of the direction of this study include [7]- [8], which analyze
the problem under different market settings. The studies most
related to our work are [7] and [9]. They develop optimal
strategies to inject wind energy into the grid under a fixed
market price of energy. Unlike these works, we develop
the market clearing price of energy to quantify the effect
of uncertainty of the load and renewable energies on the
market clearing price of energy. Unlike our work, in [7] and
[9] the market prices are not affected by the penetration of
renewables.

There exists a rich literature which studies various aspects
of renewable energy resources in the power grid that includes
forecasting methods, energy storage, frequency regulation,
and technological challenges (see, e.g., [10], [11] and the ref-
erences therein). In [10] an overview of the current and future

2018 Annual American Control Conference (ACC)
June 27–29, 2018. Wisconsin Center, Milwaukee, USA

978-1-5386-5428-6/$31.00 ©2018 AACC 3881



trends in power electronics as well as appropriate storage
technology implemented for the integration of intermittent
renewable energy sources, like wind and photovoltaic power
generators, are presented. [11] discusses the challenges of
power fluctuation and frequency regulation imposed by the
integration of variable renewable energy into the power
network. In addition, they present an updated load frequency
control (LFC) model, and analyze the system frequency
response to the new model.

Further, there is a trend of papers which focuses on the
integration of renewable energy producers into electricity
markets, their competition, and their impact on the market
(see [12]–[14]). Of particular relevance, [12] investigates the
integration of renewable energy resources, specifically wind
power in Germany, Spain, and the UK. [13] focuses on
the efficiency of incentive schemes for the development of
renewable energy sources and their integration into the elec-
tricity market. Authors in [14] study the strategic behaviors
of renewable power producers in electricity markets.

Another line of related literature answers the question of
how to allocate the cost generated by the uncertainty and
variability of the renewable energy producers or the benefit
produced by their aggregation among them, satisfying certain
properties in the electricity market (see e.g., [15]–[17]).

Despite available methods for mitigating uncertainty, e.g.
energy storage systems, demand response etc, the uncertainty
of renewable generation and the load remain as challenges
for the optimization of generator dispatch in the market.

The rest of the paper is structured as follows. In Section II,
we formulate and solve the dispatch optimization problem of
the ISO with the goal of minimizing the cost of energy while
ensuring committed generators in the market are able to meet
the load within a desired confidence level. In Section III
we show the numerical results obtained through simulations.
Finally, concluding remarks are provided in Section IV.

II. ISO PROBLEM

A. Notation

The following notations are used in this work.

• < and <+ denote the sets of real and non-negative real
numbers respectively

• pt` : Total active power loss at time t
• ptd : Active power requested by consumer
• pti : Output power of the ith non-renewable generator

at time t
• ptnr : Total active power generated by non-renewable

generator unit
• ptr : Active power generated by renewable source
• r1 : Resistance from bus 1 to bus 3
• r2 : Resistance from bus 2 to bus 3
• (.)+ = max(., 0)
• st := ptd + r2(ptr)

2 − ptr
• πi : Asking price per unit of energy of the ith generating

unit
• πr : Asking price per unit of renewable energy.

B. Load and Renewable Energy

It is assumed that the load and renewable resource output
are independent, random variables with known distributions.
Let T = {1, 2, ..., T} be the index set. Define (PD, Pr)
as the random processes on the probability space (Ω,F,P).
PD = {P tD, t ∈ T} and Pr = {P tr , t ∈ T} represent the load
and renewable power respectively. For a fixed t, and for all
ω ∈ Ω, P tD(ω) and P tr (ω) are non-negative random variables
with known continuous probability density functions. For the
given ω ∈ Ω, P tD and P tr are deterministic functions of t that
denote the load realization and renewable resource power
realization respectively, at time t, denoted by ptd, and ptr.

C. Power Flow Constraints

We assume the non-renewable generator unit is composed
of N generators. Let pti be the output power of the ith
generator at time t. Rapid changes in output power, which
cause rapid changes in the generator temperature or physical
design, may increase maintenance costs. The output of the
non-renewable generators can be limited by the generator
capacity, or constraints on the quantity of fuel and CO2

emissions. Each unit must obey an output limit such that
for all i = 1, ..., N

pmin
i ≤ pti ≤ pmax

i . (1)

The total output of non-renewable generator units is given
as

ptnr =
N∑
i=1

pti. (2)

We assume that the voltage at each bus is equal to one. The
total active power loss (pt`) is approximated as

pt` ≈ r1(ptnr)
2 + r2(ptr)

2. (3)

The power balance equation is given as

ptnr + ptr − pt` = ptd, (4)

with a desired level of reliability ω ∈ Ω.

D. Dispatch Problem

Let πr be the asking price per unit of energy of the
renewable generator unit. Let πi be the asking price per unit
of energy of the ith non-renewable generator. Without loss
of generality, we assume that 0 < πr < π1 < ... < πN .
Let pnr := {(pt1, ..., ptN )}24

t=1 and pr := {ptr}24
t=1. The ISO

decides on a pnr that minimizes the total cost of energy
through the next 24 hours as follows

min
pnr

24∑
t=1

EPD,Pr

[ N∑
i=1

πip
t
i + πrp

t
r

]
, (5)

with respect to (1)-(4). In our model, the ISO dispatches
the generators based on their asking price of energy. The
multi-stage optimization problem (5) is disjointed through
stages (time). Let nt = (pt` + ptd − ptnr − ptr)+ and Fnt be
the cumulative distribution function of the nt, we use the
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concept of Value-at-Risk (VaR) and Conditional Value-at-
Risk (CVaR), [18]. V aRα(nt) determines the worst possible
nt that may occur within a given confidence level α. For
a given 0 < α < 1, the amount of nt will not exceed
V aRα(nt) with probability α,

V aRα(nt) = min{z|Fnt(z) ≥ α}. (6)

CVaR is defined as the conditional expectation of nt above
the amount VaRα. Let E denote the expectation over nt.

CV aRα(nt) = E[nt|nt > V aRα(nt)], (7)

CV aRα(nt) =

∫ ∞
−∞

zdFαnt(z), (8)

where

Fαnt(z) =

{
0, if z < V aRα(nt)
Fnt (z)−α

1−α , otherwise
.

The objective is to plan for the generators such that they are
capable of meeting the load within the confidence level. We
write condition (4) as

CV aRα(nt) = 0. (9)

Let ptnr = (pt1, ..., p
t
N ). We define (µ̃i, µi) and λt as

the lagrange multipliers corresponding to (1) and (9). The
lagrange function for the ISO problem is given as

Lt(pnr) =EPD,Pr

[ N∑
i=1

πip
t
i + πrp

t
r

]
+ λt

[
CV aRα(nt)

]
(10)

+
N∑
i=1

µi

[
pti − pmax

i

]
+

N∑
i=1

µ̃i

[
pmin
i − pti

]
.

Theorem 1: Let st := ptd + r2(ptr)
2 − ptr, it is claimed that

CV aRα(nt) = r1(
N∑
i=1

pti)
2 −

N∑
i=1

pti + CV aRα(st). (11)

Proof. The proof is given in the Appendix.
It is evident from (11) that CV aRα(nt) is convex in ptnr,

therefore the lagrange function (10) is convex in ptnr. By
substituting (11) in (10)

Lt(ptnr) =EPD,Pr

[ N∑
i=1

πip
t
i + πrp

t
r

]
(12)

+ λt
[
r1(

N∑
i=1

pti)
2 −

N∑
i=1

pti + CV aRα(st)
]

+
N∑
i=1

µi

[
pti − pmax

i

]
+

N∑
i=1

µ̃i

[
pmin
i − pti

]
.

The necessary Karush-Kuhn-Tucker (KKT) conditions for
the ISO’s problem are

πi + 2λtr1

N∑
i=1

pti − λt + µi − µ̃i = 0, (13)

r1(
N∑
i=1

pti)
2 + CV aRα(st) =

N∑
i=1

pti, (14)

pmin
i ≤ pti ≤ pmax

i , (15)
µi(p

t
i − pmax

i ) = 0, (16)

µ̃i(p
min
i − pti) = 0, (17)

µi ≥ 0, µ̃i ≥ 0. (18)

To ensure a feasible solution for the ISO’s problem (13)-
(18), Assumption 1 is considered. It is worth noting that this
assumption must be modified for a more complex topology
of the power grid e.g. with a higher number of generator
buses and congestion constraints.

Assumption 1: Let pmin = min
1≤k≤N

pmin
k . It is assumed that

a) 1− 4r1CV aRα(st) ≥ 0.
b) For all t = 1, ..., T{

pmin ≤ CV aRα(st) ≤
∑N
i=1 p

max
i , if r1 = 0

pmin ≤ 1±
√

1−4r1CV aRα(st)

2r1
≤

∑N
i=1 p

max
i , if r1 > 0

.

(19)
c) max

i∈{1,...,N}
pmin
i < min

i∈{1,...,N}
{pmax
i − pmin

i }.

Let pt be the solution of r1(pt)2− pt +CV aRα(st) = 0.
Because of part a) of Assumption 1 the value of pt is real and
because of part b) of Assumption 1, there exists an unique
1 ≤ k ≤ N such that

∑k−1
i=1 p

max
i < pt ≤

∑k
i=1 p

max
i . The

value of pt based on the value of r1 is given as follows.{
pt =

1±
√

1−4r1CV aRα(st)

2r1
, if r1 > 0

pt = CV aRα(st), if r1 = 0
(20)

Part c) of Assumption 1 ensures that if the first (k − 1)th
generators are operating at their maximum power and
additional power is needed to meet the load, when it is less
than pmin

k , then generator (k − 1)th can lower its output
power without violating its constraints, such that the kth
generator operates at its minimum power (pmin

k ). This is
proved in Lemma 1, shown below, and is drawn from part
c) of Assumption 1.

Lemma 1: If 0 < pt −
∑k−1
i=1 p

max
i < pmin

k then

pmin
k−1 < pt −

k−2∑
i=1

pmax
i − pmin

k < pmax
k−1. (21)

Proof. The proof is given in the Appendix.

By solving (13)-(18), the values of {µi}Ni=1, {µ̃i}Ni=1 and
λt are given below based on the value of pt −

∑k−1
i=1 p

max
i .
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• pmin
k ≤ pt −

∑k−1
i=1 p

max
i ≤ pmax

k

µi > 0, µ̃i = 0, pti = pmax
i for i = 1, ..., k − 1, (22)

µk = 0, µ̃k = 0, ptk = pt −
k−1∑
i=1

pmax
i , (23)

µi = 0, µ̃i = 0, pti = 0, for all i = k + 1, ..., N, (24)

λt =
πi + µi − µ̃i

1− 2r1pt
(25)

=
πi + µi − µ̃i√

1− 4r1CV aRα(st)
, for all i = 1, ..., k

λt =
πk√

1− 4r1CV aRα(st)
. (26)

• 0 < pt −
∑k−1
i=1 p

max
i < pmin

k

µi > 0, µ̃i = 0, pti = pmax
i for i = 1, ..., k − 2, (27)

µk−1 = 0, µ̃k−1 = 0, ptk−1 = pt −
k−2∑
i=1

pmax
i − pmin

k ,

(28)

µk = 0, µ̃k > 0, ptk = pmin
k , (29)

µi = 0, µ̃i = 0, (30)
pti = 0, for all i = k + 1, ..., N, (31)

λt =
πi + µi − µ̃i

1− 2r1pt
(32)

=
πi + µi − µ̃i√

1− 4r1CV aRα(st)
, for all i = 1, ..., k

λt =
πk−1√

1− 4r1CV aRα(st)
. (33)

• 0 < pt < pmin
1

From part b) of Assumption 1, there exists an 1 ≤ k ≤
N such that pmin

k ≤ pt < pmax
k . Let k̄ be the smallest

k that satisfies this condition, then

µi = 0, µ̃i = 0, pti = 0, for all i 6= k̄, (34)
µk̄ = 0, µ̃k̄ = 0, ptk̄ = pt, (35)

λt =
πk̄√

1− 4r1CV aRα(st)
. (36)

It is evident from (26), (33) and (36), that the market clearing
price of energy (λt) is higher at the times that st has a
heavier tail distribution. A heavier tail distribution leads to
a higher value of CV aRα(st) and larger index of k in
(26) and (33). Similarly, a higher level of reliability (larger
α) leads to a higher market clearing price of energy. The
accuracy of market clearing price (26) and (33) is heavily
dependent on the accuracy of the tail distribution of st. The
tail distribution of st depends on the load and renewable
energy distributions and model of loss function. In the next
section, more descriptive simulations are presented.

III. SIMULATIONS

Setup: We consider that the non-renewable generator is
composed of 6 units. The asking price per unit of energy

and the maximum output power for each unit is given in
Table I. It is assumed that pmin

i = 0 for all i = 1, ..., 6. The
level of reliability (α) demanded by the consumer is fixed
at 0.9.

TABLE I
MAXIMUM OUTPUT POWER pmax

i AND ASKING PRICE πi

pmax
i (MW ) 0.05 0.1 0.12 0.15 0.18 0.25
πi ($/MW ) 20 30 40 50 60 70

In the simulations, load and renewable energy are
considered as the aggregates of the distributed loads and
renewable generations. By the central limit theorem, the
sum of the independent and identically distributed random
variables tend to a Gaussian distribution as the number
of random variables increases. We assume the load and
renewable energies have Gaussian distributions truncated
on a non-negative domain. The load has a mean of 0.7 and
standard deviation of 0.1. We repeat the simulation analysis
for different scenarios of renewable energy penetration.

Case I: We assume the standard deviation of the renewable
energy is fixed at 0.1 and the mean of renewable energy takes
values {0, 0.15, 0.25, 0.3, 0.45, 0.5, 0.65, 0.75, 0.8, 0.9}. This
corresponds to the naive expectation that the renewable
energy penetration increases, while the uncertainty does not
increase. The market clearing price of energy is plotted in
Figure 2.

Fig. 2. Market clearing price versus the mean of renewable energy.

It is observable from Figure 2 that the market clearing
price of energy is decreasing in renewable energy
penetration, if the standard deviation (i.e., the uncertainty)
of renewable energy is kept constant while increasing the
penetration. In reality of course, as more renewable energy
is integrated the uncertainty in the total renewable energy
also increases. We consider that scenario in Case III and IV
below.

Case II: We assume that the mean of renew-
able energy is fixed at 0.5 and the standard
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deviation of renewable energy takes values
{0.01, 0.04, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.45, 0.5}. The
market clearing price of energy is plotted in Figure 3.

Fig. 3. Market clearing price versus the variance of renewable energy
penetration.

It can be seen from Fig. 3 that higher variability in
renewable energy production increases the uncertainty in
the net load. This increases the risk of unnecessary high
commitment of non-renewable generators in the market, and
leads to a higher market clearing price of energy.

Case III: Let the mean and standard deviation of renewable
energy correspond to values
{0.05, 0.15, 0.25, 0.3, 0.45, 0.5, 0.65, 0.75, 0.8, 0.9}
and {0.06, 0.1, 0.12, 0.15, 0.32, 0.2, 0.3, 0.4, 0.45, 0.5}
respectively. The market clearing price of energy is plotted
in figure 4.

Fig. 4. Market clearing price versus the mean
variance of renewable energy

penetration.

In Figure 4, the market clearing price of energy decreases
until a certain level of the penetration is reached, after which
the price increases. The price decreases in the beginning
because of the lower marginal cost of renewable energy.
However, after a certain level, the payment to the non-
renewable generator to maintain the reliability constraints
catches up and the market clearing price increases. The

plot shows that (i) if the consumer insists on the lowest
possible market clearing price, then the penetration level of
renewable energy is capped; and (ii) if the consumer insists
on a given price for the energy it may become important
for the renewable producer to pay the non-renewable to
compensate the latter.

Case IV: We assume the mean and standard de-
viation of renewable energy are fixed at 0.5 and
0.1 respectively. The line resistance r1 takes values
{0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22}. The
market clearing price of energy is plotted in figure 5.

Fig. 5. Market clearing price versus the value of (r1).

It is observable from Figure 5 that the market price of
energy is increasing in the line resistance. A longer grid line
(higher resistance) increases the loss of energy and increases
the required capacity for non-renewable generators. Locating
the renewable generators closer to the load leads to a lower
market price of energy. This observation provides alternate
methods to increase the renewable penetration.

IV. CONCLUSION

In this paper, we studied the impact of intermittent and un-
certain renewable energy generation on the committed power
and market price of energy of non-renewable generators. We
quantified the market clearing price of energy in a market as
a function of the desired level of reliability. Uncertainty in
net load was shown as a possible reason for increases in the
market price of energy. The expectation that increasing the
penetration of renewable energy reduces the market price of
energy would be untrue if uncertainty in renewable energy
generation is increased by the higher penetration level. In
a situation where the consumer insists on paying no more
than a certain price for energy, the renewable producer must
transfer funds to the non-renewable producer or consumer
to compensate the cost of the uncertainty and intermittency
of renewable generations. This cost is currently ignored,
which implies a hidden subsidy from the non-renewables
and consumers to the renewable producer. Understanding
and resolving such frictions, to fully consider the effects
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of uncertainty and fluctuations of renewable energies, are
central to evaluating the benefits of renewable energy.
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V. APPENDIX

Proof of Theorem 1: From [18]

CV aRα(nt) = min
η∈<

{
η +

1

1− α
E[nt − η]+

}
. (37)

We first prove that the minimizer of (37) is non-negative.
Suppose the minimizer of (37) be negative (η ≤ 0). Let
η = −η+, where η+ = |η|, then

arg min
η∈<

{
η +

1

1− α
E[nt − η]+

}
(38)

= arg min
η+∈<+

{ αη+

1− α
+

1

1− α
E[nt]

}
.

The equality in (38) is because of nt ≥ 0, and linear property
of the expectation. It is evident that the minimizer of (38)
is η+ = 0. Therefore, the minimizer of (37) is non-negative
(η ≥ 0). Because of the convexity of CV aR, the minimizer
of (37) is obtained by taking the derivative of η+ 1

1−αE[nt−
η]+ with respect to η as

η∗ = V aRα(st) + r1(
N∑
i=1

pti)
2 −

N∑
i=1

pti. (39)

By substituting η∗ in η + 1
1−αE[nt − η]+

CV aRα(nt) = r1(
N∑
i=1

pti)
2 −

N∑
i=1

pti + CV aRα(st). (40)

Proof of Lemma 1: The right side inequality in (21) is
obvious. Below the left side inequality is proven. Because of
part c) of Assumption 1,

pmin
k−1 < pmax

k−1 − pmin
k . (41)

Because of 0 < pt −
∑k−1
i=1 p

max
i

pmax
k−1 < pt −

k−2∑
i=1

pmax
i . (42)

It is concluded from (41) and (42)

pmin
k−1 < pmax

k−1 − pmin
k < pt −

k−2∑
i=1

pmax
i − pmin

k . (43)
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